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ABSTRACT

In this research, we study fixed point theorems for OL-gquasi nonexpansive mappings and
introduced dislocated quasi-b-metric spaces and prove the existence of fixed point theorems for

such spaces
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Chapter 1
Introduction

Let X be a nonempty set and T : X — X a self map. We say that p € X isa
fized point of T if p = Tp and denote by F(T) the set of all fixed points of 7. Having
in view that many of the most important nonlinear problems of applied mathematics
reduce to solving & given equation which in turn may be reduced to finding the fixed
points of a certain operator, on the other hand, the metrical fixed point theory has
developed significantly in the second part of the 20th century.

The fixed point theory is concerned with finding conditions on the structure that
the set X must be endowed as well as on the properties of the operator T : X — X,
in order to obtain results on;

1. the existence (and uniqueness) of fixed points;
2. the structure of the fixed point sets;
3. the approximation of fixed points.

The ambient spaces X involved in fixed point theorems cover a variety of spaces:
metric space, normed linear space, generalized metric space, uniform space, linear
topological space ete., while the conditions imposed on the operator T are generally
metrical or compactness type conditions. A plethora of metrical fixed point theorems
have been obtained, more or less important from a theoretical point of view, which
establish usually the existence, or the existence and unigueness of fixed points for a
certain nonlinear mappings. Among these fixed point theorems, only a small number
are important from a practical point of view, that, they offer a constructive method
for finding the fixed points.

However, from a practical point of view it is important not only to know the fixed
point exists (and, possible, is unique), but also to be able to construct that fixed
points.

As the constructive methods used in metrical fixed point theory are prevailingly
iterative procedures, that is, approximate methods. it is also of crucial importance
to have a priori or/and a posteriori error estimates (or Tate of convergence) for such
method. For example, the Banach fixed point theorem concerns certain mappings
(contractions) of a complete metric space into itself.

Fixed point Theory is studying, losing many of which can be seen from the works
of many authors [4, 6, 12, 14, 16, 17 ]. Banach contraction principle was introduced
in 1922 by Banach [3] as follows:

(i) Let (X,d) be a metric space and let T : X — X. Then T is called a Banach
contraction mapping if there exists k € [0, 1) such that
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for all z,y € X.
The concept of Kannan mapping was introduced in 1969 by Kannan [8] as follows:
(#) T is called a Kannan mapping if there exists r € [0, 3) such that

d(Tz, Ty) < rd(z, Tz) + rd(y, Ty)

for all z,y € X.
Now, we recall definition of Cyclic map. Let Let A and B be nonempty subsets of a
metric space (X,d) and T: AUB — AU B. T is called a cyclic map iff T(A) C B
and T(B) C A.

In 2003, Kirk, Srinivasan and Veeramani [11] introduced cyclic contraction as
follows:
(i) A cyclic map T : AUB — AU B is said to be a cyclic contraction if there exists
a € [0,1) such that

d(Tz, Ty) < ad(z,y)

forallz € Aandy e B.

In 2010, Karapinar and Erhan [9] introduced Kannan type cyclic contraction as
follows:
(iv) A cyclic map T : AUB — AU B is called a Kannan type cyclic contraction if
there exists b € [0, 3) such that :

d(Tz, Ty) < bd(z, Tz) + bd(y, Ty)

forallz € Aandye B.

If (X,d) is complete metric spaces, at least one of (i}, (i2), (4i7) and (4v) holds,
then have a unique fixed point [3,8,11,9]. Next, we discuss the development of spaces.
Conception of quasi-metric spaces was introduced by Wilson [19] in 1931 as a gen-
eralization of metric space, and in 2000 Hitzler and Seda [7] introduced dislocated
metric space as a generalization of mefric space, [28] generalized the result of Hit-
zler, Seda and Wilson and introduced the concept of dislocated quasi-metric space.
Wlodarczyk et al. [20-27] have created uniform spaces as this is the concept of metric
spaces. In 1089, Bakhtin [2] introduced h-metric space as a generalization of metric
space, Moreover, Czerwik [5] make the results of the Bakhtin is known more in 1998.
Finally, in many other generalized b-metric space, such as, quasi b-metric space [15],
b-metric-like space [1], quasi b-metric-like space [30].

In this research, we prove fixed point theorems for a-nonexpansive mappings
and introduced dislocated quasi b-metric spaces which generalizes the quasi b-metric
spaces and b-metric-like spaces and introduced the notion of Geraghty type dgb-
cyclic-Banach Contraction, dgb-cyclic-Kannan mapping and derive the existence of
fixed point theorems for such space. Our main theorems extends and unifies existing
results in the recent literature.



Chapter 2
Preliminaries

We begin with the following definition as a recall from [7, 19].

Definition 2.0.1. /3, 7, 19] Let X be a nonempty set. Suppose that the mapping
d: X x X — [0,00) satisfies the following conditions:
(di) d(z,z) =0 for allz € X;
(dp) d(z,y) = d(y, z) = 0 implies z =y for all z,y € X;
(ds) d(z,y) = d{y,z) for allz,y € X
(de) d(z,y) < [d(z,2) +d(z,y)], for all z,y,2 € X.
If d satisfies the condition (dy), (d3) and (d4) then d is colled a quasi metric on X.
If d satisfies the condition (ds), (d3)and (du) then d is called a dislocated metric on
X. If d satisfies the condition (d;) — (ds) then d is called o mefric on X.

In 2005 the concept of dislocated quasi-metric space [28], which is a new gener-
alization of quasi b-metric space and dislocated b-metric space, by definition 2.0.1
setting the condition (ds) and (dy) hold true then d is called & dislocated quasi-metric
on X.

Remark 2.0.2. Ji is obuvious that metric spaces is quasi metric spaces and dislocated
metric but conversely is not true.

In 1989, Bakhthin[2] introduced the concept of b-metric spaces and investigated
some fixed point theorems in such spaces.

Definition 2.0.3. [2/ Let X be a nonempty set. Suppose that the mapping

b: X x X — [0,00) such that the constant s > 1 satisfies the following conditions:
(b1) blz,y) =b(y,z) =0 & z=y forallz,y € X;
(bg) b(z,y) = bly,z) for allz,y € X;
(b3) b(z,y) < sfb(z, 2) +b(z,9)], for ali z,y,2 € X.

The pair (X,b) is then called a b-metric space.

Remark 2.0.4. It is obvious that metric spaces are b-metric spaces, but conversely is
not true.

In 2012, Shah and Hussain[15] introduced the concept of quasi b-metric spaces
and verify some fixed point theorems in quasi b-metric spaces.

Definition 2.0.5. [15] Let X be a nonempty set. Suppose that the mapping

q: X x X — [0,00) such that constant s > 1 satisfies the following conditions:
(@) g(z,y) =q(y,2) =0 & z =y forallz,y € X;
(22) g(z,y) < sla(z,2) +q(z,9)], forallz,y.2€ X.
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Remark 2.0.6. It is obvious that b-metric spaces is quast b-metric spaces, but con-
versely is not true.

Recently, the concept of b-metric-like spaces, which is a new generalization of
metric-like spaces, was introduced by Alghamdi et al. [3].

Definition 2.0.7. [15] Let X be a nonempty set. Suppose that the mapping

D: X x X —[0,00) such that constant s > 1 satisfies the following conditions:
(D1} Diz,y) =0 = z=y forallz,y € X,
(D3) D{z,y) = D(y,z) for all z,y € X
(D3) D(z,y) € s[D(z,2) + D(z,y)], for all z,y,z € X.

The pair (X, D) is then called a b-metric-like spaces(or dislocated b-metric spaces).

Remark 2.0.8. It is obvious that b-metric spaces is b-metric-like spaces, but conversely
18 not true.

In this research, we introduced dislocated quasi b-metric spaces which generalizes
the quasi b-metric spaces and b-metric-like spaces and introduced the notion of Ger-
aghty type dqb-cyclic-Banach Contraction, dgb-cyclic-Kannan mapping and derive
the existence of fixed point theorems for such space. Our main theorems extends and
unifies existing results in the recent literature.



Chapter 3
Main Results

3.1 o-quasi nonexpansive mapping

In this section, we introduce a new mapping which is called a-quasi nonexpansive
mapping and prove some fixed point theoremns for @-quasi nonexpansive mappings.

Definition 3.1.1. For a given multiinder a = (Qq, Q.. ., ) salisfies a; = 0,8 =

1,2,...,n and Y i, a; = 1. Let C be a nonempty closed and conver subset of Banach
E

space E.

A mapping T - C — C s said to be a-quasi nonezpansive mapping, if
n -
> " oil|T'z = pll < ||z — pll, ¥p € F(T), ¥z € C.
i=1
The last observation is that the mapping implies that for o = (o, 0, - .. ,0rp,) the
mapping
™
Tox = Zaﬁ"’im,‘d:ﬁ e C|
i=1

is quasi nonexpansive. Indeed

IToz — 2!l =11 >_ T2 = 2

i=1
T n
=Y Tz~ > ol
=1 i=1
= Z a||T"z - pll
i=1
< lz = pll-

Theorem 3.1.2. Let C be a nonempty closed convex subset of Banach space E and
forall n € N, let o = (o, ¢, ..., 0n) such that o 2 0, i=12,...,n,a >0.
S, = 1. Let T be an a-quasi nonezpansive mapping from C into itself. We
define mapping Tax = Yo, osTiz, for all z € C. Suppose that oy > 7\1/5 and T
satisfies CP-condition. Then F(T) = F(Ty).



Proof. 1t is clear that F(T) C F(T,). Next, we show that F(T,) C F(T). Let
z € F(1y,), we have

lx — Tz| = |[Taz — Tzl

= || iaiiﬁz - iaiT:cH
i=1

=1
= |[(eaTT + cT?z + - + @ T"r) — (1 + aa + - - + )Tz,
= |lea(Tz — Tx) + aa(T?x — Tz) + 03(T°x — Tz} + - -
+ o (T"z — Tx)||
< (| T%z ~ z|| + ||z — Tz|l) + aa{|| Tz — z|| + [lz — Tz)) +- -
+ an(|T"z — z|| + ||z — Tz}
= ;|| 7?5 — || + aollz = Tz + a3|| TPz — || + asllz — Tzf| +- -
+ )| Tz — 7| + anllz = Tzl
= (a2 + a3+« -+ ag)llz = Tz|| + (ol Tz — z|| + asl| TPz — || +---
+ oI T"z — z|)
< (o tas+ - on)|s = Tol + (2T ~ ] + |T°z — 3] + -+
o o?
O,

n—1
1

+

17"z — )

On

(8453 3
< (1-oy)llz = Tz|l + (=T — zll + |7z — 2l + - + =5 1Tz — zll)
¥y al 051
(6 1) 's (8%
=(1l—-a+—+—=+-"- Tz —
11—« l—«o 11—« l—a
o2 4 g )| Tr — g
1—af
= (2T - 2]l
251
since ay > %ﬁ, we have 1_7?1’1 < 1.This implies that Tz =z and z € F(T).
Hence F(T') = F(T,), as required. O
Lemma 3.1.3. Let @ = (01,0, -..,¢,) be as in Theorem 3.1.2. and let C be a

nonempty closed conver subset of Banach space E. Let T be an o-quasi noneTpansive
mapping from C into itself. Suppose that aq > % and T satisfies CP-condition. Let

{2} be a sequence in C. Then ||Tm — Tzm|| — 0 if and only if |om — TaZml| — 0 as
m — 0.



Proof. Suppose that ||Zm — Tam|| — 0. By a-quasi nonexpansive mapping, we have

| Tazm — Zm| = || Za’ﬂ’iazm — T}

=1

ki ™
=1 0Tz = ) il
i=1 i=1]

= ”(alT-Tm + a2T2$m + - + a‘nTn:ﬂm) - (al + 67)] + -+ an)xmll
S alIITITn - wm“ + CXQHTZ-’L-'JH, - xm“ + .- + an”Tnxm - Em“

[0} (04
< onl|TZm — T} + _2”TIm — Tl + '_ZHTIm = Ty + -

Cf]_ al

&

Tt
+ e |TZm = Tl
o (3 Oty
— (o +—=+ =+t ) TZm — Zml|-
( 1 o a% CXT_l)“ ™ m”

Which implies that | TaZym,~Zm|| — 0asm — 0. Next, suppose that | Zm—ToZml| — 0

Zm = TZm|| = |z = TaZm + Tatm — TZml]
< ”x'm, — Tax'rn.H + ”Tuwm oy TIm”

= {|Zm — ToZml + || Z T T, — Z oy |
=1

=1
= |1Zm — Taml|l + (01T T + 02T Cm + -+ + T %)
— (o + oy + o+ o) Tz
= ||Zm — Tazm| + ll01(TTm — Tom) + 0p(T? T — TZpy) +- - +
+ an(TPzm = Tzo)l|
< |\ = Taml| + 02| T22m — T2l + o3| T35, = T2 + -
+ | T T —~ Tz
= ||Zm — Tolmll + 2| T?Tm — Tm + Tm — T+
b 3| T2 = Zon + T — T+ + O[T Tm — Tm + T — TS|
< % = Ta@mll + 2| T?Tm — Zm|l + 2l|Tm — TZm|| + s || T Tm — Tm ||+
+ 03||2m — TZmll + - - - + O[T T, — T + Anl|Tm — TZoml|
= |#m — Tatml + (@2 T?Tm — Tl + -+ - + an[T"%m — Zmll)+
oo+ (0| Zm — Tzml| + 08llTm — TZmll + - + onl|Tm — TTml!)
< N|zm — ToZm|l + (02| TZm — Zwll + -+ + A | T T — Tm|)+
o+ (og ozt oo+ )| Tm = TTml])

= ||zm — Tatml + Z sz'”Tixm — Tl + (1 - a)||Tm ~ Tzpm|
= |Zm — TaZm|l + | Ta%m — Tmll + (1 — @)||Zm — T Tonl-

It follow that

[l — T |f<£”rf’ > —a |



This implies that ||z, — TZnl| — 0 as m — 0. O

Theorem 3.1.4. Let o = (ay,09,...,05) be as in Theorem 3.1.2 and let C be a
nonempty compact convex subset of strictly conver Banach space. Suppose that T' is
a-quasi nonexpansive self mapping of C' such that oy > ”%/i’ T satisfies CP-condition
and S is continuous self mapping of C with TS = ST. Then F(T) N F(S) # 0.

Proof. By Theorem 3.1.2, We have F(T) = F(T,) and Corollary 77, F(Ty) is a
nonempty closed convex set. This implies that F(T) is nonempty closed convex
subset of the compact set C, that is F(T) is compact. Since S is continuous self
mapping of C' which implies image of S is compact. Let 2 € S(F(T)), so there exists
y € F(T) such that Sy = 7. Since y € F(T) then Ty = y .It follow that

r=8y=8Ty=T8y=Tx

It follow that z € F(T) and so S : F(T") — F(T). By Tychonoff fixed point theorem.
We have F(T) N F(S) # 0. O

Theorem 3.1.5. Let o« = (@, 0,...,0,) be as in Theorem 2.1.% and let C be a
nonempty closed bounded convex subset of uniformly convez Banach space. Suppose
that T' is a o-quasi nonexpansive self-mapping of C such that oq > 71=, T satisfies
CP-condition and S is o self-mopping of C which is either noncrpansive or weakly
continuous with TS = ST. Then F(T) N F(S) # 0

Proof. Since uniform convexity implies strictly convexity, by Theorem 3.1.2, ‘We have
F(T) = F(T,) and Corollary 77, F(T,) is a nonempty closed convex set. This implies
that F(T) is nonempty closed convex subset of the bounded set (. Since subset of
bounded set is bounded set , so F(T) is bounded set. Since T'S = ST we have
S(F(T)} C F(T). If S is nonexpansive then by the Browder fixed point theorem, S
has a fixed point in F(T), that is F(T) N F(S) # 0. Next, Suppose that 5 is weakly
continuous. we mean continuous with respect to the weak topology. Since uniformly
convex Banach space B is reflexive and we know that E is reflexive if and only if
every bounded closed convex subset of E is weakly compact. This implies that F(T)
is weakly compact which mean compact with respect to the weak topology. the weak
topology is locally convex topological vector space. By the Tychonoff fixed point
theorem gives us that S has a fixed point in F(T),that is F(T') N F(S) # 0. O

Theorem 3.1.6. Let o = (a1, Qq,...,0n) be as in Theorem 3.1.2 and let C be a
nonempty weakly compact convez subset of a uniformly convex Banach space E. Sup-
pose that {T}} s a family of a-quasi nonezpansive self-mappings of C such that
o > Q_lf_ﬁi T, satisfies CP-condition and ToT; = TiT, ,where T, = Yoimy 0T for
alli € I. Then Ny F(T3) # 0.

Proof. By Theorem 3.1.2, each F'(T}) is nonempty closed and convex. Since F(T) is
closed in weakly compact convex C, so F/(T;) weakly closed. Since every closed subset
of compact space is compact, it follow that F(T;) is compact, it will be sufficient to
show that the collection F(T;) has the finite intersection property. With the inductive
hypothesis that any % of these sets have nonempty intersection, consider any k + 1
of sets F(TL), F(To), F(Ts)..., F(Tx), F(Ths1). Let D = N, F(T) # 8. Since
intersection of any number of closed is closed and F(T;) is weakly closed for all

- o~ 7 1 EmY L] 1 T ™/ e T



intersection of convex set is convex then D is convex. Since T,1T; = T;T, where
To = Z7y0;T] for all @ € N, consider ¢ = k + 1, that is T, = Z}Ll o;T5.,, since
7.1, = T;T, we have

T,(F(T})) C F(T3) =>ﬂT cﬂF

=1

i
= T(F(T) C ﬂ P(T3)
i=1 i=l

That is To(D) € D. We choose point p, since D is nonempty closed and convex
subset of a strictly convex Banach space E, there exists a unique point ¢ € D such
that ||g — pl| = inf{|ijp — 2|| - z € D}. Since T, is quasi-nonexpansive mapping, we
have |Tog—p| < |ig—plj and ¢ € D implies T,g € D. Thus T,g = g that g € F(Ta),
by Theorem 3.1.2, we have F(Tj41) = F(T,). We obtain that ¢ € F(Tk41), and so
NEY F(T) O {a}- .

3.2 Dislocated quasi-b-metric space

In this section, we begin with introducing the notion of a dislocated quasi-b-metric
space.

Definition 3.2.1. Let X be a nonempty set. Suppose that the mapping

d: X x X — [0,00) such that constant s > 1 satisfies the following conditions:

(d1) d{z,y) = d(y,z) = 0 implies z =y for all T,y € X;

(d2) d(z,y) < s[d (z z) +d(z, ), for allz,y,z € X.

The pair {X, d) is then called a dislocated quasi b-metric space (or simply dgb-metric).
The number s is called to be the coefficient of (X, d).

Remark 3.2.2. [t is obvious that b-metric spaces, quasi b-metric space and b-metric-
like spaces is dislocated quasi b-metric space but conversely is not true.

Example 3.2.3. Let X =R and let

U PR e S . B
d(.’L,’y) - |‘T" yl + n + TTL’
where n,m € N\ {1} with n # m.
Then (X,d) is a dislocated quasi b-metric space with the coefficient s = 2, but since
d(1,1) # 0, we have (X, b) is not a quasi b-metric space and since d(1, 2) # d(2 1), we
have (X, b) is not a b-metric-like space. And, (X,b) is not o dislocated quasi-metric
space. Indeed,
Let z,y,z € X. Suppose that d(z,y) = 0.
Then 2l
D S o I ] G
lz —yi* + T 0.

It implies that |z — y|> =0 and so, T = y.
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Next, consider

o =l ly
day) = -y + 24 U
z
< (-l +le—yp+ 4
7 m
<lz—zP+2lx—2z| |z — —ZMM
Slz—2f 42—zl lo—yl+ |z -yl + "+

- . x z Z
<oz —sf +lr-y?) - g B B B

n m n m
< sld(z, ) + d{z.v)],

where s = 2.
11, 1 Llg 313
A= Y= |2 — 2|2 2 4 4
(2’4) |2 4| +n+m
_ Mo >
16 2n 4m
_ 324 +i 4
" 5184 ' 6n 12m
180 5 7

5182 T 6n © 12m
@A 1 LA AN
36 ' 2n 3m 144  3n  4m

\ Nl N 13, (103 15 ) A8 I

_Iz 3|+n+m+13 4|+n+m
11 3 N

—d(§,§)+d(§,z),

where i, m > 42.

Example 3.2.4. [30

—

Let X = {0,1,2}, and let d : X x X — R™ be defined by

2; z=y=0,

1

5, I = 03 y= 1:
dz.y) =19 5 r—1y=0

1, otherwise.

Then (X,d) is a dislocated quasi b-metric space with the coefficient s = 2, but since
d(1,1) # 0, we have (X,b) is not a quasi b-metric space and since d(1,2) # d(2,1),
we have (X, b) is not a b-metric-like space. It is obvious that (X, b) is not a dislocated
quasi-metric space.

Example 3.2.5. Let X =R and let
d(z,y) = lz — y[* + 3|z|* + 2{y|*

Then (X, d) is a dislocated quasi b-metric space with the coefficient s = 2, but since
d(0,1) # d(1,0), we have (X,b) is not a b-metric-like space, since d(1,1) # 0, we
have (X, b) is not a quasi b-metric space. It is obvious that (X, b) is not a dislocated
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Example 3.2.6. Let X =R and let
d(z,y) = |2z — y|* + |2z + 9"

Then (X,d) is a dislocated quasi b-metric space with the coefficient s = 2, but since
d(1,1) # 0, we have (X,b) is not a quasi b-metric space. It is obvious that (X,b) is
not a dislocated quasi-metric space.

We will introduced dislocated quasi-b-converges sequence, Cauchy sequence and
complete of space according to Zoto, Kumari and Hoxha[29].

Definition 3.2.7. (1) A sequence ({z.}) in a dgb-metric space (X, d) dislocated quasi-
b-converges ( for short, dgb-converges ) to x € X if

lim d(z,, 2z} = 0= lim d(z, ).

n—oo 7T— 00

In this case x called o dgb-limit of ({z,}) ond we write (2, — ).
(2) A sequence ({x,}) in a dgb-metric space (X, d) is call Cauchy if

lim d(Fn, Zp) = 0= lm d(Zm,zxs)-
72, T— 00 T, T~ 00

(8) A dgb-metric space (X,d) is complete if every Cauchy sequence in it is dgb-
convergent in X.
Next, we begin with introducing the concept of a dgb-cyclic-Banach Contraction.

Definition 3.2.8. Let A and B be nonempty subsets of o dislocated quasi-b-metric
spaces. (X,d). A cyclicmap T : AUB — AU B is said to be a dgb-cyclic-Banach
Contraction and if there exists k € [0,1) such that

d(Tz, Ty) < kd(z,y). (3.1)
forallzre A,ye Bands>1and sk <1
Now we prove our main results.

Theorem. 3.2.9. Let A and B be nonempty subsets of a complete dislocated quasi-
b-metric space (X,d). Let T be a cyclic mapping that satisfies the condition a dgb-
cyclic-Banach Contraction. Then, T has a unique fized point in AN B.

Proof Let z € A(fiz) and using contractive condition of theorem, we have

d(T?z,Tz) = d(T(Tz), Tx)

< kd(Tz,x),
and
d(Tx, T?%z) =d(Tz.T(Tz))
< kd(z,Tz).
So,

AlT20 T\ < keev ' (2N
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and
d(Tz, T%) < ko, (3.3)

where o = max{d(Tz,z),d(z, Tz)}.
By using (3.2) and (3.2), we have d(T%z, T?%z) < k%, and d(T”z, T°1) < K a.
For all n € N, we get

ATz, Tz} < Koy,

and
d(Tz, T"z) < ko

Let n,m € N with m > n, by using the triangular inequality, we have,

s

(

(Sk)m—nkn—l + (Sk)m—n—lkm—'z + (Sk)m_ﬂ_zkn_l—l- e (Sk)an—l + (Sk)kn—
S (kn-—l 4 kn—l + kn-l 4+ k.'n.—l Al k'n—l)a

(

(

for some € > m —n + 1.
Take n — oo, we get d(T™z,T"z) — 0.
Similarly, let n,m € N with m > n, by using the triangular inequality, we have,

d(T"z, Tz) = (k" !)éa.

Take n — oo, we get d{T"z,T™z) — 0. Thus 7"z is a Cauchy sequence.

Since(X, d) is complete, we have {T™z} converges to some z € X.

We note, that {727z} is a sequence in A and {T?*~'z} is a sequence in B in a way
that both sequences tend to same limit z.

Since A and B are closed, we have z € AN B, and then AN B # @.

Now, we will to show that Tz = 2.

By using (3.1), Consider

d(T"z,Tz) = d(T(T" 'z), Tz)
< kd(T™ 'z, 2)
< d(T™ 'z, z).

Taking limit as n — oo in above inequality, we have
d(z,Tz) < kd(2,Tz) < d(z,Tz).

And so, d(z, Tz) = kd(z,Tz), where 0 < k < 1. This implies that d(z,T2z)=0.
Similarly considering form (3.1}, we get
d(Tz,T"z) = d(Tz, T(T" 'z))
< kd(z, T" 'z)
< dlz T 1p)
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Taking limit as n — oc¢ in above inequality, we have
d(Tz,z) < kd{Tz, z) <d(Tz, z).

And so, d(T'z,z) = kd(T'z,z), where 0 < k < 1. This implies that d(T'z,2) = 0.
Hence d(z,Tz) = d(T'z, z) = 0, this implies that Tz = z that is z is a fixed point of
T.

Finally, to prove the uniqueness of fixed point, let 2* € X be another fixed point of
T such that T'z* = z*.

Then, we have

d{z,2*) = d(Tz,Tz*) < kd(z, z"). (3.4)
On the other hand,
d(z*,z) = d(T=*,Tz) < kd(z*, z). (3.5}

By form (3.4) and (3.5), we obtain that d(z,2z*) = d(2*,z) = 0, this implies that
¥ =z.
Therefore z is a unique fixed point of 7. The complete prove. O
Example 3.2.10. Let X = [-1,1) and T : AUB — AUB defined by Tz = 3F. Suppose
that A = [—1,0] and B = [0,1). Defined the function d : X* — [0, 00) by

%)

Y
dzy) =z —yP+ 2+ 0

We see that d is a dislocated quasi-b-metric on X.
Now, Consider Let 2 € A. Then —1 <z <0. S0, 0 < F*
On the other hand, let x € B. Then 0 <z < 1. §o, T <
Hence the map T is cyclic on X, because T(A) C B and T(B) C A.
Next, we consider

d(Tz,Ty) = [Tz — Ty|* + 3|Tz| + 2|Ty|

_ SRk A

NG "+ 503

S
T L T
1 1 1
< Iz —ylP+ — =
< lle =y + lel + gyl
< kd(z,y),
so forz <k <1

Thus T satisfies dgb-cyclic-Banach Contraction of theorem 3.5 and 0 is the unique
fized point of T

Finally, we begin with introducing the concept of a dgb-cyclic-Kannan map-
ping.
Definition 3.2.11. Let A and B be nonempty subsets of a dislocated quasi-b-metric
spaces. (X,d). A cyclic map T : AUB — AU B is called a dgb-cyclic-Kannan
mapping if there ezists v € [0, 1) such that
d(Tz,Ty) < r(d(z, Tz) + d(z, Ty)). (3.6)

r Tt —_ 4 - T o~ A T - 1
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In the next theorem, we will prove fixed point theorem for cyclic-Kannan mapping
in dislocated quasi-b-metric space.

Theorem 3.2.12. Let A and B be nonemply subsets of a complete dislocated quasi-
b-metric space (X,d). Let T be a cyclic mapping that satisfies the condition a dgb-
cyclic-Kannan mapping Then, T has a unique fized point in AN B.

Proof. Let x € A(fiz) and using contractive condition of theorem, we have and
d(Tz, T?z) = d(Tz,T(Tx))
< rd(z, Tz) +rd(Tz, T?2),

S0,

d(Tz, T?z) <
1—r

d(z,Tz). (3.7}
And from (3.7),
d{(T?z,Tz) = d(T(Tz), Tx)
< rd(Tz, T%x) + rd(z, Tz)
— d{z,Tz) +rd(z, Tz)

T T

IA

[A

( yd(z, Tx)

l—7r 1-—r
" 9d(z,Tx),

IA

1 —r
50,
4Tz, T) < +—F, (3.8)
where 5 = 2d(z, T'z).
By using (3.7) and (3.8}, we have
3. T2\ < (L
d(T%z,Tz) < (l—r

)28,
and A
d(T?z, T%z) < (1—)2ﬁ.

- T

For all n € N, we get
T

ATz, T2) < (=

"B,

il
and -

l1—-r

ATz, T z) < ( 8.
Let n,m € N with m > n, by using the triangular inequality, we have,
dT™z, T z) < s™"d(T™z, T z) + ™" d(T™ g, T™ 2z} + ... + sd(T™ 'z, T z)
< (sm-nkm—l + S'm—'n—ljtc-m—-2 L Sm—n—2km—3 + .+ S2kn+1 + Skn)ﬁ

S T G e G )T

- (1 —-T
< (L _yn-lgg

l—7r
T ) Hm —n+1)8
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for some £ > m —n + 1. Take n — o0, we get d(T™z, T"z) — 0.
Similarly, let n,m € N with m > n, by using the triangular inequality, we have,
)i

ATz, T™z) < (1 —

Take n — oo, we get d(T"z,T™z) — 0. Thus T"z is a Cauchy sequence.

Since (X, d) is complete, we have {(T™z)} converges to some z € X.

We note. that {T?"z} is a sequence in A and {T°"~'z} is a sequence in 5 in a way
that both sequences tend to same limit z.

Since A and B are closed, we have z € AN B, and then ANB # 0.

Now, we will to show that Tz = z.

By using (3.6), Consider

d(T"z,Tz) = d(T(T" 'z),Tz)
< rd(T" 'z, T z) + rd(z, Tz).

Taking limit as n — oo in above inequality, we have
d(z,Tz) < rd(2,Tz)

Since 0 < r < %, we have d(z,Tz) = 0.
Similarly considering form (3.G), we get

d(Tz,1T"z) = d(Tz T(T" 'z))
< rd(z, Tz) 4+ rd(T" 'z, T ).

Taking limit as 7 — o0 in above inequality, we have
d(Tz,z) <rd(z,T2)

Since d(z, Tz) = 0, we have d(z,7z) = 0.

Hence d(z,Tz) = d{Tz,2) =0 = Tz=zandzisa fixed point of T.

Finally, to prove the uniqueness of fixed point, let. z* € X Dbe another fixed point of
T such that T2 = 27

Then, we have d(z, 2z) = d(2*, 2*) = 0, because by assumption.

d(z,2*) = d(T=,Tz")
< rd(z, T2) +rd(z*,Tz")
= rd(z, z) + rd(2", 2")
~0. (3.9)
On the other hand,
d(z*, z) = d(Tz".Tz)
< rd(2*, Tz") +rd(2,Tz)
= rd(z*, z*) +rd(z, z)
=0. (3.10)

By form (3.9) and (3.10), we obtain that d(z,2*) = d(z*,2) =0 = 2" =2

~ 1 . [l or iu | ~



Chapter 4
Conclusion

In this research, we establish dislocated quasi b-metric spaces and introduce
the notion of Geraghty type dgb-cyclic-Banach Contraction, dgb-cyclic-Kannan map-
ping and derive the existence of fixed point theorems for such space. Our main the-
orem extends and unifies existing results in the recent literature.

The following results are all main theorems of thisresearch:
1. Let A and B be nonempty subsets of a complete dislocated quasi-b-metric space
(X,d). Let T be a cyclic mapping that satisfies the condition a dgb-cyclic-Banach
Contraction. Then, 7" has a unique fixed point in AN B.

2. Let A and B be nonempty subsets of a complete dislocated quasi-b-metric space
(X,d). Let T be a cyclic mapping that satisfies the condition a dgb-cyclic-Kannan
mapping Then, T has a unique fixed point in AN B.
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Example 3.2.13. Let X = [-1,1] and T : X — X defined by Tz = "Tm Suppose that
A=[-1,0] end B = [0,1]. Defined the function d : X* — [0, 00) by

d(z,y) = |z - y* + 3Jz| + 2ly|.

We see that d is a dislocated quasi-b-metric on X.

Now. Consider Let z € A. Then —1 <z <0. S0, 0 < —7—"" < i. Thus, Tz € B.
On the other hand, let z € B. Then 0 <z < 1. So, ‘7 < ZFE L0 Thus, Tz € A.
Hence the map T is cyclic on X, because T(A} C B and T'(B) C A.

Next, we consider

d(Tz,Ty) =Tz — Tjg{2 + 3|T$| + ’)]Ty|

- 2
= | — — + ‘} -

1
- —|w—y|2+—|:c\+;|y|

(11 +20al+ 21y

21_
(A\ . 3 2

< ZgP 4 Sy = &
49IEI lyl +7I$|+7Iyl
264 o 23

< 23([ III —\w|]+[49|y| + = )
9 64 23 64, ., 23
=37 [ le le]+[1§!y| +—7—|y|])

2 5 1 1, 1
= — =i - = 2 =
23(H:c+71| +3Jo| + 2 zal] + [ly + Zul* + 3lyl + 217u())

= 2 (la ~ Tl +3la] + 2Tzl + [y~ Tol* + Sly] + ATyl
 r(d(e, T2) + d{y, Ty)),

soforZ <r <3
Thus T satzsﬁes dqb cyclic-Banach Contraction of theorem 3.3 and O is the unique
fized point of T



Bibliography

[1] MA. Alghamdi, N. Hussain, P. Salimi, Fived point and coupled fized point theo-
rems on b-metric-like spaces, J. Inequal. Appl., 402 (2013).

[2] 1. A. Bakhtin, The contraction principle in quasz’vﬁetm’c spaces, Functional Anal-
ysis., 30 (1989) 2637. '

[3] S. Banach, Sur les opérations dans les ensembles abstraits et leur application auz
équations intégrales, Fund. Math.,(3) (1922) 133-181.

[4] S.S. Basha, P. Veeramani, Best prozimity pair theorems for multifunctions with
open fibres, J. Approx. Theory 103 (2000) 119-129.

[5] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti
Sem. Mat. Univ. Modena, 46 (1998) 263-276.

6] Y. Enjouji, M. Nakanishi and T. Suzuki, A generalization of Kannan's fived point
theorem, Fixed Point Theory Appl. 2009 (2009) 1-10. Article ID 192872.

[7] P. Hitzler, A. Seda, Dislocated topologies, J. Electr. Eng., 51 (2000) 3-7.

[8] R. Kannan, Some results on fired points-II, Amer. Math. Monthly.,76 (1969)
405-408.

[9] E. Karapinar and I. M. Erhan, Best Prozimity on Different Type Contractions,
Applied Mathematics and Information Science., (2010).

[10] E. Karapinar and P. Salimi, Dislocated metric space to metric spaces with some
fized point theorems, Fixed point theory and applications., (2013).

[11] W.A. Kirk, P.S. Srinivasan and P. Veeramani, Fized Points for mapping satsify-
ing Cyclic contractive conditions, Fixed Point Theory., 4 (2003) 79-89.

[12] M. Kikkawa and T. Suzuki, Some similarity between coniractions and Kannan
mappings, Fixed Point Theory Appl. 2008 (2008) 1-8. Article ID 649749,

[13] S. B. Nadler, Jr., Multi-valued contraction mappings, Pacific J. Math., 30 (1969)
475-488.

[14] M. Nakanishi and T. Suzuki, An observation on Kannan mappings, Cent. Eur.
J. Math., 8 (2010) 170-178.

[15] M. H. Shah and N. Hussain, Nonlinear Contractions in partially ordered quasi
bometrin enaree (Cammun Warean Math Sne 27(1) (20191 117-128



19

[16] S. Reich, Kannan’'s fized point theorem, Boll. Un. Mat. Ital., 4 (1971) 1-11.

[L7] N. Shioji, T. Suzuki and W. Takehashi, Contractive mappings, Kannan map-
pings and metric completeness, Proc. Amer. Mat. Soc., 126 (1998) 3117-3124.
http://dx.doi.org/10.1090/50002-9939-98-04605-X.

[18] T. Suzuki, Fized point theorems and convergence theorems for some generalized
nonerpansive mappings, J. Math. Anal. Appl., 340 (2008) 1088-1095.

[19] W. A. Wilson, on guasi-metric spaces, American Journal of Mathematics., 53
{1931} 3.

[20] K. Wiodarczyk, R. Plebaniak and A. Banach, Best prozimity points for cyclic and
noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces,
Nonlinear Anal., 70 (2009) 3332-3341.

[21] K. Wiodarczyk, R. Plebaniak and A. Banach, Best prozimity points for cyclic and
noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces,
Nonlinear Analysis: Theory, Methods and Applications., 71 (2009).

[22] K. Wlodarczyk, R. Plebaniak and C. Obczylski, Convergence theorems, best
approzimation and best proximity for set-valued dynamic systems of relatively

quasi-asymptotic contractions in cone uniform spaces, Nonlinear Anal., 72 (2010)
794-805.

{23] K. Wiodarczyk and R. Plebaniak, Kannan-type contractions and fized points in
uniform spaces, Fixed Point Theory Appl.. 90 (2011) 1-24.

[24] K. Wiodarczyk and R. Plebaniak, Contractions of Banach, Tarafdar, Meir-
Keller, tirit-Jachymski-Matkowski and Suzuki types and fized points in uniform
spaces with generalized pseudodistances, J. Math. Anal. Appl., 404 (2013) 338-
350.

[25] K. Wilodarczyk and R. Plebaniak, Asymmetric structures, discontinucus con-
tractions and iterative approzimation of fized and periodic points, Fixed Point
Theory and Applications., 128 (2013) 1-18.

[26] K. Wilodarczyk, Hausdorff quasi-distances, periodic and fized points for Nadler
type set-valued contractions in quasi-gauge spouces, Fixed Point Theory and Ap-
plications., 239 (2013) 1-27.

[27! K. Wlodarczyk and R. Plebaniak, Dynamic processes, fized points, endpoints,
asyminetric structures and investigations related to Caristi, Nadler and Banach
in uniform spaces, Abstract and Apphed Analysis., 2015 (2015), Article ID
942814, 1-16. 3585-3586.

[28] F.M. Zeyada, G.H. Hassan and M.A. Ahmad, A generalization of fized point
theoremn due to Hitzler and Seda in dislocated quasi-metric space, Arabian J. Sci.
Engg., 31 (2005) 111-114.

[29] K. Zoto, P. S. Kumari, E. Hoxha, Some fized point theorems and cyclic con-
tmctzons mn dzslocated and dislocated gquasi-metric spaces, American Journal of

~ 7 4 - alfatr s 4N e mos






Klin-eam and Suanoom Fixed Point Theory and Applications (2015) 2015:74 *# Fixed Point Theory and Applications
DOI 10.1186/513663-015-0325-2 S pan Joural

RESEARCH Open Access

Eoie

D l d b d { v CrossMark
Chakkrid Klin-eam'?" and Cholatis Suanoom!
“Correspondence: i h
chakiridk@nu.acth Abstract
D f Mathematics, . o . ) .
Facej;[t;zziteice'arja,e;;j:,fs In this paper, we establish dislocated quasi-b-metric spaces and introduce the
University, Phitsanulok, 65000, notions of Geraghty type dgb-cyclic-Banach contraction and dgb-cyclic-Kannan
Thailand mapping and derive the existence of fixed point theorems for such spaces. Qur main
2Research Center for Acadermic 9 . - p. ) P '
Excellence in Mathernatics, theorem extends and unifies existing results in the recent literature.
Naresuan University, Phirsanulok, R . .
praksigieel MSC: 47H05; 47H10;47J25
Keywords: fixed points; dgb-cyclic-Banach contraction; dgb-cyclic-Kannan
mapping; b-metric spaces; quasi-b-metric spaces; b-metric-like spaces; dislocated
quasi-b-metric spaces

1 Introduction and preliminaries
Fixed point theory has been studied extensively, which can be seen from the works of
many authors [1-6]. Banach contraction principle was introduced in 1922 by Banach [7]
as follows:
(i) Let (X,d) be a metric space and let T : X — X. Then T is called a Banach
contraction mapping if there exists k € [0,1) such that

d(Tx, Ty) < kd(x.)

for all x,y € X.
The concept of Kannan mapping was introduced in 1969 by Kannan [8] as follows:
(i) T is called a Kannan mapping if there exists r € [0, %) such that

d(Tx, Ty) < rd(z, Tx} + rd(y, Ty)

forallxye X.
Now, we recall the definition of cyclic map. Let A and B be nonempty subsets of a metric
space (X,d}and T:AUB— AUB. T iscalled a cyclic map iff T{A) € B and T(B) CA.
In 2003, Kirk et L [9] introduced cyelic contraction as follows:
(ifi) A cyclic map T:A4 UB — AU B is said to be a cyclic contraction if there exists
a € [0,1) such that

d(Tx, Ty) < ad(x,y)

forallxedAandyeB.

© 2015 Klin-eam and Suancom. This article is distriibuted under the terms of the Creative Commoens Attribution 40 Intema-
tional License (hitpy//creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distriburion, and reproduction in any

-
@ SP rlnge r medium, provided you give appropriate credit to the original authorl(s) and the source, provide a link to the Creative Commons
SRITREST,

license, and Indicate If changes were made.
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In 2010, Karapinar and Erhan (10} introduced Kannan type cyclic contraction as follows:
(iv) A cyclicmap T:AUB— AU B is called a Kannan type cyclic contraction if there
exists b € [0, %) such that

d{Tx, Ty) < bd(x, Tx) + bd(y, Ty)

forallx €A and y € B.

If (X, d) is a complete metric space, at least one of (i), (ii), (iii) and (iv) holds, then it
has a unique fixed point [7-10]. Next, we discuss the development of spaces. The con-
cept of quasi-metric spaces was introduced by Wilson (11] in 1931 as a generalization of
metric spaces, and in 2000 Hitzler and Seda [12] introduced dislocated metric spaces as
a generalization of metric spaces, [13] generalized the result of Hitzler, Seda and Wilson
and introduced the concept of dislocated quasi-metric space. Wiodarczyk ef al. (see [14—
21]) created uniform spaces as this is the concept of metric spaces. In 1989, Bakhtin [22]
introduced b-metric space as a generalization of metric space. Moreover, Czerwik [23]
made the resuits of Bakhtin known more in 1998. Finally, many other generalized b-metric
spaces such as quasi-b-metric spaces [24], b-metric-like spaces [25] and quasi-b-metric-
like spaces [26] were introduced.

We begin with the following definition as a recall from [11, 12].

Definition 1.1 [7, 11, 12] Let X be a nonempty set. Suppose that the mapping 4 : X x X —
[0, o0) satisfies the following conditions:

(dy) dlx,x)=0forallxeX;

(ds) d(x,y)=d(y,x)=0impliesx=yforallzycX;
(d3) d(x,9) =d(y,x) forallx,y € X;

{(da) dixy) <ldx.z) +d(z,9)] forallx,y,zeX.

If 4 satisfies conditions (d1), {d2) and (d4), then d is called a quasi-metric on X. If d satis-
fies conditions (dy), (ds) and (dg), then 4 is called a dislocated metric on X. If 4 satisfies
conditions (d;)-(d4), then d is called a mretric on X.

In 2005 the concept of dislocated quasi-metric spaces [13], which is a new generalization
of quasi-b-metric spaces and dislocated b-metric spaces, was introduced. By Definition 1.1,
if setting conditions (d.) and (d4) hold true, then d is called a dislocated quasi-metric on X.

Remark 1.2 Itis obvious that metric spaces are quasi-metric spaces and dislocated metric
spaces, but the converse is not true.

In 1989, Bakhtin [22] introduced the concept of b-metric spaces and investigated some
fixed point theorems in such spaces.

Definition 1.3 [22] Let X be a nonempty set. Suppose that the mapping &: X x X —
[0, 50} such that the constant s > 1 satisfies the following conditions:

(by) blxy) =b(y.x)=0&x=yforalxycX;
{ba) B(x,y}=b(y,x) forallz,y e X;
(ba) b(xy) <s[b(x 2) +blz,y)] forall x,y,z€ X.

The pair (X, b) is then called a b-metric space.
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Remark 1.4 It is obvious that metric spaces are b-metric spaces, but conversely this is not
true.

In 2012, Shah and Hussain [24] introduced the concept of quasi-b-metric spaces and
verified some fixed point theorems in quasi-b-metric spaces.

Definition 1.5 [24] Let X be a nonempty set. Suppose that the mapping g: X x X —
[0, 0o) such that constant s > 1 satisfies the following conditions:

(@) g%y =glyx)=0«x=yforalxyecX;
{q2) g(x,) <slg(x.2) +g(zy) forallx,y,ze X.

The pair (X, g) is then called a quasi-b-metric space.

Remark 1.6 Tt is obvious that b-metric spaces are quasi-b-metric spaces, but conversely
this is not true.

Recently, the concept of b-metric-like spaces, which is a new generalization of metric-
like spaces, was introduced by Alghamdi et al. [25].

Definition 1.7 [25] Let X be a nonempty set. Suppose that the mapping D: X x X —
[0, 00) such that constant s > 1 satisfies the following conditions:

(D) DGey)=0=x=yforalxyecX;
(Dg) D(x,y)=D{y,x) forallx,y e X;
(D3) Dfx,v) <s[D(x,z)+ Diz,y}} for all x,5,z € X.

The pair (X, D) is then called a b-metric-like space (or a dislocated b-metric space}.

Remark 1.8 It is obvious that b-metric spaces are b-metric-like spaces, but conversely
this is not true.

In this paper we introduce dislocated quasi-b-metric spaces which generalize quasi-b-
metric spaces and b-metric-like spaces, and we introduce the notions of Geraghty type
dgb-cyclic-Banach contraction and dgb-cyclic-Kannan mapping and derive the existence
of fixed point theorems for such spaces. Our main theorems extend and unify existing
results in the recent literature.

2 Main results
In this section, we begin with introducing the notion of dislocated quasi-b-metric space.

Definition 2.1 Let X be a nonempty set. Suppose that the mapping 4: X x X — [0,00)
such that constant s > 1 satisfles the following conditions:

(1) d(x,y) = d{y,x) =0 implies x = y for all x, y € X;

(d2) dix,y) <sld(x,z} + d(z,y)] forallx,y,z€ X.
The pair (X, d) is then called a dislocated quasi-b-metric space (or simply dgb-metric). The
number $ is called the coefficient of (X, ).

Remark 2.2 It is obvious that b-metric spaces, quasi-b-metric spaces and b-metric-like
spaces are dislocated quasi-b-metric spaces, but the converse is not true.
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Example 2.3 Let X =R and let

d(x,y) = |x—yl2 + l—:—' + m

where #,m € N\ {1} with # #m.

Then (X,d) is a dislocated quasi-b-metric space with the coefficient s = 2, but since
d(1,1) # 0, we have (X, b) is not a quasi-b-metric space, and since d(1,2) # d(2, 1), we have
(X, b) is not a b-metric-like space. And (X, b) is not a dislocated quasi-metric space. Indeed,
let x,v,z € X. Suppose that d(x,y) = 0.

Then

lx—yl2+m+m=0.
n M

It implies that [x - y|* =0, and s0 x = .
Next, consider

d(x,y) = lx—y[* + lad} F. bl
n m

<(lx-zl+lz=5)"+

lel 1yl
P + —
m

= Iyl
i

< s=zl 4 20 =2l lz=yl +lz—y+ — +

i
SZ(lx—z|2+|z-y|2)+iil+|-—-|+iil+m
H b W

< s[dlx.2) + (23],

where s =2,

FER AL
2 4 2 4
324 3 4 180 5 7
E——t—t— > —— +— +
5184 6x 12m 5184 6r 12m

1 1 1 1 1 1

“36 " 2n " 3m 144 3n 4m

11 1y ko1 1P s 1k
=~-—.—_ +M+M+__ +|3| |4|

—_+
2 3 m n

IVERANEEAY
2°3 34

where n,m > 42.

w

Example 2.4 [26] Let X = {0,1,2},and let d: X x X — R be defined by

2 x=y=0,

1

55 X= 013’ = 11
dix,y) =4 *

2; x=1ly=0,

L, otherwise.
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Then (X, d) is a dislocated quasi-b-metric space with the coefficient s = 2, but since 4{1,1) # . o
0, we have (X, b) is not a quasi-b-metric space, and since d(1, 2) # d(2,1), we have (X, b} is MunNvamya
not a b-metric-like space. It is obvious that (X, b) is not a dislocated quasi-metric space.

Example 2.5 Let X =R and let 1 R E“ﬂ. ?_559
dlx,y) = lx = y1* + 3Jx* + 2]y°.

Then (X,d) is a dislocated quasi-b-metric space with the coefficient s = 2, but since
d(0,1) # d(1,0), we have (X, b) is not a b-metric-like space, since d(1,1) # 0, we have (X, b)
is not a quasi-b-metric space. It is obvious that (X, b) is not a dislocated quasi-metric space.

Example 2.6 Let X =R and let
dlx,y) =122 - y|* + [2x + .

Then (X, d) is a dislocated quasi-b-metric space with the coefficients = 2, butsince 4(1,1} #
0, we have (X, b) is not a quasi-b-metric space. It is obvious that (X, &) is not a dislocated
quasi-metric space.

We will introduce a dislocated quasi-b-convergent sequence, a Cauchy sequence and a
complete space according to Zoto et al. [27].

Definition 2.7
(1) A sequence ({x,}) in a dgb-metric space (X,4d) dislocated quasi-b-converges (for
short, dgb-converges) to x € X if

lim d{x,,x) =0 = lim d{x,x,).
A—CQ H=—roO

In this case x is called a dgb-limit of ({x,}), and we write (x, — x}.
(2) A sequence ({x,}) in a dgb-metric space (X, d) is called Cauchy if

lim d(xmxm)=0= lim d(xmtxn)-

I — 00 =00

(3} A dgb-metric space (X, d) is complete if every Cauchy sequence in it is
dqb-convergent in X.

Next, we begin with introducing the concept of a dgb-cyclic-Banach contraction.
Definition 2.8 Let A and B be nonempty subsets of a dislocated quasi-b-metric space

(X,d). A cyclic map T:A\UB — AU B is said to be a dgb-cyclic-Banach contraction if
there exists k < [0, 1) such that

d(Tx, Ty) < kd(, y) (2.1)

forallxcA,yeBands>1landsk <1.
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Now we prove our main results.

Theorem 2.9 Let A and B be nonempty subsets of a complete dislocated quasi-b-metric
space (X, d). Let T be a cyclic mapping that satisfies the condition of a dgb-cyclic-Banach
contraction. Then T has a unique fixed point in AN B.

Proof Let x € A(fix) and, using the contractive condition of the theorem, we have

d(T?x, Tz} = d(T(Tx), Tx)
< kd(Tx,x)

and

d(Tx, Tx) = d(Tx, T(T))

< kd(x, Tx).
So,
d(Tx, Tx) < ke (2.2)
and
d{Tx, T%%) < ke, (2.3)

where o = roax{d( T, x), d(x, Tx)}.
By using (2.2) and (2.3), we have d(T°x, T?x) < ke, and d(T°x, T3x) < k.
For all n € N, we get

d(T™x, T"x) < k'
and
d(T”x, T’”lx) <K'o.
Let #,m € N with m > n, by using the triangular inequality, we have
d(T™x, T"x) < s™"d(T™x, T x) 4 s g (T, T 2x) 4 -+ sd(T™'x, T"x)
< ("R g g g et s2E™ 4 ke
= () + (k)RR o ()T
+ (k2K + (k)K"
< (Kl ke kT
= (K" m-n+1la
< (kK)o

forsome & >m—n+1.
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Take n — oo, we get d{T"x, T"x) — 0.
Similarly, let #,m € N with m > n, by using the triangular inequality, we have

d(T"x, T"x) = (K" ) g .

Take 1 — oo, we get d(T"x, T™x} — 0. Thus T"x is a Cauchy sequence.

Since (X,d) is complete, we have {T"x} converges to some z € X.

We note that {T%"x} is a sequence in A and {T2""'x} is a sequence in B in a way that both
sequences tend to the same limit z.

Since A and B are closed, we have z € AN B, and then AN B #@.

Now, we will show that Tz = z.

By using (2.1}, consider

d(T"x, Tz) = d(T(T"'x), Tz)
< kd(T"x,2)

< d(T”‘lx, z).
Taking limit as # — o in the above inequality, we have
diz, Tz) < kd{z, Tz) < d(z, Tz).

And so d(z, Tz) = kd(z, Tz), where 0 < k < 1. This implies that d(z, Tz) = 0.
Similarly, considering form (2.1), we get
d{Tz, T"x) = d{Tz, T(T" %))
< kd(z, T" %)
<d(z, T"'z).

Taking limit as n — 00 in the above inequality, we have
d(Tz,2) < kd(Tz,z) < d(Tz 2).

And so d(Tz 2) = kd(Tz,z), where 0 < k < 1. This implies that 4{7z,z) = 0.
Hence d(z, Tz) = d(Tz,z) = 0, this implies that 7%z = z, that is, 2 is 2 fixed point of 7.
Finally, to prove the uniqueness of a fixed point, let z* € X be another fixed point of T
such that 7z* = z*.
Then we have

d(z,2") = d(Tz, T2") < kd(z.2"). (2.4)
On the other hand,
d(2,z) = d(T2", Tz) < kd(z",2). (2.5)

By forms (2.4) and (2.5), we obtain that d(z,z*) = d(z*,z} = 0, this implies thatz* = z.
Therefore z is a unique fixed point of T. This completes the proof. [}
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Example 2.10 Let X = [-1,1] and T: 4 U B — AU B defined by Tx = . Suppose that
A =[-1,0] and B = [0,1]. Define the function d: X% — [0,00) by
d(x,y) = |x—yI* + bl 1
10 11

We see that 4 is a dislocated quasi-b-metric on X.

Now, letx € A. Then -1 <x < 0. S0, 0 < ¥ < {. Thus, Tx € B.

On the other hand, let# € B. Then 0 <x <1. S0, 3 < £ < 0. Thus, Tx € A.

Hence the map T is cyclic on X because T(A} C B and T(B) C A.

Next, we consider

d(Tx, Ty) = | T — Ty|? + 3| Tx| + 2| Ty|

1

< ke(x, y),

so for % <k<l
Thus T satisfies the dgb-cyclic-Banach contraction of Theorem 2.9 and 0 is the unique
fixed point of 7.

Finally, we begin with introducing the concept of dqb-cyclic-Kannan mapping.
Definition 2.11 Let A and B be nonempty subsets of a dislocated quasi-b-metric space

(X,d). A cyclic map T: AU B — AU B is called a dgb-cyclic-Kannan mapping if there
exists r € [0, 7) such that

d(Tx, Ty) < r(d(x, Tx} + d(x, Ty)) {2.6)
forallx€ A, ye Bands>landsr <.

In the next theorem, we will prove the fixed point theorem for a cyclic-Kannan mapping
in a dislocated quasi-b-metric space.

Theorem 2.12 Let A and B be nonempty subsets of a complete dislocated quasi-b-metric
space (X,d). Let T be a cyclic mapping that satisfies the condition of a dgb-cyclic-Kannan
mapping. Then T has a unique fixed pointin AN B.

Proof Let x € A(fix) and, using the contractive condition of the theorem, we have

a(Tx, T?x} = d(Tx, T(Tx))
< rd(x, Tx) + rd(Tx, T?x),
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50
d(Tx, T*x) < T—d(x T
-7
And from (2.7} we have

d(T°x, Tx) = d(T(Tx), Tx)

< rd(Tx, T*x) + rd(x, Tx)
r

d(x, Tx) + rd(x, Tx)

¥
+

) d(x, Tx)

—

-r

50

where § = 2d(x, Tx).
By using (2.7) and (2.8}, we have

1-r

d(T3% %) < (L)2 I

and

(T, ) < (ﬁ)z 8.

Forall » € N, we get

d(T""lx, T"")S(IL')",B

—

and

d(T"% T™%) < (L)nﬁ.

1-r
Let n,m € N with s > », by using the triangular inequality, we have

d(T"x, T"x) < 5" "d(T"x, Tm'lx) + 57 ( T7 1, T’"'zx) + +sd(T"x, T7x)
< (7K 4 g R e SR KT B
r

(&) () (&)
(5) (&) )

Page 9cf 12

(2.7)

(2.8)
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n-1
= (l—ir) (m-n+1)8

()

for some § > m — 1 + 1. Take n — 0o, we get d(T"x, T"x) — 0.
Similarly, let #, m € N with m > #, by using the triangular inequality, we have

n=1
d(T"x, T"z) < (1{7) EB.

Take # — 00, we get d(T"x, T™x) — 0. Thus T™x is a Cauchy sequence.

Since (X, d) is complete, we have {(T"x)} converges to some z € X.

We note that {72"x} is a sequence in A and {T?"1x} is a sequence in B in a way that both
sequences tend to the same limit z.

Since A and B are closed, we have z€ AN B, and then AN B # @.

Now, we will show that Tz = z.

By using (2.6), consider

d(T"x, Tz) = d(T{T" %), Tz)

<rd(T" % T"%) + rd(z, Tz).-
Taking limit as ¥ — co in the above inequality, we have
dlz, Tz) < rd(z, Tz).

Since 0 <r < 3, we have d(z, Tz) = 0.
Simnilarly, considering form (2.6}, we get
d(Tz, Tx) = d(Tz, T(T""'x))
< rd(z, Tz) + rd(T" %, T"x).

Taking limit as » — oo in the above inequality, we have
d(Tz,z) < rd(z, Tz).

Since d(z, Tz) = 0, we have d(z, Tz) = 0.
Hence d(z, Tz) = d(Tz,z) = 0= Tz = z and z is a fixed point of T..
Finally, to prove the uniqueness of a fixed point, let z* € X be another fixed point of T
such that Tz" = z*.
Then we have d(z,z) = d(z*,z*) = 0, because by assumption
d(z,z*) = d(Tz Tz")
< rd(z, Tz) + rd(z*, T2")
=rd(z,z) + rd(z*,z*)
=0. (2.9)
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