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o LS A 9 w - v ot 4 o ;} 1 o W ; o o =
T cell ‘vrmu'ma'lﬂty‘l‘uiauuququnuwﬂ'iu'lﬂman'ﬁm%m‘uaT'Sﬂ Tngnsanduazaunsndunouitog
o & 4w v o . b ¥ " -
Vm'm'mi]a‘m‘msﬂaatLUanUaaum‘tnqs*mma‘lmamﬂmmw Milliean T cell dimsuanseanvaaluianadiiu
- : o Y] . . P o "
vuiugad fis T cell receptor (TCR)}-CD3 complex dvansiuazduiu peptide antigen figniiiaueriiu
Imaqa‘um major histocompatibility complex uuf1984 antigen presenting cells ﬁa‘lﬁLﬁmmiﬁ\!ﬁmmwm

v ¢ oo v a " 5 v v
giaduiiolv T cell nauausslunisiia adaptive immunity 1@ laana TCR-CD3 complex Usznauday

dulssnaudesanidiuie ligand binding subunit Usznaudie TCROLB heterodimer uag  signaling
transduction subunits Usznaudaelatana CD3 &1 i phosphorylation finduluntsdedygrondng
. ° v oo ool [ = a e il 0 v o < v e v
wad lana Nek vithithiageslsansdsdygraiingife emudwhwihihodesiunsnsydu TCR
1 o Voo & ey oA ' i e PP v ) a
winsimiivesluanatidsliduivsvuddalasiamzlunsdadyyinues TCR  fitdsadesiunisia
phosphorylation unsefInIsudsas interleukin (IL)-2 Adudludanisviminiues T cell aiduilnuda
Twana Nek shwiirhumsnsgauluana Erk Saviiliiiinisman IL-2 wasanduiugulugnsnuiludednga

aaa

nalan1snszu T cell ieadadlasnsaiunsimihiveseuluiluufasen phosphorylation uagausly

v

v v ' ' o e 3
aumsauasnIsnsEay T cell lunmizane q wu Isaftiasnmsvinvhiues T cell
ArdAtyuadlasan1s3d: TCR, T cell activation, T cell signaling, Nck

Abstract

T cells play a pivotal role in adaptive immune system. T cells can recognize antigenic peptide
specifically because they express T cell receptor (TCR)-CD3 complex. This complex specifically binds
to peptide antigen presented by major histocompatibility complex on the surface of antigen
presenting cells. Appropriate binding of TCR and peptide-bound MHC leads to intracellular signaling

into the T cell. TCR complex is composed of 2 subunits: the first subunit is the lisand binding subunit

comprising TCROLB heterodimer and the second subunit is the signaling transduction subunits
composed of CD3 subunits that are phosphorylated that is needed for intracellular signaling. Nck
molecules act to link signaling molecules during T cell activation. However, how Nck functions in T
cell signaling particularly when being involved with phosphorylation that leads to produciotn of
interleukin (IL)-2 is not fully understood. This work showed that Nck molecules are involved in
phosphorylation of Erk associated with IL-2 production. This knowledge serves as a basis for further
study in mechanism of T cell activation in terms of phosphorylation of kinases and control of T cell
stimulation, which would be useful for future approach in diseases involving in abnormal T cell

function.

md1AtyuaalaTan1side: TCR, T cell activation, T cell signaling, Nck
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T cells ﬁﬁwﬁﬂﬁﬁﬁﬁm'lunﬁmzﬁuqﬁﬁnﬁuuuuﬁumz (adaptive immunity) Aon1s
fadndelsa lae T cell annsavndiuavansady antigen peptide lfoghasumnz wail
e n T cell fimsuansssnvedhanaiiadouvasiiuuuingad (T cell receptor-CD3
complex, TCR-CD3 complex) Faaedimiiiansuazduiu peptide antigen ﬁthLauaphu
Imaf}a‘vad major histocompatibility complex (MHC) vufinuaa antisen presenting cells
(APC) winn1353UAUUBY TCR iU peptide-bound MHC (pMHC) 1A affinity iWeswaaeyh e
msdsdyyonigwadilol T cell  dinnsnavauss 09 nsifiusnnuves T cells
(proliferation),ﬂﬁtﬂﬁﬂuLLanlﬂﬁmﬁ'}ﬁLm\nz (differentiation), LAZN15VAa cytokine wag
growth factor #1199 (Choudhuri et al, 2005) usiaealsfnunisf TCR Fuiu pMHC Ain1euen
wadwaannInddyginsie  plasma  membrane Whgiad (3ennT¥uannITiio TCR
triggering) ﬂuiiﬂﬂgjnﬁu,amaan*uaaﬁuﬁué’alﬂﬂuﬁﬁﬂa wonanil T cells finsmavayssd
uwandsiulduiassinisidsuamsaezilures antieen peptide oadntiosiniu wag T
cells aanansngnnsedume antigen peptide Tudmnanduduiinin Fudedndnsenoues
TCR complex 5@1%Lﬂuaﬂtwa]ﬁﬁﬂ1ﬁT cell fimnuBamgulunisnevaussiamsildsuudag
antigen peptide wagiamudududieg Fanam

TCR complex Usznaume 2 subunits @s ligand binding subunit way signaling
transduction  subunits 1p8 ligand binding =~ subunit A8 TCRAP heterodimer oy

(associate) WUU non-covalently fiu signaling transduction subunits @@ CD3gY, CD3E0 uag

CDSQC (Malissen, 2003; Werlen et al, 2002) U3t cytoplasmic tail 983 CD3 il motif
@ m3U  tyrosine phosphorylation (Immunoreceptor tyrosine-based activation motifs,
iTAMs) Tilumsasdygadngivadiitelviimsuanisenveasadsialy (Reth M, 1989) wiegnsls
ﬁ(ﬁnu{fmmquﬂauwfaz subunit #8 TCR-CD3 complex (stoichiometry) Wag 31uuv4 ligand-
binding TCROLP #le TCR-CD3 complex (TCR valency) Saiinsanifissiuagnwiaiiion Tuda
usnléita@uainil 1 TCROLP e 1 complex (monovalent TCR) (Punt et al, 1994) wsindsa1miu
fisreauiidaudainlu 1 complex i 2 TCROUP (divalent TCR) wioannniniu (multivalent
TCR) (Fernandez-Minguel et al, 1999; San Jose et al, 1998) u.amﬁa‘lﬁmumﬁ Schamel
vasanlifigaiiuiosud T cells  finsuanssansanfuma monovalent TCR  waz
multivalent TCR  1ag multivalent  TCR azvimiiiilunisnavaussne low antigen
concentration 1umm3ﬁ monovalent TCR 98maUaUDIM® high antigen concentration

(Schamel et al, 2005) uananil luruddaifieaiudmuiinisviane cholesterol vu plasma
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membrane dg MBCD ¥ilfimdefiss monovalent TCR witiu Suded1 multivalent TCR ¢
Tuuse cholesterol-rich region (lipid raft) uufiavea T cells (Schamel et al, 2005)

M3l TCR §uiu peptide antigen udavhlyi D3 muﬁnz%af’fzyfy,mﬁwzjwaé‘lﬁﬁ"ué’qhi
Wuidladlesnnitdes subunits Hhildidentulaonse Jsléfinsiauenalndngg ieldosune
U51ngn1salsanan? vilslunalnfiddyie conformational change model (review 1u

Choudhuri et al, 2007) lud 1998 ﬁﬁﬂ%ﬁﬂnuiﬂumwmﬂgﬂ phosphorylation lutanaves

co3¢ fMasairadiu a-helix widlatin phosphorylation udazdslassasraiy Bsheet

(Laczko et al, 1998) a9 Uy Aivazian Ua¥ANE was Xu Uazanz wullun1ieasl acidic

lipid U3tanicytoplasmic tail ¥89 CD3E uaw CD3E 4% interact agiiu lipid fleteatunisiiin

phosphorylation wiluniansaiutalun1iznil zwitterionic lipid wuda cytoplasmic tail veq

CD3€ uaz CO3C @mnsafian1s phosphorylation 16 (Aivazian et al, 2000; Xu et al, 2008)

5
Q s =i

@ @ a = 5 = 1 A Y
wangiuaAyauuayuUn1sing conformational change ARen1snuI e T cell NNTEAUTY

o4

finsingeanves proline-rich region (PRR) uil cytoplasmic tail 189 CD3& ibiludsluana
¥83 Nek 3nduiu PRR dand1ald Feusingnisaifenanniintudeunarliends tyrosine
phosphorylation (Gil et al, 2002)

nalnnsaevausaves TCR sio wouRauinnssiuiu Siliduiiveumida edlsi
p11 MA@ T cell gnnszdu desends CD3 subunit Tumsdsdygrandanaely T cel
(iles91n CD3 subunit fidames cytoplasmic tail Aemidnanaely T cell uasiivhumisiiin
tyrosine phosphorylation (38n11 immune receptor tyrosine-based activation motif (ITAMs)
unalhifiamsnsziuluanaduq Tu T cell dolu visimsnauausadeusuiiaunes T cell th
ﬂ?;uae‘jﬁwﬁmfuaqLLauﬁwuﬁmﬂszﬁu laun strong agonist Ag Ltauﬁmuﬁnizﬁu T cell iiAnms
noudussldogauysel, partial agonist Ao weudouiiaunsanseiuldl T cell tianisnovdes
Wifiaunedan uay antagonist fie weudlauilianansonsedu T cell iRan1snevaueslian

Nck (Noncatalytic region of tyrosine kinase) A adaptor protein fAuaTesiumsds
Fruayeusingg nnelu T cell Taseadnsuea Nek Ussnaume src homology 3 domain (SH3) way
src homology 2 domain (SH2) 18 SH3 domain firmannsalumsduiulusivdmnodil
proline-rich sequence Tuwauzdi SH2 domain Sufiulusiuiiiin tyrosine phosphorylation (Li,

1

a e ' < ar 1 L3 d‘ @
W. et al,, 2001) fid8tosnuin msilluana Nek fianudAtysionisnseiu T cell LanINTERU

\Ju anti-CD3 wag anti-CD28 antibodies (Yiemwattana et al, 2012) MnnsAnYTidLI e

ﬁ'm"ﬁﬂ'iw']'u TCR-CD3 complex #e monoclonal antibody #ie CD3-epsilon (anti-CD3E mAb
) wililAanswasuuuas (conformational change) @1 CD3-epsilon subunit ¥ilvdau
cytoplasmic tail wed iy proline-rich sequence (PRS) oonun Wunald Nek Fadu
adaptor protein nelu T cell udule uaziiamsdadyanielu T cell daly Immwgmmﬁ

annsaiaduldneuiiasiin tyrosine phosphorylation i CD3 subunits (Gil et al,, 2002)
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uazdisenunuiniiensedu T cell difidumia PRS w83 CD3-epsilon ianns mutated Tughe
staphylococcal enterotoxin B tag anti-CD3 mAb Fudu strong agonist ﬁam’:‘n‘isﬁu T cell
nsnovaueIuna T cell Hapaund uansliitiudn MsTuiusewing PRS U84 CD3-epsilon U Nck
galddududmiu T cell development war T cell activation (Szymczak et al,, 2005)
vennniifainenuioudouananasfy T cells Welifnsduiliansheiu fie strong
agonist Waw partial agonist Tu T cell ﬁé’a‘lajLﬂﬂ'lﬁ%’uminiw'fumnuauﬁmumr{au (naive T
cell) uaz T cell AeeldFumsnszdumnuaufiaunuiy (differentiated T cells) wudinsiia
conformational change #i CD3-epsilon wasmedauiidy PRS el Nek anduty annse
Aatuldly T cell i 2 il lonsgsusny strong agonist luwnigit partial agonist nazeulv
nlditodlu differentiated T cell uanslyiifiudnmniussuaswnnszfuiluanisiuiinadons
MOUAUDIUBY T cell wazmsnavauedsio partial agonist lu differentiated T cell o
Anunildiiiediuuas PRS Tu CD3-epsilonifin mutation uamsliifiusndumia PRS of CD3-
epsilon Uhaziiunumheiiudyanauues TCR lunisnauaussse partial agonist (Tailor et al,
2008).

unummiTflueanisduiiussning PRS waw Nek fuwviadaiu deliuiinsundda wiaan
s8N L%'ﬁﬁﬁﬂ%Lﬂﬂme‘iﬂiMﬂ‘] 199N T cell activation djuilgmives

= 1

MATEAtUN 9ANYINITINAINYEY Nck MuFlans PRS. 984 cytoplasmic tail w89 CD3-
. = v v a da [ = | w

epsilon W T cell Wignaszumewsuflauniinnuannsalunisnsequitandiaiu was

Wisuiisuranisneuauaived T cell Tu T cell Unil way T cell ignduganisuantasnvad Nek

W sauisrraddyueannas domain 484 Nck nen1snavduesves T cell
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U T cell finsnavauasanuagials aluang T cell Und uaz T cell fian

ar '3 = af
WUssaeAvaslnsinide

o oA a da wrea F .
Lwaﬁnmﬂmaﬂisﬁu T cell ﬁwuaumwuwuﬂmauvmﬂu strong uay partail agonist

LLamiaanuad Nck

v

o

HUBINTI

{73
(3

d =4 0 1 ” d. 87
wadnuaddaluwdas domain 183 Nek Tumsaauausauas T cell wagNNIENY

AN tiunIe

Junauuazismsanulinusesniuto fil

1. msdaasemt Nek-shRNA plasmids

anuivavedledlniiandlelng dwsu Nck shRNA sanuuulasldlusunsy RNAI

. a o/ 5 1% =i LY §a o = b=
des&gn lag Blast program Iﬂﬂ']ﬁ‘l.lﬂlﬁﬂa']&mQﬂa\‘iﬂmuiﬂﬂﬁ]ﬂ?JENLE}UI%NF]W‘J'\LW'W 2 UUa A
EcoRl uaz BamH| ﬁﬁLLﬁﬂﬁluﬁﬂiWﬂ
Nckl

Miul EcoRl
BamHI .
Target sense strand Loop Target anti-sense strand | Terminator | half half
half site
site site
5'GATCC GGGTTCTCTGTCAGAGAAA | TTCAAGAGA | TTTCTCTGACAGAGAACCC 1 ACGCGT | G....... 3
3 CCCAAGAGACAGTCTCTTT = | AAGTTCTCT | AAAGAGACTGTCTCTTGGG | AAAAAA TGCGCA | CTTAAS’
G
Nck2
BamHI . Mlul EcoRl
Target sense strand Loop Target anti-sense strand Terminator
half site half site | half site
5'GATCC CTTAAAGCGTCAGGGAAGA TTCAAGAGA TCTTCCCTGACGCTTTAAG BCGOGT | G 3"
3 GAATTTCGCAGTCCCTTCT AAGTTCTCT AGAAGGGACTGCGAAATTC AAAAAA TGCGCA | CITAAS’
G

iimsia pLVX-shRNA1 vector (clontech) mateulasifininiwiz Ao BamHI uaz EcoRl

gananalunisna
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GHE] Usuas (L)
1 BamHI 1
2 | EcoRl 1
3 | 10X K buffer 2
4 | 1 Hg of pLVX-shRNA1 vector (500ng/JLl) 2
5 | Nuclease free water 15
Total 20

¥aM51%eu annealed Nck oligonucleotide 1y vector

GRE] Usanasg (LD |
1 | Digesed-pLVX-Nckl shRNA1 vector (50ng/[Ll) 1
2| Diluted annealed oligonucleotides (0.5 M) 1
3 | 10X T4 DNA ligase buffer 15
4 | Nuclease-free H,0 _ 10.5
5 | T4 DNA ligase 1
Total 15

WM SN recombinant vector Tu DH50L £, coli (transformation) Tagvia

e et 1 & e i [ o ) =
ﬂqiﬂﬂLﬁaﬂIﬂaumﬂl vector VU mIsiagatgeaval ampltcmn YU 100 j,lg/ml NINTANANA AU

AN £. coli wawel sequencing iauduimanafinlaiidaduangndaa

2. msduasizd plasmid  ieadalusiiu - Nek ﬁﬁmaLﬂﬁauﬁﬂﬁuﬂimazﬁiuﬁwmqﬂ
(site directed mutagenesis)
vmsduassivanalin adulusiu Nk Aildwiuwadedy  (ooint
mutation) sghafes 4 dwmisindrduluavealusitu Nek wiluu (cDNA wild-type
Nck template) udiilauvasia (translation) uddslnsaesilufidu Tngldgm Quick
Change site-directed Mutagenesis kit (Stratagene, clontech)
Wnsdauasest SH3.1 domain mutated-Nek wag SH2 domain mutated-Nck
Ao wanailaftasalusin Nek fididduuadsily (point mutation) NENULUETDS

TUsfiu Nek usiuuu (cDNA wild-type Nk template) luduwosdrduuaiudaswali
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SH3.1 domain wag SH2 domain Iﬂﬂl‘fi’?jﬂ Quick Change site-directed Mutagenesis
kit (Stratagene, clontech) mnﬂu'uﬁ'ma'mﬁmﬁuﬁ'wgi Nck-knockdown T cell

(transfection) uagmsIREUNANISUAMEBNlUTAY Nck nwaradingneg Aensvia

immunoblottingla
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M3 WM primer fildlums mutated Nek plasmid

No.1 Name Sequence

1 Nckl W38K F | 5'-gct tct gga tea ttc taa stc caa etg gcg agt tcg aaa ttc c-3° 43
bp

2 Nckl W38K R | 5’-gea att tceg aac tce cca ctt gega ctt aga atc atc cag aag c-3’ 43
bp

3 Nckl W143K F | 5’-gga gaa atg cag {ga toe eaa glg cce tog tag cta caa tge-3” 42
bp

4 Nckl W143K R | 5'-cca ttg tag cta cca cge cac ttc cea tca cte cat ttc tcc-3" 42
bp _

5 Nckl W229K F | 5’-cct gaa aat gac cca gag aag tgg aaa tec age aag atc aat gg-3’
44 bp

6 Nckl W229K R | 5’-cca ttg atc ttc ctg cat ttc cac ttc tct egg tca ttt teca gg-3’
44 bp

7 Nckl R308K F | 5'-gge gat ttc ctc att aag eat agt gaa tct tcg cc-3” 35 bp

8 Nckl R308K R | 5'-ggc gaa gat tca c.ta tcc tta atg agg aaa tcc cc-3’ 35 bp

9 Nck1-Resist F 5’-gtg acc atg tgg gtt ccc tct ccg aga aat tag cag -3’ 37 bp

10 Nck1-Resist R | 5'-gct gct aat ttc tcg gag age gaa ccc aca tge tca c-3' 37 bp

i cNekl F 5'-gtc gaa ttc atg gca gaa gaa ¢te gte gta ¢-3’ 31 bp

12 cNckl R 5’-gtg tct aga tca tga taa atg ctt gac aag a-3"° 31 bp

13 cNck2 F 5’-ctg gaa ttc atg aca gaa gaa gtt att gtg ata ccc-3’ 36 bp

14

cNck2 R 5’-gta tct aga tca ctg cag eec cct gac gag gta-3' 33 bp

3. msudamsuansoonvedlusie Nek u T cell line
N30 Nck-shRNA vector ‘L‘ill’lfcj T cell line Tnunsly Neon transfection
system (Invitrogen) dwsu CH7C17 cell Ltawmﬁwm X-fect kit (clontech) dwsu
Hut78 cell Gloguda) vntnimeadifuna 48 92l 37 °C wdsan 48 Falus o
Tuomnsiil puromycin Wity 4 pe/mi iedmdenlaauiilesu vector Wlu nsavaeu

nan1sgusalusiu Nek Tu T cell g8 immunoblotting

4. nsnseeu HAL7 peptide fiu CH7C17 cell
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¥msidoasad DAP-DRI (flogud) lu RPMI-medium #iil 10%F8S suldiwadii
ATILIVUIUAILB0-90% Uiwadriuweufauulng Ae HALT uas antagonist peptide
T ugadlagld 0.5 mM EDTA simumadiinudutu 2x107 cell fu starved
CHTC17 cell (ogud) mmundidu 2x10” cell v 15 wiilu RPMI medium #ilaiil FBS
fiuwadioniestiumugs tunzneusadi 37 °C umu 5 wit sieundadiu 1X lysis
buffer Uil 4 °C uni 30 w#i U rotate wheel waztlUsiuitanalduninsesigae

immunoprecipitation @aly

5. Immunoprecipitation
villiigadumniilu 2x lysis buffer Usii 4 °C w1y 30 w1l U rotate wheel
waziiulusiu (supernatant) Tasnstusiesiiannngs 12000e vau 15 Wil 7 4 °C
Wi3e 50% protein-G slurry bead W 1x lysis buffer yalushviianalduniuLeuiued
lilumsdulusiuiiaula Wy anti CD3E antibody, anti-Nck antibody {udfu 1
TUsiuidusuneufvefings vaifu protein-G bead Uil 4 °C u 90 117 vy rotate

wheel 1hlUsAuIiasEMaIe immunoblotting

6. MINATILVNTUANIDDNTBI receptor VuRIBaaMIBMATIA flow cytometry
= ol 2 [ 5 -~ \ a
W3EaanRaIN1sEaLmMTLTY 23107 1wad Usinns 100 lulasdnsluvasn
dM3ULA504 flow cytometer daslgadaupuRvafnfannaneedd iunisitaseiaa
fe L3 flow cytometer Utigaan 4 °C uu 30 vl ludidla Wensunarduwadais
P2 y = = & = a a4y a oM rv  a s

seetuss Mn11L57 400g w5 Uil InueudveRdwAuRliITuTUITaaean
avanswaaliinig 0.5 % FBS-PBS Usums 300 lulasans Ansievinanisdaudioiniag
Ialalniines (FACSCalibur, Becton Dickinson)

7. TWTRHAMNIMAADY AnTizitoyatasdnisignuniuauysaliauoranuifiuviaeuns
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MnmsnaaesruTEansanszdy T cell Winda IL-2 swmsvimiiiivedlanana Nek
16 Tagmsammimsduiuvesluiana €03 uas Nk Savudwnnwadliilinana Neki Siuluana
Nck2 avilihidninsansedu T cell Wiuds IL-2 Idnasnd Idvihmaisuitsunsdudans
wanspanvedlinana Nck 1 @e38msld small interfering RNA wag short hair pin RNA wui
Idtavinmadinu @hnmamilddumsmauulififauilunsans Scence Asia wihdaly) ud
msliawesidu lentivirus duldnanssiudan daumsyimiritues Nek dsadeatunsin
phosphorylation weslaanawin kinase enzyme #ins 9 wulaana Lek lunsiin intracellular
signaling tiuaglusssrinduiiunissoiiles %ana’tmﬁmﬁuwudwﬂa%ﬁmmﬁm*ﬁa&ﬁuﬁ’amié’u
ﬁUTuLaqa?‘}ﬁ proline rich sequence LLﬁquLaqa‘?{ﬁ phosphorylation fifumia tyrosine

&
= Py @ = 1

z 4w ¢ =, o .
residues waNINULIVBUAIINTIUIDAUAIANT113E8 Wolfgang Schamel 3minends Freiburg
Usenateasyil deazldvrsimionumaiiaismmeasdunisdnuinissuiuasaldsiivends
vanmsneguaiisunumslinaesanssmiweiviinaunuiindude Seufiduerldeson

nanuATuYilussezaUsBIn 6 thou

Joisalnasdordauanuy

NMIMARBIHUIINTATN 1L-2 Tng T cell Sududasiumsimiimveduana Nek
lngasrammsduiueesliana CD3 was Nek uazwuilmana Nekl uhasianudidaludg
menszgu T cell wuilnnndnluana Nek2 wazdinisdiufamsianseanveslusiumeidnsly
small interfering RNA wag short hair pin RNA wualaraiiusfeany uanislanamasndu

5.5 RY o v o o a R | % a oy
lentivirus Ylsinansefiuiueaiiissmnuaiiinvinmsiliguibinedeafinnnaneviuging
=!l" [ AT, i 1 3 v o i< s = 3
Waliiadana daumsimtiniives Nek Miendeaiumsiin phosphorylation vasluananin
kinase enzyme g 9 Fawuimhaziinmumieitesiuiinsduivlanaiifl proline rich

e . d oo ' . N s ) i e
sequence uagluanaiiil phosphorylation figiumia tyrosine residues AN3AInanilauun

o ws

tnztuvsslomilumsanuinsimiiivediana T cell receptor  Iélaanssdadidod

v

o o= ) ' lﬂl IJ s
mmumsﬁﬂmammammmmnumiﬁwqumsﬂizﬁ'ju T cell
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ABSTRACT

RNA interference (RNA) is a potent gene delivery system for studying the
regulation of gene expression in a wide variety of eukaryotic cells. In the present study,
different RNAI approaches including synthetic small interfering RNA (siRNA) and plasmid-
and lentivirus-based short hairpin RNA (shRNA) were investigated for verification of down-
regulation of Nck1 protein efficiency in the Jurkat T cell line. Jurkat T cells treated with

“these three different systems highly and specifically reduced the expression of the Ncki
protein but not the expression of the Nck2 protein. The three systems showed a similar
Nck1 knockdown efficiency but led to different T cell activation outcomes. After
stimulation, CD69 expression and IL-2 production were impaired in Nck1-siRNA and
plasmid based Nck-1 shRNA transfected Jurkat cells. However, these T cell activation
outcomes were increased in lentiviral vector based Nck1-shRNA transfected cells. These
data suggest that the outcomes from transfection with the shRNA based lentiviral vector
contrast with those of siRNA and shRNA-based plasmids although they provide the same
gene silencing efficiency. The verification of suitable RNAI strategies to silence target

genes is necessary before proceeding to experiments.

Keywords: RNA interference, Lentiviral vector, Nck
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INTRODUCTION

RNA interference (RNA) is a powerful technology for investigating mammalian
gene function by sequence-specific gene silencing. RNAi was first discovered in the
nematode Caenorhabditis elegansland it is the biological process underlying double-
stranded RNA (dsRNA)-induced gene silencing, resulting in the inhibition of specific gene
expression. The RNAi hallmark is the specificity of the dsRNA in which sequences are
homologous to that of the target mRNA.2 Experimentally, RNAi can be achieved by
transfecting cells either directly using chemically synthetic siRNA constructs or using DNA
vectors or viral vectors as carriers of short hairpin (sh) RNA.3

Small interfering RNA (siRNA) comprise specific sequences of 19-21 nucleotides,
that can be chemically synthesized in vitro and consist of sense and complementary
anti-sense strands. These complementary strands are annealed to form a double
stranded siRNA duplex, which are then used to introduce into host cells by various
transfection techniques. siRNAs can reduce éxpression of the gene of interest by
enzymatic degradation of a target mRNA via the RNA-induced silencing complex (RISC).
The efficiency of siRNA is the specifically reduced expression of the gene of interest
while having no influence on irrelevant genes. However, the synthetic siRNA provides a
transient knockdown of the target gene because of enzymatic degradation in the host
cells and it is diluted in rapidly dividing cells.d The effective gene knockdown can be
prolonged using vector-based approaches where a shRNA expression system continually
generates a siRNA-like species.5 The shRNA consists of a siRNA sequence followed by a 9
nucleotide loop and a reverse complementary siRNA sequence, which is then inserted
into a plasmid or viral vector. In comparison to the plasmid- based shRNA system, some
viral-based shRNA types, such as the lentiviral vector can integrate their shRNA-containing
genome stably into a host genome resulting in stable gene knockdown. The lentivirus is
commonly used for long term gene silencing because it can transduce a gene into a wide
variety of cell lines and primary cells both in in vitro and in vivo.3,5,6

The noncatalytic region of tyrosine kinase (Nck) is an adaptor protein expressed in
a variety of tissue cells and cell lines. The Nck family consists of two known members in
humans, including Nck1 and Nck2. Each Nck isoform contains three src homology 3 (SH3)
domains and one SH2 domain. In many cell types, Nck links phosphotyrosine signals and
regulates actin cytoskeletal rearrangement.7 In T cells that are activated through their T
cell antigen receptor (TCR), Nck is essential in regulation of actin rearrangement and

immunological synapse formation in response to TCR stimulation.8-14 Interestingly, our
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recent data have shown that silencing of Nck1 by transfection of siRNA to Jurkat T cell
results in abrogation of T cell activation as indicated by decreased interleukin-2 (IL-2)
secretion and CD69 expression.14

RNAi is commonly achieved by either siRNA, plasmid- based shRNA or viral-based
shRNA; however, researchers normally rely on one of these methods. Therefore, our
research was to find out that whether these three RNAi systems would be equally
effective in gene knockdown or not. We aimed to answer this question by knockdown of
the Nckl protein in Jurkat T cells using the three RNAi systems. For this, two important
readouts associated with T cell activation were examined, including CD69 expression and
IL-2 production. Although the three RNAi systems provided equally effective Nck1
knockdown, they led to different patterns of T cell activation. Jurkat T cells treated with
SiRNA and shRNA-based plasmids to decrease Nckl protein expression had impaired
CD69 expression and IL-2 production. In sharp contrast, Jurkat T cells transfected with
lentiviral vector-based shRNAs to knockdown Nck1 expression increased both CD69

expression and IL-2 production.

MATERIALS AND METHODS
Cell culture

Jurkat E6.1 T cells (clone E6-1; American Type Culture Collection, Rockville, MD,
USA) were cultured in RPMI-1640 medium (Gibco, Gaithersburg, MD, USA) supplemented
with 10% fetal bovine serum (Gibco) and 1% penicillin/streptomycin (JRH Biosciences,
Victoria, Australia), and 2 mM L-glutamine (JRH Biosciences). Cells were grown in a

humidified incubator at 37°C with 5% CO2.

Nck short interfering (si) RNA transfection

The siRNA duplex sequences targeting Nckl and control siRNA were designed and
synthesized chemically by Invitrogen (Invitrogen, Carlsbad, CA, USA). The siRNA sequence
targeting Ncki used in this study was 5'-GGGTTCTCTGTCAGAGAAA-3". The siRNA
transfection was performed as previously described.14 Briefly, 2x105 Jurkat cells were
harvested, washed with D-PBS (Invitrogen) and resuspended in 10 pl solution R plus 50
pmol of stealth RNAI™ siRNA duplexes specific for Nck1. Negative controls were
performed by using negative stealth siRNA low in GC content (Invitrogen). Cells were then

electroporated in a microporator pipette by MicroPorator (Digital Bio Technology, Seoul,
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Korea) using three pulses of 10 ms at 1600 V. The transfected cells were used after 48 hr

post transfection.

Nck1-shRNA plasmid construction and transfection

The Nck1-shRNA construct was designed according to the Lenti-X™ Lentiviral
Expression Systems manual (Clontech, Mountain View, CA). The Nck1-shRNA sequence
was 5’-
GATCCGGGGTTCTCTGTCAGAGAAATTCAAGAGATTTCTCTGACAGAGAACCCTTTTTTACGCGTG-
3'. The sense sequence targeting Nck1 was designed based on the Nck1-siRNA
oligonucleotide. The Nck1-shRNA was 64 nucleotides in length consisting of 19
nucleotide sense and antisense sequences separated by a 9 nucleotide non-
complementary loop sequence. This Nck1-shRNA oligonucleotide was flanked with
BamHI restriction site at the 5’ end and RNA polymerase Il termination signal followed
by EcoRl restriction site at the 3’ end. The Nck1-shRNA oligonucleotides were cloned into
the pLVX-shRNA1 vector (Clontech) at the multiple cloning sites downstream of the U6
promoter. The constructed plasmid was transformed into competent cells and the
positive clones were subsequently confirmed by sequencing. Transfection of constructed
plasmid into Jurkat T cells was carried out as described above. Briefly, 2x105 Jurkat T
cells were transfected with either 1 microgram Nck1-shRNA or control scramble
expressing plasmid (Addgene). After incubation for 48 hr, 4 microgram/ml of puromycin

was added into the culture to generate stable Nckl1-knockdown cell lines.

Lentiviral particle production and transduction

Lentiviral supernatant was generated in HEK293T cells. Briefly, the 293T cells
were cultured in the DMEM medium supplemented with 10% tetracyclin-free FBS
(Clontech) and 2 mM L-glutamine. Approximately 24 hr before transfection, 1x107 cells
were plated on a 100 mm culture dish containing 10 ml of complete medium and
incubated at 37°C, 5% COZ overnight. For production of Ncki-specific shRNA tentivirus,
cells were co-transfected with 1 microgram/microlitter of the constructed Nck1-shRNA
plasmid and Lenti-X HTX packaging mix (Clontech) using Xfect kit (Clontech). shRNA
control (scramble shRNA) lentivirus supernatant was prepared by co-transfection of
HEK293T cells with 4 g of pCMV.dR8.2 dvpr, 4 pg of pCMV.VSV.G, and 7 pg scramble
shRNA vector (Addgene). Four hours post-transfection, the cultures were refreshed with

10 ml fresh medium and incubated at 37°C for an additional 24-48 hr. Viral supernatants
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were concentrated using Lenti-X™ Concentrator according to manufacturer's instructio
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(Clontech). Lentiviral titer was determined using a Lenti-X qRT-PCR titration kit (ClontedR) N 1D
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For transduction of lentivirus to target cells, 2x105 Jurkat T cells were cultured in
¥ N
complete medium for 12 to 18 hr before transduction. Jurkat T cells were then .ﬁl':;l\S

transduced with the lentiviral particles with multiplicity of infection (MOI) = 10 and in the (4¢3
presence of 4 microeram/ml of polybrene. After 24 hr of incubation, the cultured
medium was replaced with fresh medium and further incubated for 24-48 hr followed by

incubating cells in medium containing 4 microgram/ml puromycin for 4-7 days.

Immunoblotting

Protein samples were resolved on 10% sodium dodecyl sulphate-polyacrylamide
gel and transferred to a polyvinylidene difluoride (PYDF) membrane (Pall, Ann Arbor, MI,
USA). The membrane was blocked with RapidBlock solution (Amresco, Solon, Ohio, USA).
The membrane was then incubated with rabbit monoclonal antibodies against human
Nck1 (Cell Signaling Technology, Danver, MA, USA), or Nck2 (Abnova Corp., Taipei, Taiwan)
or beta-actin (Cell Signaling Technology). The membrane was developed using enhanced
chemiluminescence reagent (ECL: Bio-Rad, USA) and was then observed by the

ImageQuant LAS 4000imaging system (GE healthcare, Uppsala, Sweden).

IL-2 production measurement

Jurkat £6.1 T cells in logarithmic growth were harvested and resuspended in
complete medium. 2x105 cells were then seeded into a 96-well tissue culture plate pre-
coated with 1 pg/ml anti-CD3 antibody (OKT3, eBioscience, San Diego, CA, USA) in the
presence of 1 pg/ml soluble anti-CD28 antibody (eBioscience, San Diego, CA, USA). Cells
were then incubated for 24 hr at 37°C with 5% CO2. Secreted IL-2 in the supernatant was
determined using a commercial enzyme-linked immunosorbent assay (ELISA) kit (R&D,
Minneapolis, MN, USA) following the manufacturer’s instructions. 1he optical density at

450 nm was read using a microplate reader (Perkin Elmer).

Detection of CD69 expression by flow cytometry
The expression of CD3 molecules on T cell surface was determined using anti-
CD3 conjugated FITC antibody. To examine the expression of CD69, Jurkat T cells were

stimulated as described above. Cells were washed twice with PBS containing 1% FBS.
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Cells were then incubated with phycoerythrin (PE)-conjugated mouse anti-human CD69
mADb or isotype control for 30 min at 4°C in the dark. Finally, cells were assessed for
CD69 expression using a FACScalibur (Becton Dickinson, NJ, USA) and analyzed with
CellQuestPro software.

RESULTS
All three RNAI strategies provided an effecti\;/e down-regulation of the Nckl protein in
Jurkat T cells.

The ability of the RNAi system to silence gene expression has been proven to be
invaluable for studying gene function in cultured mammalian cells. The achievement or
failure to silence a gene of interest depends on RNAI delivery systems and cell types. In
this study, Jurkat E6.1 T cells were transfected with either Nck1-siRNAs or plasmid-based
Nck1-shRNAs or transduced with lentiviral-based Nck1-shRNA. These three approaches
showed a reduction of Nckl protein expression level to about 75% (Figure 1). In addition,
these three techniques exhibited gene-specific silencing since they did not affect the
expression of related protein that was Nck2 protein. Thus, both non-viral and viral vector
methods successfully delivered Nck1siRNA and Nck1-shRNA into target cells to mediate

specific gene silencine.

Three RNAI systems did not affect TCR expression

The T cell receptor (TCR) in association with its associated CD3 signaling subunits
(TCR-CD3 complex) is essential for antigen recognition and activation of T cell. The effect
of these RNAI systems on TCR expression was monitored. The TCR-CD3 complex
molecules on cell surface were stained with anti-CD3 conjugated FITC antibody and
analyzed by flow cytometer. The results indicated that there were no significant
differences of the TCR expression level among these RNAi systems (Figure 2). Therefore,
the silencing of Nckl expression by these three different techniques did not impair TCR

expression on the T cell surface.

CD69 expression and IL-2 production depended on RNAi-mediated Nck1 silencing
techniques

T cell activation normally leads to the expression of the CD69 molecule and
production of numerous cytokines and chemokines, which are important for the immune

response. CD69 is a type-ll C-type lectin receptor, known as one of the earliest cell
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surface activation markers.15 The upregulation of CD69 surface expression on T cells is
followed by cell proliferation and an increase in the secretion of IL-2 and IFN-gamma. In
this study, CD69 expression and IL-2 production were examined and compared between
cells treated with different RNAi-mediated Nck1 silencing techniques. Nck1-knockdown
cells obtained from three RNAi approaches were stimulated with 1 pg/ml anti-CD3 OKT3
antibody plus 1 pg/ml anti-CD28 antibody for 24 hr. Cells were then analyzed for CD69
expression by flow cytometer and supernatants containing IL-2 were quantitatively
measured by ELISA. It was found that CD69 expression was impaired in Nck1 knockdown
cells using siRNA and plasmid-based shRNA treatment, but not Nck1 knockdown cells
using lentiviral-based shRNA treatment (Figure 3). The results were consistent with IL-2

production (Figure 4).

DISCUSSION

RNAi-based gene silencing is commonly used to study gene function in T cell
responses.4,16-19 Here we compared three different RNAI strategies, including synthetic
SIRNA, plasmid- and lentivirus-mediated shRNA production in silencing of the Nckl gene
and their outcomes after cell activation. Among these three different RNAi methaods,
synthetic double-stranded siRNA with about 21 nucleotides is more potent for mediating
sequence-specific gene silencing because it resembles natural cellular machinery.
However, introducing of double-stranded siRNA molecules of over 50 nucleotides long
can induce an interferon response in mammalian cells, which leads to translation
inhibition and mRNA degradation of non-specific gene.20,21 In this present study, Nckl-
specific siRNA duplexes of 19 nucleotides long were used to transfect into Jurkat T cells
for suppressing Nck1 expression. Although, synthetic siRNA duplexes can be used to
avoid non-specific global suppression of gene expression caused by the interferon
responses,2 the transient nature in gene silencing of siRNA makes it unsuitable for
generation of stable gene knockdown in Jurkat cell lines. Therefore, plasmid- and
lentiviral-based shRNA systems have been used to achieve prolonged gene silencing
because they endogenously and continuously express shRNAs in Jurkat T cells. These
shRNAs are then processed in the cytoplasm to siRNA duplexes by a cellular enzyme
called Dicer.22

For shRNA expression systems, the proper design of shRNA expression cassettes is
required. The stable expression of shRNA is driven by RNA polymerase Ill promoters, H1

or U6 promoters.23,24 In contrast to the H1 promoter, the U6 promoter expresses a high
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level of shRNAs, which provide more reduction of target gene expression.25 However, it
has been found that a flawed vector design of the U6-shRNA vector can cause the IFN
response.26 This IFN response is induced by the presence of AA residues at the
transcription start site (-1/+1) of the U6-shRNA vector. Replacement of AA with a C/G
sequence at position -1/+1 could prevent IFN induction.26 In this present study, we used
the U6-shRNA vector (pLVX) to construct shRNA expression cassettes. This vector
contains a consensus C/G at position -1/+1 of the transcription start site. These
constructed plasmids can be used directly to transfect into Jurkat T cells for endogenous
expression of shRNA specific to the Nckl gene. Alternatively, they can be combined with
lentiviral packaging plasmids to produce lentiviruses, which can infect Jurkat cells and
continually expresses shRNA. The use of lentiviruses to mediate stable gene silencing is
more powerful since they can be applied for dividing and non-dividing cells as well as
cells that are difficult to transfect.

In humans, Nck1 shares 68% amino acid identity with Nck2.7 Jurkat T cells treated
by these three different systems achieved similar reduction of Nck1 expression by about
60-80% without affecting the expression of Nck2. This indicates sequence-specific gene
silencing of these systems. Notably, although these three different RNAI strategies were
effectively able to knockdown the Nckl gene in Jurkat T cells, they showed distinct
phenotypes as observed by CD69 expression and IL-2 production. These read-outs are
the primary indicators of T cell activation. In this current study, we found that
knockdown of Nckl by siRNA and shRNA expression plasmids caused an impairment of
CD69 expression and IL-2 production in TCR-mediated Jurkat T cell activation. Surface
expression of CD69 is regulated through the Ras activation pathway, which is essential for
IL-2 gene transcription and production.27 Moreover, Nck has been known to interact with
son of sevenless (SOS), which is required for controlling the activation of Ras.28-30 Thus,
the reduced CD69 expression and IL-2 secretion were probably due to the loss of Nck to
interact with SOS. In agreement with this notion, mutation on the third SH3 domain of
Nkl to inhibit Nck-505 interaction has been found to abrogate CD69 expression and trk
activation.31 In sharp contrast, expression of CD69 and production of IL-2 were up-
regulated in Jurkat cells transduced with lentiviruses to mediate Nckl knockdown. The
random integration of lentiviral DNA into the host cell’s genome may result in the
insertional mutagenesis of an unpredictable gene,32,33 which may cause the up-
regulation of CD69 expression and IL-2 production. Altogether, we show that these three

RNAi methods provide inconsistent results.
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Although several pieces of evidence have shown that transfection of siRNA or
transduction of lentivirus to express shRNA could activate the interferon signaling and
interferon-stimulated gene,26,34-35 RNAi technology is still the great promise for gene
function analysis in T cell research. All three methods had advantages and disadvantages
depending on research applications and facilities available in the laboratory, as
summarized in Table 1. Therefore, identification of suitable RNAi techniques as well as
designing correct shRNA expression cassettes and systems are essential before
proceeding with the experiments. Furthermbre, functional outcomes should be
examined empirically.

In conclusion, this study provides comparison of three RNAi delivery methods to
the Jurkat E6.1 T cell line. This included the siRNA, vector based shRNA transfection, and
shRNA lentiviral vector transduction. We found that siRNA and vector based shRNA
transfection provided similar results while these differed from shRNA lentiviral vector

system.
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FIGURE LEGENDS

Figure 1 Nckl protein expression was reduced in siRNA, plasmid- and lentiviral-based
shRNA systems. Jurkat T cells were treated with Nck1-specific siRNA (siRNA), or plasmid
encoding Nck1-specific shRNA (plasmid), or lentivirus generating Nck1-specific ShRNA
(lentivirus). Non-specific siRNA and scramble shRNA were used as a control (Ctl) for siRNA
and shRNA systems, respectively. Protein expression was assessed by immunoblotting
using anti-Nck1, Nck2 and beta-actin antibody. Band intensities were quantified by the
Image) software. The quantified signal intensities of the Nckl or Nck2 were normalized to
their corresponding actin and these values were relative to that in the control cells (Ctl),
set as 1. Numbers below the band indicate expression level of Nck1 and Nck2 compared

with control (Ctl). One representative experiment out of two is shown.

Figure 2 TCR expression level in Jurkat T cells. Jurkat T cells were treated with Nck1-
sIRNA (A), shNck1 plasmids (B) and shNck1 Lentivirus (C). The TCR expression of control
cells (Ctl) (bold solid line) and Nck1-knockdown cells (siNck1 or shNck1) (grey histogram)
was determined by staining cells with anti-CD3 conjugated FITC antibody or isotype
control antibodies. The stained cells were then analyzed by flow cytometer. The dotted
line represents the isotype control in each group. The data are representative of two

independent experiments.

Figure 3 CD69 expression was down-regulatéd in Nck1-siRNA and pilasmid-based Nck1-
shRNA but was up-regulated in lentivirus-based Nck1-shRNA systems. Nck1 knockdown
cells mediated by different systems including Nck1-siRNA (A), plasmid- based Nck1shRNA
(B) and lentiviral-based Nckl shRNA, were stimulated with plate-precoated with anti-CD3
antibodies and soluble anti-CD28 antibody for 24 hr at 37°C. CD69 expression was
assessed by flow cytometer. Numbers in CD69 histogram indicate frequency of positive
cells. Black bold solid line and black letter are control cells, grey histogram and grey
letter are Nckl knockdown cells, and dotted and grey lines are isotype control. The data

are representative of two independent experiments.

Figure 4 The production of IL-2 was impaired in Nck1-siRNA and plasmid-based Nck1-
shRNA transfected Jurkat cells but was upregulated in lentivirus-based Nck1-shRNA

transduced Jurkat cells. Nck1 knockdown cells mediated by different systems including
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Nck1-siRNA (A), plasmid- based Nck1shRNA (B) and lentiviral-based Nck1 shRNA, were
stimulated with plate-precoated with anti-CD3 antibodies and soluble anti-CD28 antibody

for 24 hr at 37°C. Supernatants containing IL-2 were measured by ELISA. Data are

representative of two independent experiments and shown as mean & SD from triplicate

samples. *p < 0.05.
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