



MECHANISM OF ENTOMOPATHOGENIC BACTERIAL EXTRACT AGAINST  
DRUG RESISTANT BACTERIA



A Thesis Submitted to the Graduate School of Naresuan University  
in Partial Fulfillment of the Requirements  
for the Doctor of Philosophy in Parasitology  
2024

Copyright by Naresuan University

MECHANISM OF ENTOMOPATHOGENIC BACTERIAL EXTRACT AGAINST  
DRUG RESISTANT BACTERIA



A Thesis Submitted to the Graduate School of Naresuan University  
in Partial Fulfillment of the Requirements  
for the Doctor of Philosophy in Parasitology

2024

Copyright by Naresuan University

Thesis entitled " MECHANISM OF ENTOMOPATHOGENIC BACTERIAL  
EXTRACT AGAINST DRUG RESISTANT BACTERIA "

By Wipanee Meesil

has been approved by the Graduate School as partial fulfillment of the requirements  
for the Doctor of Philosophy in Parasitology of Naresuan University

**Oral Defense Committee**

|                                                    |                   |
|----------------------------------------------------|-------------------|
| (Professor Narisara Chantratita, Ph.D.)            | Chair             |
| (Aunchalee Thanwisai, Ph.D.)                       | Advisor           |
| (Assistant Professor Triwit Rattanarojpong, Ph.D.) | Co Advisor        |
| (Associate Professor Apichat Vitta, Ph.D.)         | Co Advisor        |
| (Associate Professor Sutthirat Sitthisak, Ph.D.)   | Co Advisor        |
| (Associate Professor Duangkamol Kunthalert, Ph.D.) | Internal Examiner |
| (Professor Helge B. Bode, Ph.D.)                   | External Examiner |
| (Associate Professor Triwit Rattanarojpong, Ph.D.) | External Examiner |

**Approved**

(Associate Professor Krongkarn Chootip, Ph.D.)

Dean of the Graduate School

## TABLE OF CONTENTS

|                                                                                                                                                                   |           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| <b>TABLE OF CONTENTS.....</b>                                                                                                                                     | <b>D</b>  |
| <b>LIST OF TABLES.....</b>                                                                                                                                        | <b>F</b>  |
| <b>LIST OF FIGURES .....</b>                                                                                                                                      | <b>H</b>  |
| <b>CHAPTER I INTRODUCTION .....</b>                                                                                                                               | <b>1</b>  |
| Background and significance of the study .....                                                                                                                    | 1         |
| Purposes of the study.....                                                                                                                                        | 2         |
| Scope of the study .....                                                                                                                                          | 2         |
| <b>CHAPTER II RELATED WORKS AND STUDIES.....</b>                                                                                                                  | <b>3</b>  |
| Entomopathogenic bacteria.....                                                                                                                                    | 3         |
| Antibiotic resistant bacteria.....                                                                                                                                | 27        |
| <b>CHAPTER III RESEARCH PROCEDURES OF THE STUDY .....</b>                                                                                                         | <b>47</b> |
| Bacterial strains .....                                                                                                                                           | 47        |
| Genome sequencing and analysis.....                                                                                                                               | 49        |
| Detection of secondary metabolites by LC/MSMS.....                                                                                                                | 53        |
| Studying the antimicrobial activity of the bacterial extract .....                                                                                                | 60        |
| Proteomic analysis.....                                                                                                                                           | 64        |
| <b>CHAPTER IV RESULTS.....</b>                                                                                                                                    | <b>66</b> |
| Genome sequencing and analysis.....                                                                                                                               | 66        |
| Comparative genomics among the <i>Xenorhabdus</i> spp. ....                                                                                                       | 83        |
| Secondary metabolites biosynthetic gene clusters of complete <i>X. stockiae</i> strain RT25.5 genome .....                                                        | 85        |
| Detection of secondary metabolites produced using LC-MSMS analysis .....                                                                                          | 89        |
| Isolation the natural product from the <i>X. stockiae</i> strain RT25.5 using the easy Promoter Activation and Compound Identification (easyPACId) approach ..... | 91        |
| Bacterial strains and their antimicrobial activities .....                                                                                                        | 92        |

|                                                                                                                                      |            |
|--------------------------------------------------------------------------------------------------------------------------------------|------------|
| Differential protein expressions in <i>Acinetobacter baylyi</i> treated with crude extract of <i>X. stockiae</i> strain RT25.5 ..... | 95         |
| <b>CHAPTER V DISCUSSION.....</b>                                                                                                     | <b>123</b> |
| <b>REFERENCES.....</b>                                                                                                               | <b>130</b> |
| <b>APPENDIX .....</b>                                                                                                                | <b>172</b> |
| <b>BIOGRAPHY .....</b>                                                                                                               | <b>186</b> |



## LIST OF TABLES

|          |                                                                                                                                                                                   |    |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 1  | Secondary metabolites from <i>Xenorhabdus</i> and <i>Photorhabdus</i> bacteria and their biological activities .....                                                              | 13 |
| Table 2  | WHO priority pathogens list for research and development (R&D) of new antibiotics .....                                                                                           | 28 |
| Table 3  | The key virulence factors of <i>Acinetobacter baumannii</i> .....                                                                                                                 | 31 |
| Table 4  | A summary of bacterial strains was used in the study .....                                                                                                                        | 47 |
| Table 5  | Components of PCR reagent for amplification of symbiotic bacteria .....                                                                                                           | 48 |
| Table 6  | Thermal cycling for amplification of partial <i>recA</i> fragment.....                                                                                                            | 49 |
| Table 7  | A list of primers for constructing <i>hfq</i> deletion mutants, containing overlapping sequences (in bold) compatible with the cloning vector pEB17..                             | 55 |
| Table 8  | Components of PCR reagent for amplification of upstream and downstream fragments .....                                                                                            | 56 |
| Table 9  | Thermal cycling for amplification of partial <i>hfq</i> fragment and colony PCR .....                                                                                             | 57 |
| Table 10 | A list of primers for promoter activation of the interest BGCs, containing overlapping sequences (in bold) compatible with the cloning vector pCEP .....                          | 59 |
| Table 11 | A list and characteristics of plasmid used in this study .....                                                                                                                    | 60 |
| Table 12 | List of antibiotic-resistant bacteria and corresponding standard antibiotics used as positive controls.....                                                                       | 61 |
| Table 13 | A summary of the strains used in the preliminary analysis and their general characteristics across all genomes. The sequences have been submitted under project PRJNA990961. .... | 68 |
| Table 14 | Explorations and classifications of annotated BGCs across 13 genomes .....                                                                                                        | 74 |
| Table 15 | A summary of the general genomic features of the complete genome of <i>X. stockiae</i> strain RT25.5.....                                                                         | 82 |
| Table 16 | The genome sequences downloaded from the NCBI database .....                                                                                                                      | 84 |

|          |                                                                                                                                                                                                                                                                |     |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 17 | Secondary metabolite gene clusters annotated in <i>X. stockiae</i> strain RT25.5 using antiSMASH and our in-house database The gene clusters included 13 nonribosomal peptide synthetases (NRPSs), 4 hybrids, 1 terpene and 3 other gene clusters.....         | 87  |
| Table 18 | The altered protein expressions in <i>Acinetobacter</i> -treated with <i>X. stockiae</i> strain RT25.5 extract .....                                                                                                                                           | 97  |
| Table 19 | Binding sites of primers for <i>hfq</i> gene deletion. (The <i>hfq</i> gene is highlighted in yellow, while the primers are highlighted in blue. P1 and P4 primers also contain overhangs specific to the plasmid pEB17, which are highlighted in grey.) ..... | 181 |



## LIST OF FIGURES

|           |                                                                                                                                                                    |    |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 1  | Bacterial cells stained by the Leifson method for flagella, demonstrating the peritrichous cells of <i>X. nematophilus</i> (A) and <i>P. luminescens</i> (B). .... | 4  |
| Figure 2  | Cadavers of the wax moth glowing in the dark after being infected with <i>Heterorhabdites bacteriophora</i> 48 hours earlier. ....                                 | 5  |
| Figure 3  | GFP-labelled <i>Xenorhabdus</i> and <i>Photorhabdus</i> colonize different sites in the IJ stage of their nematode hosts. ....                                     | 7  |
| Figure 4  | The Entomopathogenic nematodes (EPNs) life cycle.....                                                                                                              | 7  |
| Figure 5  | Examples of natural products from <i>Xenorhabdus</i> and <i>Photorhabdus</i> Bacteria .....                                                                        | 12 |
| Figure 6  | The regulation of bacterial virulence by Csr systems .....                                                                                                         | 21 |
| Figure 7  | The regulatory network controlling secondary metabolism in <i>P. luminescens</i> .....                                                                             | 25 |
| Figure 8  | Biology of <i>Acinetobacter baumannii</i> .....                                                                                                                    | 30 |
| Figure 9  | A diagram illustrating the various resistance mechanisms of <i>A. baumannii</i> to antimicrobial agents is shown.....                                              | 42 |
| Figure 10 | A scheme of deletion via homologous recombination in <i>X. stockiae</i> strain RT25.5.....                                                                         | 57 |
| Figure 11 | The detailed visualization of the pan- and core-genome analysis incorporates an average nucleotide identity (ANI) layer .....                                      | 71 |
| Figure 12 | A sequence-based similarity network of BGCs across 13 genomes .....                                                                                                | 73 |
| Figure 14 | The summary of the domain composition and organization of the uncharacterized clusters .....                                                                       | 81 |
| Figure 15 | The map of the complete chromosome of <i>X. stockiae</i> strain RT25.5 .....                                                                                       | 83 |
| Figure 16 | A phylogenetic tree generated using whole genome sequences .....                                                                                                   | 85 |
| Figure 17 | Summary of the domain composition and organization of the unidentified clusters .....                                                                              | 88 |
| Figure 18 | Detection of secondary metabolites produced by the <i>X. stockiae</i> strain RT25.5.....                                                                           | 90 |
| Figure 19 | Comparative characteristics of <i>X. stockiae</i> wild type and <i>X. stockiae hfq</i> deletion.....                                                               | 92 |

|           |                                                                                                                                                                                                                                                                                                                                        |     |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 20 | The time-kill curves of the 1X MIC of the extract against <i>A. baumannii</i> strain AB320 (XDR) .....                                                                                                                                                                                                                                 | 93  |
| Figure 21 | TEM images of <i>A. baumannii</i> strain AB320 (XDR) .....                                                                                                                                                                                                                                                                             | 94  |
| Figure 22 | Protein profiling was conducted on <i>A. baylyi</i> treated with the crude extract of <i>X. stockiae</i> strain RT25.5 and compared to an untreated control group .....                                                                                                                                                                | 96  |
| Figure 23 | Hfq Deletion. (A) <i>Xenorhabdus Stockiae</i> RT25.5 WT (B) <i>Xenorhabdus stockiae</i> RT25.5_Δhfq; light-colored colonies were selected for PCR verification. (C) Colony PCR verification of selected colonies.....                                                                                                                  | 183 |
| Figure 24 | The base peak chromatograms (BPCs) of cell-free supernatants extracted with methanol from <i>Xenorhabdus stockiae</i> RT25.5 wild type (WT) and the <i>X. stockiae</i> RT25.5_Δhfq mutant reveal differences in metabolite profiles, providing insights into the effects of the Δhfq mutation on secondary metabolite production ..... | 184 |
| Figure 25 | The results of antibacterial activity testing using crude compounds from bacteria. ....                                                                                                                                                                                                                                                | 185 |

# CHAPTER I

## INTRODUCTION

### Background and significance of the study

Entomopathogenic bacteria are widely distributed and include genera such as *Photorhabdus*, *Xenorhabdus*, *Yersinia*, and *Providencia*. A major challenge for these bacteria in infecting diverse insect species is adapting to and evading varying host immune responses and microbial communities. In order to overcome the challenges, these bacteria have evolved general strategies, including the production of protein toxins that ultimately lead to the death of their insect hosts.

Notably, *Photorhabdus* and *Xenorhabdus* face an additional challenge as a significant portion of their life cycle is spent in symbiosis with nematodes (Patricia Stock et al., 2001; Poinar et al., 1990; Waterfield et al., 2009). These bacteria are mutualistic partners of nematodes from the genera *Heterorhabditis* and *Steinernema*, respectively. The nematode acquires its symbiotic bacteria during the development of the infective juvenile (IJ) stage and subsequently seeks insect hosts (Han & Ehlers, 2000). Upon successfully penetrating an insect, the nematodes release the bacteria into the insect's hemocoel. The bacteria then produce a variety of natural products (NPs) that facilitate infection and eventually cause the insect's death. The resulting nutrient-rich environment supports the reproduction of both the bacteria and nematodes, after which newly developed IJs reacquire their bacterial symbionts and search for new insect prey (Beemelmanns et al., 2016). The natural products synthesized by these bacteria play critical roles in symbiosis and exhibit diverse functionalities, reflecting their remarkable versatility (Beemelmanns et al., 2016; Bode et al., 2015; Bode, 2009; Challinor & Bode, 2015; Piel, 2009).

These products are also of significant interest in drug discovery, as researchers continually explore their potential for novel medicines. *Photorhabdus* and *Xenorhabdus* exhibit substantial capacity for NP production, with numerous biosynthetic gene clusters (BGCS) predicted in all species (Bode, 2009; Chaston et al., 2011). Thus, in this study, the genomes of these bacteria were analysed to discover specialized compounds that had never been detected in the laboratory, an approach that

represents one of the crucial strategies in bioprospecting for new antibiotics. As a result, antimicrobial activity screenings were conducted against pathogenic bacteria. These outcomes will enhance our understanding of the potential therapeutic applications of bioactive compounds derived from entomopathogenic bacteria.

### **Purposes of the study**

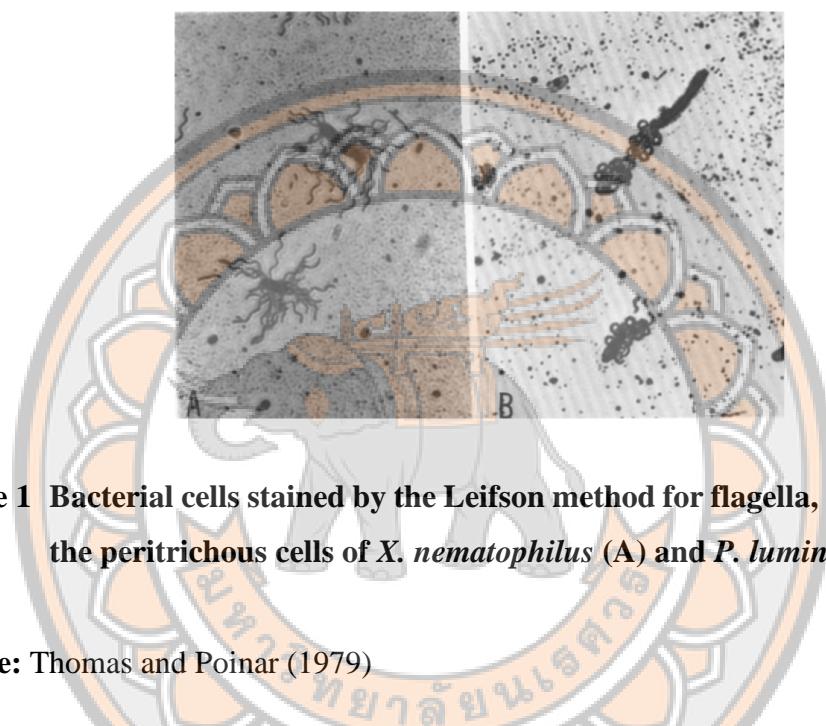
To explore the genomes of entomopathogenic bacteria to uncover previously unobserved specialized metabolites in the laboratory and to study the antimicrobial activities of their extracted compounds.

### **Scope of the study**

This study was divided into three main parts, each building upon the previous findings. First, genome sequencing and mining were performed to prioritize the candidate strain. Next, whole-genome sequencing of the selected strain was conducted to identify biosynthetic gene clusters associated with secondary metabolite production. Based on these findings, the antimicrobial activity of the crude extract was evaluated in detail through minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), time-kill curve analysis, and morphological examination of treated bacteria using transmission electron microscopy. Finally, to further understand the extract's mode of action, proteomic analysis was conducted to identify differentially expressed protein profiles in antibiotic-resistant bacteria in response to the treatment.

## CHAPTER II

### Related works and studies


#### Entomopathogenic bacteria

Entomopathogenic bacteria, recognized for their production of a variety of virulence factors, which are commonly found in nature and include genera such as *Serratia*, *Peanibacillus*, *Bacillus*, *Pseudomonas*, *Brevibacillus*, *Xenorhabdus*, and *Photorhabdus* (Boemare & Tailliez, 2009; Glare et al., 2017). Among these, *Photorhabdus* and *Xenorhabdus* are unique as they are symbiotic of infective juveniles (IJs) of entomopathogenic nematodes (EPNs) from the genera *Steinernema* and *Heterorhabditis*, respectively (Patricia Stock et al., 2001; Poinar et al., 1990; Steven et al., 1997; Waterfield et al., 2009). These bacteria spend part of their lifecycle inside nematodes, using them as vectors to efficiently infect insect hosts (Heather & Randy, 2009; Herbert & Goodrich-Blair, 2007). In *Steinernema* nematodes, the bacteria are housed in the receptacle, located at the anterior part of the gut. In contrast, *Heterorhabditis* lack such a specialized structure and harbor the bacteria in their intestinal lumen (Bird & Akhurst, 1983; Boemare, 2002; Snyder et al., 2007).

##### 1. *Xenorhabdus* bacteria

Firstly, *Xenorhabdus* spp. are named *Achromobacter nematophilus* and associated with *Steinernema carpocapsae* (Poinar & Thomas, 1966). The location of the bacteria in the IJ stage was first demonstrated using light microscopy and later confirmed through electron microscopy (Poinar, 1966; Poinar Jr & Leutenegger, 1968). The activities of the bacterium in the nematode's development and the host's death have been elucidated (Poinar & Thomas, 1966; Poinar Jr & Thomas, 1967) leading to the establishment of a new genus, named *Xenorhabdus*. This genus was proposed for entomopathogenic bacteria, gram-negative, large, rod-shaped, and facultatively anaerobic. The bacterial cell is shown in Figure 1. These bacteria primarily inhabit the intestinal lumen of nematodes or the body cavity of host insects, which they enter via the nematodes. The genus is classified within the family Morganellaceae (Ricardo et al., 2021).

The diameter of the colony on nutrient agar (NA) is approximately 1 mm after 24 to 48 hours at 24°C. Colony morphologies were circular in shape with slightly uneven edges, moist, smooth, some granular, and with a low convex shape, and exhibit a coloration that ranges from cream to yellow-brown or yellow. On triphenyl-tetrazolium chloride agar (T-7+TTC agar), colonies gradually acquire a distinctive blue pigment with maroon centers, or a blue-green shade with dark blue centers.



**Figure 1** Bacterial cells stained by the Leifson method for flagella, demonstrating the peritrichous cells of *X. nematophilus* (A) and *P. luminescens* (B).

**Source:** Thomas and Poinar (1979)

In 1975, the entomopathogenic nematode *Heterorhabditis* spp. was first identified, and in 1979, the symbiotic bacterium associated with *H. bacteriophora* was characterized as *Xenorhabditis luminescens* (Poinar, 1975; Thomas & Poinar, 1979). Due to the intriguing ability of this bacterium to produce fluorescence, further studies were conducted. The entire insect cadavers infected with the bacteria glowed in the dark (Figure 2), and light was even detectable from a single infective stage (G. O. Poinar Jr et al., 1980). The bacteria were later reclassified under the genus *Photorhabdus* as *Photorhabdus luminescens* (Boemare et al., 1993).

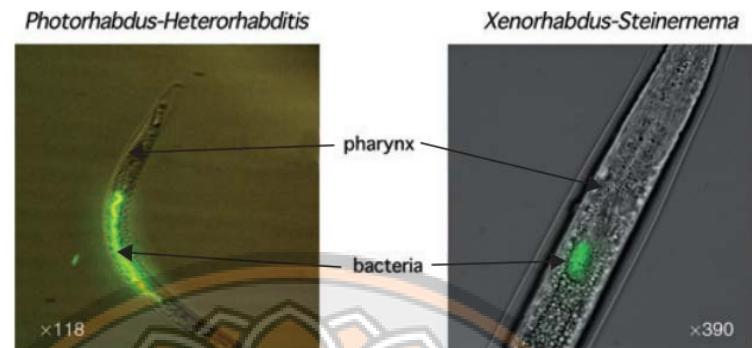


**Figure 2** Cadavers of the wax moth glowing in the dark after being infected with *Heterorhabditis bacteriophora* 48 hours earlier.

**Source:** Poinar Jr and Grewal (2012)

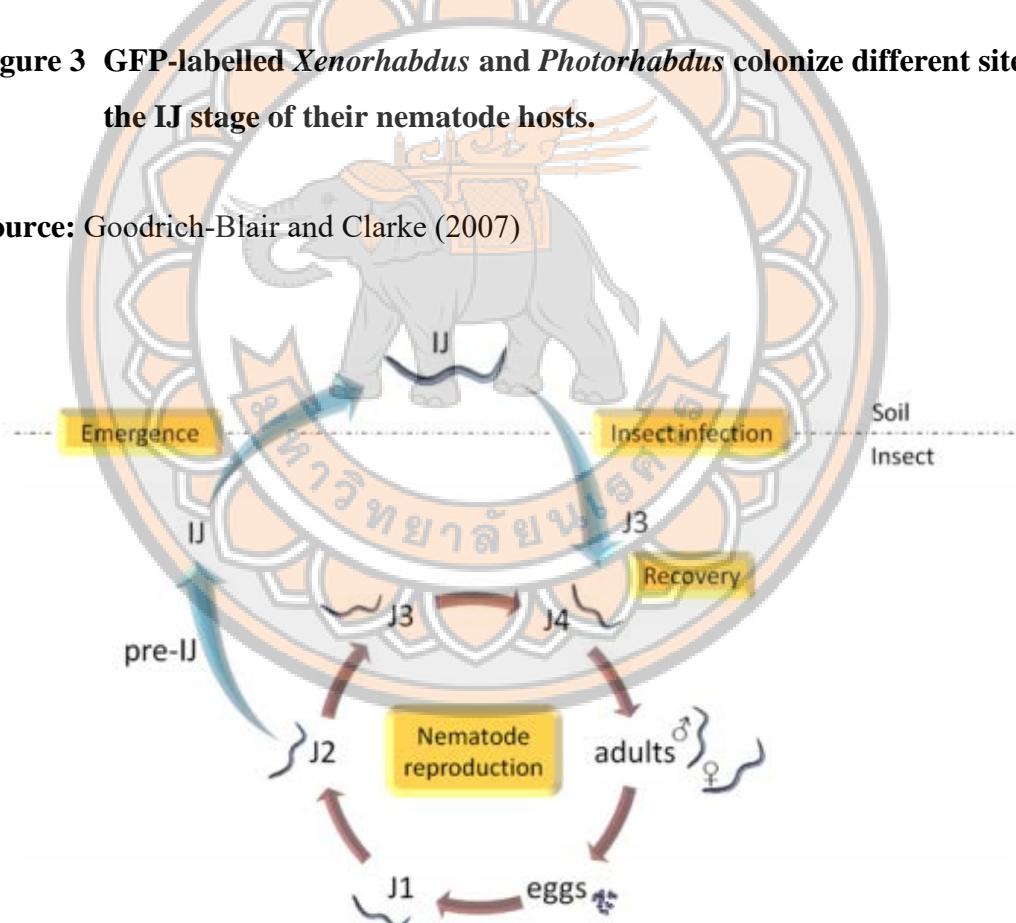
## 2. *Photorhabdus* bacteria

*Photorhabdus* is belonging to the family Morganellaceae (Machado et al., 2021). This bacterium is motile, gram-negative, facultatively anaerobic, peritrichous rods measuring 5.1–6.0  $\mu\text{m}$  in length and 0.8–1.4  $\mu\text{m}$  in width (Figure 1B). They are chemoorganotrophic in terms of nutrition and grow well on meat extract media and peptone agar. *Photorhabdus* differ from *Xenorhabdus* in being catalase-positive, with an irreversible phase transition from the primary to the secondary form. A notable characteristic of *Photorhabdus* spp. is their capability to bioluminescence. Furthermore, *Photorhabdus* is the only known non-marine luminous bacterium. The bioluminescence of *Photorhabdus* is attributed to the sequence similarity of the *lux* genes, which are closely related to those found in marine bacteria of the genera *Vibrio* and *Photobacterium* (Szittner & Meighen, 1990). *P. luminescens* has been observed to exhibit bioluminescence on various media, including nutrient agar (NA), nutrient broth, triphenyl-tetrazolium chloride agar (T-7+TTC agar), peptone water, and in infected


insects. On nutrient agar (NA), colonies are measuring approximately 1 mm in diameter after 24 to 48 hours at 24°C. They appear smooth, with a texture ranging from slightly granular to mucoid or highly mucoid and exhibit a low convex profile. They are circular with slightly irregular margins and range in colour from brown, rust brown to brick red. On T-7+TTC agar, colonies slowly acquire a unique coloration, transitioning from greenish with red-brown centres to a dull olive green.

### 3. EPNs, *Xenorhabdus* and *Photorhabdus* life cycle

*Xenorhabdus* spp. and *Photorhabdus* spp. are two bacterial genera that form mutualistic relationships with entomopathogenic nematodes (EPNs) and are key players in insect-pathogenic processes (Martens et al., 2003; Popiel et al., 1989). *Xenorhabdus* bacteria reside in the intestines (receptacle) of *Steinernema* spp. nematodes (Bird & Akhurst, 1983), while *Photorhabdus* bacteria colonize the intestines of *Heterorhabditis* spp. nematodes (Figure 3). Both genera of bacteria utilize their nematode hosts to invade insect cadavers, where they suppress the insect's immune system and produce virulence factors that lead to host mortality (Caldas et al., 2002; Dunphy & Webster, 1988). These bacteria also produce antimicrobial compounds and exoenzymes to inhibit microbial competitors and degrade macromolecules, providing essential nutrients for nematode growth (Akhurst, 1982; Ji & Kim, 2004). As shown in Figure 4, the nematodes mature and deplete the insect's resources, they re-associate with the bacteria, transforming into infective juvenile (IJ) nematodes that emerge from the insect carcass to find new hosts. This tripartite interaction between the bacteria, nematode, and insect serves as a model system for studying both mutualistic and pathogenic relationships within a single bacterial species (Akhurst & Boemare, 1990; Richards & Goodrich-Blair, 2010).


*Photorhabdus* and *Xenorhabdus* share similar lifestyles but differ in the molecular mechanisms they use to overcome insect immunity. *Photorhabdus* modifies lipopolysaccharide (LPS) to resist antimicrobial peptides (AMPs), while *Xenorhabdus* prevents AMP expression altogether. The bacterial species also differ in how they colonize their nematode hosts, with *Photorhabdus* requiring colonization of maternal rectal glands in *Heterorhabditis* spp., a feature not observed in *Xenorhabdus*. These differences highlight the adaptability of bacteria to their ecological roles and provide valuable insights into bacterial pathogenesis and mutualism. Understanding the

interactions between these bacteria, their nematode hosts, and insect hosts may inform biocontrol strategies and deepen our comprehension of bacterial virulence mechanisms.



**Figure 3** GFP-labelled *Xenorhabdus* and *Photorhabdus* colonize different sites in the IJ stage of their nematode hosts.

**Source:** Goodrich-Blair and Clarke (2007)



**Figure 4** The Entomopathogenic nematodes (EPNs) life cycle.

The infective juvenile (IJ) nematodes infect a suitable insect host and develop into the fourth stage juvenile (J4), a developmental step that is known as recovery. During reproduction nematodes undergo four juvenile stages. The depletion of all nutrients leads to the development of IJs again, prompting the nematodes to leave the empty carcass.

**Source:** Reimer (2013)

#### 4. Secondary metabolites from *Xenorhabdus* and *Photorhabdus* bacteria

In 1959, the first antibiotic activity in bacteria associated with *Steinernema* spp. was observed by Dutky, who noted that insect cadaver putrefaction was inhibited (Dutky, 1959). Later, Akhurst (Akhurst, 1980) discovered that *Xenorhabdus* existed in two or more identical phase variants with distinct colony morphologies, colors, and antimicrobial properties. The primary phase, which is carried out by the IJ nematode stages in nature, facilitates optimal nematode growth and antibiotic production. However, the primary phase can rapidly transition into a secondary phase, which supports less nematode growth and generates only a limited amount of antibiotic activity. The phase transition presented challenges for commercial nematode production, and its underlying cause remained uncertain until the discovery of a bacteriophage in *Heterorhabditis* that specifically targeted the primary phase. As a result, the shift to the secondary phase is believed to be a bacterial survival response. (Poinar et al., 1989; G. Poinar Jr et al., 1980). Since then, a variety of compounds produced by these bacteria has been extensively studied, resulting in the identification of various classes of compounds derived from non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS). Many of these substances and their derivatives have shown efficacy against bacterial and fungal infections of medical and agricultural importance. To date, several classes of secondary metabolites, including antibacterial, antifungal, insecticidal, nematicidal, and cell-toxic agents, have been isolated from these bacterial genera (Figure 5 and Table 1).

Indole-derived metabolites from *Xenorhabdus*, such as xenocyloins, exhibit antibacterial, antifungal, and anti-insect activity. First reported in 1981 by Paul and colleagues, xenocyloins and related compounds, found in *Xenorhabdus* strains like *X.*

*nematophila* (Newman & Cragg, 2012) and *X. bovienii* (Li et al., 1995), shown antibacterial effects on various bacteria with thick and thin cell walls, by inhibiting RNA synthesis inducing the accumulation of guanosine-3',5'-bis-pyrophosphate, and also show antifungal activity. An additional promising group of indole derivatives from *Xenorhabdus*, known as nematophin, shows high activity against drug-resistant *Staphylococcus aureus* strains (Jianxiong, Genhui, & Webster, 1997; Li et al., 1997).

Phenethylamides synthesized by various strains of *Xenorhabdus* display cytotoxic activity against eukaryotic cells, including human cancer cell lines like gastric adenocarcinoma and hepatoblastoma. This cytotoxicity is mediated through apoptosis induced by caspase activation, as well as against insect cells, depending on the acyl chain length (Proschak et al., 2011).

A notable group of compounds is the xenorhabdins, derived from NRPS, which feature a distinct heterobicyclic pyrrolinonodithiole core, characteristic of dithioliopyrrolone antibiotics. These dithioliopyrrolones exhibit activity against both Gram-positive and Gram-negative pathogens, consisting of multiple drug resistance (MDR) *S. aureus* (Li et al., 2014; B. Li et al., 2015),, and are believed to inhibit RNA polymerase. Xenorhabdins include holomycin and thiolutin, antibiotics discovered in *Streptomyces* spp. (Celmer & Solomons, 1955; Ettlinger et al., 1959). The xenorhabdins represent both the N-acylpyrrothine (holomycin-type) and the Nmethyl, N-acylpyrrothine (thiolutin-type) subclasses of dithioliopyrrolone antibiotics with structural diversity generated by different chain lengths of the N-acyl substituent (Zhai et al., 2016). Oxidized derivatives of xenorhabdins, known as xenoxides, have also been identified. However, their high toxicity against mammalian cells limits their therapeutic potential in their current form (Bode et al., 2015).

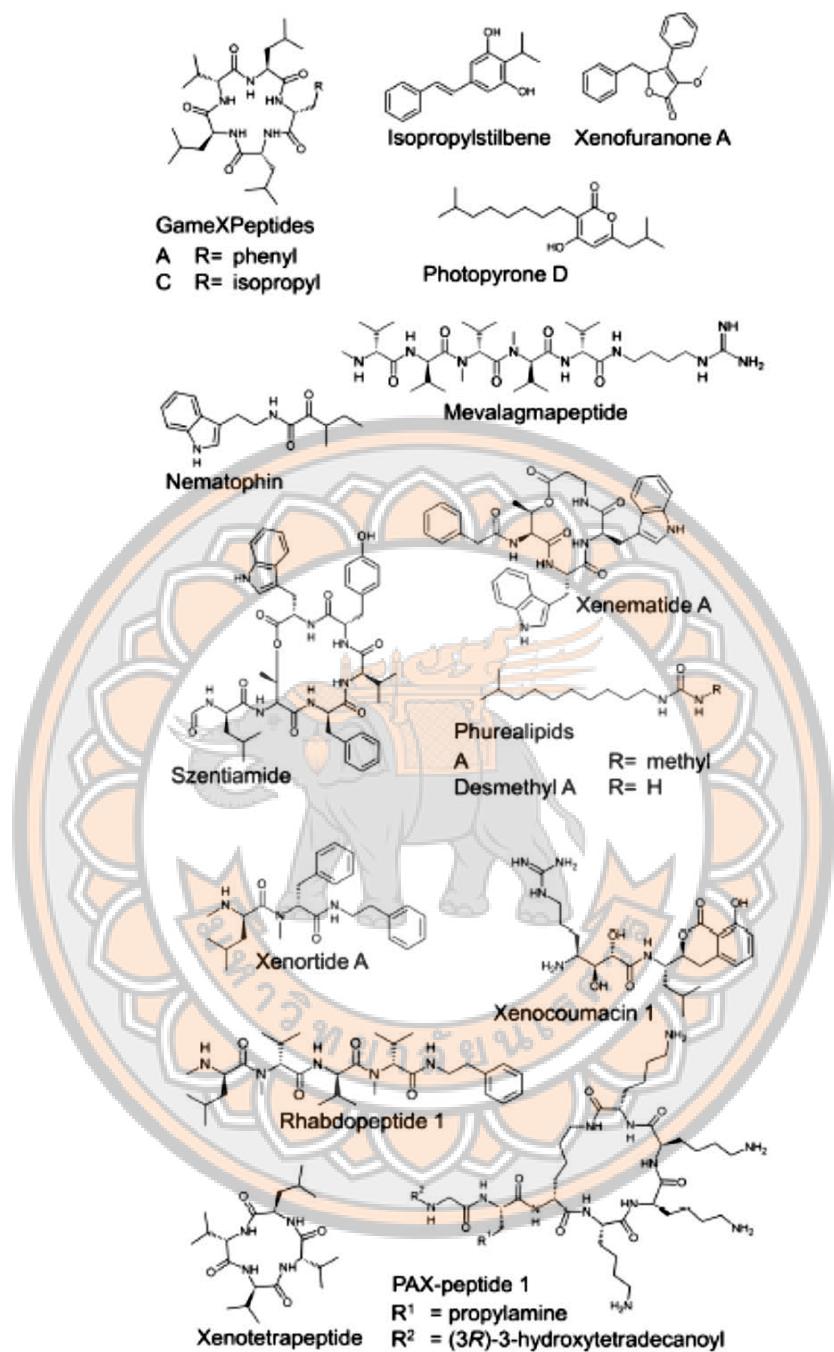
A distinct phenotypic feature of *Xenorhabdus szentirmaii* is its purple metallic color, attributed to the phenazine pigment iodinin. However, the primary compounds produced by *X. szentirmaii* are xenofuranones, which resemble fungal furanones from *Aspergillus terreus* and exhibit weak cytotoxic activity (Brachmann et al., 2006). Additionally, hexadepsipeptides such as szentiamide and xenobactin have been found in *Xenorhabdus* strains, showing antiprotozoal activity against *Plasmodium falciparum*, the malaria-causing pathogen (Nollmann et al., 2012).

The major class of secondary metabolites in *Xenorhabdus* spp. appears to be nonribosomally produced compounds. For example, xenematinides from *X. nematophila* are antibacterial against Gram-positive and Gram-negative bacteria and exhibit moderate insecticidal activity. The biosynthesis of xenematinides is significantly enhanced under cultivation conditions with an abundance of L-proline (Lang et al., 2008).

A highly diverse class of cyclic depsipeptides identified in *Xenorhabdus* sp. is xentrivalpeptides A–Q, again having alternative structural variants that arise through promiscuity of the NRPS A domain (Zhou et al., 2012). The lysine-rich cyclo PAX-peptides of *X. nematophila* confer antifungal and antibacterial activity (Fuchs et al., 2011). Two linear hexapeptides (bicornutin) were identified from *X. budapestensis* with activity against the plant pathogens *Erwinia amylovora* and *Phytophthora nicotianae* (Böszörményi et al., 2009).

Another remarkably diverse group of cyclic depsipeptides discovered in *Xenorhabdus* includes xentrivalpeptides A–Q, which vary structurally due to the promiscuity of the NRPS A domain (Zhou et al., 2012). Lysine-rich cyclo-PAX peptides from *X. nematophila* have antifungal and antibacterial properties (Fuchs et al., 2011). *X. budapestensis* produces two linear hexapeptides (bicornutin), which are active against plant pathogens like *Erwinia amylovora* and *Phytophthora nicotianae* (Böszörményi et al., 2009).

*Xenorhabdus* strains also produce mixed peptide–polyketide metabolites with antimicrobial properties, such as xenocoumacins, which have broad antibacterial activity against Gram-positive bacteria and possess antiulcer properties (McInerney et al., 1991). A hybrid PKS/NRPS compound, fabclavine Ia, produced in *X. nematophila*, is a peptide–polyketide complex with extensive biological effects, similar to compounds described in *Serratia* strains (Fuchs et al., 2014).


*X. nematophila* and *P. luminescens* produce rhabdusin, an isocyanide- and aminoglycosyl-functionalized tyrosine derivative. It serves as a suppressor of phenoloxidase, a key enzyme in the insect immune system's melanization pathway (Crawford et al., 2012).

In *P. luminescens*, a carbapenem-backbone gene cluster has been identified (Derzelle et al., 2002). Carbapenems are  $\beta$ -lactam antibiotics known from other organisms like *Streptomyces* and *Erwinia* species. In *Photorhabdus*, carbapenem production is not controlled by quorum sensing (QS), unlike in *Erwinia* and *Serratia*, due to the absence of the QS protein CarR. *P. luminescens* also produces photobactin, a catechol siderophore that may contribute to antibiosis by sequestering iron in the insect cadaver (Ciche et al., 2003).

Another significant metabolite class unique to *Photorhabdus* is the anthraquinone pigments. Although anthraquinones are typically plant-produced and show weak antibiotic activity in *P. luminescens*, they are nonetheless noteworthy (Richardson et al., 1988).

Stilbenes, common plant metabolites, have been identified in all *Photorhabdus* spp. Isopropylstilbene and ethylstilbene exhibit antimicrobial activity and play a role in virulence and mutualism by signaling food recovery in the nematode (Joyce et al., 2008; Joyce et al., 2011). Epoxystilbene, which shows antibacterial activity against drug-resistant *S. aureus*, also exhibits cytotoxicity against three human cancer cell lines (Hu et al., 2006). Recently, additional stilbene derivatives, such as dihydroisopropylstilbene, were identified and shown to protect against oxidative stress in insect hemolymph (Crawford et al., 2011; Konnik et al., 2010).

*P. luminescens* also produces non-ribosomal peptides like the cyclic GameXPeptides and linear mevalagmapeptide. The cyclic GameXPeptides A - D are synthesized under normal growth conditions, while peptides E - H are induced by the insect environment (Nollmann et al., 2015).



**Figure 5 Examples of natural products from *Xenorhabdus* and *Photorhabdus* Bacteria**

**Source:** Engel et al., 2017

**Table 1** Secondary metabolites from *Xenorhabdus* and *Photorhabdus* bacteria and their biological activities

| Secondary metabolites             | Activity                                                         | Target organism                                                                                                             | Bacteria                                                         | References                              |
|-----------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------|
| <b>Glidobactin</b>                | Cytotoxicity against the human colon carcinoma HCT-116 cell line | <i>Photorhabdus</i> sp.                                                                                                     | (Dudnik et al., 2013; Stein et al., 2012; Theodore et al., 2012) |                                         |
| <b>/Cepafungin I</b>              |                                                                  |                                                                                                                             |                                                                  |                                         |
| <b>Indigoidine</b>                | Blue pigment                                                     | None                                                                                                                        | <i>Photorhabdus</i> sp.                                          | (Brachmann et al., 2012)                |
| <b>Indole and its derivatives</b> | Nematocidal                                                      | <i>Caenorhabditis elegans</i> , <i>Meloidogyne incognita</i> , <i>Bursaphelenchus xylophilus</i> , and <i>B. mucronatus</i> | <i>Photorhabdus</i> sp.                                          | (Hu et al., 1998)                       |
| Xenoclyoins                       | Insecticidal                                                     | Insects                                                                                                                     | <i>Xenorhabdus</i> sp.                                           | (Lang et al., 2008)                     |
| Nematophin                        | Antimicrobial                                                    | MDR <i>S. aureus</i>                                                                                                        | <i>Xenorhabdus</i> sp.                                           | (Li et al., 1997; Webster et al., 2002) |
| Tryptamide and Rhabduscin         | Cytotoxic activity                                               | Eukaryotic cells                                                                                                            | <i>Xenorhabdus</i> sp.                                           | (Proschak et al., 2011)                 |
| Rhabduscin                        | Insecticidal                                                     | Nanomolar-level inhibitor of phenoxidase, a key component of the insect's innate immune system                              |                                                                  |                                         |
|                                   |                                                                  | <i>Photorhabdus</i> sp.                                                                                                     | (Crawford et al., 2012)                                          |                                         |

Table 1 (Cont.)

|                                     | Secondary metabolites                                                                      | Activity                     | Target organism                                                                                                                                                                                                                                                                                                                                                                            | Bacteria                | References                                                         |
|-------------------------------------|--------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------|
| <b>Kollisin A</b>                   | Unknown                                                                                    | Unknown                      | <i>Photorhabdus</i> sp.                                                                                                                                                                                                                                                                                                                                                                    | <i>Photorhabdus</i> sp. | (Bode et al., 2015)                                                |
| <b>Lumizinone A</b>                 | Cytotoxic                                                                                  | Human plasma                 | <i>Photorhabdus</i> sp.                                                                                                                                                                                                                                                                                                                                                                    | <i>Photorhabdus</i> sp. | (Park & Crawford, 2015)                                            |
| <b>Phurealipids</b>                 | Unknown                                                                                    | None                         | <i>Photorhabdus</i> sp.                                                                                                                                                                                                                                                                                                                                                                    | <i>Photorhabdus</i> sp. | (Nollmann et al., 2015)                                            |
| <b>Probactin</b>                    | Antibiotic                                                                                 | None                         | <i>Photorhabdus</i> sp.                                                                                                                                                                                                                                                                                                                                                                    | <i>Photorhabdus</i> sp. | (Ciche et al., 2003)                                               |
| <b>Pyrone</b>                       | Antimycotic, Cytotoxic                                                                     | None                         | <i>Photorhabdus</i> sp.                                                                                                                                                                                                                                                                                                                                                                    | <i>Photorhabdus</i> sp. | (Brachmann et al., 2013)                                           |
| <b>Stilbene and its derivatives</b> | 3,5-Dihydroxy-4-isopropyl stilbene<br>(syn. 2-isopropyl-5-[(E) - 2-phenylethene]-1,3-diol) | Nematicidal<br>Antibacterial | <i>C. elegans</i> , <i>B. xylophilus</i> , <i>B. mucronatus</i> , and <i>Aphelenchoides rhytium</i><br><i>B. subtilis</i><br><i>Aspergillus flavus</i> , <i>A. fumigatus</i> ,<br><i>Candida tropicales</i> , <i>Cryptococcus neoformans</i> , <i>Botrytis cinerea</i> , <i>Pythium aphanidermatum</i> , <i>Exserohilum turcicum</i> ,<br><i>R. solani</i> , and <i>Fusarium oxysporum</i> | <i>Photorhabdus</i> sp. | (Chen, 1996; Hu et al., 1996; Paul et al., 1981; Shi et al., 2012) |

Table 1 (Cont.)

| Secondary metabolites               |                                                                                                                 | Activity                                                                     | Target organism                                                                                        | Bacteria                | References                                                 |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------|
| <b>Stilbene and its derivatives</b> | 3-hydroxy-2-isopropyl-5-phenethyl phenyl carbamate                                                              | Insecticidal potential                                                       | <i>P. aphanidermatum</i> , <i>R. solani</i> , <i>E. turicum</i>                                        |                         |                                                            |
|                                     |                                                                                                                 | Antimycotic                                                                  |                                                                                                        |                         |                                                            |
|                                     | 2-isopropyl-5-(3-phenyl-2-oxiranyl)-benzene-1,3-diol (syn. 2-Isopropyl-5-(3-phenyl-2-oxiranyl)-1,3-benzenediol) | Antibacterial                                                                | <i>B. subtilis</i> , <i>E. coli</i> , <i>Streptococcus pyogenes</i> , and <i>Staphylococcus aureus</i> | <i>Photorhabdus</i> sp. | (Hu et al., 2006)                                          |
| <b>Pyrrothine</b>                   | Xenorhabdins                                                                                                    | Antibacterial<br>Antifungal<br>Insecticidal<br>Inhibition of RNA polymerase. | high toxicity against mammalian cells                                                                  | <i>Xenorhabdus</i> sp.  | (Bode et al., 2015; Qin et al., 2013)<br>(Li et al., 1995) |
|                                     | Xenoribides                                                                                                     | Note: Sub-classes of dithiopyrrolone antibiotics                             |                                                                                                        |                         |                                                            |

Table 1 (Cont.)

|                         | Secondary metabolites | Activity                                                     | Target organism                                                                                                                                                                                              | Bacteria               | References                                                                                     |
|-------------------------|-----------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------|
| <b>Xenocoumacins</b>    |                       | Antimicrobial                                                | <i>Micrococcus luteus</i>                                                                                                                                                                                    | <i>Xenorhabdus</i> sp. | (McInerney et al., 1991; Park et al., 2009; Reimer et al., 2009)                               |
| <b>Hydroxystilbenes</b> | Isopropyl stilbene    | Antibacterial<br>(Inhibition of RNA synthesis)<br>Antifungal | Gram-positive and Gram-negative pathogens,<br><i>A. flavus</i> , <i>A. fumigatus</i> , <i>Botrytis cinerea</i> ,<br><i>Candida tropicales</i> and<br><i>Cryptococcus neoformans</i><br><i>Aphelenchoides</i> | <i>P. luminescens</i>  | (Paul et al., 1981;<br>Proschak et al., 2014;<br>Richardson et al., 1988)<br>(Li et al., 1995) |
|                         |                       | Nematicidal                                                  | <i>Rhizoctonia</i> ,<br><i>Bursaphelenchus</i> spp.<br>and <i>Caenorhabditis elegans</i>                                                                                                                     |                        | (Webster et al., 1999)                                                                         |

Table 1 (Cont.)

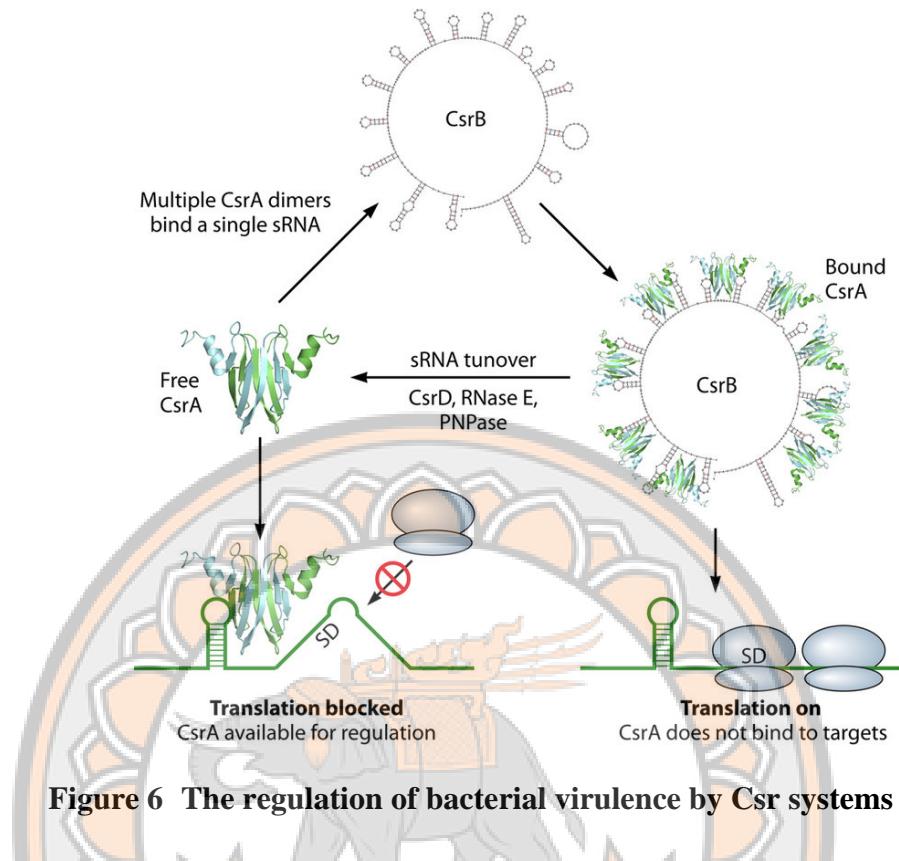
|                                 | Secondary metabolites |                             | Activity                                           | Target organism         | Bacteria                                   | References |
|---------------------------------|-----------------------|-----------------------------|----------------------------------------------------|-------------------------|--------------------------------------------|------------|
| <b>Cyclic hexadepsipeptides</b> | Szentiamide           | Antiprotozoal               | <i>P. falciparum</i>                               | <i>X. szentimai</i>     | (Nollmann et al., 2012)                    |            |
|                                 | Xenobactin            |                             |                                                    |                         | (Ohlendorf et al., 2011)                   |            |
| <b>Xenematides</b>              |                       | Antiprotozoal               | <i>P. falciparum</i>                               | <i>X. nematophilus</i>  | (Grundmann et al., 2013)                   |            |
| <b>Xentivalpeptides A–Q</b>     |                       | Unknown                     | None                                               | <i>Xenorhabdus</i> sp.  | (Crawford et al., 2011; Lang et al., 2008) |            |
| <b>Xenoamicins</b>              | Xenoamicin A          | Antiprotozoal               | <i>P. falciparum</i> and <i>Trypanosoma brucei</i> | <i>X. douceiae</i>      | (Zhou et al., 2012).                       |            |
| <b>Lysine-rich PAX</b>          | PAX 1–5               | Antifungal pathogen         | <i>Fusarium oxysporum</i>                          | <i>X. nematophilus</i>  | (Bode et al., 2015; Zhou et al., 2013)     |            |
| <b>Rhabdopeptides</b>           | Rhabdopeptide 1       | Unknown                     | None                                               | <i>X. nematophila</i>   | (Reimer et al., 2013)                      |            |
| <b>s 1–6</b>                    | Rhabdopeptide 7–8     |                             |                                                    | <i>X. cabanillasii</i>  |                                            |            |
| <b>Bicornutin A</b>             |                       | Antibacterial and cytotoxic | Broad-spectrum                                     | <i>X. budapestensis</i> | (Böszörényi et al., 2009)                  |            |

**Table 1 (Cont.)**

|                                    | Secondary metabolites                                                                       | Activity                                                                                                                                                                                                                                                                                                                          | Target organism                                                                                                                     | Bacteria                | References |
|------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------|
| <b>Mevalagman-peptides A and B</b> | Unknown<br>Note: <i>cpmA</i> –H involved in the biosynthesis of carbapenem-like antibiotics | None                                                                                                                                                                                                                                                                                                                              | <i>P. luminescens</i>                                                                                                               | (Derzelle et al., 2002) |            |
| <b>Trans-cinnamic acid</b>         | Antimycotic                                                                                 | <i>Fusicladium effusum</i>                                                                                                                                                                                                                                                                                                        | <i>Photorhabdus</i> sp.                                                                                                             | (Bock et al., 2014)     |            |
| <b>Fabclavines</b>                 | Biological activity                                                                         | Broad-spectrum                                                                                                                                                                                                                                                                                                                    | <i>Photorhabdus</i> sp.                                                                                                             | (Fuchs et al., 2014)    |            |
| <b>Darobactin</b>                  | Antibacterial                                                                               | drug resistant Gram-negative<br>(The addition of darobactin to <i>E. coli</i> resulted in membrane blebbing, followed by cell swelling and eventual lysis. Within 15–30 minutes, darobactin rapidly triggered the sigma E and Rcs envelope stress responses and broadly activated genes across all five envelope stress pathways. | <i>P. khanii</i><br><i>aeruginosa</i> ,<br><i>A. baumannii</i> ATCC 17978,<br><i>K. pneumoniae</i> ,<br>and <i>S. aureus</i> HG003) | (Imai et al., 2019)     |            |

## 5. Regulation of secondary metabolite biosynthesis in *Xenorhabdus* and *Photorhabdus* bacteria

The ability of *Xenorhabdus* and *Photorhabdus* to adapt to environmental changes plays a crucial role in microbial interaction with hosts and the regulation between mutualism and pathogenesis, particularly in the context of secondary metabolite biosynthesis. The sequencing of several *Xenorhabdus* and *Photorhabdus* strain genomes has greatly facilitated the identification of novel compound classes. Detailed genomic studies have revealed numerous biosynthetic gene clusters involved in secondary metabolite production. For instance, 7.5% of the genome of *Xenorhabdus nematophila* ATCC 19061 and 5.9% of the genome of *Photorhabdus luminescens* TT01 are dedicated to proteins involved in secondary metabolite biosynthesis (Chaston et al., 2011; Duchaud et al., 2003).


One key player in regulating these processes is the global regulator Lrp or leucine-responsive regulatory protein which is widely present in bacteria and acts as a sensor for several amino acids, thus linking it to nutrient availability responses (Brinkman et al., 2003; Hart & Blumenthal, 2011). In *Salmonella enterica*, Lrp weakens *Salmonella* virulence by repressing genes within pathogenicity islands 1 and 2 (SPI-1 and SPI-2) (Baek et al., 2009), while in *Vibrio* species, Lrp has been demonstrated to play a key role in virulence (Lin et al., 2007). In *X. nematophila*, Lrp functions as a global regulator, influencing both symbiotic relationship with nematodes and pathogenicity in insects (Cowles et al., 2007; Hussa et al., 2015). Studies have shown that a *lrp* deletion mutant of *X. nematophila* loses antibiotic activity against *Micrococcus luteus* and *Bacillus subtilis*, unlike the wild-type strain, which retains antibiotic activity (Cowles, 2007). Similarly, in *Photorhabdus*, *lrp* mutant exhibits reduced levels of isopropylstilbene (IPS) and its precursor, cinnamic acid (Lango-Scholey et al., 2013).

Lrp is also involved in pathogenesis by modulating the expression of the transcriptional regulator LrhA (LysR homologue A), which controls l-proline uptake. Mutants lacking LrhA exhibit a significant reduction in insect-killing ability, highlighting LrhA as a critical virulence factor factors (Herbert & Goodrich-Blair, 2007; Richards et al., 2008). This is because l-proline is a prevalent amino acid composition of insect hemolymph. Therefore, increased levels of l-proline could

stimulate the production of insecticidal compounds, such as stilbene, and anthraquinone (AQ) in *Xenorhabdus* and *Photorhabdus*, respectively. This phenotype depends on proline uptake, there is evidence suggesting that proline plays a key role in regulating secondary metabolite production (Crawford et al., 2010). However, global regulators control the secondary metabolite biosynthesis of *Xenorhabdus* remains largely unexplored.

In *Photorhabdus* strains, HexA is a transcriptional inhibitor of the LysR-type family. It is essential for the interaction with the nematode in *P. temperata*, as it inhibits antibiotic production (Joyce & Clarke, 2003). Kontnik in 2010 demonstrated that  $\Delta$ hexA mutants of *P. temperata* and *P. luminescens* produce significantly higher levels of isopropylstilbene (IPS) and its derivatives (Kontnik et al., 2010b). More recently, it has been found that hexA functions within a regulatory cascade regulated by the Hfq protein. Deletion of hexA leads to restored secondary metabolite production, whereas a  $\Delta$ hfq mutant exhibits minimal secondary metabolite production (Tobias et al., 2016).

The BarA-UvrY two-component system (2CP) triggers gene transcription that associated with secondary metabolism in *Photorhabdus*. A *uvrY* knockout mutant in *P. luminescens* exhibited a substantial reduction in the expression of genes that essential for bioluminescence, as well as stilbene and anthraquinone (AQ) biosynthesis. However, the majority of the transcriptional modifications observed in the *uvrY* mutant did not align with protein or phenotypic changes, indicating that the regulation belonging to these genes may occur at the post-transcriptional level (Kontnik et al., 2010; Krin et al., 2008; Lango-Scholey et al., 2013). In other bacteria, the 2CP system has been established to interact with small RNA regulators. A notable target of the system is the CsrA-CsrB regulatory (Pernestig et al., 2003; Weilbacher et al., 2003). In this system, as illustrated in Figure 6, CsrA is an RNA-binding protein that inhibits protein synthesis by attaching to the ribosome-binding site of the target mRNA (Liu & Romeo, 1997). The CsrB RNA contains multiple binding sites for CsrA, and when expressed, it titrates CsrA away from target mRNAs, thereby facilitating more efficient translation of these transcripts (Babitzke & Romeo, 2007; Romeo, 1998).



**Figure 6 The regulation of bacterial virulence by Csr systems**

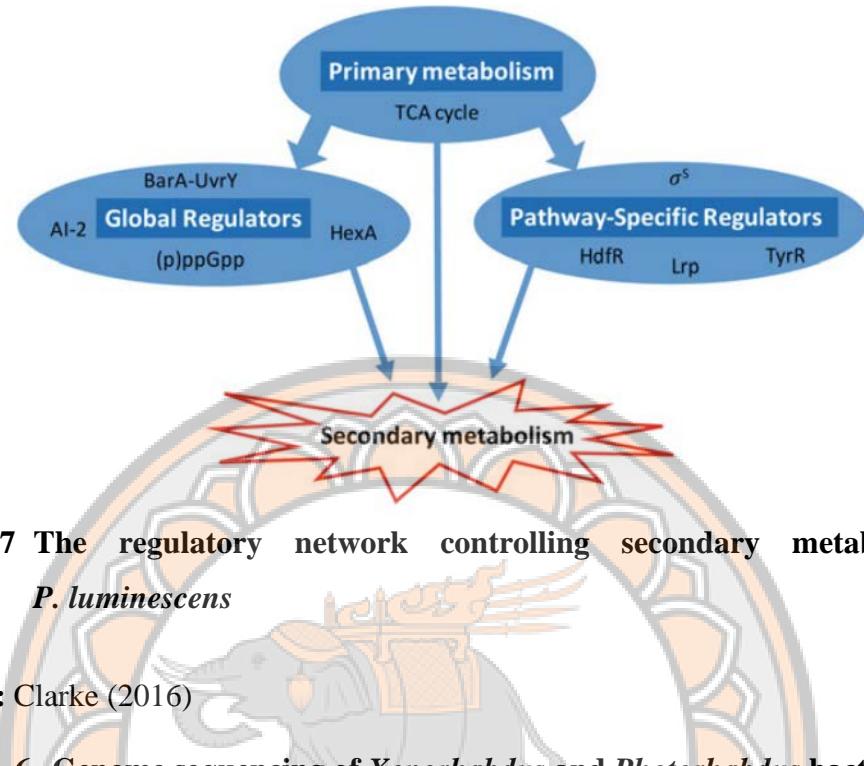
**Source:** Vakulskas et al. (2015)

In *P. luminescens* TTO1, the CsrA-CsrB regulatory system has been found to regulate certain UvrY targets (Krin et al., 2008). The 2CP, also referred to as GacS-GacA in other bacteria like *Pseudomonas*, plays a crucial role in regulating secondary metabolism (Lapouge et al., 2008). Mutations in the GacS-GacA 2CP have been shown to block secondary metabolism in various pseudomonad species (Heeb & Haas, 2001). Recent studies have revealed that *gacS* mutations in *Pseudomonas aeruginosa* M18 cause variation in phenotype, leading to the development of small colony variants (SCVs) both *in vivo* and *in vitro* (Davies et al., 2007; Nelson et al., 2010). The GacS-GacA system also plays a role in the interaction among *Pseudomonas fluorescens* and the amoeba, *Dictyostelium discoideum*. Notably, many *D. discoideum* amoebae engage in bacterial husbandry, transporting and distributing bacteria during the spore stage to secure a food source after spore germination. Initially, *D. discoideum* carried two strains of *P. fluorescens*, but only one provided a food source (Brock et al., 2011). Moreover, the second strain was shown to produce secondary metabolites, including pyrrolnitrin

and chromene which promoted spore formation and benefited the amoeba. Interestingly, losing function in *gacA* altered the secondary metabolite-producing strain, turning it into a food source gene (Stallforth et al., 2013). This suggests that *gacA* mutations create functional heterogeneity within the *P. fluorescens* population. Similarly, *Photorhabdus* plays a role in mutualistic interactions with nematodes, acting both as a food source and regulating nematode development. Although no evidence exists of non-functional alleles of *uvrY* (the *gacA* homologue) arising and coexisting within insect cadavers, it is conceivable that the activity of the 2CP is regulated post-transcriptionally, leading to variation in function in the bacterial community (Camacho et al., 2015). Therefore, both the BarA-UvrY and GacS-GacA 2CPs play essential roles in regulating functional heterogeneity and secondary metabolism in various bacteria-host interactions.

Phenylalanine ammonia-lyase (PAL), the first enzyme in stilbene synthesis, converts phenylalanine into cinnamic acid (CA), highlighting the correlation between amino acid metabolism and secondary metabolism (Williams et al. 2005). It is well established throughout the Gammaproteobacteria, nutrient limitation triggers the production of (p)ppGpp, an alarmone that regulates gene expression during stress adaptation (Gaca, Colomer-Winter, et al., 2015; Hauryliuk et al., 2015). (p)ppGpp synthesis is controlled by the RelA and SpoT proteins. RelA activates (p)ppGpp synthesis in response to amino acid limitation, while SpoT integrates various signals into (p)ppGpp metabolism, with its hydrolysis activity necessary for upholding proper (p)ppGpp levels during growth (Brown et al., 2016). The accumulation of (p)ppGpp leads to significant transcriptional changes in bacteria (Bowden et al., 2013; Gaca, Kudrin, et al., 2015; Hesketh et al., 2007; Traxler et al., 2011; Vercruyse et al., 2011).

In *Photorhabdus*, a *relA spoT* double mutant, which cannot produce (p)ppGpp, was found to be unable to produce light, stilbene, or AQ pigments and could not support nematode growth. However, this mutant exhibited virulence comparable to the wild-type strain in insects, suggesting that (p)ppGpp production is not necessary for pathogenicity. Mutant of RelA spoT was quickly outcompeted by the wild-type strain after extended incubation in insects, highlighting the role of (p)ppGpp in nutrient-limited conditions (Bager et al., 2016). Similarly, a *relA spoT* mutant in *P. fluorescens*


CHAO displayed reduced antimicrobial and biocontrol effects, indicating that (p)ppGpp regulates secondary metabolism in this bacterium (Takeuchi et al., 2012).

Primary metabolism, including glycolysis and the TCA cycle, produces energy and precursors for cell growth, while secondary metabolism provides an alternative carbon and energy flux to produce bioactive compounds. This close relationship between primary and secondary metabolism is both regulatory and metabolic. In *P. luminescens* TTO1, mutations in the *mdh* or *fumC* genes, encoding key TCA cycle enzymes, blocked the production of light, stilbene antibiotics, and AQ pigments. These mutants were also unable to support nematode growth but did not affect virulence, suggesting that a metabolic switch between pathogenicity and mutualism is regulated by the TCA cycle (Lango & Clarke, 2010). A similar mutation in the *fumA* gene of *P. fluorescens* CHAO, encoding fumarase, which additionally suppressed secondary metabolism, indicating that TCA cycle imbalance impairs proper activation of the GacS-GacA 2CP (Takeuchi., 2009). Interestingly, A genetic modification in *acnB*, the gene encoding aconitase in *V. fischeri*, led to enhanced bioluminescence, which was regulated through the Gac/Rsm signaling pathway (Septer et al., 2015). Thus, the BarA-UvrY (GacS-GacA) 2CP acts as a regulatory connection between primary and secondary metabolism across various bacteria.

Numerous bacteria also use quorum sensing through AI-2, a signaling molecule produced by the LuxS enzyme, which plays a role in the activated methyl cycle. LuxS converts S-ribosylhomocysteine into AI-2, which accumulates extracellularly and induces transcriptional changes in some bacteria (Pereira et al., 2013). In *Photorhabdus*, AI-2 has been linked to carbapenem antibiotic production, as a *luxS* deletion mutant expressed greater amounts of *cpm* mRNA (Derzelle et al., 2002). The *luxS* mutant also exhibited decreased bioluminescence, increased polyamine production, heightened sensitivity to oxidative stress, reduced biofilm formation, and hyper-motility in comparison with the wild type (Krin et al., 2006). Furthermore, the BarA-UvrY 2CP in *Photorhabdus* is essential for maximal AI-2 production, and some phenotypes in the *uvrY* mutant, such as lowered bioluminescence, could be restored adding exogenous AI-2 (Krin et al., 2008). Thus, AI-2 plays multifunctional roles in *Photorhabdus*, linking secondary metabolism and stress resistance.

Particular secondary metabolic pathways in *Photorhabdus* remain underexplored. In bacteria, it is common for global regulators to work in conjunction with pathway-specific regulators to maintain the correct expression of secondary metabolites. For example, The AQ pigment is synthesized by proteins encoded by the 9-gene *antA-I* locus (Brachmann et al., 2007), and HdfR has been identified as a repressor of *antA-I* expression and AQ production (Easom & Clarke, 2012). Additionally, the induction of *stlA* expression during nutrient limitation facilitates stilbene production (Chalabaev et al., 2008).

In conclusion, *Photorhabdus* utilizes a sophisticated network to regulate secondary metabolism. In which global and specific regulators influence primary metabolism to coordinate the temporal regulation of secondary metabolite production (Figure 7). Secondary metabolites synthesized during the post-exponential phase of *Photorhabdus* growth are linked to its mutualistic relationship with the nematode. Nutrient limitation, mediated by the production of the alarmone (p)ppGpp, has been identified as a key environmental factor controlling secondary metabolism in *Photorhabdus*. The synthesis of (p)ppGpp acts as an intracellular signal that translates scarcity into a broad regulatory response. This response, whether directly or indirectly, involves various regulators that initiate the transition from pathogenicity to mutualism. Further elucidation of the regulatory networks involved is crucial for a more comprehensive understanding of the three-way interaction between *Photorhabdus*, the nematode, and the insect prey.



**Figure 7** The regulatory network controlling secondary metabolism in *P. luminescens*

**Source:** Clarke (2016)

## 6. Genome sequencing of *Xenorhabdus* and *Photorhabdus* bacteria

Research into the genome sequencing of *Xenorhabdus* and *Photorhabdus* bacteria has significantly advanced our understanding of their biology, symbiotic relationships, and potential applications. The genomes of *Xenorhabdus* and *Photorhabdus* species are typically circular DNA molecules. For instance, *Xenorhabdus nematophila* ATCC 19061 has a genome size of approximately 4.43 million base pairs (Mb), while *Xenorhabdus bovienii* SS-2004 possesses a genome of about 4.23 Mb. Recent studies have reported genome sizes for various *Xenorhabdus* strains ranging from 4.07 to 4.94 Mb, with a GC content between 42.8% and 45.4% (Chaston et al., 2011; Palma et al., 2024). In comparison, the genome of *Photorhabdus luminescens* TT01 is approximately 5.7 Mb in size. This larger genome reflects the bacterium's extensive repertoire of genes dedicated to secondary metabolism and symbiotic functions (Tobias et al., 2016).

The complete genome sequence of *Photorhabdus luminescens* TT01, published in 2003, revealed that up to 6% of its genome is dedicated to secondary metabolism, underscoring its capacity to produce a diverse array of bioactive compounds (Sajnaga et al., 2024). Building upon this foundational knowledge, recent

studies have developed advanced genetic tools to facilitate the manipulation of these bacteria. For instance, researchers have created expression vectors and a CRISPR-Cpf1 genome editing system based on the Standard European Vector Architecture (SEVA) plasmids. These tools enable efficient genetic modifications, including the activation and refactoring of biosynthetic gene clusters to enhance the production of valuable compounds like safracin B, a precursor for the anti-cancer drug ET-743 (Rill et al., 2024).

Moreover, investigations into the phylogenetic diversity of *Xenorhabdus* and *Photorhabdus* species have been conducted worldwide. In Thailand, researchers isolated and identified various strains of these bacteria from entomopathogenic nematodes, utilizing *recA* gene sequencing and phylogenetic analyses. The study revealed multiple isolates closely related to *X. stockiae*, *X. miraniensis*, and different subspecies of *P. luminescens* (Fukruksa et al., 2017). Such studies are crucial for understanding the distribution and evolutionary relationships of these bacteria. In addition, the mutualistic relationship between these bacteria and their nematode hosts plays a vital role in their life cycles and pathogenicity. *Xenorhabdus* and *Photorhabdus* species assist nematodes in infecting and killing insect hosts, making them effective biological control agents against agricultural pests. Advancements in genomic tools have transformed the systematics of these organisms, reshaping our understanding of their phylogenetic relationships and co-evolution (Půža & Machado, 2024). Recent studies have characterized novel isolates of these bacteria. For example, two isolates from northwestern Iran were identified as *Photorhabdus thracensis* and *Xenorhabdus nematophila*. Molecular techniques, including phylogenetic analysis of 16S rDNA and *gyrB* sequences, were employed for identification. These studies also examined growth dynamics, virulence, and antibacterial susceptibility, contributing to a deeper understanding of their potential applications in pest control and medicine (Azar et al., 2025).

In summary, genome sequencing and related studies of *Xenorhabdus* and *Photorhabdus* bacteria have provided profound insights into their genetic makeup, symbiotic mechanisms, and practical applications. Ongoing research continues to explore their diversity, evolutionary biology, and potential in biotechnology and agriculture.

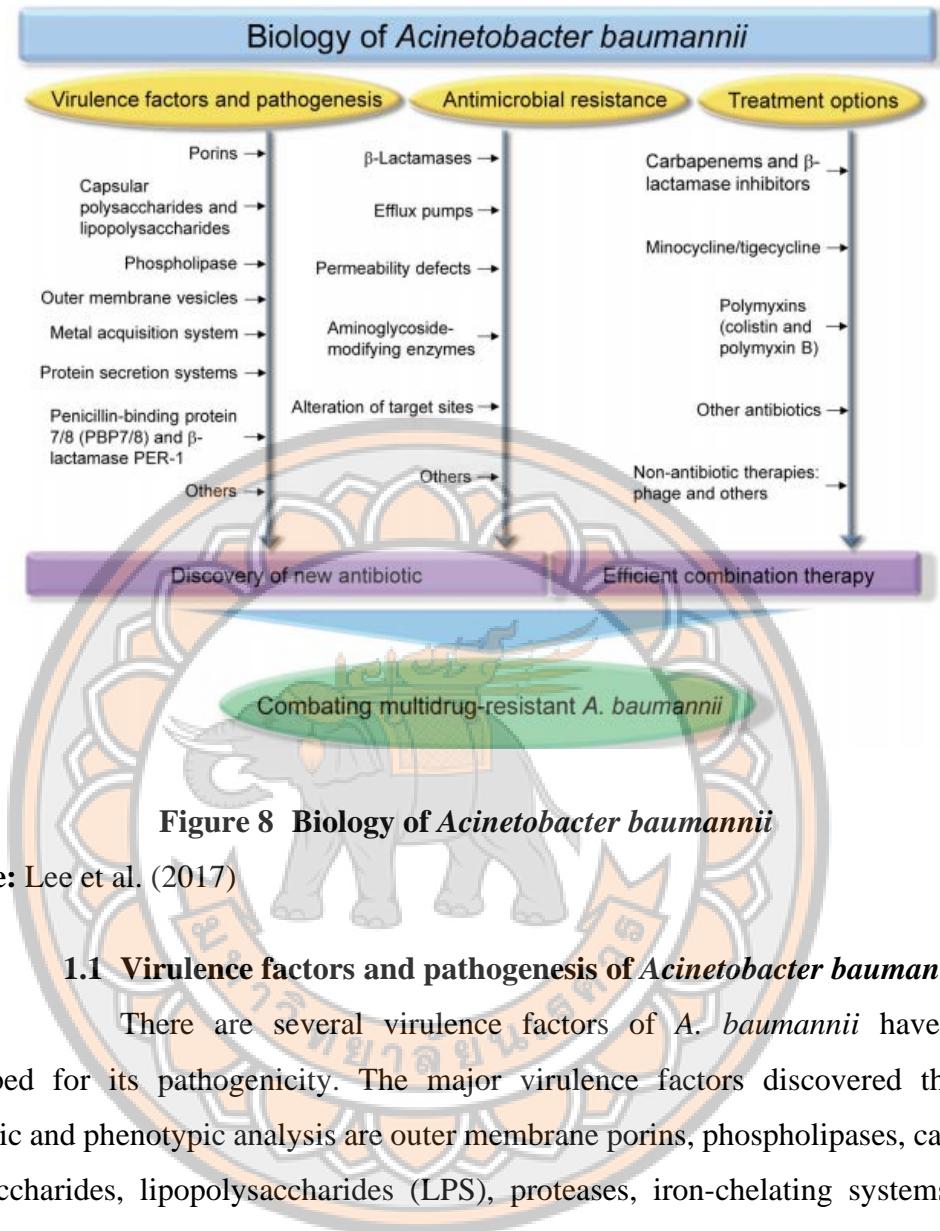
## Antibiotic resistant bacteria

Antimicrobial resistance (AMR) occurs when microorganisms are exposed to antimicrobial agents and evolve resistance. These resistant microorganisms, often referred to as “superbugs,” render treatments ineffective, causing infections to persist in the body and increasing the risk of transmission to others. AMR poses an escalating global public health threat, requiring coordinated action across all sectors of society and government. In the absence of potent antimicrobial agents for infection prevention and therapy, as well as medical interventions like organ transplantation, chemotherapy, diabetes management, and major surgical procedures (e.g., caesarean sections or hip replacements) become considerably more risky. Patients with resistant infections face greater costs than those with treatable infections, primarily owing to prolonged durations of illness, the need for additional diagnostic tests, and the use of more expensive medications.

In 2016, around 490,000 individuals worldwide contracted multi-drug-resistant tuberculosis (TB), with drug resistance increasingly complicating the treatment of HIV and malaria (World Health Organization, 2020). To address this issue, the World Health Organization (WHO) has issued a list of high-priority antibiotic-resistant pathogens – 12 families of bacteria posing the significant threat to human health. This list is categorized into three groups based on the urgency for new antibiotics: critical, high, and medium priority (Tacconelli et al., 2017). The most critical group includes multidrug-resistant bacteria, which are a particular risk in hospitals, nursing homes, and for patients requiring medical devices like ventilators and blood catheters. These include *Acinetobacter*, *Pseudomonas*, and various Enterobacteriaceae (such as *Klebsiella*, *Escherichia coli*, *Enterobacter*, *Serratia*, *Proteus*, *Providencia*, and *Morganella* species). These bacteria are responsible for severe, often fatal infections such as septicemia and pneumonia, with resistance to multiple antibiotics, including carbapenems and third-generation cephalosporins — critical treatments for multi-drug-resistant infections. The high and intermediate priority groups include additional bacteria with growing resistance responsible for widespread diseases, including *Gonorrhoea* and *Salmonella*-induced food poisoning (Table 2).

**Table 2 WHO priority pathogens list for research and development (R&D) of new antibiotics**

| Priority | Bacteria                        | Antibiotics                                                   |
|----------|---------------------------------|---------------------------------------------------------------|
| CRITICAL | <i>Acinetobacter baumannii</i>  | carbapenem-resistant                                          |
|          | <i>Pseudomonas aeruginosa</i>   | carbapenem-resistant                                          |
|          | <i>Enterobacteriaceae</i>       | ESBL-producing                                                |
|          | <i>Enterococcus faecium</i>     | vancomycin-resistant                                          |
|          | <i>Staphylococcus aureus</i>    | methicillin-resistant, vancomycin-intermediate, and resistant |
| HIGH     | <i>Helicobacter pylori</i>      | clarithromycin-resistant                                      |
|          | <i>Campylobacter</i> spp.       | fluoroquinolone-resistant                                     |
|          | <i>Salmonella</i> spp.          | fluoroquinolone-resistant                                     |
|          | <i>Neisseria gonorrhoeae</i>    | cephalosporin-resistant, fluoroquinolone-resistant            |
| MEDIUM   | <i>Streptococcus pneumoniae</i> | penicillin-non-susceptible                                    |
|          | <i>Haemophilus influenzae</i>   | ampicillin-resistant                                          |
|          | <i>Shigella</i> spp.            | fluoroquinolone-resistant                                     |


Tuberculosis, which has increasingly developed resistance to traditional treatments in recent years were excluded from the list as they are already recognized as a global priority, with urgent need for innovative new treatments. Other bacteria, such as *Streptococcus* A and B and *Chlamydia* spp., were also excluded from the list due to their limited resistance to current treatments and because they do not present a major public health risk at this time (Tacconelli et al., 2017).

### 1. *Acinetobacter baumannii*

*Acinetobacter* spp. are Gram-negative coccobacilli, aerobic, glucose-non-fermentative, non-motile, non-fastidious, catalase-positive, and oxidase-negative. Within *Acinetobacter* spp., *A. baumannii* stands out as the most critical pathogen linked to hospital-acquired infections worldwide. Additionally, there has been a gradual increase in community-acquired *A. baumannii* infections (Lin & Lan, 2014). Genomic

and phenotypic studies have identified several virulence factors, such as outer membrane porins, phospholipases, proteases, lipopolysaccharides (LPS), capsular polysaccharides, protein secretion systems, and iron-chelating systems (Antunes et al., 2011; Lin & Lan, 2014; McConnell et al., 2013).

Several studies have indicated that *A. baumannii* rapidly develops resistance to antimicrobials, with strains resistant to multiple drugs being isolated (McConnell et al., 2013). The WHO has notified that *A. baumannii* is one of the most serious infections in ESKAPE group (*E. faecium*, *S. aureus*, *K. pneumoniae*, *A. baumannii*, *P. aeruginosa*, and *Enterobacter* spp.), known for its ability to evade the effects of antibacterial drugs. *A. baumannii* employs various resistance mechanisms, including enzymatic drug degradation, target site alterations, multidrug efflux pumps, and reduced membrane permeability (Gordon & Wareham, 2010; Kim et al., 2012; Lin & Lan, 2014). The remarkable adaptive ability of *A. baumannii*, along with the acquisition and transmission of antibiotic resistance factors, undermines the effectiveness of the latest therapeutic approaches, including last-resort and combination antibiotic therapies. A summary data from Lee and his co-workers, shows the virulence factors, mechanisms of antibiotic resistance, and the treatment preferences for *A. baumannii* infections (Figure 8).



**Figure 8 Biology of *Acinetobacter baumannii***

**Source:** Lee et al. (2017)

### 1.1 Virulence factors and pathogenesis of *Acinetobacter baumannii*

There are several virulence factors of *A. baumannii* have been described for its pathogenicity. The major virulence factors discovered through genomic and phenotypic analysis are outer membrane porins, phospholipases, capsular polysaccharides, lipopolysaccharides (LPS), proteases, iron-chelating systems, and protein secretion systems. Summary of *A. baumannii* virulence factors are concluded in Table 3.

**Table 3 The key virulence factors of *Acinetobacter baumannii***

| Virulence factors                | Proposed role in pathogenesis                                                                                                                                                                                       | References                                                                                                                                                                                                    |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Outer membrane proteins          | Adherence and invasion, serum resistance, biofilm formation, surface motility, and induction of apoptosis in host cells or causes cytotoxicity                                                                      | (Choi et al., 2005; Fernández-Cuenca et al., 2011; Gaddy et al., 2009; Huang et al., 2016; Kim et al., 2009; Lee et al., 2010; Rumbo et al., 2014; Smani et al., 2013; Smani et al., 2012; Wang et al., 2014) |
| Capsule                          | Peptide resistance, mediates cationic antimicrobial, serum resistance and <i>in vivo</i> survival                                                                                                                   | (Antunes et al., 2011; Geisinger & Isberg, 2015; Iwashkiw et al., 2012; Lees-Miller et al., 2013; Russo et al., 2010)                                                                                         |
| Biofilm-associated protein (Bap) | Biofilm development and cell-to-cell adhesion                                                                                                                                                                       | (Loehfelm et al., 2008)                                                                                                                                                                                       |
| Lipopolysaccharide (LPS)         | Evasion of the host immune response, resistance to cationic antimicrobial peptides, activation of the host inflammatory response, reduction of TLR4 signalling, and enhanced survival under desiccation conditions. | (Lin et al., 2012; Luke et al., 2010; McConnell et al., 2013; McQueary et al., 2012)                                                                                                                          |
| Phospholipase - PLD              | Serum resistance, <i>in vivo</i> survival, and dissemination of bacteria                                                                                                                                            | (Camarena et al., 2010; Fiester et al., 2016; Jacobs et al., 2010; Stahl et al., 2015)                                                                                                                        |
| -PLC                             | Exhibiting hemolytic activity against human red blood cells and facilitating the uptake of iron                                                                                                                     |                                                                                                                                                                                                               |

**Table 3 (Cont.)**

| <b>Virulence factors</b>                                           | <b>Proposed role in pathogenesis</b>                                                                                                                   | <b>References</b>                                                                                                     |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Outer membrane vesicle (OMV)                                       | Delivering virulence genes to the host cell cytoplasm and facilitating the horizontal transfer of antibiotic resistance genes between bacterial cells. | (Jin et al., 2011; Jun et al., 2013; Kwon et al., 2009; Z. T. Li et al., 2015; Moon et al., 2012; Rumbo et al., 2011) |
| Acinetobactin (Siderophore mediated iron acquisition mechanism)    | Provides iron for the survival of both the bacterium and the host, while also inducing cell death.                                                     | (Ali et al., 2017; Fiester et al., 2016; Gaddy et al., 2012; Penwell et al., 2012; Zimbler et al., 2012)              |
|                                                                    |                                                                                                                                                        | (Hood et al., 2012; Nairn et al., 2016) -Zn                                                                           |
|                                                                    |                                                                                                                                                        | (Juttukonda et al., 2016) -Mg                                                                                         |
| Penicillin-binding protein 7/8 (pbpG) and $\beta$ -lactamase PER-1 | Biosynthesis of peptidoglycan, cellular stability, and growth in serum                                                                                 | (Russo et al., 2009; Sechi et al., 2004)                                                                              |
| Poly- $\beta$ -1-6-N-Acetylglucosamine (PNAG)                      | Formation of biofilm, cell-cell adherence, and protection against innate host defenses                                                                 | (Choi et al., 2008)                                                                                                   |
| AbaI autoinducer synthase                                          | Biofilm development                                                                                                                                    | (Niu et al., 2008)                                                                                                    |
| CsuA/BABCDE chaperone usher pili assembly system                   | Pilus assembly, biofilm formation on abiotic surfaces                                                                                                  | (Tomaras et al., 2003; Tomaras et al., 2008)                                                                          |
| Type II protein secretion system                                   | <i>In vivo</i> survival                                                                                                                                | (Elhosseiny et al., 2016; Harding et al., 2016; Johnson et al., 2016)                                                 |
| Type VI protein secretion system                                   | Killing of competing bacteria, host colonization                                                                                                       | (Carruthers et al., 2013; Jones et al., 2015; Repizo et al., 2015; Ruiz et al., 2015; Wright et al., 2014)            |
| Type V protein secretion system                                    | Biofilm formation and adherence                                                                                                                        | (Bentancor et al., 2012)                                                                                              |

### 1.1.1 Outer membrane proteins and outer membrane vesicles

Outer membrane proteins (Omps), located in the outer membrane, are essential core components that regulate both cell membrane permeability and virulence in *A. baumannii*. These  $\beta$ -barrel porins, which can exist as monomers or trimers, link the external environment to the periplasm, facilitating the transport of nutrients, small molecules, antibiotics, and disinfectants (Ambrosi et al., 2017; Ayoub Moubareck & Hammoudi Halat, 2020; Harding et al., 2018; Srinivasan et al., 2015; Uppalapati et al., 2020). To date, identified Omps in *A. baumannii* are OmpA, OmpW, Omp33-36 kDa, AbuO, CarO, OprD-like, TolB, NmRmpM, DcaP, LptD, Oma87/BamA, CadF, and OprF (Ayoub Moubareck & Hammoudi Halat, 2020; Harding et al., 2018; Uppalapati et al., 2020). The main outer membrane protein OmpA is one of the most abundant porins in *A. baumannii*. This 38kDa protein is involved in cell invasion and apoptosis, also small solute penetration occurs as it binds to the host cell surface, becomes localized in both the mitochondria and nuclei, and triggers cell death (Choi et al., 2005). OmpA is a thoroughly studied virulence factor with a range of intriguing biological characteristics (McConnell et al., 2013; Smith et al., 2007). In a previous report investigating the ability of *A. baumannii* to penetrate epithelial membranes in a murine pneumonia model, prominent lung histopathological changes, including a large quantity of white blood cells and alveolar damage, were detected in mice infected with the wild-type strain, but not in those infected with OmpA-mutants (Choi et al., 2008). In addition to its role as a porin for transport, OmpA can induce host cell apoptosis, promote biofilm formation, enable dissemination into the bloodstream, and interact with epithelial cells, mainly through host fibronectin (Smani et al., 2012). A additional outer membrane protein of *A. baumannii* is Omp33, also known as Omp33-36 kDa or Omp34, which functions as a water channel and associated with carbapenem resistance (Smani et al., 2013). In Rumbo study, this protein induced apoptosis by inhibiting autophagy, which allowed for intracellular persistence and led to the development of cytotoxicity (Rumbo et al., 2014). Moreover, knockout strains of *A. baumannii* lacking Omp33 exhibited reduced growth rates and a marked decline in their ability to adhere, invade, and induce cytotoxicity, indicating that Omp33 is essential for the survival and virulence of *A. baumannii* (Smani et al., 2013). Other porins, such as carbapenem associated outer membrane protein (CarO) and OccAB1

(OprD or porinD), are considered a virulence factor contributing to diminished virulence in a mouse model (Fernández-Cuenca et al., 2011). Moreover, OccAB1 together with OmpW were found linked to iron uptake in *A. baumannii* (Catel-Ferreira et al., 2016). OmpW is an outer membrane  $\beta$ -barrel protein which has many similar characteristics with OmpA, highly cytotoxic against the host cells, immunogenic, greatly concentrated in outer membrane vesicles (OMVs) (Catel-Ferreira et al., 2016; Huang et al., 2015; Tiku et al., 2021). OMVs are 20-200 nm micro-spherical vesicles secreted through the secretory system, apart from conventional systems (Ahmadi Badi et al., 2017). These vesicles can be composed of Omps, LOS, phospholipids, DNA and RNA molecules, as well as periplasmic proteins. OMVs are generally secreted and play a role in the delivery of virulence factors targeting other bacteria or host cells leading host cell injury and innate immune reactions (Geisinger et al., 2019; Li et al., 2018; Morris et al., 2019; Pires & Parker, 2019; Tiku et al., 2021).

### 1.1.2 Capsule and lipopolysaccharides (LPS)

Besides OmpA, *A. baumannii* envelope is also associated with the pathogenicity. The cell wall polysaccharide (LPS) is a key virulence factor involved in various stages of the disease process. It plays a crucial role in resisting normal human serum and offers a survival advantage *in vivo*. Additionally, in animal models, it may induce a proinflammatory response (Knapp et al., 2006). The antigenic O-polysaccharide of LPS, along with pili, may promote adherence to host cells as the initial stage of colonization (Haseley et al., 1997). In addition, a key structural factor contributing to *A. baumannii* virulence is the capsule that surrounds the bacterial surface. The tightly packed, repetitive sugar units in the capsule create a protective barrier against environmental challenges, such as dryness and disinfection, as well as immune defences like phagocytosis. It also offers protection against certain antimicrobials (Geisinger & Isberg, 2015; Singh et al., 2019). In spite of the diversity of capsular sugars in *A. baumannii*, with over 100 different types, the capsule remains a crucial factor for the pathogen's survival during infections and its capacity to grow in serum (Kenyon & Hall, 2013). These results suggest that blocking LPS synthesis is a promising strategy for discovering novel antibiotics, whereas numerous studies have shown that LPS modifications contribute to the antimicrobial resistance of *A. baumannii* to several clinically important antibiotics, such as colistin (Arroyo et al.,

2011; Beceiro et al., 2011; Boll et al., 2015; Chin et al., 2015; Moffatt et al., 2010; Pelletier et al., 2013).

### 1.1.3 Biofilm

Biofilm formation is crucial for *A. baumannii*'s ability to evade the immune system (de Breij et al., 2010), and pili are vital for its adherence to surfaces, biofilm development on abiotic materials, and overall virulence (Tomaras et al., 2003; Tomaras et al., 2008). Biofilm formation shown increased tolerance to antibiotics (Van Dessel et al., 2004; Vidal et al., 1997). Complex microbial biofilms consist of proteins, ions, nucleic acids, and polysaccharide polymers (Morikawa et al., 2006; Schooling & Beveridge, 2006; Steinberger & Holden, 2005; Whitchurch et al., 2002). Other important factors involved in biofilm formation are proteins in Repeats-in-Toxin (RTX)-like domain, poly- $\beta$  (1-6)-N-acetyl-glucosamine (PNAG), capsule, and others. For PNAG, this polysaccharide polymer has been well described as a major component of biofilms of *S. epidermidis* (Mack et al., 1996) and *S. aureus* (Maira-Litrán et al., 2002). Its roles are in surface and cell-to-cell adherence (Cramton et al., 1999; Mack et al., 1996). PNAG is also protects bacteria from innate host defences (Vuong et al., 2004). Moreover, a specific cell surface protein called biofilm-associated protein (Bap) was found related to an initial adherence of abiotic surfaces and biofilm formation in both gram-negative and gram-positive bacteria (Loehfelm et al., 2008). The protein was firstly characterized in *S. aureus* and have been identified in many gram-positive and gram-negative pathogenic bacteria (Lasa & Penadés, 2006). Production of Bap in *A. baumannii* is essential for stabilization of mature biofilms on glass, affecting both thickness and biovolume (Loehfelm et al., 2008). Lastly, the Cs<sub>u</sub> pili, or Cs<sub>u</sub> fimbriae, which are encoded by the six-gene operon csuA/BABCDE, are assembled via the chaperone-usher (CU) pathway (Tomaras et al., 2003). Along with biofilm-associated proteins (Bap), Cs<sub>u</sub> pili play a crucial role in the formation and maintenance of biofilms on abiotic surfaces (Loehfelm et al., 2008; Tomaras et al., 2003).

### 1.1.4 Phospholipase

Phospholipases, lipolytic enzymes recognized as additional virulence factors of *A. baumannii*, play important roles in the bacterium's pathogenicity. Phospholipase D aids *A. baumannii* in persisting in human serum, while phospholipase C is toxic to epithelial cells (Camarena et al., 2010). Moreover, the glycan-specific

adamalysin-like protease (CpaA) has been identified as a virulence factor that inhibits blood coagulation by deactivating factor XII. CpaA may reduce important antimicrobial defence mechanisms such as intravascular thrombus formation, allowing *A. baumannii* to disseminate (Waack et al., 2018).

#### 1.1.5 Acinetobactin or siderophore mediated iron acquisition system

A main cause contributing to *A. baumannii*'s persistence as a hospital-acquired microorganism is its ability to capture host nutrients, such as manganese, iron, and zinc, allowing it to adapt to the metal-limited environment imposed by the host (Tipton & Rather, 2017). The primary mechanism, known as siderophores, involves five clusters of high-affinity iron-chelating molecules. Siderophores are classified into hydroxamate, catecholate, and mixed types based on the moiety that donates oxygen ligands to coordinate  $\text{Fe}^{3+}$  (Saha et al., 2013). *A. baumannii* also produces acinetobactin, the best-characterized siderophore of *A. baumannii*, a mixed-type siderophore with an oxazoline ring derived from threonine (McConnell et al., 2013). Additionally, the organism contains transporters and receptors, including FecA and FecI, that facilitate direct iron uptake and enable the utilization of heme (Morris et al., 2019). Damage to iron transporters has been shown to reduce virulence by impairing biofilm production and diminishing resistance to oxidative stress (Ajiboye et al., 2018).

Acinetobactin is a key virulence factor in *A. baumannii*. Disruption of acinetobactin biosynthesis and transport notably decreases the ability of *A. baumannii* ATCC 19606 to survive within epithelial cells. A mutation in the *entA* gene, which is essential for the synthesis of the acinetobactin precursor 2,3-dihydroxybenzoic acid, substantially reduces the persistence of *A. baumannii* ATCC 19606 in human alveolar epithelial cells and its ability to infect and kill *Galleria mellonella* larvae. One study found that acinetobactin production was significantly more common in multidrug-resistant *A. baumannii* isolates than in avirulent strains (Ali et al., 2017; Gaddy et al., 2012; Penwell et al., 2012).

The *A. baumannii* NfuA Fe-S scaffold protein involved in the formation of Fe-S clusters and playing a role in cellular responses to iron chelation and oxidative stress. The *nfuA* mutant demonstrates increased sensitivity to reactive oxygen species (ROS), such as cumene hydroperoxide and, hydrogen peroxide and shows

significantly impaired growth in human epithelial cells. In a *G. mellonella* infection model, more than 50% of larvae injected with the parental strain die within 6 days, while fewer than 30% of larvae infected with the *nfuA* mutant die (Zimbler et al., 2012). Additionally, a report indicated that iron starvation leads to an increase in the production of phospholipases C (PLCs), which enhances the hemolytic activity of *A. baumannii* (Fiester et al., 2016).

*A. baumannii* also relies on an efficient zinc scavenging system, comprising the ZnuABC transporter and the ZigA GTPase. The ZnuABC transporter facilitates intracellular zinc uptake, while ZigA plays a role in zinc metabolism (Moore et al., 2014; Nairn et al., 2016). Additionally, *A. baumannii* evades calprotectin, an immune system protein that binds zinc, manganese, and other divalent metal ions, thereby limiting bacterial growth. In a murine pneumonia model, *zigA* mutants with limited zinc availability demonstrated reduced systemic dissemination from the lungs after infection (Nairn et al., 2016). Although the mechanisms by which *A. baumannii* overcomes manganese limitation are not fully understood, it is thought that a transporter from the resistance-associated macrophage protein (NRAMP) family aids in manganese accumulation, allowing growth in the presence of calprotectin (Juttukonda et al., 2016).

#### 1.1.6 Protein secretion systems

Multiple protein secretion systems have been discovered in *A. baumannii*, with the most recently characterized being the Type II secretion system (T2SS) (Johnson et al., 2016). The T2SS is a multi-protein assembly with structural similarities to Type IV pili systems, which are commonly found in Gram-negative bacteria. This system facilitates the translocation of a diverse set of proteins from the periplasmic space to the external environment or outer membrane surface. The T2SS comprises 12–15 proteins organized into four subassemblies: a pseudopilus, a cytoplasmic secretion ATPase, an inner-membrane platform, and a dodecameric outer-membrane complex (Harding et al., 2016; Korotkov et al., 2012). The secretion process is carried out in two steps. First, target proteins are translocated into the periplasm by either the general secretory (Sec) system or the twin-arginine translocation (Tat) system. These proteins are then secreted out of the cell via the T2SS. Deletion of genes encoding T2SS components, such as *gspD* or *gspE*, results in the loss of LipA secretion,

suggesting that LipA is a T2SS substrate. LipA is a lipase that breaks down long-chain fatty acids, and strains with mutations in *lipA*, *gspD*, or *gspE* cannot grow on long-chain fatty acids as their sole carbon source, exhibiting impaired *in vivo* growth in a neutropenic murine bacteraemia model (Johnson et al., 2016). Lipases (LipA, LipH, and LipAN) as well as the metallopeptidase CpaA have been recognized as substrates of the T2SS. Interestingly, two of these secreted proteins, LipA and CpaA, depend on specific chaperones for their secretion. These chaperones are encoded adjacent to their corresponding effectors, and their inactivation completely prevents the secretion of LipA and CpaA (Elhosseiny et al., 2016; Harding et al., 2016).

*Acinetobacter baumannii* also possesses a type VI secretion system (T6SS), first identified in *Vibrio cholerae* and *Pseudomonas aeruginosa*. The T6SS is used by many bacteria to inject effector proteins, providing a colonization advantage during eukaryotic host infections (Mougous et al., 2006) or to eliminate competing bacterial species (Basler et al., 2013). The T6SS in *Vibrio cholerae* results in DNA release and horizontal gene transfer, which may facilitate the spread of antibiotic resistance (Borgeaud et al., 2015). This secretion system is composed of several conserved structural proteins and accessory factors, and it features a contractile bacteriophage sheath-like structure that forms a needle or spike for penetrating target cells. Hcp is a structural protein that polymerizes into a tubular structure, which is then secreted from the cell. VgrGs are involved in attaching effector domains to the spike, while a proline-alanine-alanine-arginine (PAAR) repeat protein forms the sharp tip of the needle-like structure (Shneider et al., 2013; Zoued et al., 2014).

While the role of the T6SS in *A. baumannii* ATCC 17978 remains undetermined (Weber et al., 2013), studies on the *A. baumannii* strain M2 have shown that this strain produces a functional T6SS, which is involved in the killing of competing bacteria (Carruthers et al., 2013). Additionally, research has demonstrated that the T6SS is active in six pathogenic strains of *A. baumannii* (Ruiz et al., 2015). It appears that the T6SS plays a strain-specific role in *A. baumannii* virulence (Repizo et al., 2015).

The type V autotransporter system, Ata, has also been characterized in *A. baumannii*. Ata is a trimeric membrane protein that facilitates biofilm formation, adhesion to extracellular matrix components like collagen I, III, and

IV, and contributes to virulence in a murine model of systemic *Acinetobacter* infection. In a pneumonia infection model using both immunocompetent and immunocompromised mice, Ata was identified as a potential vaccine candidate against *A. baumannii* infections (Bentancor et al., 2012). Additionally, a type IV secretion system, located on a plasmid, has been bioinformatically identified in *A. baumannii* system present in the plasmid was bioinformatically identified in *A. baumannii* (Liu et al., 2014), although no experimental data has been presented to elucidate its function.

#### 1.1.7 Penicillin-Binding Protein 7/8 (PBP7/8) and $\beta$ -Lactamase PER-1

Penicillin-binding proteins (PBPs) are typically involved in resistance to  $\beta$ -lactam antibiotics, but PBP7/8, encoded by the *pbpG* gene, also functions as a virulence factor in *A. baumannii*. The *pbpG* mutant strain displays normal growth in Luria-Bertani medium but shows reduced growth in human serum and significantly decreased survival rates in rat soft-tissue infection and pneumonia models. Electron microscopy analysis of bacterial morphology indicated that the loss of PBP7/8 may disrupt the peptidoglycan structure, which could increase susceptibility to host defense mechanisms (Russo et al., 2009). Interestingly, the  $\beta$ -lactamase PER-1 has also been proposed as a virulence factor in *A. baumannii*. PER-1, an extended-spectrum  $\beta$ -lactamase (ESBL), has been linked to cell adhesion (Sechi et al., 2004). Many  $\beta$ -lactamases are believed to contribute to virulence in other pathogenic bacteria, such as *E. coli* (Dubois et al., 2009), *P. aeruginosa* (Fernández-Cuenca et al., 2011), and *K. pneumonia* (Sahly et al., 2008), though no unified mechanisms have been established (Rumbo et al., 2014).

#### 1.1.8 AbaI autoinducer synthase

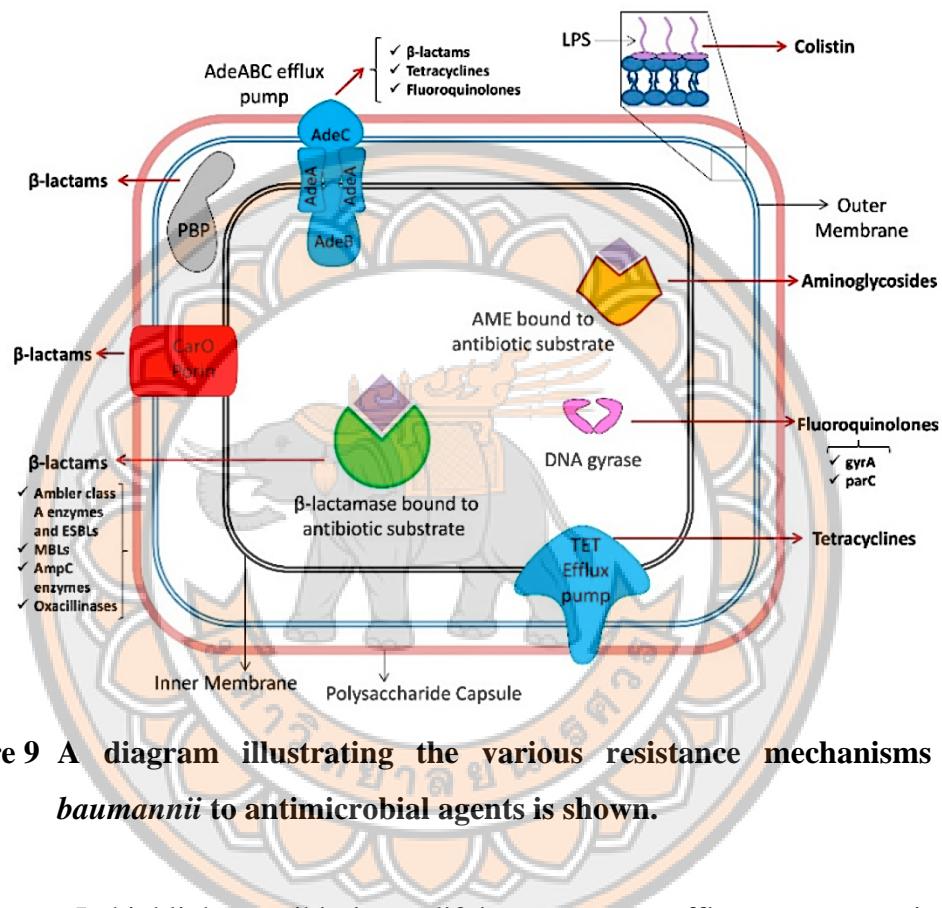
Quorum sensing in bacteria (QS) is a cell-to-cell signaling mechanism that utilizes molecules known as 'auto-inducers'. These molecules enable bacteria to detect their population density and regulate gene expression in response (Rutherford & Bassler, 2012). QS systems play a vital role in the regulation of motility, virulence factor expression, biofilm formation, conjugation, and interactions with eukaryotic host cells (Bhargava et al., 2010; Zarrilli, 2016). Only one QS system has been reported in *A. baumannii* currently, consisting of *abaI* and *abaR* genes (Niu et al., 2008). AbaI is the autoinducer synthase which catalyse the synthesis of acyl-homoserine lactone (AHL) signals. The most common AHLs (N-acyl homoserine

lactones) produced by *A. baumannii* are 3-hydroxy-C12-homoserine lactones. The *abaR* gene encodes the receptor protein that binds to these AHLs and functions as a transcriptional regulator. The previous study found that the mutation of *abaI* gene could greatly reduce biofilm formation (Tang et al., 2020). Other actions that interfere with quorum sensing also significantly reduced *A. baumannii* motility and biofilm formation. (Castillo-Juarez et al., 2017; Stacy et al., 2012).

### 1.1.9 Others

*A. baumannii* CipA is a novel plasminogen-binding protein that inhibits complement activation and facilitates serum resistance. When CipA binds plasminogen, it is converted to active plasmin, which degrades fibrinogen and complement component C3b, contributing to the organism's serum resistance. Consequently, the *cipA* mutant strain is more vulnerable to killing by human serum and demonstrates a reduced ability to penetrate endothelial monolayers (Koenigs et al., 2016). In a similar manner, the *A. baumannii* translation elongation factor Tuf also binds plasminogen, which is subsequently converted into active plasmin, leading to the degradation of fibrinogen and C3b (Koenigs et al., 2015). RecA, a protein involved in homologous recombination and the SOS response, has been recognized as a virulence factor in *A. baumannii* as well. The mutant of *recA* exhibits significantly reduced survival within macrophages and decreased lethality in a mouse model of systemic infection (Aranda et al., 2011). The surface antigen protein SurA1 plays an important role in the fitness and virulence of *A. baumannii*. The *surA1* mutant shows decreased serum resistance compared to the wild-type strain CCGGD201101. In the *G. mellonella* insect model, the *surA1* mutant has a lower survival rate and reduced dissemination (Liu et al., 2016).

A comprehensive growth analysis of 250,000 isolates of *A. baumannii* transposon mutants conducted within *Galleria mellonella* larvae identified 300 genes that are essential for the survival and growth of *A. baumannii* in this host. These genes were categorized into six groups: micronutrient uptake, cysteine metabolism and sulfur assimilation, aromatic hydrocarbon breakdown, cell envelope and membrane components, stress response pathways, antibiotic resistance mechanisms, and transcriptional control. Within this group, four transcriptional regulators essential for growth in *G. mellonella* larvae were designated as *gig* genes,


abbreviated from growth in *Galleria*. The deletion of gig A - D led to significant defects in growth and lethality in the larvae (Gebhardt et al., 2015). The study also identified stress proteins, such as UspA, as important factors for growth in *G. mellonella*. Furthermore, UspA was found to be critical for the pathogenesis of pneumonia and sepsis caused by *A. baumannii* (Elhosseiny et al., 2015). Among the 300 genes, several were involved in aromatic hydrocarbon metabolism (Gebhardt et al., 2015). One study emphasized the role of GacS, a transcription factor that regulates genes like *paaE*, which is involved in the phenylacetic acid catabolic pathway, in *A. baumannii* virulence. Experiments with a *paaE* deletion mutant confirmed the contribution of aromatic hydrocarbon metabolism to *A. baumannii* virulence (Cerdeira et al., 2014), although the precise molecular mechanism remains unclear. Interestingly, a recent study found that the accumulation of phenylacetate in *A. baumannii* induces a rapid neutrophil influx to the infection site, enhancing bacterial clearance (Bhuiyan et al., 2016). The authors suggested that phenylacetate acts as a neutrophil chemoattractant, promoting bacterial-guided neutrophil chemotaxis, which may uncover a novel molecular mechanism linking the phenylacetic acid catabolic pathway to *A. baumannii* virulence.

Biofilm formation contributes a critical role in immune evasion by *A. baumannii* (de Breij et al., 2010), and pili are essential for its adherence to abiotic surfaces, biofilm formation, and virulence (Tomaras et al., 2003; Tomaras et al., 2008). Notably, imipenem treatment of imipenem-resistant *A. baumannii* isolates induces the expression of key genes involved in type IV pili synthesis, suggesting that the overproduction of pili confers a biological advantage to *A. baumannii*. Other virulence-related proteins, including OmpR/EnvZ (Tipton & Rather, 2017), FhaBC (Pérez et al., 2017), and the resistance-nodulation-division-type membrane transporter AbeD (Srinivasan, 2015), have been identified, although their molecular mechanisms remain to be determined.

## 2. Antimicrobial resistance mechanism of *Acinetobacter baumannii*

*A. baumannii* has become one of the most highly resistant pathogens to the majority of antibiotics currently used in clinical practice (Lin & Lan, 2014). The bacterium employs various resistance mechanisms, including efflux pumps,  $\beta$ -lactamase production, enzymes that modify aminoglycosides, defects in membrane

permeability, and changes to target sites. As a result, the accumulation of these resistance mechanisms has progressively reduced the number of effective antibiotic classes available for treating *A. baumannii* infections. Figure 9 illustrates the mechanisms of antibiotic resistance in *A. baumannii* (Ayoub & Hammoudi, 2020), with further details provided below.



**Figure 9** A diagram illustrating the various resistance mechanisms of *A. baumannii* to antimicrobial agents is shown.

It highlights antibiotic-modifying enzymes, efflux pumps, porins, drug targets, and the specific antibiotics affected by each resistance mechanism. Abbreviations include AMEs (Aminoglycoside Modifying Enzymes), AmpC (Ambler Class C Cephalosporinases), ESBLs (Extended-Spectrum  $\beta$ -Lactamases), MBLs (Metallo- $\beta$ -Lactamases), LPS (Lipopolysaccharide), and PBP (Penicillin-Binding Protein).

**Source:** Ayoub Moubareck and Hammoudi Halat (2020)

## 2.1 Enzymatic Mechanisms

### $\beta$ -Lactamases

The primary resistance mechanism of *A. baumannii* to  $\beta$ -lactams is enzymatic hydrolysis by  $\beta$ -lactamases. These enzymes are categorized into four molecular classes ; A, B, C, and D according to sequence homology (Jeon et al., 2015). All four Ambler classes of  $\beta$ -lactamases are found in *A. baumannii*. Classes A, C, and D include enzymes with a serine-based active site, while class B consists of Zn-dependent metallo-enzymes (Ambler, 1980). In the functional classification by Bush, Jacoby, and Medeiros,  $\beta$ -lactamases are divided into three groups based on their substrate profile and inhibitor susceptibility. Group 1 includes class C cephalosporinases, group 2 contains  $\beta$ -lactamases with serine at the active site, and group 3 comprises metallo- $\beta$ -lactamases (MBLs), corresponding to class B in the molecular structural classification (Bush et al., 1995).

Class A  $\beta$ -lactamases are the most common cause of  $\beta$ -lactam resistance in *A. baumannii*. These enzymes can be inhibited by clavulanate and hydrolyze penicillins and cephalosporins more effectively than carbapenems, with exceptions like *Klebsiella pneumoniae* carbapenemase (KPC)-type enzymes (Jeon et al., 2015). Several class A  $\beta$ -lactamases have been identified in *A. baumannii*, including TEM, GES, CTX-M, SHV, SCO, PER, CARB, VEB, and KPC, with most being broad-spectrum  $\beta$ -lactamases (e.g., SHV-5, PER-1, PER-2, PER-7, TEM-92, CTX-M-15, VEB-1, GES-14, CARB-10, CTX-M-2) and some narrow-spectrum (e.g., TEM-1, SCO-1, CARB-4). Carbapenemases like GES-14 and KPC-2 have also been detected in *A. baumannii* (Bogaerts et al., 2010; Moubareck et al., 2009).

Class B  $\beta$ -lactamases, known as metallo- $\beta$ -lactamases (MBLs), require zinc or other heavy metals for catalysis (Jeon et al., 2015). These enzymes hydrolyze almost all  $\beta$ -lactam antibiotics, including carbapenems, except for monobactams such as aztreonam aztreonam (Jeon et al., 2015; Queenan & Bush, 2007). Various MBLs have been identified in *A. baumannii*.

Class C  $\beta$ -lactamases, also known as *Acinetobacter* derived cephalosporinases (ADCs), are encoded by the *ampC* gene and are intrinsic to all *A. baumannii* strains (Gordon & Wareham, 2010; Jeon et al., 2015). These enzymes confer resistance to cephemycins, penicillins, cephalosporins, and  $\beta$ -lactamase inhibitor

combinations, but are not inhibited by common  $\beta$ -lactamase inhibitors like clavulanic acid (Jeon et al., 2015).

Class D  $\beta$ -lactamases, or oxacillinases (OXA), are serine-dependent and typically hydrolyze oxacillin more effectively than benzylpenicillin (Jeon et al., 2015). Over 400 OXA enzymes have been characterized, and many variants exhibit carbapenemase activity. Carbapenem-hydrolyzing OXAs, such as OXA-23, OXA-24, OXA-51, and OXA-58, are prevalent in *A. baumannii*. The first carbapenem-hydrolyzing OXA enzyme, OXA-23, was identified in Scotland in 1985 (McLeod & Lyon, 1985) and has since spread globally. Insertion of the *ISAbal* element in the *blaOXA-23* promoter has been linked to the overexpression of *blaOXA-23*, *blaOXA-51*, and *blaOXA-58* in *A. baumannii* (Turton et al., 2006).

#### *Aminoglycoside-Modifying Enzymes*

Aminoglycoside-modifying enzymes (AMEs) are a major resistance mechanism in *A. baumannii* against aminoglycosides. These enzymes can be classified as acetyltransferases, adenyl transferases, and phosphotransferases, and are typically found on transposable elements, facilitating horizontal gene transfer between bacteria (Lin & Lan, 2014). Many multi-drug resistant (MDR) *A. baumannii* isolates produce a combination of these enzymes (Gallego & Towner, 2001; Nemec et al., 2004).

## 2.2 Non-Enzymatic Mechanisms

In addition to  $\beta$ -lactamases, *A. baumannii* resistance to  $\beta$ -lactams is also attributed to non-enzymatic mechanisms, such as alterations in outer membrane proteins and multidrug efflux pumps (Jeon et al., 2015).

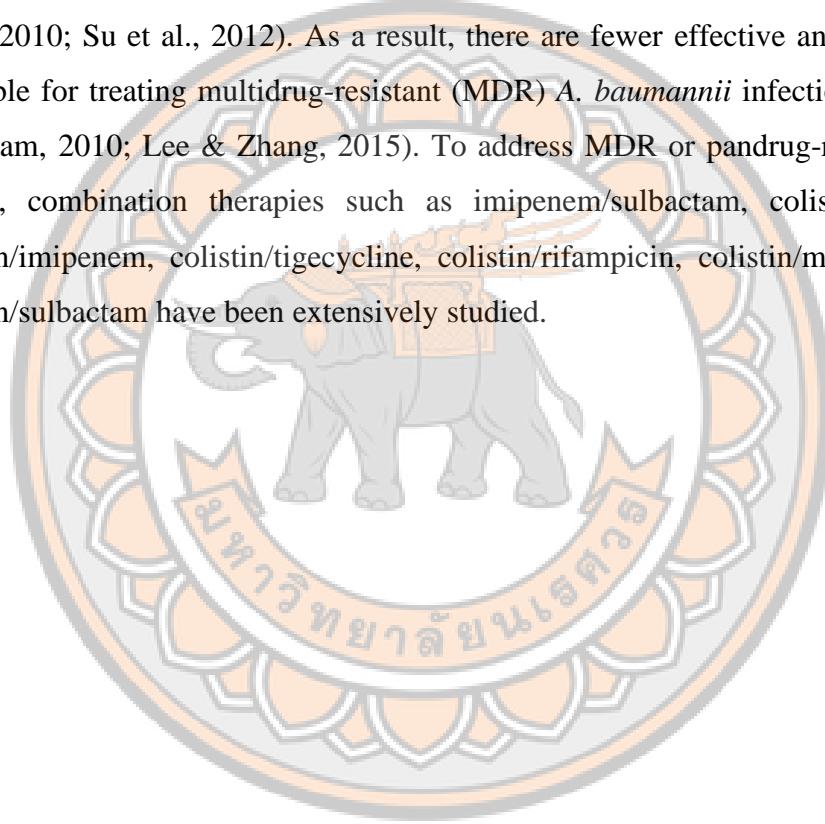
#### *Activation of the Efflux Pumps*

Efflux systems are critical in *A. baumannii* resistance to various antibiotics, especially when overexpressed (Chen et al., 2017). Efflux pump genes are often located on mobile genetic elements (MGEs) such as transposons, integrons, and plasmids (Butaye et al., 2003). Four types of efflux pumps have been identified in *A. baumannii*: RND superfamily, MATE (multidrug and toxic compound extrusion family), MFS (major facilitator superfamily), and SMR (small multidrug resistance transporters) (Lin & Lan, 2014). The RND system is the most prevalent and includes the AdeABC pump, which plays a key role in resistance to  $\beta$ -lactams, fluoroquinolones, erythromycin, chloramphenicol, trimethoprim, tetracyclines, aminoglycosides and

macrolides (Jeon et al., 2015). The AdeABC pump consists of three components: AdeA (inner membrane pump), AdeB (major fusion protein), and AdeC (outer membrane factor) (Coyne et al., 2011), all encoded by the adeRS operon. In wild-type *A. baumannii*, the AdeABC pump is usually cryptic but becomes active upon exposure to high concentrations of antibiotics, leading to a multidrug-resistant (MDR) phenotype (Yoon et al., 2015). Point mutations in the *adeR* and *adeS* genes or insertion of *ISAbal* upstream of the *adeABC* operon can trigger overexpression of this efflux pump (Marchand et al., 2004). However, other pathways for efflux pump overexpression remain to be explored (Chopra & Roberts, 2001).

#### *Decreased Membrane Permeability*

Changes in outer membrane porins significantly affect *A. baumannii* resistance and virulence by controlling the transport of molecules. The loss of porins such as CarO is associated with resistance to imipenem and meropenem (Benmahmod et al., 2019). Decreased membrane permeability, involving porins like Omp22–23 (Bou et al., 2000), Omp43 (Dupont et al., 2005), Omp37, 44, 47 (Quale et al., 2003), Omp33–36 (del Mar Tomás et al., 2005; Hood et al., 2010), and CarO (Catel-Ferreira et al., 2011; Jin et al., 2011; Mussi et al., 2005; Siroy et al., 2005). OmpA, another key porin, is associated with resistance to aztreonam, chloramphenicol, and nalidixic acid (Smani et al., 2014) and its role in virulence has been highlighted in recent studies (Espinal et al., 2019). OmpA and CarO also interact physically with OXA-23 carbapenems, contributing to antibiotic resistance (Wu et al., 2016), providing new insights into bacterial resistance mechanisms.


#### *Changing the Target Site*

This resistance mechanism is driven by random mutations. For instance, overexpression of modified penicillin-binding proteins (PBPs) with reduced affinity for imipenem results in *A. baumannii* developing resistance to this antibiotic (Gehrlein et al., 1991). Resistance to quinolones is linked to changes in GyrA (DNA gyrase subunit) and ParC (topoisomerase IV subunit) in various *A. baumannii* isolates (Vila et al., 1995). Ribosomal protection by the TetM protein, which shares 100% homology with *S. aureus* TetM, is related with tetracycline resistance (Ribera et al., 2003b). Dihydrofolate reductases (DHFR and FolA), responsible for trimethoprim resistance, have also been found in MDR *A. baumannii* isolates (Lin & Lan, 2014; Mak

et al., 2009; Taitt et al., 2014). Additionally, the 16S rRNA methylase ArmA, which confers aminoglycoside resistance, is present in many *A. baumannii* strains, often coexisting with OXA-type carbapenemases like OXA-23. Changes in or loss of lipopolysaccharides (LPS) can reduce the sensitivity of *A. baumannii* to colistin.

#### *Prospective treatment options*

Carbapenems are effective for treating *A. baumannii* (Cisneros & Rodríguez-Baño, 2002; Turner et al., 2003), however, carbapenem-resistant *A. baumannii* isolates have become more prevalent gradually (Kuo et al., 2012; Mendes et al., 2010; Su et al., 2012). As a result, there are fewer effective antibiotic options available for treating multidrug-resistant (MDR) *A. baumannii* infections (Gordon & Wareham, 2010; Lee & Zhang, 2015). To address MDR or pandrug-resistant (PDR) strains, combination therapies such as imipenem/sulbactam, colistin/teicoplanin, colistin/imipenem, colistin/tigecycline, colistin/rifampicin, colistin/meropenem, and colistin/sulbactam have been extensively studied.



## CHAPTER III

### RESEARCH PROCEDURES OF THE STUDY

#### Bacterial strains

Thirteen entomopathogenic bacterial strains, listed in Table 4, were selected from those collected at the Department of Microbiology and Parasitology, Faculty of Medical Sciences, Naresuan University. The selection was based on screening for antimicrobial and anti-mosquito activities. Identification of all isolates was performed using the *recA* gene sequence. In briefly, genomic DNA was extracted from bacterial pellets with the Genomic DNA Mini Kit (Blood/Cultured Cell) (Geneaid Biotech Ltd., Taiwan). PCR amplification was performed using EconoTaq® PLUS 2X Master Mixes (Lucigen, USA) on a thermal cycler (Applied Biosystems, Pittsburgh, PA, USA). An 890 bp fragment of the *recA* gene from bacteria was amplified using specific primers. The components of the PCR reagents and thermal cycling conditions for *recA* amplification are detailed in Table 5 and Table 6. Then, the PCR products were analysed on a 1.2% agarose gel via electrophoresis at 100 volts for 30 minutes. Gels were stained with ethidium bromide (EtBr), de-stained with distilled water, and visualized under UV light. The resulting *recA* sequences were edited using SeqManII (DNASTAR Inc., Wisconsin, USA) and compared with known sequences using the<sup>+</sup> BLASTN program (NCBI), with a 97% identity threshold for species-level matches.

**Table 4 A summary of bacterial strains was used in the study**

| No. | Bacteria<br>Code | Maximum<br>identity to | Year of<br>isolate | Place of isolate       |
|-----|------------------|------------------------|--------------------|------------------------|
|     |                  |                        |                    |                        |
| 1   | NN168.5          | <i>P. akhurstii</i>    | 2016               | Nam Nao National Park  |
| 2   | SBR15.4          | <i>P. australis</i>    | 2013               | Saraburi               |
| 3   | NN169.4          | <i>P. hainanensis</i>  | 2016               | Nam Nao National Park  |
| 4   | MH8.4            | <i>P. laumontii</i>    | 2013               | Mae Hong Son           |
| 5   | MW27.4           | <i>P. temperata</i>    | 2014               | Mae Wong National Park |

**Table 4 (Cont.)**

| No. | Bacteria<br>Code | Maximum<br>identity to | Year of<br>isolate | Place of isolate       |
|-----|------------------|------------------------|--------------------|------------------------|
| 6   | MH9.2            | <i>X. ehlersii</i>     | 2013               | Mae Hong Son           |
| 7   | KK26.2           | <i>X. indica</i>       | 2014               | Khon Kaen              |
| 8   | MW12.3           | <i>X. japonica</i>     | 2015               | Mae Wong National Park |
| 9   | MH16.1           | <i>X. miraniensis</i>  | 2013               | Mae Hong Son           |
| 10  | RT25.5           | <i>X. stockiae</i>     | 2018               | Phitsanulok            |
| 11  | SBR31.4          | <i>X. stockiae</i>     | 2013               | Saraburi               |
| 12  | SBRx11.1         | <i>X. stockiae</i>     | 2013               | Saraburi               |
| 13  | NN167.3          | <i>X. vietnamensis</i> | 2016               | Nam Nao National Park  |

**Table 5 Components of PCR reagent for amplification of symbiotic bacteria**

| Reagent (concentration)            | Volume (μL) |
|------------------------------------|-------------|
| EconoTaq PLUSMaster Mix (2X)       | 15          |
| Forward primer (1 μM)              | 1.5         |
| recA_F (5'-GCTATTGATGAAAATAAAC-3') |             |
| Reward primer (1 μM)               | 1.5         |
| recA_R (5'RATTTRTCWCCTRTAGCT-3')   |             |
| DNA (10 ng/ μl)                    | 1.5         |
| Distilled water                    | 10.5        |
| Amount                             | 30          |

**Table 6 Thermal cycling for amplification of partial *recA* fragment**

| Parameter        | Temperature | Time   |
|------------------|-------------|--------|
| Initial denature | 94°C        | 5 min  |
| Denature         | 94°C        | 1 min  |
| Annealing        | 45°C        | 45 sec |
| Extension        | 72°C        | 2 min  |
| Final extension  | 72°C        | 7 min  |

### Genome sequencing and analysis

#### 1. Whole genome sequencing

A single colony of the bacterial strain was inoculated into 5 mL of Luria-Bertani (Caisson LABS, USA). The culture was incubated at 28°C with agitation at 200 rpm for 24 hours. Genomic DNA extraction was performed using the DNeasy kit from Qiagen (Hilden, Germany). To begin, 1 ml of bacterial culture was transferred to a 1.5 ml microcentrifuge tube. The sample was then centrifuged at 7,500 rpm for 5 minutes to pellet the cells. Discard the supernatant and 180 µl Buffer ATL was added to the cell pellet. Then, 20 µl of proteinase K was added, the tube was mixed thoroughly by vortexing and incubate at 56°C for approximately 1 hour, occasionally vortexing or using a shaking water bath or rocking platform to ensure complete lysis of the cells. After incubation, briefly centrifuge the tube to collect any droplets from the lid, 4 µl of RNase A (100 mg/ml) was added to degrade RNA, mix by pulse-vortexing for 15 seconds, and incubated for 2 minutes at room temperature (15–25°C). The tube was centrifuged briefly to remove any drops from the lid, then 200 µl of Buffer AL was added and pulse-vortex for another 15 seconds to mix thoroughly. The tube was incubated at 70°C for 10 minutes, during which time any white precipitate formed should dissolve, as it does not interfere with the procedure. After incubation, the tube was briefly centrifuged again. 200 µl of 100% ethanol was added to the sample and mixed thoroughly by pulse-vortexing for 15 seconds. The tube was briefly centrifuged to remove droplets from the lid, ensuring the sample, Buffer AL, and ethanol form a homogeneous solution. Apply the mixture, including any precipitate, to the QIAamp Mini spin column (placed in a 2 ml collection tube) without wetting the rim. Close the

cap, centrifuge at 8,000 rpm for 1 minute, and transferred the spin column to a fresh 2 ml collection tube, and the collection tube was discarded with the filtrate. Next, open the spin column carefully, and 500  $\mu$ l of Buffer AW1 was added, avoiding wetting the rim, then centrifuged at 8,000 rpm for 1 minute. The spin column was transferred to another clean 2 ml collection tube, the previous tube was discarded, and 500  $\mu$ l of Buffer AW2 was added in to the tube. The tube was centrifuged at full speed (14,000 rpm) for 3 minutes to ensure thorough washing. To reduce any carryover of Buffer AW2, place the spin column in a new collection tube, and the tube was centrifuged at full speed for 1 minute. Transfer the spin column to a new clean 1.5 ml microcentrifuge tube and the collection tube with the filtrate was discarded. Elute the DNA by adding 200  $\mu$ l of Buffer AE or distilled water. Incubated at room temperature for 1 minute, then the tube was centrifuged at 8000 rpm for 1 minute to collect the purified DNA in the microcentrifuge tube. Extracted DNA will roughly be quantified using nanoDrop spectrophotometer (Thermo Scientific). Whole genome sequencing using Illumina MiSeq platform and Oxford Nanopore Technology (ONT) was then performed by Macrogen, Inc. Teheran-ro, Gangnam-gu, Seoul, Republic of Korea and the Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany, respectively.

## 2. Genome assembly and annotation

For short reads, quality trimming was performed using FastQC (Simon, 2010) and Sickle v1.33 (Joshi & Fass, 2011), discarding any trimmed reads shorter than 125 bp. Genome assembly was then performed using SPAdes v. 3.10.1 (Andrey et al., 2020) with the following settings: --cov-cutoff auto, --careful in paired-end mode with mate pairs, and k-mer lengths of 21, 33, 55, 77, 81, and 91. Genome annotation was performed using Prokka v1.12 (Torsten, 2014) to identify coding sequences, rRNAs, tRNAs, and other genomic features. The following parameters were used: --usegenus, --genus GENUS, --addgenes, --evaluate 0.0001, --rfam, --kingdom Bacteria, --gcode 11, --gram, and --mincontiglen 200. For long read, genome assembly and annotation were performed according to the Prokaryotic Genome Annotation Pipeline (PGAP) (Tatiana et al., 2016). The PGAP is a comprehensive tool used for annotating prokaryotic genomes. It begins with the input of a complete or near-complete genome assembly, accompanied by metadata such as organism name, BioSample, and BioProject information. PGAP performs quality control checks on the assembly, assessing genome

integrity, completeness, and potential contamination. Gene prediction is conducted using GeneMarkS-2+ (Alexandre et al., 2018) to identify protein-coding genes, along with tools to detect tRNA and rRNA genes. Predicted coding regions are analyzed to identify open reading frames (ORFs) and assign functions based on homology using a best-placed reference protein set version 2022-12-13.build6494. Functional domains within proteins are identified through domain databases such as Pfam and TIGRFAMs. The pipeline also detects pseudogenes and annotates non-coding RNAs (ncRNAs), including small RNAs important for regulation. Additionally, PGAP predicts operons and maps annotated genes to metabolic pathways. Protein features such as signal peptides and transmembrane domains are identified, and post-translational modifications may be annotated. The output includes a fully annotated genome in GenBank format, ready for submission to public databases. Manual curation was optional step for correcting errors or ambiguities.

### **3. Bioinformatics analysis**

#### **3.1 General Characteristics of the genome**

Reports summarized genome size, gene predictions, G+C content, and overall genome quality, providing by Prokka v1.12 (Torsten, 2014). The genome map was created using Proksee (Grant & Stothard, 2008), a system for genome visualization. To use Proksee, a complete genome sequence in GenBank format was provided.

#### **3.2 antiSMASH annotations and preliminary classification.**

The annotated genome sequences, in GenBank format, were analyzed for biosynthetic gene clusters (BGCs) using antiSMASH 6.1.1 (antibiotics and secondary metabolite analysis shell) (Kai et al., 2021). For this analysis, detection strictness was set to "relaxed," enabling options like Known ClusterBlast, ActiveSiteFinder, ClusterBlast, Cluster PFam analysis, and SubClusterBlast to ensure a comprehensive search of BGCs. Following the initial automated classification of BGC types by antiSMASH, each cluster underwent manual inspection and reclassification to ensure accurate categorization. A summary of the annotated BGCs was generated based on this careful validation. Moreover, to refine the analysis, BiG-SCAPE (Biosynthetic Gene Similarity Clustering and Prospecting Engine) and Core Analysis of Syntenic Orthologues to Prioritize Natural Product Gene Clusters (CORASON) tool set (Jorge et al., 2020) was employed using a cutoff value of 0.65.

BiG-SCAPE is a tool designed to assess the sequence similarity of biosynthetic gene clusters (BGCs) and organize them into gene cluster families (GCFs) through similarity-based clustering. By comparing domain architecture, conserved sequence motifs, and other structural features of BGCs, BiG-SCAPE determines the relatedness of clusters at a specified similarity cutoff. This enables it to group BGCs into GCFs likely to produce related or similar molecules. BiG-SCAPE calculates a pairwise similarity score between clusters based on genetic and domain composition, presenting these relationships in a network format. This network visualization reveals the diversity of BGCs across multiple genomes and can identify clusters that may represent unique or novel bioactive metabolites. BiG-SCAPE's network analysis helps researchers explore large datasets by providing a biosynthetic diversity map, highlighting clusters with distinct genetic compositions that may hint at new chemical structures or activities. The resulting GCFs were carefully reviewed and corrected as needed within an interactive network. Additionally, BiG-SCAPE integrates with Cytoscape 3.10 (Paul et al., 2003) for visualization, facilitating the interpretation of complex networks of related clusters.

### 3.3 Pangenome analysis.

For comparative analysis of all genomes, a pangenome analysis was conducted primarily following the anvi'o 7.1 (Eren et al., 2015) pangenome workflow. To streamline genome analysis, the header lines of FASTA files were simplified using the anvi-script-reformat-fasta command. The FASTA files were then converted into anvi'o contigs databases via anvi-gen-contigs-database and annotated with HMM model hits using anvi-run-hmms. For functional annotation, anvi-run-ncbi-cogs was employed to assign gene functions based on NCBI's Clusters of Orthologous Groups (COGs). To map gene locations, tables with gene caller IDs and nucleotide start/stop positions were exported using anvi-export-table. Gene caller IDs were linked with biosynthetic gene clusters (BGCs) based on their nucleotide boundaries, identifying genes within BGCs as natural product biosynthetic genes. These genes were subsequently classified and assigned potential compound names corresponding to their BGC origins. This information was re-integrated into the contigs databases using anvi-import-functions.

To manage sequence data and annotations, a genome storage file was created using anvi-gen-genomes-storage, incorporating DNA and amino acid sequences alongside functional annotations for each gene. Pangenome analysis was then performed with anvi-pan-genome, utilizing the genome storage database, the --use-ncbi-blast flag, and the parameter --mcl-inflation 8. The results were visualized using anvi-display-pan, which presented pangenome organization as a dendrogram in the interface, highlighting gene presence/absence patterns.

Gene clusters were categorized into the following bins:

**Core Gene Bin:** Gene homology groups present in all genomes.

**Singleton Bin:** Gene homology groups occurring only once across genomes.

**Accessory Bin:** Gene clusters that were neither core nor singleton.

### **Detection of secondary metabolites by LC/MSMS**

*X. stockiae* strain RT25.5 was cultured in LB media at 28°C for 3 days. The culture supernatant was subjected to a mass spectrometry experiment using a timsTOF fleX MALDI-2 instrument utilized an Acquity UPLC BEH C18 column (2.1 x 50 mm) with solvent A (H<sub>2</sub>O + 0.1% formic acid) and solvent B (acetonitrile + 0.1% formic acid), employing a gradient method from 5 to 95% B over 16 minutes. Operating in positive ionization mode with VIP-HESI source, the instrument employed specific voltage settings, gas flows, and temperatures. Isolation and fragmentation of ions were achieved by varying collision energy across a range of m/z values and charge states. Data processing involved centroid mass detection for both MS1 and MS2 spectra, chromatogram construction, local minimum resolution, isotope filtering, blank subtraction, alignment of features, and gap filling. Finally, feature-based molecular networking was performed with specified mass tolerances and minimum matching criteria. Molecular network was annotated using SIRIUS software (Dürkop, 2019), cross-referencing with in-house compound lists and online databases such as GNPS (Wang, 2016) for identification of compound families.

## easyPACId (Easy Promoter Activation and Compound Identification) in *X. stockiae* Strain RT25.5

### 1. Construction of *hfq* deletion mutants

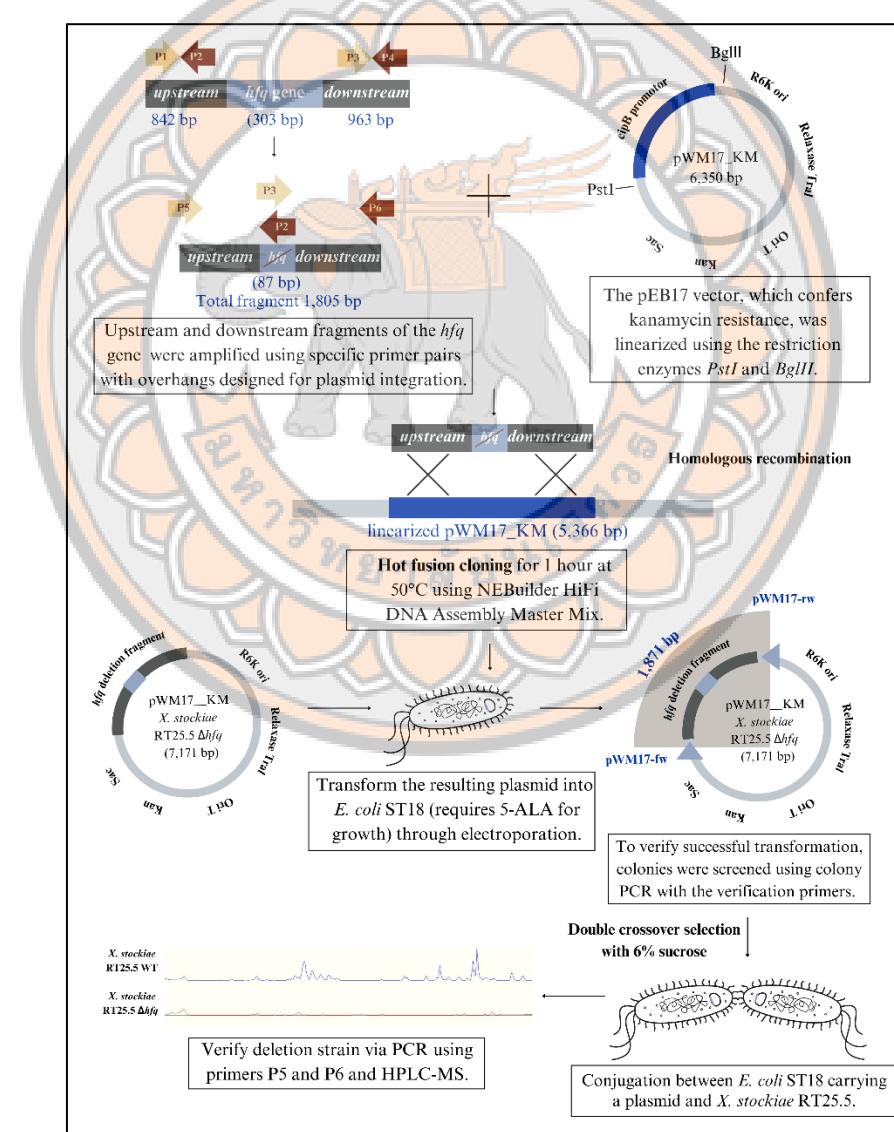
Deletion of the *hfq* gene, which encodes the RNA chaperone Hfq, results in a mutant deficient in natural product (NP) production (Nicholas et al., 2017). A scheme of deletion via homologous recombination in *X. stockiae* strain RT25.5 depicted in Figure 10. Approximately 1,000-bp upstream and downstream fragments of the *hfq* gene from *X. stockiae* strain RT25.5 were amplified using specific primer pairs. Details of the PCR components and cycler conditions are provided in Table 7, 8, and 9, respectively. These fragments were fused through complementary overhangs introduced by the primers and subsequently cloned into the pEB17 vector (kanamycin-resistant), which had been linearized using *PstI* and *BglIII*. The restriction digestion mixture (total 150  $\mu$ l) consisted of 10  $\mu$ l plasmid DNA, 15  $\mu$ l buffer, 3  $\mu$ l *BglIII*, 3  $\mu$ l *PstI*, and 119  $\mu$ l distilled water. The insert fragments and vector were combined at varying molar ratios (1:1, 1:3, and 3:1), depending on DNA concentrations. The assembly was performed using NEBuilder HiFi DNA Assembly Master Mix via a hot fusion protocol at 50°C for 1 hour in a thermal cycler. The resulting ligated constructs were stored at -20°C. The resulting plasmid was transformed into *E. coli* strain ST18, a *hemA*-deleted strain that requires 5-aminolevulinic acid hydrochloride (5-ALA) for growth, was used for growth using electroporation. To perform the transformation, 50  $\mu$ l of electrocompetent cells were pipetted into the bottom of a pre-chilled 1 mm electroporation cuvette, followed by the addition of 1  $\mu$ l of the ligated construct. Electroporation was conducted with the following settings: 1.8 kV, 200  $\Omega$ , and 25  $\mu$ F. Immediately after pulsing, 950  $\mu$ l of pre-warmed LB medium supplemented with 5-ALA (50  $\mu$ g/mL) was added to the cuvette. The cells were then transferred into a 1.5 mL reaction tube and incubated at 37°C with shaking at 800 rpm for 1 hour. Following incubation, the transformed cells were plated on LB agar containing 5-ALA and the selective antibiotic. The plates were incubated overnight at 37 °C, where colonies typically appeared the next day. To verify successful transformation, colonies were screened using colony PCR with verification primers pEB17-fw (GCTATGCCATAGCATTATCCATAAG) and pEB17-rv (ACATGTGGAATT GTGAGCGG). Amplification of the ligated fragment resulted in a 234 bp product for

an “empty” vector. Finally, a master plate was prepared by streaking each respective clone onto LB agar containing the corresponding selective antibiotic and 5-ALA. This plate was stored for future applications. The *E. coli* *pEB17-hfq* strain was subsequently conjugated with *X. stockiae* strain RT25.5. Both strains were grown to an OD600 of 0.6–0.7, washed, and mixed in defined ratios. The mixture was then spotted onto LB agar plates and incubated at 37°C for 3 hours, followed by overnight incubation at 30°C. After incubation, conjugants were harvested, plated on LB agar supplemented with kanamycin and incubated at 28°C for 2–3 days. Single colonies were selected for further analysis, including the generation of double-crossover mutants through counterselection on LB plates containing 6% sucrose. Successful *hfq* deletion mutants were confirmed using PCR and HPLC-MS analysis. PCR verification utilized primers listed in Table 7. Components of PCR reagent for DNA and colony amplification of upstream and downstream fragments are shown in Table 8.

**Table 7** A list of primers for constructing *hfq* deletion mutants, containing overlapping sequences (in bold) compatible with the cloning vector pEB17

| Primers | Primer Sequences                                               | Purpose                 |
|---------|----------------------------------------------------------------|-------------------------|
| P1hfq_F | <b>GATCCTCTAGAGTCGACCTGCAGCGTCG</b><br>CGATCGCTGGAA            | <i>hfq</i> upstream     |
| P2hfq_R | CAGCGATATCATTTCCTGTTGTGCTGCCA<br>GGAATGGATCTTGCAAAGATTG        | amplification           |
| P3hfq_F | GCAGCACAAACAGGAAAATGATATCG                                     | <i>hfq</i> downstream   |
| P4hfq_R | GTGGAATTCCCGGGAGAGCTCAGATCT<br><b>GTGACGAATGAAACCAACGGTGTC</b> | amplification           |
| P3hfq_F | GGCAATCTTGCAAGATCCATTCTGGCAG<br>CACAACAGGAAAATGATATCG          | Fusion                  |
| P2hfq_R | CAGCGATATCATTTCCTGTTGTGCTGCCA<br>GGAATGGATCTTGCAAAGATTG        | of <i>hfq</i> fragments |
| P5hfq_F | GATTCTGCACTGGTTATCGTG                                          | Verification of         |
| P6hfq_R | CTTCCAGAACACTGTCCACTGC                                         | <i>hfq</i> deletion     |

**Table 8 Components of PCR reagent for amplification of upstream and downstream fragments**


| Reagent (concentration)     | Volume (μL) |
|-----------------------------|-------------|
| Q5 buffer                   | 10          |
| dNTPs (25 mM)               | 1           |
| Primer forward (10 μmol/μL) | 1           |
| Primer reverse (10 μmol/μL) | 1           |
| Q5 hot start polymerase     | 1           |
| DNA (10 ng/ μl)             | 1 or 0.5    |
| Distilled water             | 36          |
| Amount                      | 50          |

Components of reagent for colony PCR

| Reagent (concentration)      | Volume (μL) |
|------------------------------|-------------|
| Bio mix red                  | 7.5         |
| Primer forward (100 μmol/μL) | 0.15        |
| Primer reverse (100 μmol/μL) | 0.15        |
| Q5 hot start polymerase      | 1           |
| Cell material or DNA         | 1 or 0.5    |
| Distilled water              | 7.2         |
| Amount                       | 15          |

**Table 9 Thermal cycling for amplification of partial *hfq* fragment and colony PCR**

| Parameter        | Temperature | Time                                  |
|------------------|-------------|---------------------------------------|
| Initial denature | 94°C        | 5 min                                 |
| Denature         | 94°C        | 1 min                                 |
| Annealing        | 55/60 °C    | 45 sec                                |
| Extension        | 72°C        | 2 min                                 |
|                  |             | 30 - 35 cycles<br>(or 1000 bp/60 sec) |
| Final extension  | 72°C        | 7 min                                 |

**Figure 10 A scheme of deletion via homologous recombination in *X. stockiae* strain RT25.5.**

## 2. Induced production, isolation, identification, and testing of natural products from the strain RT25.5

After generating a  $\Delta hfq$  mutant from the strain of interest, the genome was first analyzed for potentially interesting natural product biosynthetic gene clusters (BGCs) using antiSMASH 6.0 (Blin et al., 2021). The Cluster Expression Plasmid (pCEP), a kanamycin-resistant, low-copy vector, was then used to create a promoter insertion mutant. A 500–800 bp region upstream of the target gene was amplified using the primer pair shown in Table 10. The amplified fragment was inserted into the prepared pCEP backbone via hot fusion using primers pCEP\_fw and pCEP\_rv. The constructed plasmid was transformed into *E. coli* ST18, and the clones were confirmed by PCR using primers VpCEP-fw and VpCEP-rv. The recipient strain, *X. stockiae*  $\Delta hfq$ , was mated with *E. coli* ST18 (the donor strain carrying the plasmid). Both strains were grown in LB medium to an optical density of 1 at 600 nm (OD600), then washed once with fresh LB medium. The donor and recipient strains were mixed on LB agar plates at 1:3 and 3:1 ratio and incubated at 37°C for 3 hours, followed by 21 hours at 28°C. After incubation, the bacterial layer was collected using an inoculating loop, resuspended in 2 ml of fresh LB medium, and a 200- $\mu$ l aliquot was plated on LB agar with kanamycin. The plates were incubated at 28°C for 2 days. Individual insertion clones were cultured and analyzed by HPLC-MS. The genotypes of all mutants were confirmed using the VpCEP-fw primer and a corresponding verification primer binding downstream of the homologous region in the genome. A list and characteristics of plasmid used in this study was shown in Table 11.

**Table 10 A list of primers for promoter activation of the interest BGCs, containing overlapping sequences (in bold) compatible with the cloning vector pCEP**

| List                         | Primers  | Primer Sequences                                                |
|------------------------------|----------|-----------------------------------------------------------------|
| Backbone                     | pCEP_fw  | ATGTGCATGCTCGAGCTC                                              |
| amplification of<br>pCEP_kan | pCEP_rv  | ATGCTAGCCTCCTGTTAGC                                             |
| PAX<br>(with glu)            | p1819-fw | <b>TTTGGGCTAACAGGAGGCTAGCATATGACTCTAATT</b><br>GTTTATCTTATCGCC  |
|                              | p1819-rv | <b>CCGTTAACATTTAAATCTGCAGGATATATCTTAT</b><br>CTACCTGCTCACG      |
|                              | Vp1819   | CTGCCATCGATCAGTTGCTG                                            |
| PAX<br>(with glu)            | p1818-fw | <b>TTTGGGCTAACAGGAGGCTAGCATATGAATCATCCT</b><br>GAAACATTGAAACCAT |
|                              | p1818-rv | <b>CCGTTAACATTTAAATCTGCAGGCCAGGTAACAT</b><br>AATCCTGATAACT      |
|                              | Vp1818   | CGGGTAATTGTAATTGGTTAACTC                                        |
| Unknown 2984                 | p2984-fw | <b>TTTGGGCTAACAGGAGGCTAGCATATGATACAAGA</b><br>GAATCCTTTTCAT     |
|                              | p2984-rv | <b>CCGTTAACATTTAAATCTGCAGGATAAGTTGGTA</b><br>TTTCGGTAATG        |
|                              | Vp 2984  | GGAATGGATCTGCAAAGATTG                                           |
| Unknown 2981                 | p2981-fw | <b>TTTGGGCTAACAGGAGGCTAGCATATGCGTAAACA</b><br>CAATCAAATG        |
|                              | p2981-rv | <b>CCGTTAACATTTAAATCTGCAGCGGACTGATCAGG</b><br>TCAGTTTC          |
|                              | Vp 2981  | AGAATATTGTTCTGACTGAGCAA                                         |
| Unknown 1972                 | p1972-fw | <b>TTTGGGCTAACAGGAGGCTAGCATATGATGAGAAG</b><br>CGATAATATGC       |
|                              | p1972-rv | <b>CCGTTAACATTTAAATCTGCAGATCAATAGTCAAG</b><br>GATGGTCCTTG       |
|                              | Vp 1972  | ACCAGTACGGCTTCTACTAT                                            |
|                              | VpCEP-rv | ACATGTGGAATTGTGAGCGG                                            |

**Table 10 (Cont.)**

| List                | Primers  | Primer Sequences                                         |
|---------------------|----------|----------------------------------------------------------|
| Unknown 1974        | p1974-fw | <b>TTTGGGCTAACAGGAGGCTAGCATATGAGAAAAGC</b><br>GGCAGATCAT |
|                     | p1974-rv | CCGTTAACATTAAATCTGCAGCTGTCGTAAGATA<br>TTTCGGAATTTC       |
|                     | Vp1974   | AGTGTATTATGATCAGTGCCTGT                                  |
| Verification primer | VpCEP-fw | GCTATGCCATAGCATTTTATCCATAAG                              |

**Table 11 A list and characteristics of plasmid used in this study**

| Plasmid       | Genotype/Description                                                                                                | Reference           |
|---------------|---------------------------------------------------------------------------------------------------------------------|---------------------|
| pCEP_kan      | R6K $\gamma$ ori, oriT, araC, araBAD promoter, Km <sup>r</sup>                                                      | (Bode et al., 2015) |
| pEB17         | pDS132 derivative with an additional BglII recognition site, R6K $\gamma$ ori, oriT, cipB promoter, Km <sup>r</sup> | (Bode et al., 2017) |
| pCEP hfq      | pCEP <i>Xstockiae_RT25.5</i> , araBAD promoter, Km <sup>r</sup>                                                     | This study          |
| pEB17 plu1818 | pEB17 <i>Xstockiae_RT25.5</i> , cipB promoter, Km <sup>r</sup>                                                      | This study          |
| pEB17 plu1819 | pEB17 <i>Xstockiae_RT25.5</i> , cipB promoter, Km <sup>r</sup>                                                      | This study          |
| pEB17 plu2894 | pEB17 <i>Xstockiae_RT25.5</i> , cipB promoter, Km <sup>r</sup>                                                      | This study          |
| pEB17 plu2891 | pEB17 <i>Xstockiae_RT25.5</i> , cipB promoter, Km <sup>r</sup>                                                      | This study          |
| pEB17 plu1972 | pEB17 <i>Xstockiae_RT25.5</i> , cipB promoter, Km <sup>r</sup>                                                      | This study          |
| pEB17 plu1974 | pEB17 <i>Xstockiae_RT25.5</i> , cipB promoter, Km <sup>r</sup>                                                      | This study          |
| pEB17 plu1819 | pEB17 <i>Xstockiae_RT25.5</i> , cipB promoter, Km <sup>r</sup>                                                      | This study          |

### Studying the antimicrobial activity of the bacterial extract

#### 1. Preparation of crude compound extraction

Single colony of entomopathogenic bacteria on NBTA was inoculated into 500 ml tryptone soya broth (TSB) and incubated at room temperature with shaking at 150 rpm for 48 h. The culture was successively extracted with 1 L of ethyl acetate. The mixture was allowed to stand at room temperature at least 24 h before concentrated with

a rotary evaporator (Büchi, Konstanz, Germany) at 40°C under reduced pressure. Dried extracts were kept in airtight containers, labelled, and stored in a -20 °C until required for use.

## 2. Antimicrobial activities

The antibacterial activities of the bacterial extract with ethyl acetate were assessed using a disk diffusion assay were performed in triplicate against a panel of clinically relevant gram-negative and gram-positive pathogens (Table 12) including *Acinetobacter baumannii* (four clinical strains), *Escherichia coli* (two clinical strains), *E. coli* ATCC35218, *Klebsiella pneumoniae* (two clinical strains), *K. pneumoniae* ATCC700603, *Enterococcus faecalis* ATCC51299, *Staphylococcus aureus* (two clinical strains), and *S. aureus* ATCC20475. The experimental procedure involved preparing agar plates by applying pathogenic cells at a concentration of  $5 \times 10^5$  CFU/mL on Muller Hinton agar (MHA) plates obtained from Oxoid Ltd., England. Standardized antibiotics corresponding to the test organisms were subsequently added to the agar plates. Sterile discs with the crude extract of the collected strains were then placed onto the agar surface. The plates were incubated at a temperature of 37°C for a duration of 24 hours. Afterwards the presence of clear zones surrounding the discs which indicated inhibition of bacterial growth were measured.

**Table 12 List of antibiotic-resistant bacteria and corresponding standard antibiotics used as positive controls**

| Bacteria                                | Type                                 | Antibiotic Disc               |
|-----------------------------------------|--------------------------------------|-------------------------------|
| <i>Acinetobacter baumannii</i> AB320    | XDR <sup>1</sup>                     | Tigecycline                   |
| <i>Acinetobacter baumannii</i> AB321    | MDR <sup>2</sup>                     | Tigecycline                   |
| <i>Acinetobacter baumannii</i> AB322    | MDR <sup>2</sup>                     | Tigecycline                   |
| <i>Acinetobacter baumannii</i> AB324    | XDR <sup>1</sup>                     | Tigecycline                   |
| <i>Escherichia coli</i> ATCC 35218      | β-lactam                             | Ceftazidime                   |
| <i>Escherichia coli</i> PB1             | ESBL <sup>3</sup> + MDR <sup>2</sup> | Amoxicillin                   |
| <i>Escherichia coli</i> PB231           | ESBL <sup>3</sup> + CRE <sup>4</sup> | Amoxicillin                   |
| <i>Escherichia coli</i> PB30            | MDR <sup>2</sup>                     | Ceftazidime                   |
| <i>Klebsiella pneumonia</i> ATCC 700603 | ESBL <sup>3</sup>                    | Ceftazidime / clavulanic acid |
| <i>Klebsiella pneumonia</i> PB5         | ESBL <sup>3</sup> + MDR <sup>3</sup> | Ceftazidime / clavulanic acid |

**Table 12 (Cont.)**

| Bacteria                                | Type                                 | Antibiotic Disc               |
|-----------------------------------------|--------------------------------------|-------------------------------|
| <i>Klebsiella pneumonia</i> PB21        | ESBL <sup>3</sup> + CDR <sup>5</sup> | Ceftazidime / clavulanic acid |
| <i>Staphylococcus aureus</i> ATCC 20475 | MRSA <sup>6</sup>                    | Vancomycin                    |
| <i>Staphylococcus aureus</i> PB36       | MRSA <sup>6</sup>                    | Ampicillin                    |
| <i>Staphylococcus aureus</i> PB57       | MRSA <sup>6</sup>                    | Ampicillin                    |
| <i>Enterococcus faecalis</i> ATCC 51299 | MDR <sup>2</sup>                     | Ampicillin                    |

<sup>1</sup>XDR (Extensive Drug Resistance), <sup>2</sup>MDR (multidrug resistance), <sup>3</sup>ESBL (Extended-spectrum beta-lactamases), <sup>4</sup>CRE (Carbapenam Resistant Enterobacteriaceae), <sup>5</sup>CDR, <sup>6</sup>MRSA (Methicillin-resistant *Staphylococcus aureus*). 1. *Acinetobacter baumannii* (Resistant to multiple antibiotics): Amikacin, Colistin 2. *Escherichia coli* (Resistant to specific antibiotics): Ampicillin, Ciprofloxacin 3. *Klebsiella pneumoniae* (Resistant to multiple antibiotics): Meropenem, Gentamicin 4. *Enterococcus faecalis* (Resistant to specific antibiotics): Vancomycin, Linezolid 5. *Pseudomonas aeruginosa* (Resistant to multiple antibiotics): Tobramycin, Piperacillin/Tazobactam 6. *Staphylococcus aureus* (Methicillin-resistant): Methicillin, Vancomycin.

### 3. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentrations (MBC)

The zone of inhibition against the most critical drug-resistant bacteria was determined and selected for further in-depth tests. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined in triplicate using the microdilution method. The test medium used for the determination of MICs is Mueller Hinton Broth (cation-adjusted) (MHB ca+). Additionally, a time-kill assay was performed to evaluate the effect of the crude extract on bacterial growth. The crude extraction was diluted with DMSO to make a final concentration of 500 mg/ml. This stock was then serially dilute to obtain concentrations starting from 125 to 2 mg/ml. Then, 25 ul of 24 h cultured of drug resistance bacteria will be added to each well and incubated at 37°C for 24 h. The MICs were determined by visual examination. The MIC was defined as the lowest concentration of crude extraction that prevented visible growth of the test organisms. In addition, the minimum

bactericidal concentrations (MBC) were evaluated. 10  $\mu$ l from each well of 96-well microtiter plates from MIC was sub-cultured onto the MHA plates. The plates were incubated at 37°C for 24 h. The lowest concentration of each extract without growth of bacteria were considered.

#### 4. Time kill assay

Concentrations equal to MIC of the extracts were prepared in MHB ca+. An inoculum size of  $10^5$  CFU/mL of antibiotic resistance bacteria was added. The mixtures were incubated at 37°C. Aliquots of 1. 0 mL of the mixture was taken at time intervals of 0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and 24 h and dropped aseptically on MHA. All plates were incubated at 37 °C for 24 hours. A control test was conducted using organisms without the extracts or reference antibiotic. The colony-forming units (CFU) of the organisms were counted. The experiment was performed in triplicate (three independent trials), and a graph plotting log CFU/mL against time was generated. The data was analyzed statistically using a one-way analysis of variance (ANOVA) followed by multiple comparisons with Bonferroni correction (STATA version 13). A P-value of less than 0.05 was considered statistically significant.

#### 5. Transmission electron microscopy

Transmission electron microscopy (TEM) was employed to observe the ultrastructural morphology of bacteria after exposure to the extracts. TEM sample preparation was conducted following an 18-hour preincubation at 37°C. *Acinetobacter baumannii* AB320 was adjusted to a final concentration of approximately  $5 \times 10^5$  CFU/ml using spectrophotometric measurements. The bacteria were cultured in two conditions: in the absence of the extract (control) and in the presence of  $\frac{1}{2}$  MIC of the extract for 4 hours. Afterward, the cultures were harvested by centrifugation at 6000 rpm for 15 minutes at 4°C, and the pellets were fixed in 2.5% glutaraldehyde (Electron Microscope Sciences; EMS) in 0.1 M phosphate buffer (pH 7.2) for 12 hours. The samples were carefully washed twice with 0.1 M phosphate buffer. Post-fixation was carried out with 1% osmium tetroxide (EMS) in 0.1 M phosphate buffer (pH 7.2) for 2 hours at room temperature. Following further washing, the samples were dehydrated using graded ethanol (20%, 40%, 60%, 80%, and 100%) for 15 minutes at each concentration. Infiltration and embedding were then be done using Spurr's resin (EMS). The samples were sectioned with an ultramicrotome using a diamond knife and

mounted onto copper grids. Finally, the ultrathin sections were counterstained with 2% (w/v) uranyl acetate for 3 minutes and 0.25% (w/v) lead citrate for 2 minutes. After staining, the specimens were examined using a transmission electron microscope (JEOL, Tokyo, Japan) at 80 kV.

### Proteomic analysis

*Acinetobacter baylyi* was used as a model organism instead of *A. baumannii* strain AB320 due to biosafety limitations, as *A. baylyi* is a non-pathogenic strain. Quadruplicate cultures of *A. baylyi* were grown in LB medium containing the crude extract of *X. stockiae* strain RT25.5 at a concentration of 1× MIC. Bacterial cells were cultured until an optical density (OD<sub>600</sub>) of 1 was reached, which took approximately 4 hours. Subsequently, 2 mL aliquots of the culture were transferred to reaction tubes and washed twice with PBS buffer. The cell pellets were resuspended in 300 µL of lysis buffer containing 100 mM ammonium bicarbonate, 0.5% sodium lauroyl sarcosinate (SLS), and 5 mM Tris(2-carboxyethyl)phosphine (TCEP). Cells were lysed by incubating for 5 minutes at 95°C followed by 10 seconds of ultrasonication (Vial Tweeter, Hielscher). After a 30-minute incubation at 90°C, the lysate was alkylated with 10 mM iodoacetamide for 30 minutes at 25°C. To clarify the lysate, the samples were centrifuged for 10 minutes at 15,000 rpm, and the supernatant was transferred to a new tube. Proteins in the lysate were digested overnight with 1 mg of trypsin (Promega) at 30°C. To remove the SLS, trifluoroacetic acid (TFA) was added to a final concentration of 1.5%, and the samples were left to stand at room temperature for 10 minutes. The samples were then centrifuged for 10 minutes at 10,000 rpm, and the supernatant was used for C18 peptide purification.

Peptide purification was carried out using C18 microspin columns according to the manufacturer's instructions (Harvard Apparatus). The eluted peptide solutions were dried and resuspended in 0.1% TFA. Peptide concentrations were determined using a colorimetric peptide assay (Quantitative Colorimetric Peptide Assay, Thermo Fischer Scientific). Peptide analysis was performed using liquid chromatography-mass spectrometry on a Q-Exactive Plus mass spectrometer, coupled with an Ultimate 3000 RSLC nano system, equipped with a Prowflow upgrade and nanospray flex ion source (Thermo Scientific). Peptide separation was achieved on a reverse-phase HPLC column

(75 mm x 42 cm), packed in-house with C18 resin (2.4  $\mu$ m, Dr. Maisch GmbH, Germany). The separation gradient used was as follows: 98% solvent A (0.15% formic acid) and 2% solvent B (99.85% acetonitrile, 0.15% formic acid) to 25% solvent B over 105 minutes, and to 35% solvent B over the next 35 minutes at a flow rate of 300 nL/min.

Data acquisition was set to acquire one high-resolution MS scan at a resolution of 70,000 full width at half maximum (at m/z 200), followed by MS/MS scans of the 10 most intense ions. To optimize MS/MS efficiency, the charge state screening mode was enabled to exclude unassigned and singly charged ions. The dynamic exclusion duration was set to 30 seconds. The ion accumulation time was set to 50 ms for MS scans and 50 ms at 17,500 resolutions for MS/MS scans. The automatic gain control was set to  $3 \times 10^6$  for MS survey scans and  $1 \times 10^5$  for MS/MS scans. Label-free quantification (LFQ) was performed using Progenesis QIP (Waters), and MS/MS searches of aligned peptide features were conducted using MASCOT (v2.5, Matrix Science). The following search parameters were applied: a full tryptic search with two missed cleavage sites, 10 ppm MS1 tolerance, and 0.02 Da fragment ion tolerance. Carbamidomethylation (C) was set as a fixed modification, and oxidation (M) and deamidation (N,Q) were set as variable modifications. The Progenesis output data was further analyzed with SafeQuant, and volcano plots were generated using RStudio. To create a volcano plot in R for differential gene expression visualization, start by loading the required libraries(`tidyverse`, `RColorBrewer`, and `ggrepel` for annotations). Set the working directory and import the dataset containing gene symbols, p-values, p-adjusted values, and log2 fold changes. Begin with a basic volcano plot using `ggplot2`, plotting log2 fold change on the x-axis and -log10 p-values on the y-axis. Then, add threshold lines to distinguish upregulated ( $\log_{2}FC > 0.6$ ), downregulated ( $\log_{2}FC < -0.6$ ), and statistically significant genes ( $p < 0.05$ ). Customize the plot further to enhance its readability and visual appeal.

## CHAPTER IV

### RESULTS

#### Genome sequencing and analysis

After conducting *de novo* assembly and annotation for all 13 bacterial draft genomes, a comparative analysis of their genetic and biosynthetic diversity was undertaken to prioritize these entomopathogenic bacteria for novel chemotype discovery, thereby reducing redundant investigations. The analysis commenced with general characterization, as summarized in Table 13, which detailed genome size, gene predictions, G+C content, and overall genome quality, ensuring a robust annotation process. Subsequently, a pan and core genome analysis were conducted to examine the complete gene set, including core genes (common to all strains), accessory genes (shared by specific groups), and singleton genes (unique to individual strains). This analysis identified a total of 51,883 genes distributed across 13 genomes, organized into 10,821 gene clusters. These clusters comprise 1,763 core genes, 5,033 accessory genes, and 4,024 singleton genes (Figure 11), providing critical insights into the genetic diversity, evolutionary connections, and functional potential of the strains.

Following this, antiSMASH software was utilized for an initial evaluation of the bacterial BGCs. Across the 13 genomes, a total of 314 BGCs were identified. The highest biosynthetic diversity was observed in *X. indica* KK26.2 and *X. vietnamensis* NN167.3, followed by *P. temperata* MW27.4, *P. akhurstii* NN168.5, *P. hainaensis* NN169.4, *P. laumontii* MH8.4, *X. miraniensis* MH16.1, and *X. ehlersii* MH9.2. In contrast, the lowest BGC diversity was found in *P. australis* SBR15.4, *X. stockiae* RT25.5, SBRx11.1, and SBR31.4, as well as *X. japonica* MW12.3. In addition, the comparative analysis of BGCs revealed that nonribosomal peptide synthetases (NRPS) were the predominant class in both *Xenorhabdus* and *Photorhabdus* genomes. Which accounted for 51% of the total BGCs. The "others" and hybrid groups exhibited the second and third highest levels of enrichment and distribution, respectively. PKS, RiPPs, and terpene clusters were fairly low. Certain clusters were widely shared, particularly those resembling known BGCs responsible for betalactone (Shi et al., 2022) production, followed by GameXpeptides (Gxps) clusters (Friederike et al., 2015) and

photoxenobactin-associated clusters (Shi et al., 2022). Despite the broad diversity of BGCs across genomes, specific clusters were limited to particular strains. For example, acinetobactin, ATred, butyrolactone, cuidadopeptide, PAX peptide, and RXPs were prevalent only in *X. stockiae* genomes. Additionally, unique discoveries included althiomycin clusters in *X. indica* KK26.2, andrimid clusters in *P. temperata* MW27.4, and malonomycin clusters in *P. akhurstii* NN168.5. These findings highlight these strains as promising candidates.



**Table 13** A summary of the strains used in the preliminary analysis and their general characteristics across all genomes.  
**The sequences have been submitted under project PRJNA990961.**

| Features / Bacteria Code       | <i>P. akhurstii</i> NNI68.5 | <i>P. australis</i> SBR15.4 | <i>P. laumannii</i> MH8.4 | <i>P. lamottei</i> SGmg3 | <i>P. temperata</i> MW27.4 | <i>X. elthensis</i> MH9.2 | <i>X. indicta</i> KK26.2 | <i>X. japonica</i> MW12.3 | <i>X. nutrinensis</i> MH16.1 | <i>X. websteri</i> S. websteri | <i>X. stockiae</i> RT25.5 | <i>X. stockiae</i> SBR31.4 | <i>X. stockiae</i> SBRx11.1 | <i>X. vietnamensis</i> NNI67.3 |
|--------------------------------|-----------------------------|-----------------------------|---------------------------|--------------------------|----------------------------|---------------------------|--------------------------|---------------------------|------------------------------|--------------------------------|---------------------------|----------------------------|-----------------------------|--------------------------------|
| Entomopathogenic nematode host | NA                          | NA                          | NA                        | NA                       | NA                         | NA                        | NA                       | NA                        | NA                           | NA                             | NA                        | NA                         | NA                          | NA                             |
| Accession number               | SAMN362782                  | SAMN362782                  | SAMN362782                | SAMN362782               | SAMN362782                 | SAMN362782                | SAMN362782               | SAMN362782                | SAMN362782                   | SAMN362782                     | SAMN362782                | SAMN362782                 | SAMN362782                  | SAMN362782                     |
| Estimated genome size          | 5,629,344                   | 4,699,665                   | 5,260,969                 | 4,937,123                | 5,247,567                  | 3,916,271                 | 4,506,415                | 3,495,382                 | 4,378,409                    | 4,509,455                      | 4,496,578                 | 4,509,288                  | 4,654,759                   | 3,947                          |
| Number of predicted genes      | 4,805                       | 4,152                       | 4,337                     | 4,351                    | 4,582                      | 3,383                     | 3,907                    | 3,008                     | 3,739                        | 3,921                          | 3,832                     | 3,919                      | 3,919                       | 3,947                          |
| Num Contigs > 100 kb           | 18                          | 12                          | 20                        | 13                       | 9                          | 14                        | 14                       | 13                        | 16                           | 6                              | 17                        | 6                          | 15                          |                                |
| Num Contigs > 50 kb            | 32                          | 32                          | 28                        | 33                       | 29                         | 21                        | 38                       | 24                        | 34                           | 29                             | 34                        | 33                         | 33                          |                                |

Table 13 (Cont.)

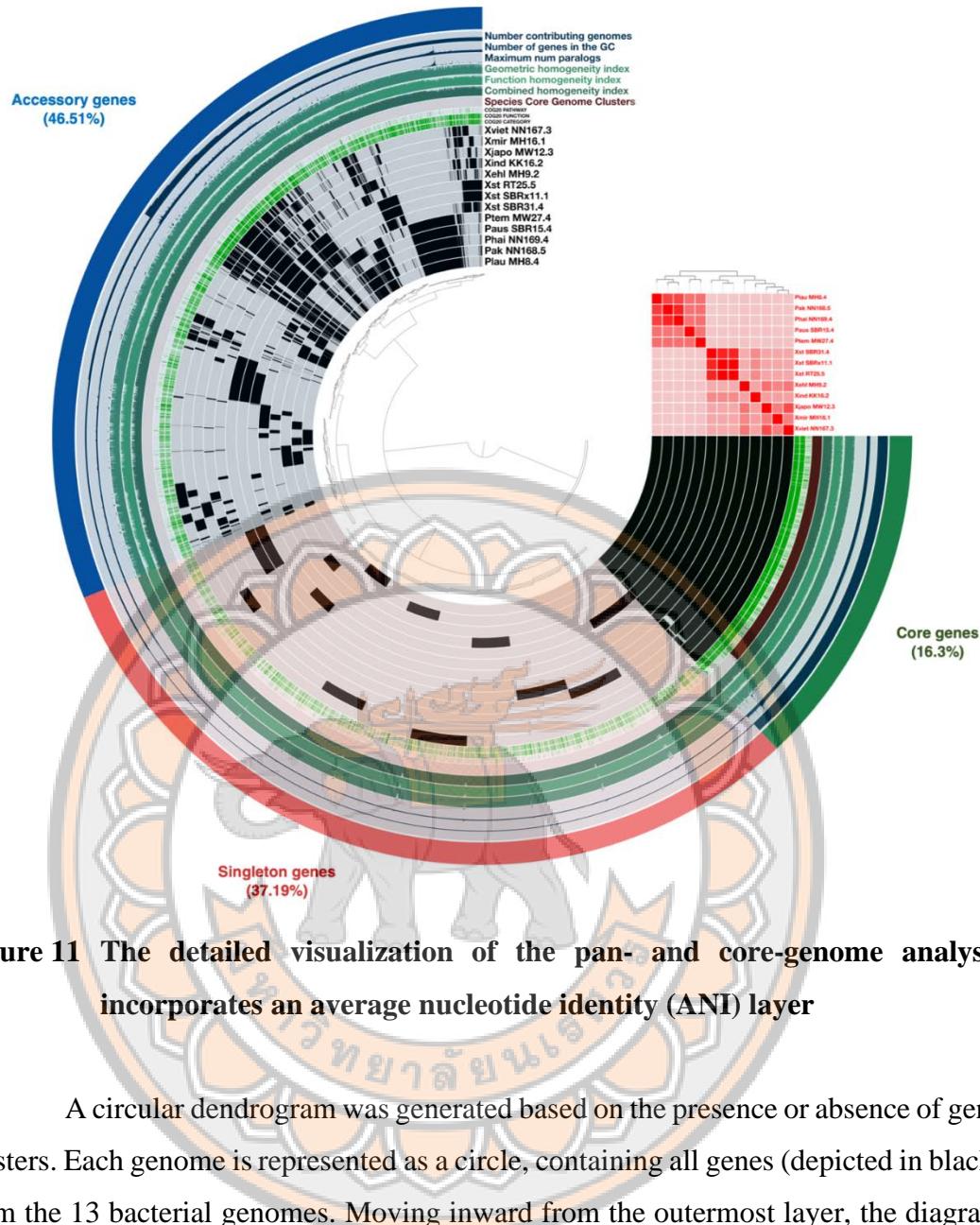

| Features /<br>Bacteria Code | P. akhurstii NNN168.5 | P. australis SBR15.4 | P. laumannii MH8.4 | P. temperata MW27.4 | X. indica KR26.2 | X. japonica MW12.3 | X. marinensis MH16.1 | X. sockiae RT25.5 | X. sockiae SBR31.4 | X. sockiae SBRx11.1 | X. vietnamensis NNN167.3 |
|-----------------------------|-----------------------|----------------------|--------------------|---------------------|------------------|--------------------|----------------------|-------------------|--------------------|---------------------|--------------------------|
| Num Contigs >               |                       |                      |                    |                     |                  |                    |                      |                   |                    |                     |                          |
| 10 kb                       | 55                    | 63                   | 44                 | 83                  | 100              | 39                 | 66                   | 40                | 48                 | 44                  | 96                       |
| 5 kb                        | 66                    | 73                   | 49                 | 94                  | 129              | 44                 | 84                   | 45                | 61                 | 48                  | 111                      |
| 2.5 kb                      | 79                    | 87                   | 50                 | 110                 | 161              | 47                 | 95                   | 52                | 80                 | 132                 | 75                       |
| Longest Contig              | 429,773               | 250,279              | 458,435            | 289,965             | 320,441          | 604,063            | 233,439              | 378,067           | 319,343            | 185,193             | 283,943                  |
| Shortest Contig             | 2,679                 | 2,612                | 3,974              | 2,707               | 2,537            | 3,204              | 2,595                | 2,766             | 2,608              | 2,687               | 3,386                    |
| Num Genes (prodigal)        | 4,805                 | 4,152                | 4,337              | 4,351               | 4,582            | 3,383              | 3,907                | 3,008             | 2,739              | 3,921               | 3,832                    |
| L50 <sup>1</sup>            | 11                    | 14                   | 10                 | 18                  | 22               | 7                  | 17                   | 9                 | 10                 | 26                  | 10                       |
| L75                         | 23                    | 29                   | 19                 | 37                  | 50               | 15                 | 32                   | 19                | 20                 | 49                  | 20                       |
| L90                         | 38                    | 47                   | 29                 | 61                  | 83               | 24                 | 49                   | 29                | 34                 | 76                  | 31                       |

Table 13 (Cont.)

| Features / Bacteria Code       | N50 <sup>2</sup> | N75     | N90    | Number of predicted BGCs by antiSMASH |
|--------------------------------|------------------|---------|--------|---------------------------------------|
| <i>P. akhurstii</i> NN168.5    | 161,766          | 79,874  | 42,852 | 26                                    |
| <i>P. australis</i> SBR15.4    | 168,036          | 107,734 | 46,728 | 19                                    |
| <i>P. lammondi</i> MH8.4       | 83,047           | 46,313  | 21,575 | 24                                    |
| <i>P. helianthensis</i> MW27.4 | 66,115           | 32,744  | 14,617 | 23                                    |
| <i>P. temperata</i> MW9.2      | 176,708          | 92,215  | 37,737 | 26                                    |
| <i>X. indica</i> KK26.2        | 93,815           | 62,268  | 25,029 | 20                                    |
| <i>X. japonica</i> MW12.3      | 128,329          | 65,480  | 40,821 | 18                                    |
| <i>X. mirantinensis</i> MH16.1 | 162,938          | 73,980  | 30,364 | 21                                    |
| <i>X. stockiae</i> SBR31.4     | 154,677          | 34,367  | 17,541 | 19                                    |
| <i>X. vietnamensis</i> NN167.3 | 64,259           | 81,111  | 47,989 | 18                                    |
|                                | 101,518          | 34,367  | 17,541 | 19                                    |
|                                |                  |         |        | 28                                    |

<sup>1</sup>L50 is the minimum number of contigs required to reach 50% of the genome, with a lower L50 reflecting a more contiguous assembly.

<sup>2</sup>N50 represents the length of the shortest contig (or scaffold) that, when combined with longer contigs, covers at least 50% of the total genome assembly. A higher N50 indicates greater assembly continuity. These metrics help evaluate genome completeness and fragmentation, where an ideal assembly has a high N50 and a low L50, indicating fewer but longer contigs.



**Figure 11 The detailed visualization of the pan- and core-genome analysis incorporates an average nucleotide identity (ANI) layer**

A circular dendrogram was generated based on the presence or absence of gene clusters. Each genome is represented as a circle, containing all genes (depicted in black) from the 13 bacterial genomes. Moving inward from the outermost layer, the diagram distinguishes core genes (green), accessory genes (blue), and singleton genes (red). The figure also includes additional data such as the number of genes in the gene cluster (GC), the maximum number of paralogs, the geometric homogeneity index, the functional homogeneity index, the combined homogeneity index, Species Core Genome (SCG) clusters, Cluster of Orthologous Groups (COG20) categories, COG20 functions, and COG20 pathways.

After manually verifying the antiSMASH results with our in-house database, the filtered data were analyzed using BiG-SCAPE/CORASON (Navarro-Muñoz et al., 2020). BiG-SCAPE organizes BGCs identified by antiSMASH into gene cluster families (GCFs) based on sequence similarity. Meanwhile, CORASON establishes phylogenetic relationships among the detected BGCs and the generated GCFs. These tools facilitate the exploration of BGCs diversity across large genome datasets by constructing BGC sequence similarity networks, grouping BGCs into GCFs, and linking gene cluster diversity to enzyme phylogenies. Together, they provide powerful approaches for identifying novel compounds. Here we reported 181 potential biosynthetic clusters remains from 314 clusters due to limited information from the predicted modules. (Table 14). 181 putative BGCs including 92 NRPS, 8 PKS, 22 hybrids, 6 Terpenes, 15 RiPPs, 1 lanthipeptide, and 37 others as depicted in Figure 12 and Table 14. Among the remaining clusters, 145 showed similarity to known BGCs, while 36 clusters belonged to unrelated groups with no homologous gene clusters identified implying the potential novelty of the metabolites related to these clusters. Considering this analysis, the strains *X. stockiae* RT25.5, *X. stockiae* SBRx11.1, *X. japonica* MW12.3, *X. indica* KK26.2, *X. miraniensis* MH16.1, *P. akhurstii* NN168.5, *P. temperata* MW27.4, and *P. hainanensis* NN169.4 are particularly promising candidates for further exploration in the discovery of novel compounds. When applying comparative analysis, *X. stockiae* RT25.5, *X. stockiae* SBRx11.1, *X. indica* KK26.2, *P. temperata* MW27.4, and *P. hainanensis* NN168.5 stand out as strong candidates for experimental natural product discovery due to their richness in unique and unknown clusters.

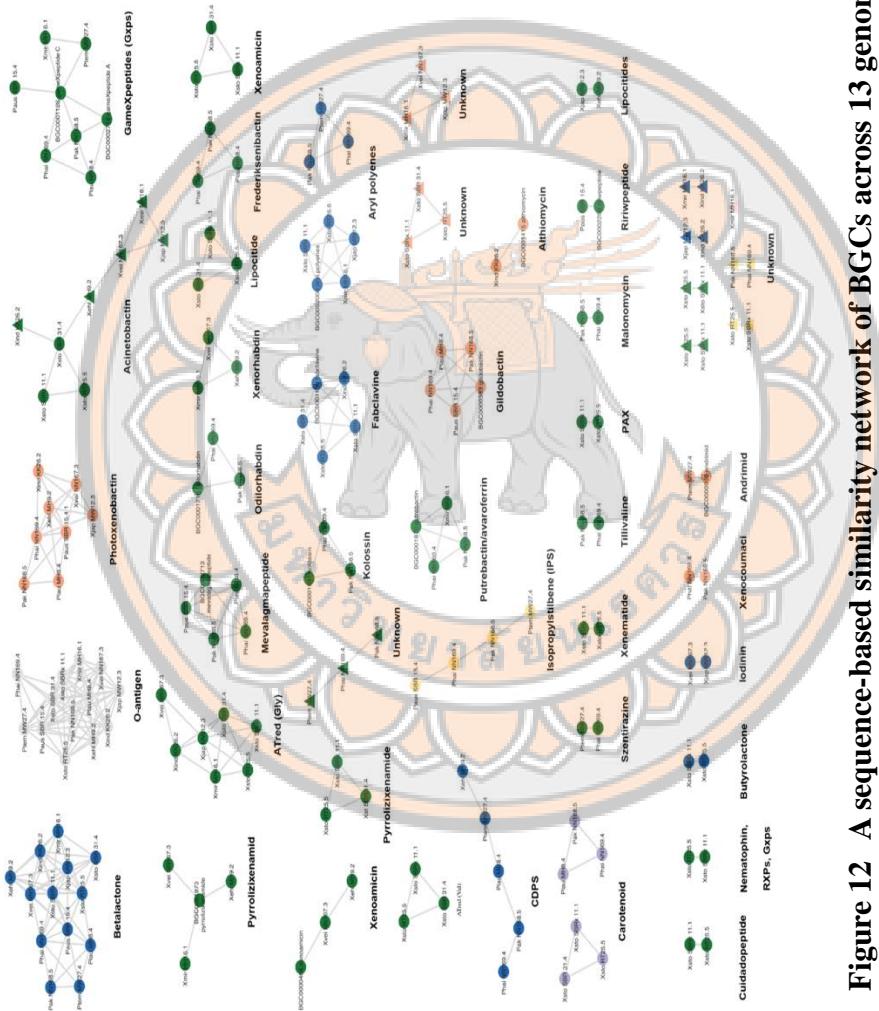



Figure 12 A sequence-based similarity network of BGCs across 13 genomes

The network displays identified BGCs, with circular shapes representing known BGCs and triangular shapes representing unknown BGCs. These clusters are categorized by type: NRPS (green), PKS (yellow), RiPPs (orange), terpene (purple), and others (blue).

**Table 14 Explorations and classifications of annotated BGCs across 13 genomes**

| No. | XP isolates          | Region                   | Clusters type     | Predicted compounds     |
|-----|----------------------|--------------------------|-------------------|-------------------------|
| 1   | <i>P. hainaensis</i> | Phai NN169.4 region 1.1  | NRP+Polyketide    | Xenocoumacin            |
| 2   | <i>P. hainaensis</i> | Phai NN169.4 region 1.2  | NRPS              | Szentirazine like       |
| 3   | <i>P. hainaensis</i> | Phai NN169.4 region 10.1 | NRPS              | Frederiksenibactin      |
| 4   | <i>P. hainaensis</i> | Phai NN169.4 region 11.2 | NRP+Polyketide    | Photoxenobactin         |
| 5   | <i>P. hainaensis</i> | Phai NN169.4 region 13.1 | NRPS              | tillivaline             |
| 6   | <i>P. hainaensis</i> | Phai NN169.4 region 16.1 | NRPS.independent. | Putrebactin siderophore |
| 7   | <i>P. hainaensis</i> | Phai NN169.4 region 17.1 | NRPS              | Odilorhabdin            |
| 8   | <i>P. hainaensis</i> | Phai NN169.4 region 18.1 | RiPPs             | O-antigen               |
| 9   | <i>P. hainaensis</i> | Phai NN169.4 region 2.1  | NRPS              | Gxps                    |
| 10  | <i>P. hainaensis</i> | Phai NN169.4 region 25.1 | NRPS              | Mevalagmapeptide        |
| 11  | <i>P. hainaensis</i> | Phai NN169.4 region 3.1  | NRPS              | Unknown                 |
| 12  | <i>P. hainaensis</i> | Phai NN169.4 region 3.2  | Others            | Betalactone             |
| 13  | <i>P. hainaensis</i> | Phai NN169.4 region 34.1 | RiPPs             | O-antigen               |
| 14  | <i>P. hainaensis</i> | Phai NN169.4 region 4.1  | NRPS              | Kolossin                |
| 15  | <i>P. hainaensis</i> | Phai NN169.4 region 49.1 | PKS               | Unknown                 |
| 16  | <i>P. hainaensis</i> | Phai NN169.4 region 5.1  | NRP+Polyketide    | Glidobactin             |
| 17  | <i>P. hainaensis</i> | Phai NN169.4 region 6.1  | Others            | Arylpolyene             |
| 18  | <i>P. hainaensis</i> | Phai NN169.4 region 6.2  | PKS               | Isopropylstilbene (IPS) |
| 19  | <i>P. hainaensis</i> | Phai NN169.4 region 7.1  | Others            | CDPS                    |
| 20  | <i>P. australis</i>  | Phai NN169.4 region 1.3  | Terpene           | Carotenoid              |
| 21  | <i>P. hainaensis</i> | Phai NN169.4 region 9.1  | NRPS              | Malonomycin             |
| 22  | <i>P. laumontii</i>  | PLau MH8.4 region 1.1    | NRP+Polyketide    | Glidobactin             |
| 23  | <i>P. laumontii</i>  | PLau MH8.4 region 10.1   | Others            | CDPS                    |
| 24  | <i>P. laumontii</i>  | PLau MH8.4 region 11.1   | NRPS              | Gxps                    |
| 25  | <i>P. laumontii</i>  | PLau MH8.4 region 19.2   | RiPPs             | O-antigen               |
| 26  | <i>P. laumontii</i>  | PLau MH8.4 region 3.1    | NRP+Polyketide    | Photoxenobactin         |
| 27  | <i>P. laumontii</i>  | PLau MH8.4 region 38.1   | RiPPs             | O-antigen               |
| 28  | <i>P. laumontii</i>  | PLau MH8.4 region 4.1    | NRPS              | Frederiksenibactin      |
| 29  | <i>P. laumontii</i>  | PLau MH8.4 region 5.1    | NRPS              | Mevalagmapeptide        |
| 30  | <i>P. australis</i>  | Plau MH8.4 region 79.1   | Terpene           | Carotenoid              |
| 31  | <i>P. laumontii</i>  | PLau MH8.4 region 9.1    | Others            | Betalactone             |
| 32  | <i>P. akhurstii</i>  | Pak NN168.5 region 28.1  | Terpene           | Carotenoid              |

**Table 14 (Cont.)**

| No. | XP isolates         | Region                    | Clusters type                    | Predicted compounds        |
|-----|---------------------|---------------------------|----------------------------------|----------------------------|
| 33  | <i>P. akhurstii</i> | Pak NN168.5 region 1.1    | NRPS+Polyketide                  | Xenocoumacin               |
| 34  | <i>P. akhurstii</i> | Pak NN168.5 region 12.1   | Others                           | CDPS                       |
| 35  | <i>P. akhurstii</i> | Pak NN168.5 region 13.1   | NRPS                             | Gxps                       |
| 36  | <i>P. akhurstii</i> | Pak NN168.5 region 15.1   | NRPS                             | Odilorhabdin               |
| 37  | <i>P. akhurstii</i> | Pak NN168.5 region 16.1   | Others                           | Betalactone                |
| 38  | <i>P. akhurstii</i> | Pak NN168.5 region 2.1    | NRPS+Polyketide                  | Photoxenobactin            |
| 39  | <i>P. akhurstii</i> | Pak NN168.5 region 24.1   | NRPS                             | Malonomycin                |
| 40  | <i>P. akhurstii</i> | Pak NN168.5 region 3.1    | NRPS+Polyketide                  | Glidobactin                |
| 41  | <i>P. akhurstii</i> | Pak NN168.5 region 3.2    | RiPPs                            | O-antigen                  |
| 42  | <i>P. akhurstii</i> | Pak NN168.5 region 41.1   | NRPS                             | Unknown                    |
| 43  | <i>P. akhurstii</i> | Pak NN168.5 region 5.1    | NRPS.independent.<br>siderophore | Putrebactin                |
| 44  | <i>P. akhurstii</i> | Pak NN168.5 region 5.2    | NRPS                             | Tillivaline                |
| 45  | <i>P. akhurstii</i> | Pak NN168.5 region 6.1    | NRPS                             | Kolossin                   |
| 46  | <i>P. akhurstii</i> | Pak NN168.5 region 6.2    | NRPS                             | Frederiksenibactin         |
| 47  | <i>P. akhurstii</i> | Pak NN168.5 region 64.1   | PKS                              | Unknown                    |
| 48  | <i>P. akhurstii</i> | Pak NN168.5 region 7.1    | Others                           | Arylpolyene                |
| 49  | <i>P. akhurstii</i> | Pak NN168.5 region 7.2    | PKS                              | Isopropylstilbene<br>(IPS) |
| 50  | <i>P. akhurstii</i> | Pak NN168.5 region 9.1    | NRPS                             | Mevalgmapeptide            |
| 51  | <i>P. australis</i> | Paus SBR 15.4 region 51.1 | NRPS                             | Mevalgmapeptide            |
| 52  | <i>P. australis</i> | Paus SBR15.4 region 11.1  | PKS                              | Isopropylstilbene<br>(IPS) |
| 53  | <i>P. australis</i> | Paus SBR15.4 region 13.1  | NRPS+Polyketide                  | Glidobactin                |
| 54  | <i>P. australis</i> | Paus SBR15.4 region 25.1  | NRPS                             | Ririwpeptide               |
| 55  | <i>P. australis</i> | Paus SBR15.4 region 34.1  | NRPS+Polyketide                  | Photoxenobactin            |
| 56  | <i>P. australis</i> | Paus SBR15.4 region 46.1  | NRPS                             | Gxps                       |
| 57  | <i>P. australis</i> | Paus SBR15.4 region 7.1   | Others                           | Betalactone                |
| 58  | <i>P. australis</i> | Paus SBR15.4 region 8.1   | RiPPs                            | O-antigen                  |
| 59  | <i>P. temperata</i> | Ptem MW27.4 region 2.2    | Others                           | Betalactone                |
| 60  | <i>P. temperata</i> | Ptem MW27.4 region 20.1   | NRPS+Polyketide                  | Andrimid                   |
| 61  | <i>P. temperata</i> | Ptem MW27.4 region 25.1   | NRPS                             | Unknown                    |

**Table 14 (Cont.)**

| No. | XP isolates         | Region                  | Clusters type  | Predicted compounds     |
|-----|---------------------|-------------------------|----------------|-------------------------|
| 62  | <i>P. temperata</i> | Ptem MW27.4 region 4.1  | PKS            | Isopropylstilbene (IPS) |
| 63  | <i>P. temperata</i> | Ptem MW27.4 region 40.1 | Others         | CDPS                    |
| 64  | <i>P. temperata</i> | Ptem MW27.4 region 41.1 | NRPS           | Szentirazine like       |
| 65  | <i>P. temperata</i> | Ptem MW27.4 region 47.1 | NRPS           | Gxps                    |
| 66  | <i>P. temperata</i> | Ptem MW27.4 region 58.1 | Others         | Arylpolyene             |
| 67  | <i>P. temperata</i> | Ptem MW27.4 region 64.1 | RiPPs          | O-antigen               |
| 68  | <i>X. ehlersii</i>  | Xehl MH9.2 region 1.1   | Others         | Betalactone             |
| 69  | <i>X. ehlersii</i>  | Xehl MH9.2 region 1.2   | NRPS           | Unknown                 |
| 70  | <i>X. ehlersii</i>  | Xehl MH9.2 region 17.1  | NRPS           | Pyrrolizixenamide       |
| 71  | <i>X. ehlersii</i>  | Xehl MH9.2 region 2.1   | RiPPs          | O-antigen               |
| 72  | <i>X. ehlersii</i>  | Xehl MH9.2 region 3.2   | NRPS           | Xenoamicin              |
| 73  | <i>X. ehlersii</i>  | Xehl MH9.2 region 5.1   | NRP+Polyketide | Photoxenobactin         |
| 74  | <i>X. ehlersii</i>  | Xehl MH9.2 region 6.1   | NRPS           | Xenorhabdin             |
| 75  | <i>X. ehlersii</i>  | Xehl MH9.2 region 8.1   | Others         | CDPS                    |
| 76  | <i>X. ehlersii</i>  | Xehl MH9.2 region 9.1   | NRPS           | Lipocidites             |
| 77  | <i>X. indica</i>    | Xin KK26.2 region 1.1   | Others         | Fabclavine la           |
| 78  | <i>X. indica</i>    | Xin KK26.2 region 14.1  | Others         | Unknown                 |
| 79  | <i>X. indica</i>    | Xin KK26.2 region 2.1   | NRPS           | Unknown                 |
| 80  | <i>X. indica</i>    | Xin KK26.2 region 22.1  | Others         | Unknown                 |
| 81  | <i>X. indica</i>    | Xin KK26.2 region 28.1  | NRPS           | ATred                   |
| 82  | <i>X. indica</i>    | Xin KK26.2 region 34.1  | RiPPs          | O-antigen               |
| 83  | <i>X. indica</i>    | Xin KK26.2 region 44.1  | NRP+Polyketide | Althiomycin             |
| 84  | <i>X. indica</i>    | Xin KK26.2 region 5.1   | Others         | Betalactone             |
| 85  | <i>X. indica</i>    | Xin KK26.2 region 7.1   | NRP+Polyketide | Photoxenobactin         |
| 86  | <i>X. japonica</i>  | Xjap MW12.3 region 1.2  | NRP+Polyketide | Photoxenobactin         |
| 87  | <i>X. japonica</i>  | Xjap MW12.3 region 16.1 | NRPS           | ATred                   |
| 88  | <i>X. japonica</i>  | Xjap MW12.3 region 17.1 | RiPPs          | O-antigen               |
| 89  | <i>X. japonica</i>  | Xjap MW12.3 region 2.1  | NRPS           | Unknown                 |
| 90  | <i>X. japonica</i>  | Xjap MW12.3 region 24.1 | Others         | Iodinin (phenazine)     |
| 91  | <i>X. japonica</i>  | Xjap MW12.3 region 3.1  | Others         | Arylpolyene             |
| 92  | <i>X. japonica</i>  | Xjap MW12.3 region 30.1 | NRP+Polyketide | Unknown                 |
| 93  | <i>X. japonica</i>  | Xjap MW12.3 region 38.1 | NRPS           | Unknown (fragment)      |
| 94  | <i>X. japonica</i>  | Xjap MW12.3 region 43.1 | Others         | Unknown                 |

**Table 14 (Cont.)**

| No. | XP isolates           | Region                   | Clusters type          | Predicted compounds        |
|-----|-----------------------|--------------------------|------------------------|----------------------------|
| 95  | <i>X. japonica</i>    | Xjap MW12.3 region 5.1   | NRPS                   | Lipocitides                |
| 96  | <i>X. japonica</i>    | Xjap MW12.3 region 6.1   | Others                 | Betalactone                |
| 97  | <i>X. miraniensis</i> | Xmir MH16.1 region 1.1   | RiPPs                  | O-antigen                  |
| 98  | <i>X. miraniensis</i> | Xmir MH16.1 region 1.3   | NRPS.independent.      | Putrebactin siderophore    |
| 99  | <i>X. miraniensis</i> | Xmir MH16.1 region 16.2  | NRPS                   | Pyrrolizixenamide          |
| 100 | <i>X. miraniensis</i> | Xmir MH16.1 region 2.1   | NRPS                   | Unknown                    |
| 101 | <i>X. miraniensis</i> | Xmir MH16.1 region 23.1  | Others                 | Unknown                    |
| 102 | <i>X. miraniensis</i> | Xmir MH16.1 region 26.1  | NRPS                   | Gxps                       |
| 103 | <i>X. miraniensis</i> | Xmir MH16.1 region 3.1   | NRPS                   | Xenorhabdin                |
| 104 | <i>X. miraniensis</i> | Xmir MH16.1 region 32.1  | lanthipeptide.class.II | Unknown                    |
| 105 | <i>X. miraniensis</i> | Xmir MH16.1 region 32.1  | NRP+Polyketide         | Unknown                    |
| 106 | <i>X. miraniensis</i> | Xmir MH16.1 region 4.1   | Others                 | Arylpolyene                |
| 107 | <i>X. miraniensis</i> | Xmir MH16.1 region 4.2   | NRPS                   | ATred                      |
| 108 | <i>X. miraniensis</i> | Xmir MH16.1 region 6.1   | Others                 | Betalactone                |
| 109 | <i>X. stockiae</i>    | Xsto SBR31.4 region 5.1  | NRPS                   | Pyrrolizixenamide          |
| 110 | <i>X. stockiae</i>    | Xsto SBR31.4 region 5.1  | NRPS                   | ATred                      |
| 111 | <i>X. stockiae</i>    | Xsto SBR31.4 region 25.1 | NRPS                   | Acinetobactin/metallophore |
| 112 | <i>X. stockiae</i>    | Xsto SBR31.4 region 26.1 | NRPS                   | lipocitides                |
| 113 | <i>X. stockiae</i>    | Xsto SBR31.4 region 35.1 | Terpene                | Carotenoid                 |
| 114 | <i>X. stockiae</i>    | Xsto SBR31.4 region 4.1  | NRPS                   | Xenoamicin                 |
| 115 | <i>X. stockiae</i>    | Xsto SBR 31.4 region 3.2 | Others                 | Betalactone                |
| 116 | <i>X. stockiae</i>    | Xsto SBR31.4 region 11.1 | NRP+Polyketide         | Unknown                    |
| 117 | <i>X. stockiae</i>    | Xsto SBR31.4 region 31.1 | NRPS                   | ATred                      |
| 118 | <i>X. stockiae</i>    | Xsto SBR31.4 region 6.1  | Others                 | Fabclavine la              |
| 119 | <i>X. stockiae</i>    | Xsto SBR31.4 region 13.1 | RiPPs                  | O-antigen                  |
| 120 | <i>X. stockiae</i>    | Xsto RT25.5 region 18.1  | Terpene                | Carotenoid                 |
| 121 | <i>X. stockiae</i>    | Xsto RT25.5 region 15.1  | RiPPs                  | O-antigen                  |
| 122 | <i>X. stockiae</i>    | Xsto RT25.5 region 16.1  | NRP+Polyketide         | Unknown                    |
| 123 | <i>X. stockiae</i>    | Xsto RT25.5 region 17.1  | Others                 | Arylpolyene                |
| 124 | <i>X. stockiae</i>    | Xsto RT25.5 region 18.1  | NRPS                   | Cuidadopeptide             |
| 125 | <i>X. stockiae</i>    | Xsto RT25.5 region 20.1  | Others                 | Betalactone                |
| 126 | <i>X. stockiae</i>    | Xsto RT25.5 region 24.1  | NRPS                   | Pyrrolizixenamide          |

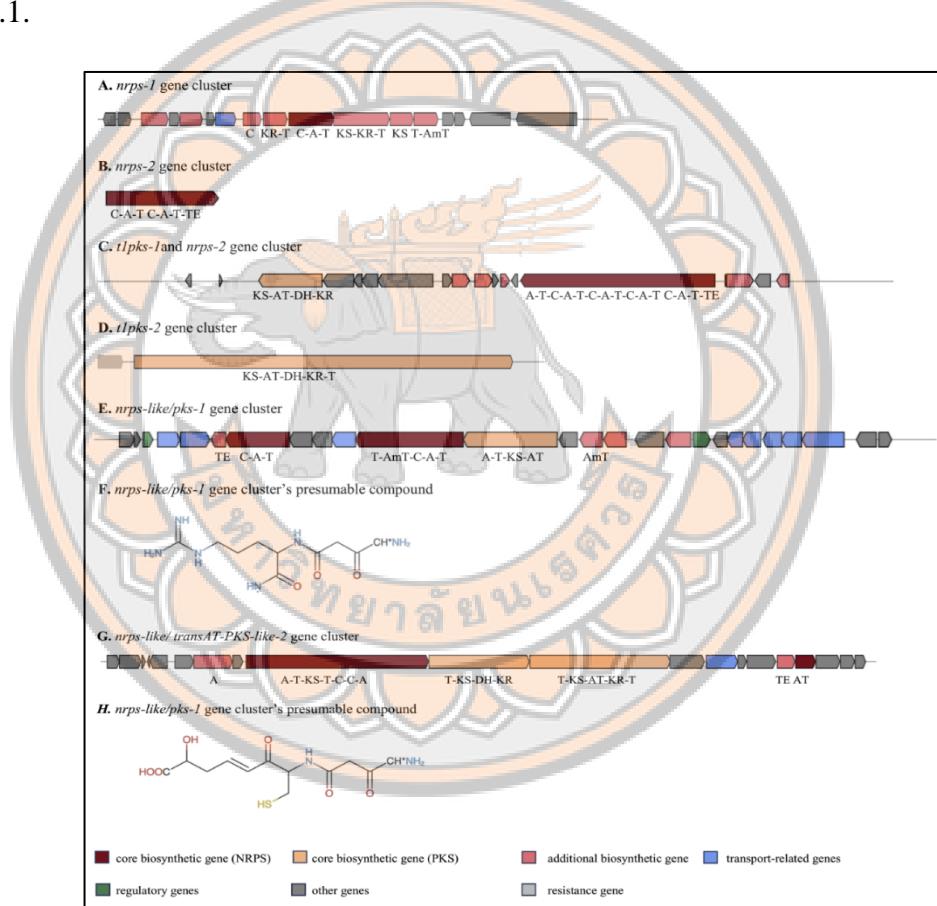
**Table 14 (Cont.)**

| No. | XP isolates        | Region                    | Clusters type  | Predicted compounds              |
|-----|--------------------|---------------------------|----------------|----------------------------------|
| 127 | <i>X. stockiae</i> | Xsto RT25.5 region 24.1   | NRPS           | ATred                            |
| 128 | <i>X. stockiae</i> | Xsto RT25.5 region 3.1    | Others         | Fabclavine la                    |
| 129 | <i>X. stockiae</i> | Xsto RT25.5 region 34.1   | NRPS           | ATred                            |
| 130 | <i>X. stockiae</i> | Xsto RT25.5 region 37.1   | NRPS           | Acinetobactin (NRP-metallophore) |
| 131 | <i>X. stockiae</i> | Xsto RT25.5 region 4.1    | NRPS           | Xenoamicin                       |
| 132 | <i>X. stockiae</i> | Xsto RT25.5 region 49.1   | NRPS           | Lipocitides                      |
| 133 | <i>X. stockiae</i> | Xsto RT25.5 region 56.1   | Others         | Butyrolactone                    |
| 134 | <i>X. stockiae</i> | Xsto RT25.5 region 58.1   | NRPS           | Unknown (fragment)               |
| 135 | <i>X. stockiae</i> | Xsto RT25.5 region 59.1   | NRPS           | Unknown (fragment)               |
| 136 | <i>X. stockiae</i> | Xsto RT25.5 region 61.1   | NRPS           | Xenematide                       |
| 137 | <i>X. stockiae</i> | Xsto RT25.5 region 8.1    | PKS            | Unknown                          |
| 138 | <i>X. stockiae</i> | Xsto RT25.5 region 8.1    | NRPS           | Unknown                          |
| 139 | <i>X. stockiae</i> | Xsto RT25.5 region 8.1    | NRPS           | Nematophin,                      |
| 140 | <i>X. stockiae</i> | Xsto RT25.5 region 8.1    | NRPS           | Rhabdopeptide (RXPs)             |
| 141 | <i>X. stockiae</i> | Xsto RT25.5 region 8.1    | NRPS           | GameXpeptide                     |
| 142 | <i>X. stockiae</i> | Xsto RT25.5 region 81.1   | NRPS           | Unknown (fragment)               |
| 143 | <i>X. stockiae</i> | Xsto RT25.5 region 85.1   | NRPS           | PAX (with glutamine)             |
| 144 | <i>X. stockiae</i> | Xsto RT25.5 region 90.1   | NRPS           | Unknown (fragment)               |
| 145 | <i>X. stockiae</i> | Xsto RT25.5 region 3.1    | NRPS           | Unknown                          |
| 146 | <i>X. stockiae</i> | Xsto SBRx11.1 region 18.1 | Terpene        | Carotenoid                       |
| 147 | <i>X. stockiae</i> | Xsto SBRx11.1 region 10.1 | Others         | Betalactone                      |
| 148 | <i>X. stockiae</i> | Xsto SBRx11.1 region 15.1 | RiPPs          | O-antigen                        |
| 149 | <i>X. stockiae</i> | Xsto SBRx11.1 region 16.1 | NRP+Polyketide | Unknown                          |
| 150 | <i>X. stockiae</i> | Xsto SBRx11.1 region 17.1 | Others         | Arylpolyene                      |
| 151 | <i>X. stockiae</i> | Xsto SBRx11.1 region 18.1 | NRPS           | Cuidadopeptide                   |
| 152 | <i>X. stockiae</i> | Xsto SBRx11.1 region 24.1 | NRPS           | Pyrrolizixenamide                |
| 153 | <i>X. stockiae</i> | Xsto SBRx11.1 region 24.1 | NRPS           | ATred                            |
| 154 | <i>X. stockiae</i> | Xsto SBRx11.1 region 3.1  | Others         | Fabclavine la                    |
| 155 | <i>X. stockiae</i> | Xsto SBRx11.1 region 34.1 | NRPS           | ATred                            |
| 156 | <i>X. stockiae</i> | Xsto SBRx11.1 region 37.1 | NRPS           | Acinetobactin (NRP-metallophore) |
| 157 | <i>X. stockiae</i> | Xsto SBRx11.1 region 4.1  | NRPS           | Xenoamicin                       |

**Table 14 (Cont.)**

| No. | XP isolates            | Region                    | Clusters type  | Predicted compounds  |
|-----|------------------------|---------------------------|----------------|----------------------|
| 158 | <i>X. stockiae</i>     | Xsto SBRx11.1 region 49.1 | NRPS           | lipocitides          |
| 159 | <i>X. stockiae</i>     | Xsto SBRx11.1 region 56.1 | Others         | butyrolactone        |
| 160 | <i>X. stockiae</i>     | Xsto SBRx11.1 region 58.1 | NRPS           | Unknown (fragment)   |
| 161 | <i>X. stockiae</i>     | Xsto SBRx11.1 region 59.1 | NRPS           | Unknown (fragment)   |
| 162 | <i>X. stockiae</i>     | Xsto SBRx11.1 region 61.1 | NRPS           | Xenemotide           |
| 163 | <i>X. stockiae</i>     | Xsto SBRx11.1 region 8.1  | PKS            | Unknown              |
| 164 | <i>X. stockiae</i>     | Xsto SBRx11.1 region 8.1  | NRPS           | Unknown              |
| 165 | <i>X. stockiae</i>     | Xsto SBRx11.1 region 8.1  | NRPS           | Nematophin           |
| 166 | <i>X. stockiae</i>     | Xsto SBRx11.1 region 8.1  | NRPS           | Rhabdopeptide (RXPs) |
| 167 | <i>X. stockiae</i>     | Xsto SBRx11.1 region 8.1  | NRPS           | GameXpeptide         |
| 168 | <i>X. stockiae</i>     | Xsto SBRx11.1 region 81.1 | NRPS           | Unknown (fragment)   |
| 169 | <i>X. stockiae</i>     | Xsto SBRx11.1 region 85.1 | NRPS           | PAX (with glutamine) |
| 171 | <i>X. stockiae</i>     | Xsto SBRx11.1 region 90.1 | NRPS           | Unknown (fragment)   |
| 172 | <i>X. vietnamensis</i> | Xvei NN167.3 region 1.1   | RiPPs          | O-antigen            |
| 173 | <i>X. vietnamensis</i> | Xvei NN167.3 region 10.1  | Others         | Betalactone          |
| 174 | <i>X. vietnamensis</i> | Xvei NN167.3 region 12.1  | Others         | Iodinin (phenazine)  |
| 175 | <i>X. vietnamensis</i> | Xvei NN167.3 region 15.1  | NRPS           | Unknown              |
| 176 | <i>X. vietnamensis</i> | Xvei NN167.3 region 2.1   | NRPS           | Xenorhabdin          |
| 177 | <i>X. vietnamensis</i> | Xvei NN167.3 region 22.1  | NRP+Polyketide | Photoxenobactin      |
| 178 | <i>X. vietnamensis</i> | Xvei NN167.3 region 24.1  | NRPS           | Xenoamicin           |
| 179 | <i>X. vietnamensis</i> | Xvei NN167.3 region 35.1  | NRPS           | Pyrrolizixenamide    |
| 180 | <i>X. vietnamensis</i> | Xvei NN167.3 region 42.1  | NRP+Polyketide | Unknown              |
| 181 | <i>X. vietnamensis</i> | Xvei NN167.3 region 5.1   | NRPS           | ATred                |
| 182 | <i>X. vietnamensis</i> | Xvei NN167.3 region 55.1  | NRPS           | Unknown (fragment)   |

Out of the 36 unidentified clusters, 10 were excluded due to their BGCs being too short for analysis. The remaining clusters were further characterized and classified into ten putative BGCs. Among these, three were identified as NRPS clusters, two as type I T1PKS clusters, two displayed hybrid NRPS/PKS characteristics, and three were categorized under the “others” category.


**NRPS Clusters:** The *nrpks-1* gene clusters were located in region 25.1 of *P. temperata* MW27.4, region 3.1 of *P. hainaensis* NN169.4, and region 24.1 of *P.*

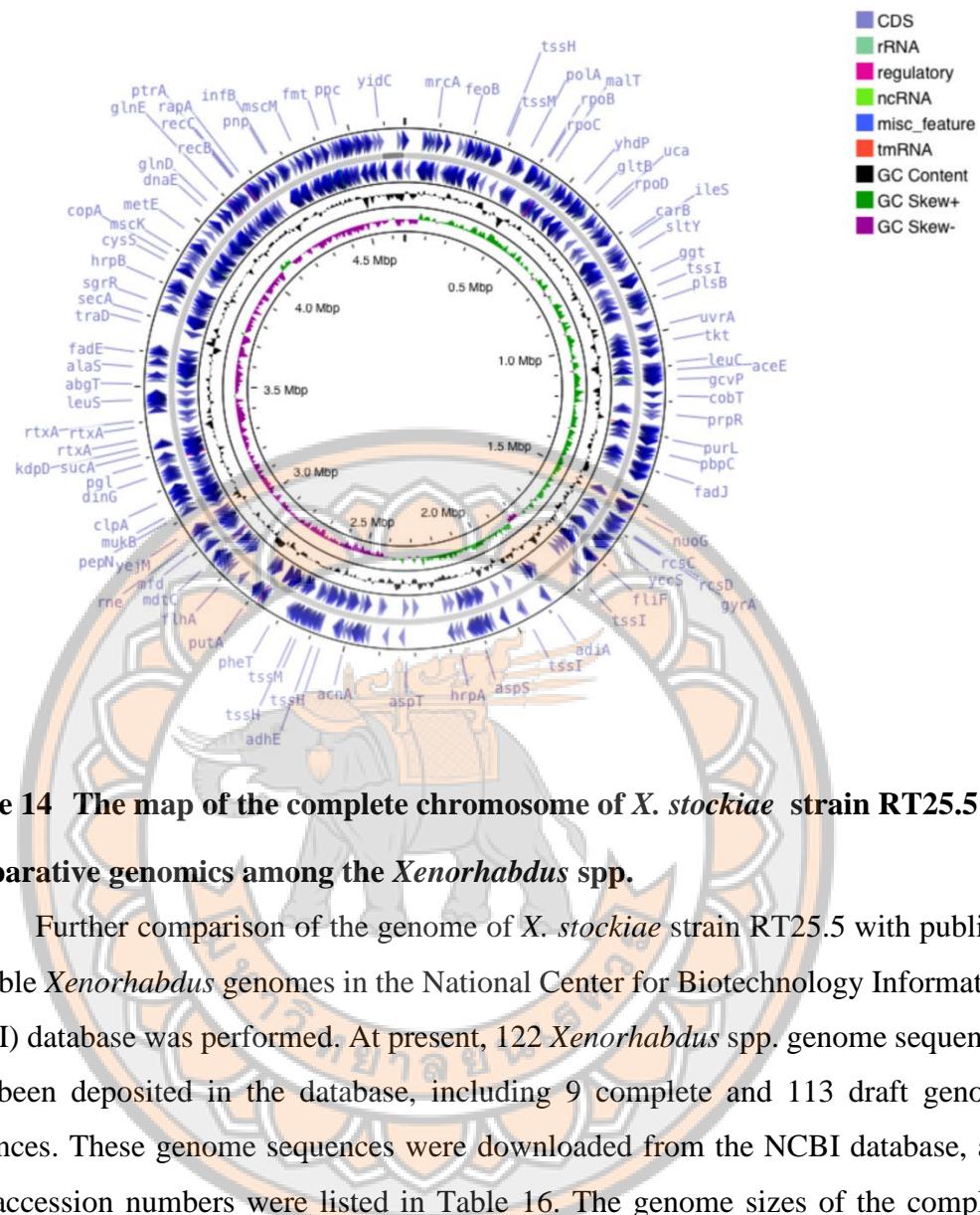
*akhurstii* NN168.5 (Figure 13A). Spanning approximately 37 kb, these clusters contained over 30 biosynthetic genes but included only a single module, showing low sequence similarity to characterized NRPS clusters. As a result, their metabolites could not be predicted. The nrpks-2 gene clusters were found in region 3.1 of *X. stockiae* strain RT25.5, and *X. stockiae* SBRx11.1, (Figure 13B). Although these clusters were not fully sequenced and did not match existing database entries, they contained two modules, suggesting that their products are likely dipeptides, specifically hydrophobic-aliphatic peptides with valine (Val)-valine (Val) as the primary building blocks.

**Type I T1PKS Clusters:** In regions 8.1 of *X. stockiae* strain RT25.5, and *X. stockiae* SBRx11.1, one novel t1pks-1 cluster and one unidentified nrpks-3 cluster (Figure 13C) were identified. These clusters, named "plu00736" and "plu00747," respectively, did not match entries in the MIBiG, KnownClusterBlast, or in-house databases, highlighting their uniqueness and suggesting the presence of two novel compounds in this genomic region. The t1pks-1 gene clusters were hypothesized to contain domains such as PKS\_KS (Modular-KS), PKS\_AT (Modular-AT), PKS\_DH (Modular-DH), and PKS\_KR (Modular-KR), utilizing methylmalonyl-CoA as a substrate. Furthermore, within the t1pks-2 gene clusters located in region 64.1 of *P. akhurstii* (NN168.5) and region 49.1 of *P. hainaensis* (NN169.4), an 81.37% similarity was observed with t1pks-1 from *X. stockiae* region 8.1, except for the phosphopantetheine-binding protein (PP-binding) domain. These clusters may represent analogues of the same compound (Figure 13D).

**Hybrid NRPS/PKS Clusters:** The hybrid-1 gene clusters, containing both NRPS-like and T1PKS genes, were identified in region 16.1 of *X. stockiae* strain RT25.5 and SBRx11.1, and region 11.1 of *X. stockiae* SBR31.4. These clusters, spanning 57.4 kb, contained up to 40 related genes and featured an assembly line of seven modules. (Figure 13E). Based on assembly line predictions and substrate domains, these clusters were predicted to synthesize a compound resembling a bacterial small molecule commonly used as a protease inhibitor, as identified in the NORINE database (Figure 13F). This molecule is significant in autophagy and immunoproteasome research (Li et al., 2020). The hybrid-2 gene clusters, a hybrid of NRPS-like and transAT-PKS-like genes, were found in region 32.1 of *X. miraniensis* MH16.1, region 42.1 of *X. vietnamensis* NN167.3, and region 30.1 of *X.*

*japonica* MW12.3. These clusters encoded proteins comprising five modules and one domain, predicted to incorporate cysteine (Cys) as substrates. The resulting products were hypothesized to be hexapeptides containing one cysteine molecule (Figure 13G, 14H). Other clusters; Among the remaining clusters, three distinct types were identified: Nucleotide-Related Clusters: Found in region 23.1 of *X. miraniensis* strain MH16.1 and region 22.1 of *X. indica* KK26.2. Phosphonate-Related Clusters: Detected in region 43.1 of *X. japonica* MW12.3 and region 14.1 of *X. indica* strain KK26.2. Lastly, Lanthipeptide-Class-II Clusters: Located in region 32.1 of *X. miraniensis* MH16.1.



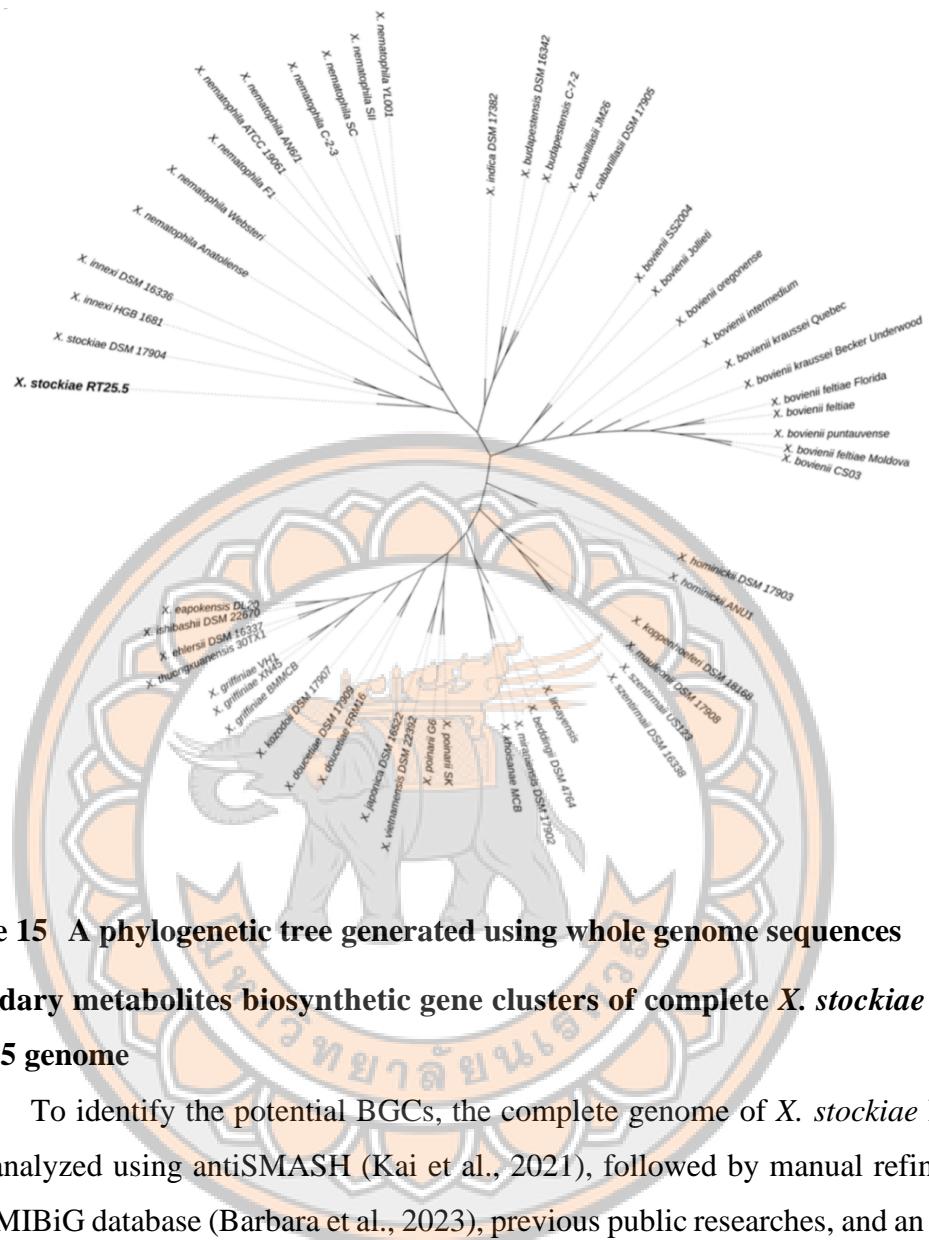

**Figure 13 The summary of the domain composition and organization of the uncharacterized clusters**

The clusters including *nrps-1* gene cluster (A), *nrps-2* gene cluster (B), *tlpks-1* and *nrps-2* gene cluster (C), *tlpks-2* gene cluster (D), *nrps-like/pks-1* gene cluster (E) and its presumable compound (F), and *nrps-like/ transAT-PKS-like-2* gene cluster (G) and its presumable compound (H)

Based on the results above, the strain *X. stockiae* RT25.5 was first selected for further studies, including complete genome sequencing, comparative genomics among *Xenorhabdus* species, secondary metabolite detection, antimicrobial activity assessments, preliminary mode of action analysis of its crude extract, promoter activation, and compound identification. The circular complete genome of strain RT25.5 was estimated to be 4.5 Mbp. The *de novo* genome assembly resulted in 10 contigs, with the largest contig spanning 1,082,361 bp. The observed average G + C content was 43.34%. A map of the complete chromosome of *X. stockiae* strain RT25.5 was created using the Proksee (Grant & Stothard, 2008) and is shown in figure 14. Most of the genes were associated with the metabolism of amino acids and their derivatives, cofactors, vitamins, prosthetic groups, pigments, and carbohydrates. Additional details regarding the annotated genome of strain RT25.5 are presented in Table 15.

**Table 15** A summary of the general genomic features of the complete genome of *X. stockiae* strain RT25.5

| Characteristics                          | Genome Annotation Data |
|------------------------------------------|------------------------|
| <b>Estimated genome size</b>             | 4,586,701 bp           |
| <b>Total genes</b>                       | 4,050                  |
| <b>Total Coding Sequences (CDSs)</b>     | 3,941                  |
| <b>Coding genes</b>                      | 3,858                  |
| <b>CDSs with protein</b>                 | 3,858                  |
| <b>RNA genes</b>                         | 109                    |
| <b>rRNAs</b>                             | 8, 7, 7 (5S, 16S, 23S) |
| <b>complete rRNAs</b>                    | 8, 7, 7 (5S, 16S, 23S) |
| <b>tRNAs</b>                             | 79                     |
| <b>ncRNAs</b>                            | 8                      |
| <b>Total pseudo genes</b>                | 83                     |
| <b>CDSs without protein</b>              | 83                     |
| <b>Pseudo genes (ambiguous residues)</b> | 0 of 83                |
| <b>Pseudo genes (frameshifted)</b>       | 26 of 83               |
| <b>Pseudo genes (incomplete)</b>         | 61 of 83               |
| <b>Pseudo genes (internal stop)</b>      | 13 of 83               |
| <b>Pseudo genes (multiple problems)</b>  | 14 of 83               |




**Figure 14 The map of the complete chromosome of *X. stockiae* strain RT25.5**  
**Comparative genomics among the *Xenorhabdus* spp.**

Further comparison of the genome of *X. stockiae* strain RT25.5 with publicly available *Xenorhabdus* genomes in the National Center for Biotechnology Information (NCBI) database was performed. At present, 122 *Xenorhabdus* spp. genome sequences have been deposited in the database, including 9 complete and 113 draft genome sequences. These genome sequences were downloaded from the NCBI database, and their accession numbers were listed in Table 16. The genome sizes of the complete *Xenorhabdus* spp. strains ranged from 3.7 Mb to 4.8 Mb, and the GC contents ranged from 43.50 to 45.50 %. A phylogenetic tree revealed a close association between RT25.5 and *X. stockiae* DSM 17904 (Figure 16), with an average nucleotide identity (ANI) of 0.956. The results confirmed that both strains belong to the same species. In contrast, the ANI values of RT25.5 with other *Xenorhabdus* spp. were consistently below the suggested species boundary cut-off of 95–96% (Arahal, 2014).

**Table 16** The genome sequences downloaded from the NCBI database

| Assembly number             | Organism name             | Strain     | Isolation country     |
|-----------------------------|---------------------------|------------|-----------------------|
| <b>ASM212754v1</b>          | <i>X. beddingii</i>       | DSM4764    | Australia: Queensland |
| <b>ASM1774301v1</b>         | <i>X. budapestensis</i>   | C72        | China: Jilin          |
| <b>ASM338666v1</b>          | <i>X. cabanillasii</i>    | DSM17905   | USA: Texas            |
| <b>ASM812467v1</b>          | <i>X. doucetiae</i>       | DSM17909   | France                |
| <b>ASM96819v1</b>           | <i>X. doucetiae</i>       | FRM16      | France: Martinique    |
| <b>ASM190810v1</b>          | <i>X. eapokensis</i>      | DL20       | Vietnam               |
| <b>ASM361046v1</b>          | <i>X. ehlersii</i>        | DSM16337   | China                 |
| <b>ASM190809v1</b>          | <i>X. thuongxuanensis</i> | 30TX1      | Vietnam               |
| <b>ASM263272v1</b>          | <i>X. hominickii</i>      | DSM17903   | Kenya                 |
| <b>ASM1446723v1</b>         | <i>X. indica</i>          | DSM17382   | India                 |
| <b>ASM90015535v1</b>        | <i>X. innexi</i>          | HGB1681    | NA                    |
| <b>ASM263275v1</b>          | <i>X. ishibashii</i>      | DSM22670   | China                 |
| <b>IMG-taxon 2684622846</b> | <i>X. japonica</i>        | DSM16522   | Japan                 |
| <b>IMG-taxon 2684622845</b> | <i>X. koppenhoeferi</i>   | ppDSM18168 | USA: New Jersey       |
| <b>ASM263287v1</b>          | <i>X. kozodoii</i>        | DSM17907   | Russia                |
| <b>ASM263261v1</b>          | <i>X. miraniensis</i>     | DSM17902   | Australia; Queensland |
| <b>ASM25295v1</b>           | <i>X. nematophila</i>     | ATCC19061  | NA                    |
| <b>ASM263282v1</b>          | <i>X. stockiae</i>        | DSM17904   | Thailand              |
| <b>ASM212753v1</b>          | <i>X. vietnamensis</i>    | DSM22392   | Vietnam               |



**Figure 15** A phylogenetic tree generated using whole genome sequences  
**Secondary metabolites biosynthetic gene clusters of complete *X. stockiae* strain RT25.5 genome**

To identify the potential BGCs, the complete genome of *X. stockiae* RT25.5 were analyzed using antiSMASH (Kai et al., 2021), followed by manual refinements using MIBiG database (Barbara et al., 2023), previous public researches, and an in-house database. A total of 21 biosynthetic gene clusters were identified including 13 NRPS, 4 Hybrid, 1 Terpene and 3 other clusters as shown in table 17. Notably, using antiSMASH, five clusters—clusters 2, 3, 4, 15, and 21—were identified as being associated with butyrolactone, aryl polyenes (Gina et al., 2019), fabclavine (Fuchs et al., 2014), carotenoid, and betalactone, respectively. Meanwhile, gene clusters 1, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, and 19 were manually verified and found to share module structure similarities with known BGCs including ATRed (1) (Tietze et al., 2020), xenobactin (Grundmann et al., 2013), PAX (Dreyer et al., 2019), nematophin (Jianxiong, Genhui, & John, 1997), rhabdopeptide/xenortide-like peptides (RXPs)

(Reimer, 2013), GameXpeptide (Nollmann et al., 2015), cuidadopeptide (inhouse data), ATRed (2) (Tietze et al., 2020), pyrrolizixenamide (Olivia et al., 2015), and xenoamicin (Qiuqin et al., 2013), respectively. Intriguingly, the remaining three clusters (gene clusters 5, 14, and 20) did not match any known gene clusters, suggesting the potential novelty of the metabolites derived from these predicted gene clusters or existing compounds for which the modules could not be elucidated.

As for unknown BGCs, *cluster-5* represented high similar to lipopeptides (J. H. Li et al., 2021) which predicted chemical structure and module organization were shown in Figure 17. The hybrid T1PKS (Type I Polyketide Synthase) and NRPS (Non-Ribosomal Peptide Synthase) identified in *clusters-14* were previously discovered in the above study. Genes within these clusters include Type I polyketide synthase, transposase, non-ribosomal peptide synthase/polyketide synthase, and transposase, IS1 family transposase, tyrosine-type recombinase/integrase, three hypothetical proteins, universal stress protein UspE, FNR family transcription factor, dimethyl sulfoxide reductase anchor subunit, pyridoxal-dependent decarboxylase, TauD/TfdA family dioxygenase, class I SAM-dependent methyltransferase, and MFS transporter. Lastly, *cluster-20*, characterized as a hybrid NRPS+T1PKS, exhibited a 60% similarity with the putrebactin biosynthetic gene cluster from *X. budapestensis* which could be a novel analog due to the genes identified in *X. stockiae* strain RT25.5 showed significant differences from the reference strain.

**Table 17 Secondary metabolite gene clusters annotated in *X. stockiae* strain RT25.5 using antiSMASH and our in-house database**  
The gene clusters included 13 nonribosomal peptide synthetases (NRPSs), 4 hybrids, 1 terpene and 3 other gene clusters.

| Cluster | Type      | From      | To        | Identified gene clusters                    | Approach         | MiBiG ID/References      |
|---------|-----------|-----------|-----------|---------------------------------------------|------------------|--------------------------|
| 1       | NRPS-like | 463,189   | 504,807   | ATred                                       | manual           | (Tietze et al., 2020)    |
| 2       | Other     | 581,475   | 625,089   | Aryl polyenes                               | antiSMASH (100%) | BGC0002008               |
| 3       | Other     | 642,212   | 652,970   | Butyrolactone                               | antiSMASH (100%) | Blin et al., 2021        |
| 4       | Hybrid    | 1,421,197 | 1,485,269 | Fabclavine Ia                               | antiSMASH (100%) | BGC0001872               |
| 5       | NRPS      | 1,485,429 | 1,527,914 | Unknown - lipopeptides                      | manual           | NA                       |
| 6       | NRPS      | 1,678,384 | 1,690,725 | Bovicinimide A                              | manual           | (Shi et al., 2022)       |
| 7       | Hybrid    | 1,709,083 | 1,767,762 | Acinetobactin                               | manual           | BGC000294                |
| 8       | NRPS      | 1,897,190 | 1,915,359 | Xenemotide                                  | manual           | BGC0001826               |
| 9       | NRPS      | 1,934,250 | 1,956,644 | Xenobactin                                  | manual           | (Grundmann et al., 2013) |
| 10      | NRPS      | 2,014,205 | 2,076,576 | PAX peptides                                | manual           | Dreyer et al., 2019      |
| 11      | NRPS      | 2,192,855 | 2,197,015 | Nematophin                                  | manual           | BGC0001434               |
| 12      | NRPS      | 2,197,503 | 2,211,741 | Rhabdopeptide/xenotide-like peptides (RXPs) | manual           | BGC0000416               |
| 13      | NRPS      | 2,220,964 | 2,236,638 | GameXpeptide                                | manual           | BGC0002716               |
| 14      | Hybrid    | 2,252,638 | 2,281,381 | Unknown                                     | manual           | NA                       |
| 15      | Terpene   | 2,323,962 | 2,461,175 | Carotenoid                                  | antiSMASH (50%)  | BGC000640                |
| 16      | NRPS      | 2,343,886 | 2,368,454 | Cuidadopeptide                              | manual           | Inhouse database         |
| 17      | NRPS      | 2,398,339 | 2,401,344 | ATred                                       | manual           | (Tietze et al., 2020)    |
| 18      | NRPS      | 2,434,403 | 2,441,629 | Pyrrolizixenamide                           | manual           | BGC0001873               |
| 19      | NRPS      | 2,793,938 | 2,877,007 | Xenoamicin                                  | manual           | BGC000464                |
| 20      | Hybrid    | 3,464,983 | 3,522,468 | Unknown                                     | manual           | NA                       |
| 21      | Other     | 3,717,582 | 3,743,022 | Betalactone                                 | antiSMASH (100%) | Blin et al., 2021        |



**Figure 16** Summary of the domain composition and organization of the unidentified clusters

### **Detection of secondary metabolites produced using LC-MSMS analysis**

The culture of strain RT25.5 was examined for bioactive compounds, leading to the identification of several compounds of interest. These included GameXPeptides A and C, Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(phenylmethyl), PE(16:1/0:0) ( $[M+H]^+$  C<sub>21</sub>H<sub>43</sub>N<sub>1</sub>O<sub>7</sub>P<sub>1</sub>), PE(18:1/0:0) ( $[M+H]^+$  C<sub>23</sub>H<sub>47</sub>N<sub>1</sub>O<sub>7</sub>P<sub>1</sub>), xenobactins, Pyrrolizixenamides A (N-(1-oxo-5,6,7,7a-tetrahydropyrrolizin-3-yl)hexanamide, Pyrrolizixenamides B N-(1-oxo-5,6,7,7a-tetrahydropyrrolizin-3-yl)heptanamide), and 5S-hydroxynorvaline-S-Ile and N-(Indol-3-ylethyl)-2-hydroxy-3-methylpe, as shown in Figure 22.



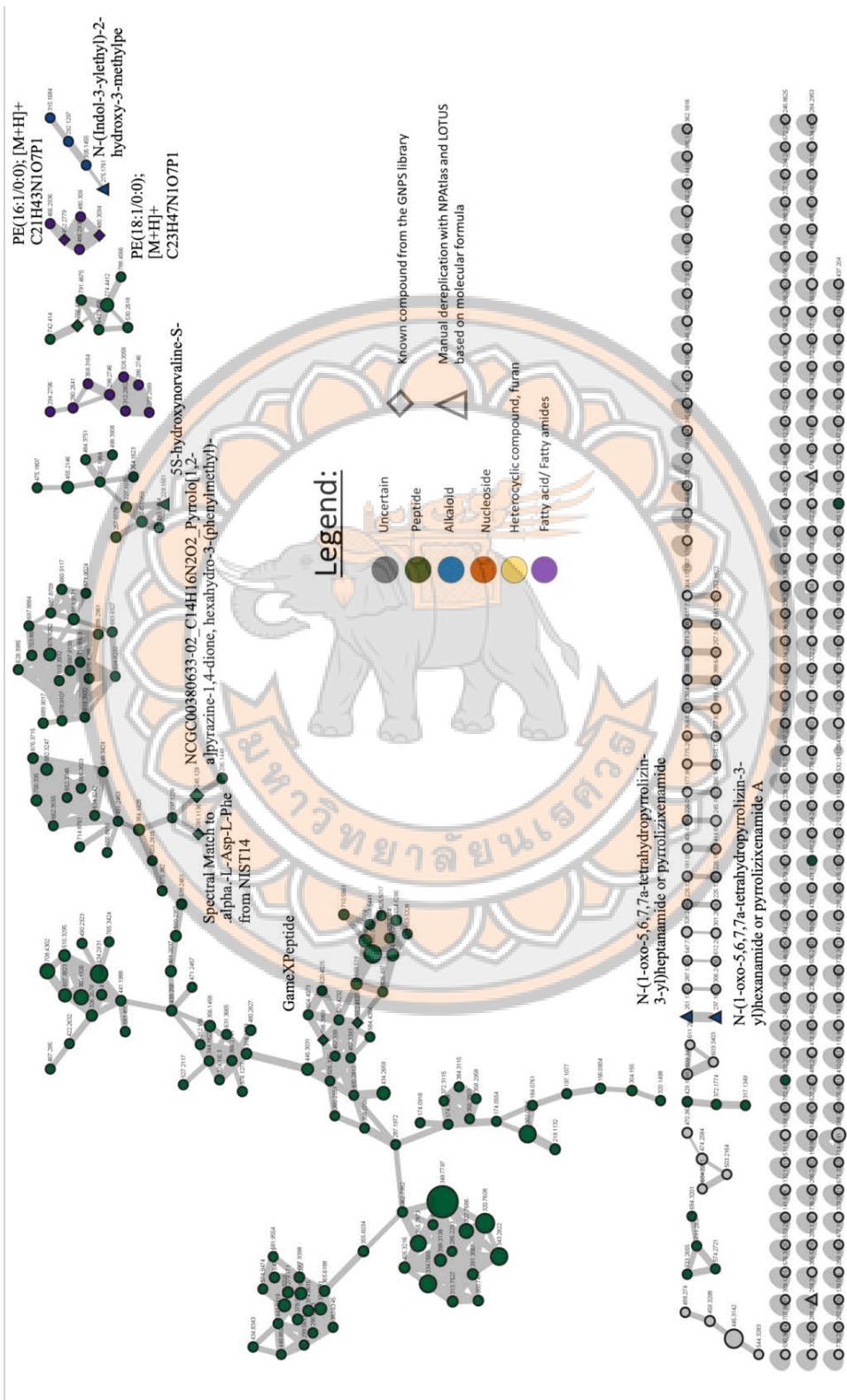
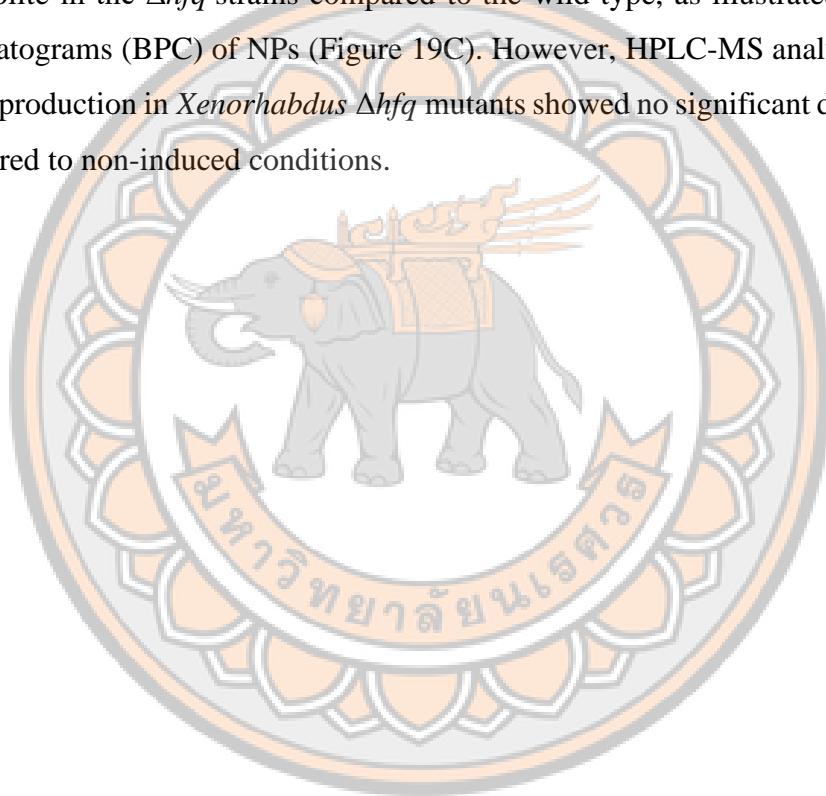
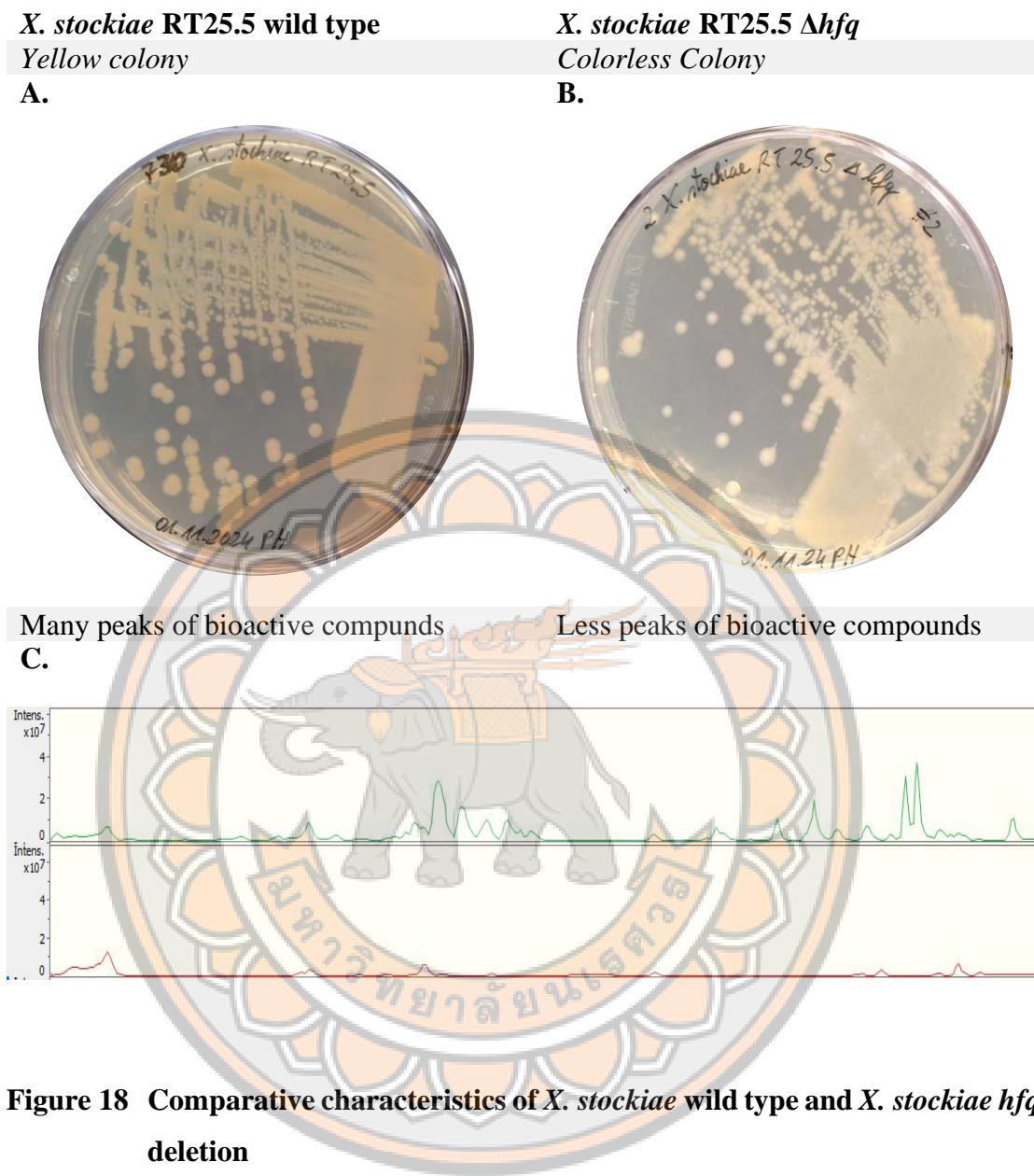




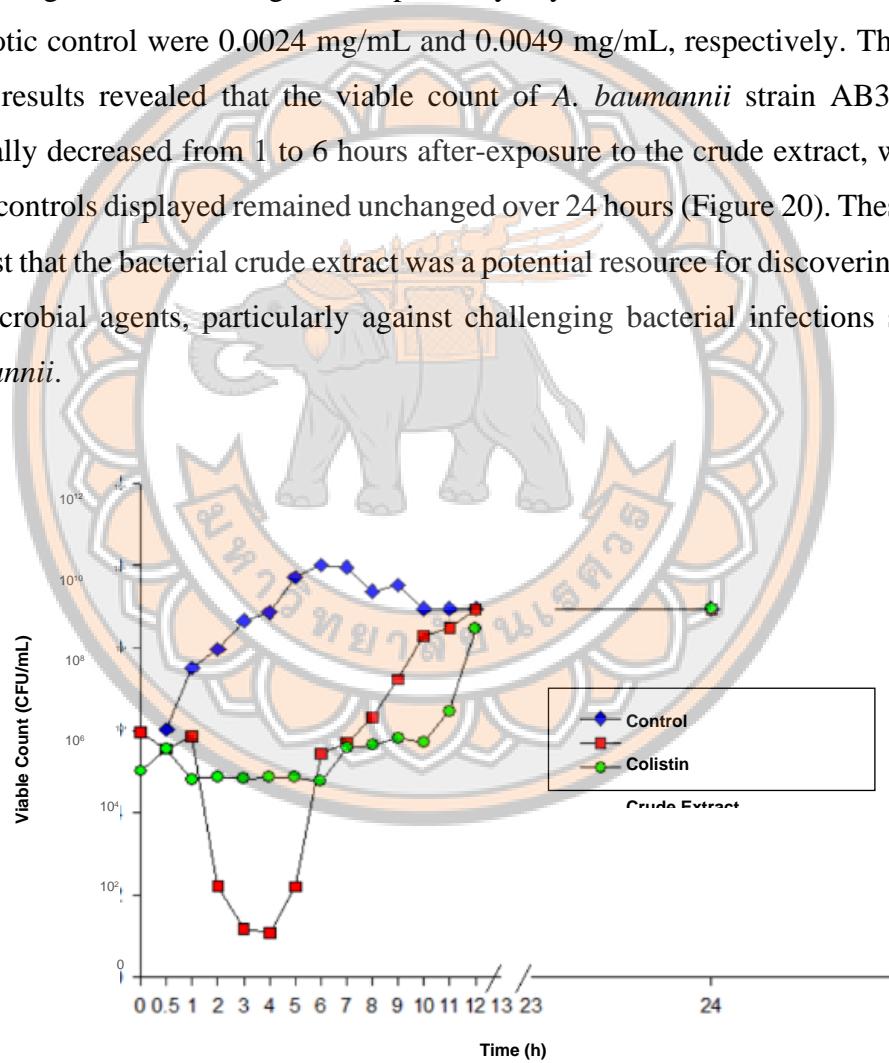

Figure 17 Detection of secondary metabolites produced by the *X. stockiae* strain RT25.5

### **Isolation the natural product from the *X. stockiae* strain RT25.5 using the easy Promoter Activation and Compound Identification (easyPACId) approach**

The creation of the  $\Delta hfq$  mutant was successfully verified by colony PCR. Compared to the culture of *X. stockiae* wild type (Figure 19A), the  $\Delta hfq$  mutant (Figure 19B) appears colorless due to the absence of its secondary metabolite pigments, aryl polyenes—yellow pigments commonly found in Gram-negative bacteria. HPLC-MS analysis of the culture supernatants confirmed the absence of most secondary metabolite in the  $\Delta hfq$  strains compared to the wild type, as illustrated by base peak chromatograms (BPC) of NPs (Figure 19C). However, HPLC-MS analysis of targeted BGCs production in *Xenorhabdus*  $\Delta hfq$  mutants showed no significant difference when compared to non-induced conditions.

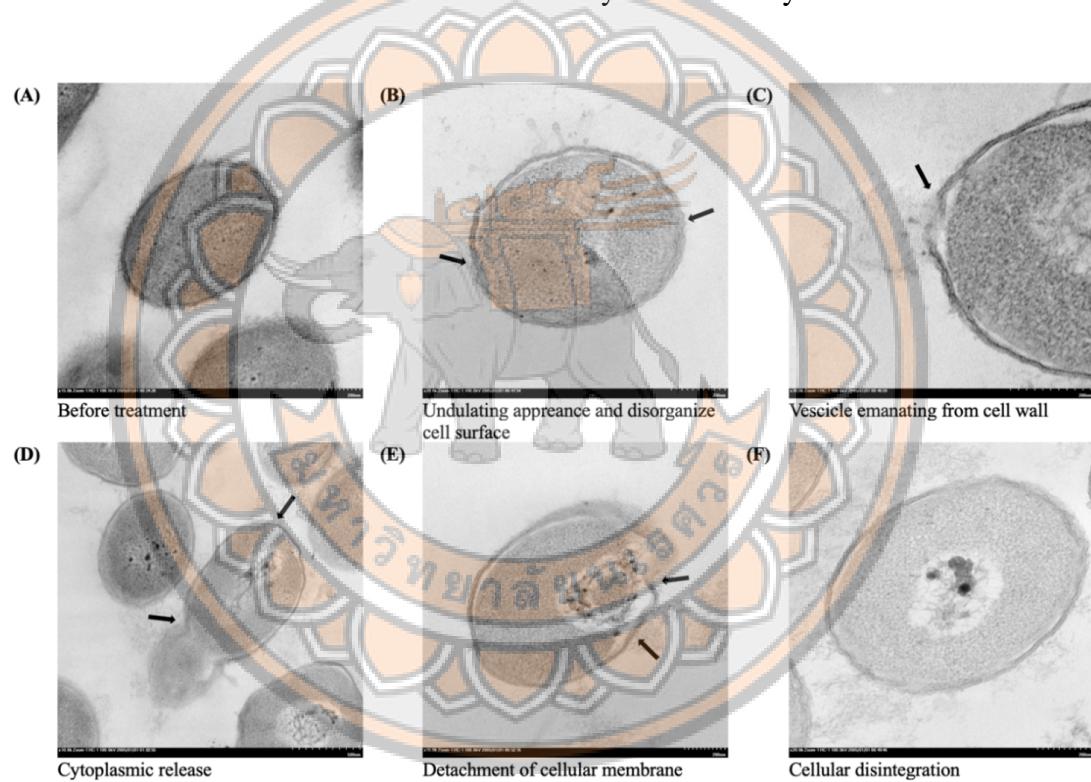





**Figure 18 Comparative characteristics of *X. stockiae* wild type and *X. stockiae*  $hfq$  deletion**

(A) *Xenorhabdus stockiae* wild type (B) *Xenorhabdus stockiae*  $\Delta hfq$  (C) HPLC-MS analysis compare between *X. stockiae* WT (green line) and *X. stockiae*  $\Delta hfq$  (red line)

#### Bacterial strains and their antimicrobial activities


The crude extract of *X. stockiae* strain RT 25.5 exhibited antimicrobial activity against both Gram-positive and Gram-negative bacteria in a rapid screening using the disk diffusion method. This included *A. baumannii*, *S. aureus*, *E. coli*, *E. faecalis*,

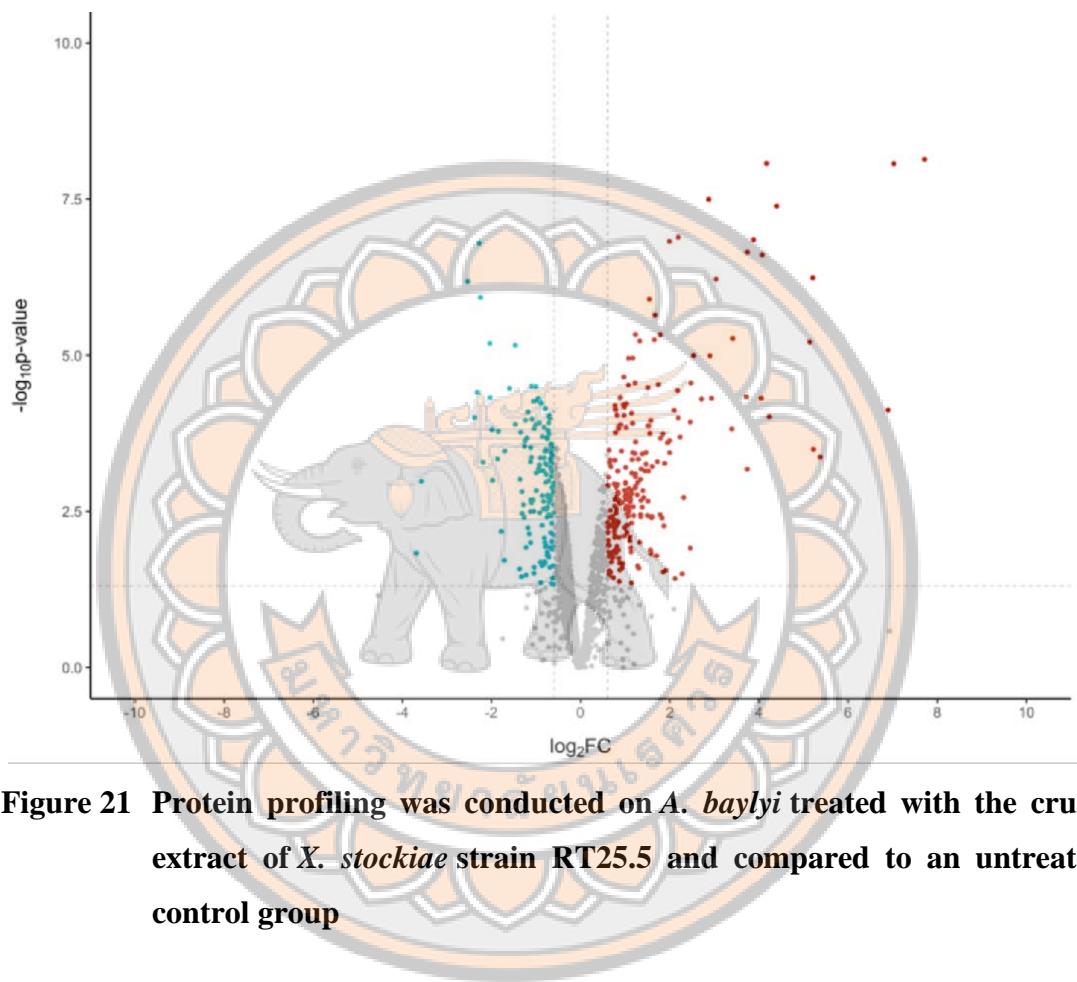
and *K. pneumoniae*. Notably, the extract showed potent activity against an extensively drug-resistant (XDR) strain of *A. baumannii*, a bacterium for which the development of novel antibiotics is urgently needed (Clarke, 2016; Luísa et al., 2014), with a zone of inhibition of 8 mm. In comparison, the antibiotic control had a zone of inhibition of 12 mm. Therefore, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the crude extract were determined against *A. baumannii* strain AB320. The results showed MIC and MBC values of the crude extract of 3.90 mg/mL and 7.81 mg/mL, respectively. By contrast, the MIC and MBC of the antibiotic control were 0.0024 mg/mL and 0.0049 mg/mL, respectively. The time kill curve results revealed that the viable count of *A. baumannii* strain AB320 (XDR) gradually decreased from 1 to 6 hours after-exposure to the crude extract, while those of the controls displayed remained unchanged over 24 hours (Figure 20). These findings suggest that the bacterial crude extract was a potential resource for discovering effective antimicrobial agents, particularly against challenging bacterial infections such as *A. baumannii*.



**Figure 19** The time-kill curves of the 1X MIC of the extract against *A. baumannii* strain AB320 (XDR)

To observe morphological and ultrastructural changes in the bacterial cells before and after treatment with the extract, we then employed electron microscopy technique. The results illustrated that the cell wall and cell membrane of *A. baumannii* treated with the crude extract at 1X MIC exhibited substantial ultrastructural damage compared to the controls (Figure 21). These damages included condensation of the nucleoid and distortion of the cell surface with numerous clumps and blebs. In addition, cells treated with the extract exhibited cytoplasmic changes, including vacuolization and nucleoid aggregation, along with increased permeability and corresponding membrane destabilization that could eventually lead to cell lysis.




**Figure 20** TEM images of *A. baumannii* strain AB320 (XDR)

Before (A) and after (B–F) exposure to crude extract of *X. stockiae* strain RT25.5 for 4 hours. Figure 4B-F shows ultrastructural damage in bacterial cells induced by the bioactive compounds.

### Differential protein expressions in *Acinetobacter baylyi* treated with crude extract of *X. stockiae* strain RT25.5

A proteomic assay was performed to identify differentially expressed proteins in *Acinetobacter baylyi*, which was used as a model organism instead of *A. baumannii* strain AB320. This substitution was due to biosafety limitations, as *A. baylyi* is a non-pathogenic strain. The assay was conducted under both treated and untreated conditions with the crude extract of *X. stockiae* strain RT25.5. Proteins were considered upregulated if the log<sub>2</sub> fold change exceeded 0.6 and downregulated if it was below 0.6. Statistically significant proteins were defined by a p-value < 0.05 (Inmaculada et al., 2023). Information on the identified proteins, including names, accession numbers, and abundances, was retrieved from the UniProt database (“UniProt: The Universal Protein Knowledgebase in 2023,” 2023). A volcano plot in Figure 22 demonstrated the differential alterations in protein abundance between treated and untreated samples (Table 18), based on the specified fold change criteria. A total of 229 proteins consistently up regulated in *Acinetobacter* treated group compared to the untreated group. Among these proteins, notable examples include putative monooxygenase (Flavin-binding family), aldehyde dehydrogenase, metal-dependent hydrolase, putative short-chain dehydrogenase, lipase, type VI secretion system tube protein Hcp, zinc metalloprotease, alcohol dehydrogenase, p-hydroxybenzoate hydroxylase, and putative RND efflux membrane fusion protein. Functional analysis showed that the upregulated proteins involved numerous essential metabolic and biological processes, for examples, enzymatic degradation of antibacterial agents, alterations in bacterial proteins that serve as targets for antimicrobial agents binding, and changes in membrane permeability to the agents. These biological processes revealed that multiple immune-related pathways were involved in bacterial host responses. In contrast, the *Acinetobacter* treated group exhibited a significant decrease in the expressions of 147 proteins, including heme oxygenase, putative receptor protein, putative transcriptional regulator (AraC family) (Nitrilase regulator), YbdD/YjiX family protein, l-carnitine dehydrogenase, 30S ribosomal protein S12, NAD (+) diphosphatase, putative acetyltransferase, putative acetyl-CoA hydrolase/transferase, and putative ferric siderophore receptor protein (Table 18). These expressions indicated a significant impact, leading to the reduction of heme de-cyclizing activity, cellular component proteins, DNA-binding transcription

factor activity, alpha-methyl acyl-CoA racemase activity, tRNA binding, NAD<sup>+</sup> diphosphatase activity, acyltransferase activity (transferring groups other than aminoacyl groups), acetate CoA-transferase activity, and siderophore-iron transmembrane transporter activity.



**Figure 21** Protein profiling was conducted on *A. baylyi* treated with the crude extract of *X. stockiae* strain RT25.5 and compared to an untreated control group

The y-axis represents the statistical significance of gene expression differences, while the x-axis indicates the magnitude of these differences. Downregulated proteins are shown in blue, non-significant proteins in grey, and upregulated proteins in red.

**Table 18** The altered protein expressions in *Acinetobacter*-treated with *X. stockiae* strain RT25.5 extract

| No. | proteinDescription                                                         | Gene symbol | pval     | log2fc      | padj        | diffexpressed |
|-----|----------------------------------------------------------------------------|-------------|----------|-------------|-------------|---------------|
| 1   | Putative monooxygenase (Flavin-binding family)                             | ACIAD2794   | 7.28E-09 | 7.715546498 | 8.137931381 | UP            |
| 2   | Aldehyde dehydrogenase                                                     | calB        | 8.48E-09 | 4.17105034  | 8.071352713 | UP            |
| 3   | Metal-dependent hydrolase                                                  | ACIAD0640   | 8.56E-09 | 7.023171355 | 8.067676988 | UP            |
| 4   | Putative short-chain dehydrogenase                                         | ACIAD3555   | 3.19E-08 | 2.871085121 | 7.495675255 | UP            |
| 5   | Lipase                                                                     | ACIAD3309   | 4.08E-08 | 4.397051078 | 7.389451785 | UP            |
| 6   | Type VI secretion system tube protein Hcp                                  | ACIAD2689   | 1.29E-07 | 2.188816011 | 6.890214262 | UP            |
| 7   | Zinc metalloprotease                                                       | ACIAD1377   | 1.42E-07 | 3.87736158  | 6.849137274 | UP            |
| 8   | Alcohol dehydrogenase                                                      | adhA        | 1.50E-07 | 1.99143151  | 6.823354776 | UP            |
| 9   | p-hydroxybenzoate hydroxylase                                              | pobA        | 2.24E-07 | 3.736154839 | 6.649303585 | UP            |
| 10  | Putative RND efflux membrane fusion protein                                | ACIAD3625   | 2.47E-07 | 4.07152987  | 6.607321351 | UP            |
| 11  | Probable FAD-binding monooxygenase AlmA                                    | almA        | 5.76E-07 | 5.206550363 | 6.239527921 | UP            |
| 12  | Type VI secretion system tip protein VgrG                                  | ACIAD3427   | 6.06E-07 | 3.035360981 | 6.217435944 | UP            |
| 13  | Putative alcohol dehydrogenase                                             | ACIAD2015   | 1.27E-06 | 1.539003418 | 5.895908767 | UP            |
| 14  | Hydroxybenzaldehyde dehydrogenase                                          | hcaB        | 2.27E-06 | 1.668649539 | 5.644334402 | UP            |
| 15  | Putative RND type efflux pump involved in aminoglycoside resistance (AdeT) | ACIAD0008   | 4.66E-06 | 1.22733417  | 5.331403521 | UP            |

**Table 18 (Cont.)**

| No. | proteinDescription                                                                   | Gene symbol | pval     | log2fc      | padj        | diffexpressed |
|-----|--------------------------------------------------------------------------------------|-------------|----------|-------------|-------------|---------------|
| 16  | Putative FMN oxidoreductase                                                          | ACIAD1143   | 4.70E-06 | 1.784414093 | 5.327905233 | UP            |
| 17  | Putative transcriptional regulator putative detoxification transcriptional regulator | ACIAD3599   | 5.40E-06 | 3.409919902 | 5.267655593 | UP            |
| 18  | Putative 3-hydroxybutyryl-CoA epimerase                                              | ACIAD2989   | 5.64E-06 | 1.653459596 | 5.24884653  | UP            |
| 19  | Acetaldehyde dehydrogenase 2 (Acetaldehyde dehydrogenase II) (ACDH-II)               | acoD        | 5.91E-06 | 1.324798017 | 5.228096397 | UP            |
| 20  | Putative carboxymethylenebutenolidase (Dienelactone hydrolase) (DLH)                 | ACIAD2677   | 6.13E-06 | 5.13828439  | 5.21277764  | UP            |
| 21  | Nodulation protein                                                                   | nolG        | 1.01E-05 | 2.533203756 | 4.997299325 | UP            |
| 22  | Putative oxidoreductase, short-chain dehydrogenase/reductase family                  | ACIAD2676   | 1.02E-05 | 2.898074572 | 4.990510515 | UP            |
| 23  | Putative transcriptional regulator (TetR family)                                     | ACIAD2793   | 1.11E-05 | 1.164987693 | 4.955894212 | UP            |
| 24  | 3-dehydroshikimate dehydratase                                                       | quiC        | 1.12E-05 | 1.071285304 | 4.951600012 | UP            |
| 25  | Protocatechuate 3,4-dioxygenase alpha chain                                          | pcaG        | 2.23E-05 | 0.966483963 | 4.651572167 | UP            |
| 26  | Metallo-beta-lactamase domain-containing protein                                     | ACIAD1678   | 2.77E-05 | 1.218289291 | 4.557984176 | UP            |
| 27  | Anthranilate 1,2-dioxygenase electron transfer component                             | antC        | 2.78E-05 | 2.473418686 | 4.555800173 | UP            |

**Table 18 (Cont.)**

| No. | proteinDescription                                          | Gene symbol | pval     | log2fc      | padj        | diffexpressed |
|-----|-------------------------------------------------------------|-------------|----------|-------------|-------------|---------------|
| 28  | Glycine zipper 2TM domain-containing protein                | ACIAD2419   | 2.95E-05 | 1.741512275 | 4.530164262 | UP            |
| 29  | Putative alcohol dehydrogenase                              | ACIAD2929   | 3.00E-05 | 1.066798215 | 4.522577046 | UP            |
| 30  | Uncharacterized protein                                     | ACIAD3114   | 3.30E-05 | 1.507940716 | 4.480970289 | UP            |
| 31  | DUF4105 domain-containing protein                           | ACIAD0513   | 3.68E-05 | 2.17284065  | 4.433693434 | UP            |
| 32  | Citrate transporter                                         | citN        | 4.64E-05 | 3.716392188 | 4.333018151 | UP            |
| 33  | Putative bifunctional protein (SpoT)                        | ACIAD3326   | 4.78E-05 | 0.883401516 | 4.320466877 | UP            |
| 34  | ABC3 transporter permease protein domain-containing protein | ACIAD1059   | 4.89E-05 | 2.936002569 | 4.310619278 | UP            |
| 35  | Uncharacterized protein                                     | ACIAD1492   | 4.90E-05 | 4.050007447 | 4.30982383  | UP            |
| 36  | Serine aminopeptidase S33 domain-containing protein         | ACIAD2795   | 5.02E-05 | 2.711137442 | 4.299373536 | UP            |
| 37  | SCP2 domain-containing protein                              | ACIAD2928   | 5.97E-05 | 1.017507985 | 4.224114738 | UP            |
| 38  | DNA repair protein RadA                                     | radA        | 6.23E-05 | 0.958877199 | 4.205239424 | UP            |
| 39  | NA                                                          | NA          | 6.41E-05 | 0.770524794 | 4.193014408 | UP            |
| 40  | Phenol degradation protein meta                             | ACIAD2673   | 6.76E-05 | 0.97785342  | 4.169966116 | UP            |
| 41  | Protocatechuate 3,4-dioxygenase beta chain                  | pcaH        | 7.52E-05 | 0.781338013 | 4.123787009 | UP            |
| 42  | Fatty acid hydroxylase domain-containing protein            | ACIAD3405   | 7.55E-05 | 6.896846289 | 4.121806333 | UP            |
| 43  | Putative integral membrane protein, possible transporter    | ACIAD3184   | 7.59E-05 | 2.095749289 | 4.11982007  | UP            |

**Table 18 (Cont.)**

| No. | proteinDescription                                                                              | Gene symbol | pval        | log2fc       | padj        | diffexpressed |
|-----|-------------------------------------------------------------------------------------------------|-------------|-------------|--------------|-------------|---------------|
| 44  | Transglycosylase SLT domain-containing protein                                                  | ACIAD1663   | 8.44E-05    | 1.140392988  | 4.07352057  | UP            |
| 45  | Beta-lactamase-related domain-containing protein                                                | ACIAD0400   | 9.12E-05    | 0.816533579  | 4.040124377 | UP            |
| 46  | 3-oxoadipate enol-lactonase 1                                                                   | pcaD        | 9.16E-05    | 0.9668724028 | 4.038290657 | UP            |
| 47  | Putative oxidoreductase                                                                         | ACIAD2790   | 9.65E-05    | 4.231112948  | 4.015438759 | UP            |
| 48  | Uncharacterized protein                                                                         | ACIAD2031   | 0.000100902 | 2.186971573  | 3.996101861 | UP            |
| 49  | Cellulose synthase regulatory subunit                                                           | ACIAD1177   | 0.000111332 | 1.57225412   | 3.953381452 | UP            |
| 50  | Putative membrane protein                                                                       | ACIAD0147   | 0.000117309 | 2.457258716  | 3.930666883 | UP            |
| 51  | D-amino acid dehydrogenase                                                                      | dadA        | 0.000123304 | 1.161322612  | 3.909021384 | UP            |
| 52  | 3-hydroxyacyl-[acyl-carrier-protein] dehydratase FabZ                                           | fabZ        | 0.000130423 | 0.899103571  | 3.84646301  | UP            |
| 53  | 3-carboxy-cis,cis-muconate cycloisomerase                                                       | pcaB        | 0.000134991 | 1.507888467  | 3.86695505  | UP            |
| 54  | Small-conductance mechanosensitive channel                                                      | ACIAD0750   | 0.000135578 | 1.531031048  | 3.867810543 | UP            |
| 55  | Putative transporter                                                                            | ACIAD0702   | 0.00013689  | 0.857837439  | 3.863626715 | UP            |
| 56  | Type I secretion system permease/ATPase                                                         | ACIAD1488   | 0.000142694 | 1.017397398  | 3.845595768 | UP            |
| 57  | D-alanyl-D-alanine endopeptidase, penicillin-binding protein 7 and penicillin-binding protein 8 | pppG        | 0.000149519 | 0.852404192  | 3.825303015 | UP            |

**Table 18 (Cont.)**

| No. | proteinDescription                                 | Gene symbol | pval        | log2fc      | padj        | diffexpressed |
|-----|----------------------------------------------------|-------------|-------------|-------------|-------------|---------------|
| 58  | Acyl coenzyme A dehydrogenase                      | fadE        | 0.000151985 | 3.388565553 | 3.818198993 | UP            |
| 59  | PGAP1-like protein                                 | ACIAD3425   | 0.000173434 | 0.780988081 | 3.760864771 | UP            |
| 60  | Anthranilate 1,2-dioxygenase small subunit         | antB        | 0.000179076 | 1.552574955 | 3.746963582 | UP            |
| 61  | VanK                                               | vanK        | 0.000183449 | 1.842466983 | 3.736484251 | UP            |
| 62  | Putative transport of long-chain fatty acids       | ACIAD2788   | 0.000204828 | 2.229640505 | 3.688610715 | UP            |
| 63  | Putative hemagglutinin protein (FhaB)              | ACIAD2784   | 0.000213862 | 1.791500603 | 3.669865905 | UP            |
| 64  | tRNA(Ile)-lysidine synthase                        | tilS        | 0.000232854 | 1.996155614 | 3.632915695 | UP            |
| 65  | NA                                                 | NA          | 0.000244002 | 1.230115489 | 3.612607117 | UP            |
| 66  | Uncharacterized protein                            | ACIAD2949   | 0.000251891 | 1.946065306 | 3.598786703 | UP            |
| 67  | Putative flavin-binding monooxygenase              | ACIAD2339   | 0.000321394 | 5.220000966 | 3.492962118 | UP            |
| 68  | Polyketide cyclase / dehydrase and lipid transport | ACIAD2349   | 0.000331335 | 0.634638548 | 3.479732452 | UP            |
| 69  | Paraquat-inducible protein                         | pqiB        | 0.000343191 | 0.916922211 | 3.46446471  | UP            |
| 70  | Sodium/proline symporter                           | putP        | 0.000360538 | 1.465426462 | 3.443048401 | UP            |
| 71  | Putative very-long-chain acyl-CoA synthetase       | ACIAD0437   | 0.000361009 | 1.167228058 | 3.442482384 | UP            |
| 72  | Putative transport protein (MFS superfamily)       | ACIAD2822   | 0.000362842 | 1.99544581  | 3.440282485 | UP            |

**Table 18 (Cont.)**

| No. | proteinDescription                                                                                                 | Gene symbol | pval        | log2fc       | padj        | diffexpressed |
|-----|--------------------------------------------------------------------------------------------------------------------|-------------|-------------|--------------|-------------|---------------|
| 73  | Putative UDP-glucose lipid carrier transferase/glucose-1-phosphate transferase in colanic acid gene cluster (WcaJ) | ACIAD0098   | 0.000375421 | 1.218439994  | 3.425481151 | UP            |
| 74  | Acyl-coenzyme A dehydrogenase                                                                                      | ACIAD2277   | 0.00038029  | 1.379642602  | 3.419884849 | UP            |
| 75  | Putative efflux transporter causing drug resistance (Acr family)                                                   | ACIAD3624   | 0.000426407 | 5.373668598  | 3.370175948 | UP            |
| 76  | DUF2171 domain-containing protein                                                                                  | ACIAD0005   | 0.00046307  | 1.2933201048 | 3.334353038 | UP            |
| 77  | Putative transport protein (ABC superfamily, ATP_bind)                                                             | ACIAD1873   | 0.000470337 | 1.154513656  | 3.32759115  | UP            |
| 78  | Xenobiotic reductase                                                                                               | xenB        | 0.00047679  | 0.656713945  | 3.321672587 | UP            |
| 79  | OmpW family protein                                                                                                | ACIAD2272   | 0.000480761 | 0.7677270981 | 3.318070633 | UP            |
| 80  | Putative acyl-CoA dehydrogenase                                                                                    | ACIAD3262   | 0.000508558 | 1.71902847   | 3.293640436 | UP            |
| 81  | DUF411 domain-containing protein                                                                                   | ACIAD3428   | 0.000523295 | 0.647799771  | 3.281253314 | UP            |
| 82  | Putative transporter with mechanosensitive ion channel                                                             | ACIAD1869   | 0.000540287 | 1.88356797   | 3.2673754   | UP            |
| 83  | Efflux pump membrane transporter                                                                                   | ACIAD2944   | 0.000555388 | 1.463959401  | 3.255403432 | UP            |
| 84  | Putative permease (PerM family)                                                                                    | ACIAD2633   | 0.000606391 | 1.603901046  | 3.217247312 | UP            |
| 85  | PNPLA domain-containing protein                                                                                    | ACIAD1335   | 0.000608339 | 0.677169808  | 3.215854314 | UP            |
| 86  | Type VI secretion system tip protein VgrG                                                                          | ACIAD3115   | 0.00062633  | 1.008797353  | 3.203196907 | UP            |

**Table 18 (Cont.)**

| No. | proteinDescription                                                          | Gene symbol | pval        | log2fc      | padj        | diffexpressed |
|-----|-----------------------------------------------------------------------------|-------------|-------------|-------------|-------------|---------------|
| 87  | Thiol:disulfide interchange protein                                         | dsbD        | 0.000662046 | 1.355864486 | 3.179111514 | UP            |
| 88  | MAPEG family protein                                                        | ACIAD0237   | 0.000668488 | 3.734161154 | 3.174906367 | UP            |
| 89  | Xanthine dehydrogenase, large subunit                                       | xdhB        | 0.000712358 | 1.439361204 | 3.147301573 | UP            |
| 90  | Putative aldehyde dehydrogenase                                             | ACIAD0998   | 0.000714925 | 1.519338903 | 3.145739509 | UP            |
| 91  | Putative thiolase putative acyl-CoA thiolase                                | ACIAD2988   | 0.000716105 | 0.829794166 | 3.145023543 | UP            |
| 92  | Glutathione-regulated potassium-efflux system protein (K(+)H(+) antiporter) | kef         | 0.000769577 | 1.146382011 | 3.113748081 | UP            |
| 93  | 4-hydroxybenzoate transporter PcaK                                          | pcaK        | 0.000792616 | 1.226099079 | 3.100937357 | UP            |
| 94  | Type VI secretion system tip protein VgrG                                   | ACIAD1788   | 0.000877855 | 1.226921632 | 3.056577117 | UP            |
| 95  | Preprotein translocase subunit SecA                                         | ACIAD0896   | 0.000899147 | 0.621779068 | 3.046169406 | UP            |
| 96  | J domain-containing protein                                                 | ACIAD2412   | 0.000969822 | 1.339768252 | 3.013307783 | UP            |
| 97  | Cytochrome bo(3) ubiquinol oxidase subunit 3                                | cyoC        | 0.001085915 | 1.280207346 | 2.964204156 | UP            |
| 98  | NADH-quinone oxidoreductase subunit A                                       | nuoA        | 0.001090415 | 1.005184371 | 2.962408072 | UP            |
| 99  | Metal-dependent hydrolase                                                   | ACIAD0886   | 0.001134679 | 1.003174685 | 2.945126861 | UP            |
| 100 | 2,4-dienoyl-CoA reductase                                                   | fadH        | 0.00114623  | 0.751397524 | 2.94072816  | UP            |
| 101 | Putative 3-oxoacyl-[acyl]-carrier-protein synthase III                      | ACIAD2101   | 0.00117077  | 0.821431446 | 2.931528372 | UP            |
| 102 | Putative pilus assembly protein (FIE)                                       | ACIAD0671   | 0.001210046 | 0.615542778 | 2.917198076 | UP            |

**Table 18 (Cont.)**

| No. | proteinDescription                                                                                                | Gene symbol | pval        | log2fc      | padj        | diffexpressed |
|-----|-------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|---------------|
| 103 | 2,4-dienoyl-CoA reductase [NADPH] (2,4-dienoyl coenzyme A reductase)                                              | fadH        | 0.001259731 | 1.229026122 | 2.899722196 | UP            |
| 104 | CDP-diacylglycerol-3-phosphate 3-phatidyltransferase<br>(Phosphatidylglycerophosphate synthase)<br>(PGP synthase) | pgsA        | 0.001291029 | 0.792475703 | 2.889064019 | UP            |
| 105 | Uncharacterized protein                                                                                           | ACIAD0907   | 0.001345378 | 1.219730739 | 2.871155726 | UP            |
| 106 | 4-carboxymuconolactone decarboxylase                                                                              | pcaC        | 0.001362979 | 1.081891102 | 2.86551078  | UP            |
| 107 | 50S ribosomal protein L2                                                                                          | rplB        | 0.001450855 | 0.982414716 | 2.838375881 | UP            |
| 108 | Quinate/shikimate dehydrogenase (quinone)                                                                         | quiA        | 0.001456698 | 1.129754988 | 2.836630547 | UP            |
| 109 | Putative amino acid transport protein (ABC superfamily, ATP_bind and membrane)                                    | ACIAD3488   | 0.001476894 | 1.39342968  | 2.830650764 | UP            |
| 110 | Phosphate transporter                                                                                             | pit         | 0.001536023 | 0.99998037  | 2.81360237  | UP            |
| 111 | Putative general stress protein 26                                                                                | ACIAD1776   | 0.001551834 | 0.827455065 | 2.809154638 | UP            |
| 112 | Pyruvate dehydrogenase (Cytochrome)                                                                               | poxB        | 0.001605824 | 0.842641214 | 2.79430204  | UP            |
| 113 | Penicillin-binding protein 1B                                                                                     | mrcB        | 0.001607052 | 0.847414738 | 2.79397001  | UP            |
| 114 | Ubiquinol oxidase subunit I, cyanide insensitive                                                                  | cioA        | 0.001636444 | 1.148470783 | 2.786098934 | UP            |
| 115 | Divalent metal cation transporter                                                                                 | ACIAD2521   | 0.001659805 | 1.099414695 | 2.779942824 | UP            |

104

**Table 18 (Cont.)**

| No. | proteinDescription                                                                  | Gene symbol | pval        | log2fc      | padj        | diffexpressed |
|-----|-------------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|---------------|
| 116 | Small-conductance mechanosensitive channel                                          | ACIAD3026   | 0.0016988   | 0.817707098 | 2.769857864 | UP            |
| 117 | Starvation-induced protein involved in peptide utilization during carbon starvation | cstA        | 0.001708667 | 1.070289693 | 2.767342555 | UP            |
| 118 | Small ribosomal subunit biogenesis GTPase RsgA                                      | rsgA        | 0.001726046 | 1.266945655 | 2.762947649 | UP            |
| 119 | EAL domain-containing protein                                                       | ACIAD2209   | 0.001805759 | 1.017687274 | 2.743340251 | UP            |
| 120 | Intermembrane phospholipid transport system permease protein MlaE                   | ttg2B       | 0.001835923 | 0.988595848 | 2.736145623 | UP            |
| 121 | Apolipoprotein N-acyltransferase                                                    | Int         | 0.001856849 | 1.107533177 | 2.731223477 | UP            |
| 122 | Elongation factor 4                                                                 | lepA        | 0.001859316 | 1.000325791 | 2.730646772 | UP            |
| 123 | DUF4850 domain-containing protein                                                   | ACIAD0814   | 0.001894958 | 0.802561866 | 2.722400458 | UP            |
| 124 | NADH-quinone oxidoreductase subunit M                                               | nuoM        | 0.001896908 | 2.309738858 | 2.721953824 | UP            |
| 125 | Cytochrome bo(3) ubiquinol oxidase subunit 1                                        | cyoB        | 0.00190249  | 1.412201911 | 2.720677717 | UP            |
| 126 | Protein-export membrane protein SecF                                                | secF        | 0.001962643 | 0.807688084 | 2.7071587   | UP            |
| 127 | Putative fatty acid desaturase                                                      | ACIAD1208   | 0.002018771 | 1.002866299 | 2.694912895 | UP            |
| 128 | Putative secretion protein (HlyD family)                                            | ACIAD3109   | 0.002030681 | 0.764534227 | 2.692358398 | UP            |
| 129 | Coenzyme A biosynthesis bifunctional protein CoaBC                                  | dfp         | 0.002032092 | 1.11924892  | 2.692056717 | UP            |

**Table 18 (Cont.)**

| No. | proteinDescription                                                         | Gene symbol | pval         | log2fc       | padj        | diffexpressed |
|-----|----------------------------------------------------------------------------|-------------|--------------|--------------|-------------|---------------|
| 130 | Putative transporter                                                       | ACIAD1243   | 0.002035007  | 1.022604306  | 2.691434095 | UP            |
| 131 | Membrane protein insertase YidC                                            | yidC        | 0.002100745  | 0.863866025  | 2.677626724 | UP            |
| 132 | Formate/nitrite transporter family protein                                 | ACIAD3593   | 0.002113448  | 0.8583382216 | 2.675008465 | UP            |
| 133 | ADP-dependent (S)-NAD(P)H-hydrate dehydratase                              | nrdD        | 0.002116433  | 1.352032781  | 2.674395512 | UP            |
| 134 | Polyribonucleotide nucleotidyltransferase                                  | pnp         | 0.002153003  | 0.844657339  | 2.666955276 | UP            |
| 135 | PNPLA domain-containing protein                                            | ACIAD0806   | 0.002175943  | 1.510051901  | 2.662352518 | UP            |
| 136 | Sodium/glutamate symporter                                                 | gltS        | 0.0022336415 | 1.111493767  | 2.650447663 | UP            |
| 137 | DNA-directed RNA polymerase subunit beta'                                  | rpoC        | 0.002311507  | 0.92761127   | 2.636104873 | UP            |
| 138 | Glucose dehydrogenase [pyrroloquinoline-quinone] (Quinoprotein glucose DH) | gcd         | 0.002352546  | 0.879845056  | 2.628461853 | UP            |
| 139 | Cytochrome d terminal oxidase, polypeptide subunit I                       | cydA        | 0.002603461  | 1.028697977  | 2.584448996 | UP            |
| 140 | 30S ribosomal protein S3                                                   | rpsC        | 0.002604441  | 0.765448692  | 2.584285403 | UP            |
| 141 | Type VI secretion system baseplate subunit TssF                            | ACIAD2687   | 0.002676359  | 1.179742282  | 2.572455688 | UP            |

Table 18 (Cont.)

| No. | proteinDescription                                                                     | Gene symbol | pval        | log2fc      | padj        | diffexpressed |
|-----|----------------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|---------------|
| 142 | D-alanine/D-serine/glycine transport protein (APC family)                              | cycA        | 0.002706116 | 1.076769269 | 2.567653625 | UP            |
| 143 | Probable potassium transport system protein Kup                                        | kup         | 0.002719498 | 1.37938219  | 2.565511227 | UP            |
| 144 | DUF445 domain-containing protein                                                       | ACIAD1103   | 0.002880845 | 0.996713237 | 2.540480056 | UP            |
| 145 | Transketolase                                                                          | tkt         | 0.002940342 | 0.804128763 | 2.531602199 | UP            |
| 146 | Soluble pyridine nucleotide transhydrogenase (NAD(P)(+)-transhydrogenase [B-specific]) | sthA        | 0.003061625 | 0.662653958 | 2.514047978 | UP            |
| 147 | Ribosomal RNA large subunit methyltransferase K/L                                      | rrmL        | 0.003063402 | 1.084132021 | 2.513796    | UP            |
| 148 | Putative uracil transport protein (NCS2 family)                                        | ACIAD3628   | 0.003211668 | 1.079023388 | 2.493269409 | UP            |
| 149 | Putative bifunctional protein (MaeB)                                                   | ACIAD2287   | 0.00335817  | 0.791969507 | 2.473897318 | UP            |
| 150 | Chromosome partition protein Smc                                                       | smc         | 0.003462107 | 1.039205936 | 2.460659484 | UP            |
| 151 | NADH-quinone oxidoreductase subunit N                                                  | nuoN        | 0.003549407 | 1.343169944 | 2.449844199 | UP            |
| 152 | Benzoate transport protein benK                                                        | benK        | 0.003576105 | 1.781536501 | 2.446589694 | UP            |
| 153 | Putative transcriptional regulator (TetR family )                                      | ACIAD0757   | 0.003691088 | 1.49962029  | 2.432845585 | UP            |
| 154 | APC family, D-serine/D-alanine/glycine transport protein                               | cycA        | 0.003701211 | 1.187729601 | 2.431656166 | UP            |

Table 18 (Cont.)

| No. | proteinDescription                                          | Gene symbol | pval        | log2fc      | padj        | diffexpressed |
|-----|-------------------------------------------------------------|-------------|-------------|-------------|-------------|---------------|
| 155 | NADH-quinone oxidoreductase subunit H                       | nuoH        | 0.003771975 | 1.06535822  | 2.423431191 | UP            |
| 156 | 50S ribosomal subunit assembly factor BipA                  | typA        | 0.003797162 | 0.714417041 | 2.420540853 | UP            |
| 157 | histidine kinase                                            | pilS        | 0.003836669 | 1.601534247 | 2.416045626 | UP            |
| 158 | histidine kinase                                            | ACIAD0727   | 0.003849605 | 1.346302001 | 2.414583852 | UP            |
| 159 | UvrABC system protein C                                     | uvrC        | 0.003939306 | 1.602627578 | 2.404580322 | UP            |
| 160 | mannose-1-phosphate guanlyltransferase                      | epsM        | 0.003991776 | 0.655773423 | 2.398833787 | UP            |
| 161 | Putative transport protein                                  | ACIAD1191   | 0.003994468 | 1.583317917 | 2.398541079 | UP            |
| 162 | Lysine-specific permease                                    | lysP        | 0.00405775  | 1.826114428 | 2.39171476  | UP            |
| 163 | LprL domain-containing protein                              | ACIAD0315   | 0.004392704 | 0.766093946 | 2.357268044 | UP            |
| 164 | Ubiquinol oxidase subunit 2                                 | cyoA        | 0.004439216 | 0.733462307 | 2.352693677 | UP            |
| 165 | Penicillin-binding protein 1A                               | ponA        | 0.004620517 | 0.831028164 | 2.335309386 | UP            |
| 166 | UPF0761 membrane protein ACIAD3168                          | ACIAD3168   | 0.004691315 | 0.841068936 | 2.328705443 | UP            |
| 167 | PDZ domain-containing protein                               | ACIAD1186   | 0.004776102 | 0.604826464 | 2.320926436 | UP            |
| 168 | Quinone-dependent D-lactate dehydrogenase                   | dld         | 0.004781197 | 0.801098033 | 2.320463336 | UP            |
| 169 | Phosphotransferase system, fructose-specific IIBC component | fruA        | 0.004879598 | 1.144376215 | 2.311615979 | UP            |
| 170 | Phospho-N-acetyl muramoyl-pentapeptide-transferase          | mraY        | 0.004886077 | 0.755829445 | 2.311039725 | UP            |

Table 18 (Cont.)

| No.                                | proteinDescription                            | Gene symbol | pval         | log2fc      | padj        | diffexpressed |
|------------------------------------|-----------------------------------------------|-------------|--------------|-------------|-------------|---------------|
| 171                                | ATP-dependent lipid A-core flipase            | msbA        | 0.005165548  | 0.81566256  | 2.286883623 | UP            |
| 172                                | Probable malate:quinone oxidoreductase        | mqo         | 0.005241937  | 0.677298333 | 2.280508185 | UP            |
| 173                                | Small-conductance mechanosensitive channel 1  | ACIAD3477   | 0.005282423  | 1.039188598 | 2.277166804 | UP            |
| 174                                | Putative adenylylate or guanylylate cyclase   | ACIAD1397   | 0.005418629  | 1.866390399 | 2.266110607 | UP            |
| 175                                | CBS domain-containing protein                 | ACIAD0230   | 0.005599375  | 0.73997491  | 2.251860415 | UP            |
| 176                                | Probable proton/glutamate-aspartate symporter | gltP        | 0.005632808  | 0.745637536 | 2.249275066 | UP            |
| 177                                | DNA topoisomerase 4 subunit A                 | parC        | 0.005694421  | 0.98979197  | 2.244550406 | UP            |
| 178                                | Protein translocase subunit SecY              | secY        | 0.005700799  | 0.618881058 | 2.244064297 | UP            |
| Putative arginine/lysine/ornithine |                                               |             |              |             |             |               |
| 179                                | decarboxylase                                 | ACIAD3341   | 0.005722007  | 0.76889202  | 2.242451647 | UP            |
| 180                                | cyclic pyranopterin monophosphate synthase    | moaCB       | 0.005764933  | 0.761740293 | 2.239205718 | UP            |
| 181                                | Putative glutamate synthase                   | ACIAD1934   | 0.005768741  | 0.775878825 | 2.238918968 | UP            |
| 182                                |                                               |             | 0.005801445  | 0.985461422 | 2.236463837 | UP            |
| 183                                | Putative integral membrane protein            | lolC        | 0.006634394  | 0.751395443 | 2.178198735 | UP            |
| 184                                | NADH-quinone oxidoreductase subunit K         | nuoK        | 0.006832733  | 1.035268485 | 2.165405527 | UP            |
| 185                                | Acetolactate synthase                         | ilvI        | 0.0068855834 | 0.614064563 | 2.162043478 | UP            |

**Table 18 (Cont.)**

| No. | proteinDescription                                               | Gene symbol | pval        | log2fc      | padj        | diffexpressed |
|-----|------------------------------------------------------------------|-------------|-------------|-------------|-------------|---------------|
| 186 | 4-hydroxycinnamoyl CoA hydratase/lyase                           | hcaA        | 0.007702933 | 0.761941243 | 2.113343906 | UP            |
| 187 | ATP synthase subunit c                                           | atpE        | 0.007912295 | 0.968426084 | 2.101697541 | UP            |
| 188 | Uncharacterized protein                                          | ACIAD2009   | 0.008169704 | 1.101233939 | 2.087793669 | UP            |
| 189 | Serine aminopeptidase S33 domain-containing protein              | ACIAD3141   | 0.008305885 | 0.853010498 | 2.080614078 | UP            |
| 190 | tRNA uridine 5-carboxymethylaminomethyl modification enzyme MnmG | mmnG        | 0.008323566 | 0.759511456 | 2.079690572 | UP            |
| 191 | Cyanophycinase                                                   | ACIAD1280   | 0.009259127 | 0.619751826 | 2.033429956 | UP            |
| 192 | Peptidoglycan D,D-transpeptidase FtsI                            | ftsI        | 0.009369741 | 1.100275127 | 2.028272397 | UP            |
| 193 | L-lactate permease                                               | lldP        | 0.009947102 | 1.324163656 | 2.002303435 | UP            |
| 194 | Tyrosine-protein kinase, autophosphorylates                      | ptk         | 0.01084067  | 0.614442535 | 1.964943878 | UP            |
| 195 | Putative transport protein (ABC superfamily, atp_bind)           | ACIAD0007   | 0.011131835 | 0.640640429 | 1.953433232 | UP            |
| 196 | Protein translocase subunit SecD                                 | secD        | 0.011507577 | 0.812546177 | 1.93901612  | UP            |
| 197 | ATP-dependent DNA helicase RecG                                  | recG        | 0.012203803 | 1.119571636 | 1.913504796 | UP            |
| 198 | Alkane 1-monoxygenase                                            | alkB        | 0.012319307 | 2.457478377 | 1.909413734 | UP            |
| 199 | DNA mismatch repair protein MutS                                 | mutS        | 0.013239314 | 0.842734616 | 1.878134526 | UP            |
| 200 | Peptidase M48 domain-containing protein                          | ACIAD1324   | 0.013251019 | 0.771122886 | 1.877750739 | UP            |

**Table 18 (Cont.)**

| No. | proteinDescription                                                                 | Gene symbol | pval        | log2fc      | padj        | diffexpressed |
|-----|------------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|---------------|
| 201 | Putative transcriptional regulator (AraC family)                                   | ACIAD2012   | 0.013252713 | 1.565314865 | 1.877695198 | UP            |
| 202 | 23S rRNA (uracil(1939)-C(5))-methyltransferase RlmD                                | rlmD        | 0.013990452 | 0.735234367 | 1.854168242 | UP            |
| 203 | Putative transport protein (MFS superfamily)                                       | ACIAD3450   | 0.014173324 | 1.128831364 | 1.848328297 | UP            |
| 204 | Putative suppressor of F exclusion of phage T7 (FxsA)                              | ACIAD2040   | 0.014332938 | 0.633390144 | 1.843664793 | UP            |
| 205 | DUF4062 domain-containing protein                                                  | ACIAD3256   | 0.014693453 | 0.78425764  | 1.83287613  | UP            |
| 206 | Putative permease (MFS superfamily)                                                | ACIAD2100   | 0.015115166 | 1.580135613 | 1.820587075 | UP            |
| 207 | Putative membrane protein                                                          | ACIAD2331   | 0.01531919  | 0.681965095 | 1.814764203 | UP            |
| 208 | Putative transport protein (MFS superfamily)                                       | ACIAD0233   | 0.016309185 | 1.70053247  | 1.787567745 | UP            |
| 209 | C4-dicarboxylate transport protein                                                 | dctA        | 0.016633764 | 0.644171919 | 1.779009455 | UP            |
| 210 | Putative ferrous iron transport protein B (FeoB)                                   | ACIAD0268   | 0.017373127 | 0.721904434 | 1.760122004 | UP            |
| 211 | Permease                                                                           | ACIAD0255   | 0.017770335 | 0.851590494 | 1.750304389 | UP            |
| 212 | DNA helicase                                                                       | ACIAD0495   | 0.020506576 | 0.687649829 | 1.688106844 | UP            |
| 213 | Dicarboxylic acid transport protein alpha-ketoglutarate permease (MFS superfamily) | pcaT        | 0.021216552 | 0.87032703  | 1.673325202 | UP            |
| 214 | PRS2 protein                                                                       | ACIAD2266   | 0.02178912  | 0.94494127  | 1.661760305 | UP            |

**Table 18 (Cont.)**

| No. | proteinDescription                                                      | Gene symbol | pval        | log2fc      | padj        | diffexpressed |
|-----|-------------------------------------------------------------------------|-------------|-------------|-------------|-------------|---------------|
| 215 | Osmo-dependent choline transporter BetT2                                | betT2       | 0.023607195 | 1.279855312 | 1.626955608 | UP            |
| 216 | Putative glycosyl transferase family 2 (Rhamnosyl transferase)          | ACIAD0082   | 0.025541131 | 0.923180981 | 1.592759884 | UP            |
| 217 | pH adaptation potassium efflux system transmembrane protein             | phaAB       | 0.025827142 | 1.300180605 | 1.58792365  | UP            |
| 218 | Putative bifunctional protein                                           | ACIAD0799   | 0.027488915 | 0.876829689 | 1.560842402 | UP            |
| 219 | AI-2E family transporter                                                | ACIAD3289   | 0.027814304 | 1.914022865 | 1.555731802 | UP            |
| 220 | Putative glycosyl transferase family 1                                  | ACIAD0090   | 0.028409883 | 0.641866886 | 1.546530549 | UP            |
| 221 | RcmB family protein                                                     | ACIAD0618   | 0.029600706 | 0.671127634 | 1.528697937 | UP            |
| 222 | Peptidase Cl3 family protein                                            | ACIAD0681   | 0.029649491 | 1.845267244 | 1.527982755 | UP            |
| 223 | Putative transporter                                                    | ACIAD2214   | 0.031816124 | 2.275362138 | 1.497352731 | UP            |
| 224 | DNA topoisomerase 4 subunit B                                           | parE        | 0.032029946 | 0.637999068 | 1.4944438   | UP            |
| 225 | Undecaprenyl-diphosphatase 3                                            | uppP3       | 0.034165727 | 0.639585197 | 1.466409336 | UP            |
| 226 | Phosphatidylglycerol-pplipoprotein diacylglycerol transferase           | lgt         | 0.036527214 | 0.732836138 | 1.437383448 | UP            |
| 227 | NADH dehydrogenase I chain L                                            | nuoL        | 0.037784407 | 2.116245958 | 1.422687395 | UP            |
| 228 | Microcin B17 transport protein (ABC superfamily, atp_bind and membrane) | sbmA        | 0.042013521 | 0.866310359 | 1.376610924 | UP            |
| 229 | AMP-dependent synthetase/ligase domain-containing protein               | ACIAD0571   | 0.044423491 | 1.133654586 | 1.352387316 | UP            |

**Table 18 (Cont.)**

| No.                                                                    | proteinDescription                                                     | Gene symbol | pval     | log2fc       | padj        | diffexpressed |
|------------------------------------------------------------------------|------------------------------------------------------------------------|-------------|----------|--------------|-------------|---------------|
| 230                                                                    | Heme oxygenase                                                         | hemO        | 1.61E-07 | -2.280355017 | 6.793760618 | DOWN          |
| 231                                                                    | Putative receptor protein                                              | ACIAD1472   | 6.56E-07 | -2.53279883  | 6.182983934 | DOWN          |
| Putative transcriptional regulator (AraC family) (Nitrilase regulator) |                                                                        |             |          |              |             |               |
| 232                                                                    | L-carnitine dehydrogenase                                              | ACIAD1622   | 1.19E-06 | -2.250935121 | 5.923534292 | DOWN          |
| 233                                                                    | YbdD/YjiX family protein                                               | ACIAD2204   | 6.45E-06 | -2.038335399 | 5.190153255 | DOWN          |
| 234                                                                    | Putative transcriptional regulator (AraC family) (Nitrilase regulator) | caiB        | 6.90E-06 | -1.470697484 | 5.161169436 | DOWN          |
| 235                                                                    | 30S ribosomal protein S12                                              | tpsL        | 3.12E-05 | -1.107084408 | 4.506176168 | DOWN          |
| 236                                                                    | NAD(+) diphosphatase                                                   | ACIAD1135   | 3.17E-05 | -1.006396503 | 4.498649313 | DOWN          |
| 237                                                                    | Putative acetyltransferase                                             | ACIAD0864   | 3.40E-05 | -1.600132046 | 4.468073561 | DOWN          |
| 238                                                                    | Putative acetyl-CoA hydrolase/transferase                              | ACIAD3390   | 3.94E-05 | -2.323932877 | 4.404372548 | DOWN          |
| 239                                                                    | Putative ferric siderophore receptor protein                           | ACIAD1163   | 4.78E-05 | -2.033142298 | 4.320740389 | DOWN          |
| 240                                                                    | Glucuronokinase                                                        | gntK        | 4.94E-05 | -0.950502477 | 4.305856379 | DOWN          |
| 241                                                                    | Putative ferric siderophore receptor protein                           | ACIAD1240   | 5.10E-05 | -0.959092343 | 4.292689216 | DOWN          |
| 242                                                                    | Putative ferric siderophore receptor protein                           | ACIAD2049   | 5.45E-05 | -1.057828053 | 4.263301204 | DOWN          |
| 243                                                                    | HAD family hydrolase                                                   | ACIAD1038   | 5.50E-05 | -0.925843542 | 4.259791827 | DOWN          |
| 244                                                                    | Nucleoside-specific channel-forming protein                            | tsx         | 5.86E-05 | -0.884251146 | 4.231787341 | DOWN          |
| 245                                                                    | Putative ferric siderophore receptor protein                           | ACIAD2116   | 7.18E-05 | -0.796726695 | 4.144141005 | DOWN          |
| 246                                                                    | Putative L-asparaginase I (AnsA)                                       | ACIAD0476   | 8.11E-05 | -1.184749739 | 4.091188109 | DOWN          |

**Table 18 (Cont.)**

| No.                                          | proteinDescription                           | Gene symbol | pval        | log2fc       | padj        | diffexpressed |
|----------------------------------------------|----------------------------------------------|-------------|-------------|--------------|-------------|---------------|
| 247                                          | Putative acetyltransferase (Wet)             | ACIAD0094   | 9.26E-05    | -0.711406101 | 4.033187522 | DOWN          |
| 248                                          | Uncharacterized protein                      | ACIAD1474   | 9.95E-05    | -2.385045109 | 4.002353502 | DOWN          |
| 249                                          | Twitching motility protein                   | pilU        | 0.000103271 | -0.693090652 | 3.986021798 | DOWN          |
| 250                                          | ComB                                         | comB        | 0.000105259 | -1.101668986 | 3.977739326 | DOWN          |
| 251                                          | FilA                                         | ACIAD0780   | 0.000111009 | -1.241523538 | 3.958253603 | DOWN          |
| 252                                          | Putative aspartate racemase                  | ACIAD0318   | 0.000121988 | -0.718552738 | 3.913682702 | DOWN          |
| 253                                          | Esterase                                     | aesT        | 0.0001225   | -0.929204609 | 3.911863527 | DOWN          |
| 254                                          | Fatty acyl-CoA reductase                     | acr1        | 0.000127976 | -1.469316749 | 3.892871441 | DOWN          |
| 255                                          | Putative acyl-CoA dehydrogenase              | ACIAD1821   | 0.000129596 | -1.01113898  | 3.88740983  | DOWN          |
| 256                                          | 7,8-dihydronopterin aldolase                 | folB        | 0.00014187  | -0.82446029  | 3.84810858  | DOWN          |
| 257                                          | Putative ferrichrome-iron receptor protein   | ACIAD0973   | 0.000149228 | -1.044307475 | 3.826148584 | DOWN          |
| 258                                          | Putative hemolysin activator protein (FhaC)  | ACIAD2785   | 0.00015721  | -1.98963171  | 3.803519957 | DOWN          |
| 259                                          | Arginine succinyltransferase                 | astA        | 0.000160192 | -0.73418767  | 3.793539949 | DOWN          |
| Glycosyltransferase 2-like domain-containing |                                              |             |             |              |             |               |
| 260                                          | protein                                      | ACIAD0572   | 0.00016678  | -1.8505046   | 3.777855676 | DOWN          |
| 261                                          | Putative ferric siderophore receptor protein | ACIAD0745   | 0.000171268 | -1.346013657 | 3.766323618 | DOWN          |
| 262                                          | Succinylglutamate desuccinylase              | astE        | 0.000183712 | -0.711573257 | 3.735862293 | DOWN          |
| 263                                          | AciG                                         | aciG        | 0.000200651 | -0.862974202 | 3.697559505 | DOWN          |
| 264                                          | Cyanophycin synthetase                       | cphA        | 0.000207187 | -0.762842236 | 3.683637948 | DOWN          |

**Table 18 (Cont.)**

| No. | proteinDescription                               | Gene symbol | pval        | log2fc        | padj        | diffexpressed |
|-----|--------------------------------------------------|-------------|-------------|---------------|-------------|---------------|
| 265 | Putative long-chain fatty acid transport protein | ACIAD0835   | 0.000211139 | -1.208702474  | 3.675430945 | DOWN          |
| 266 | tRNA-cytidine(32) 2-sulfurtransferase            | ttcA        | 0.000218649 | -0.751984621  | 3.660252964 | DOWN          |
| 267 | Putative transcriptional regulator (IcIR family) | ACIAD1822   | 0.000237047 | -1.248396302  | 3.625166275 | DOWN          |
| 268 | Putative enoyl-CoA hydratase                     | ACIAD1820   | 0.000261615 | -0.666633126  | 3.582337957 | DOWN          |
| 269 | Uncharacterized protein                          | ACIAD0779   | 0.00028572  | -1.2622262768 | 3.544059561 | DOWN          |
| 270 | Uncharacterized protein                          | ACIAD2741   | 0.000292328 | -0.665168448  | 3.534129435 | DOWN          |
| 271 | Putative flavoprotein oxidoreductase             | ACIAD3522   | 0.000302472 | -1.124376707  | 3.51931505  | DOWN          |
| 272 | Acetoacetyl-CoA transferase, beta subunit        | atoA        | 0.000308448 | -0.628341338  | 3.510817898 | DOWN          |
| 273 | Putative transcriptional regulator (LysR family) | ACIAD1230   | 0.000318281 | -0.66544699   | 3.497189911 | DOWN          |
| 274 | Uncharacterized protein                          | ACIAD1290   | 0.000330932 | -0.790477644  | 3.480261672 | DOWN          |
| 275 | AcuC                                             | acuC        | 0.000341408 | -1.705486778  | 3.466726817 | DOWN          |
| 276 | HTH-type transcriptional regulator BenM          | benM        | 0.000347345 | -0.801051952  | 3.459238353 | DOWN          |
| 277 | Putative transcriptional regulator (LysR family) | ACIAD0323   | 0.000348904 | -0.671406613  | 3.457293705 | DOWN          |
| 278 | N-succinylarginine dihydrolase                   | astB        | 0.000383824 | -0.643854405  | 3.415867421 | DOWN          |
| 279 | Alanine racemase                                 | alr         | 0.000431964 | -1.105383668  | 3.364551959 | DOWN          |
| 280 | Putative fatty acid desaturase                   | ACIAD0630   | 0.000440671 | -0.909159779  | 3.355885131 | DOWN          |

**Table 18 (Cont.)**

| No. | proteinDescription                                       | Gene symbol | pval        | log2fc       | padj        | diffexpressed |
|-----|----------------------------------------------------------|-------------|-------------|--------------|-------------|---------------|
| 281 | Twitching motility protein                               | pill        | 0.000442353 | -0.820758987 | 3.354230879 | DOWN          |
| 282 | Thioesterase                                             | ACIAD1951   | 0.000452128 | -0.672905645 | 3.344738302 | DOWN          |
| 283 | Putative flavoprotein oxidoreductase                     | ACIAD1827   | 0.000456836 | -1.86510397  | 3.340239432 | DOWN          |
| 284 | Rad50/SbcC-type AAA domain-containing protein            | ACIAD0378   | 0.000474837 | -0.683645955 | 3.32345425  | DOWN          |
| 285 | Perosamine synthetase (WeeJ)                             | per         | 0.000509865 | -1.128462413 | 3.292544911 | DOWN          |
| 286 | Putative transcriptional regulator (AraC family)         | ACIAD1576   | 0.000518714 | -2.191427185 | 3.285071988 | DOWN          |
| 287 | DUF2846 domain-containing protein                        | ACIAD0189   | 0.000525835 | -0.653356153 | 3.279150606 | DOWN          |
| 288 | Putative two-component system sensor protein (ColR-like) | ACIAD1634   | 0.000545154 | -0.792719457 | 3.263480958 | DOWN          |
| 289 | Putative ferric siderophore receptor protein             | ACIAD1054   | 0.000567225 | -0.762326584 | 3.246244956 | DOWN          |
| 290 | IrF N-terminal-like domain-containing protein            | ACIAD3429   | 0.000573011 | -0.925309145 | 3.241836998 | DOWN          |
| 291 | DUF490 domain-containing protein                         | ACIAD2402   | 0.000642895 | -0.671020668 | 3.191859959 | DOWN          |
| 292 | Uncharacterized protein                                  | ACIAD0777   | 0.000655581 | -0.945838575 | 3.183221902 | DOWN          |
| 293 | CBS domain-containing protein                            | ACIAD2305   | 0.000681654 | -0.6297683   | 3.166436255 | DOWN          |
| 294 | Outer membrane lipoprotein carrier protein Lola          | ACIAD0576   | 0.000705022 | -0.838668244 | 3.151797097 | DOWN          |
| 295 | Porin                                                    | ACIAD0139   | 0.000705941 | -0.909141023 | 3.151231319 | DOWN          |

**Table 18 (Cont.)**

| No. | proteinDescription                                              | Gene symbol | pval        | log2fc       | padj         | diffexpressed |
|-----|-----------------------------------------------------------------|-------------|-------------|--------------|--------------|---------------|
| 296 | Alkanesulfonate monooxygenase                                   | ssuD        | 0.000728287 | -0.64589299  | 3.137697448  | DOWN          |
| 297 | Uncharacterized protein                                         | ACIAD1267   | 0.00076791  | -1.00053437  | 3.114689571  | DOWN          |
| 298 | Putative ferric siderophore receptor protein                    | ACIAD2325   | 0.000813858 | -0.772305686 | 3.089451172  | DOWN          |
| 299 | [Ribosomal protein S18]-alanine N-acetyltransferase             | rimI        | 0.000872255 | -0.657250828 | 3.05935637   | DOWN          |
| 300 | Putative acetyltransferase (GNAT family)                        | ACIAD1002   | 0.000967829 | -1.363064849 | 3.014201418  | DOWN          |
| 301 | DUF2750 domain-containing protein                               | ACIAD2303   | 0.001012129 | -1.97880788  | 2.994764043  | DOWN          |
| 302 | Putative substrate binding protein (ABC superfamily, peri_bind) | ACIAD2524   | 0.001027869 | -0.718553914 | 2.988062207  | DOWN          |
| 303 | Putative glucose-6-phosphate 1-epimerase                        | ACIAD0191   | 0.001043653 | -3.576514437 | 2.981444033  | DOWN          |
| 304 | FilD                                                            | filD        | 0.001084397 | -0.782808318 | 2.964811744  | DOWN          |
| 305 | Uncharacterized protein                                         | ACIAD2191   | 0.001111132 | -0.602347692 | 2.95416084   | DOWN          |
| 306 | Sulfate transport protein (ABC superfamily, peri_bind)          | cysP        | 0.001249231 | -0.624745624 | 2.903357076  | DOWN          |
| 307 | Big-1 domain-containing protein                                 | ACIAD3144   | 0.001319018 | -0.644263441 | 2.879749354  | DOWN          |
| 308 | Penicillin-binding protein activator                            | ACIAD1131   | 0.001476621 | -0.998623837 | 2.830730968  | DOWN          |
| 309 | Uncharacterized protein                                         | ACIAD2256   | 0.001501798 | -0.618149696 | 2.8223388589 | DOWN          |
| 310 | Restriction endonuclease type IV Mrr domain-containing protein  | ACIAD1480   | 0.001525849 | -1.317536715 | 2.816488327  | DOWN          |

**Table 18 (Cont.)**

| No. | proteinDescription                                          | Gene symbol | pval        | log2fc       | padj        | diffexpressed |
|-----|-------------------------------------------------------------|-------------|-------------|--------------|-------------|---------------|
| 311 | 2-C-methyl-D-erythritol 2,4-cyclo-diphosphate synthase      | ispF        | 0.001720312 | -0.630230916 | 2.764392891 | DOWN          |
| 312 | Phytanoyl-CoA dioxygenase                                   | ACIAD3482   | 0.001729668 | -0.737829998 | 2.76203714  | DOWN          |
| 313 | ComF                                                        | comF        | 0.001774309 | -0.865492743 | 2.750970718 | DOWN          |
| 314 | Thioesterase                                                | ACIAD0290   | 0.001872651 | -0.733747078 | 2.727543125 | DOWN          |
| 315 | Putative glutathione S-transferase                          | ACIAD3130   | 0.002064118 | -1.071597253 | 2.685265568 | DOWN          |
| 316 | tRNA-dihydrouridine synthase B                              | dusB        | 0.002070376 | -0.672032121 | 2.683950806 | DOWN          |
| 317 | Putative monooxygenase                                      | ACIAD1830   | 0.002071035 | -1.1215932   | 2.683812566 | DOWN          |
| 318 | Putative transcriptional regulator, luxR family             | ACIAD1165   | 0.002188238 | -0.83368399  | 2.659905454 | DOWN          |
| 319 | Putative acetyl-CoA synthetase/AMP-(Fatty) acid ligase      | ACIAD1611   | 0.002256863 | -0.711785809 | 2.646494859 | DOWN          |
| 320 | Putative tonB-dependent ferric siderophore receptor protein | ACIAD1780   | 0.002319743 | -1.10725883  | 2.634560113 | DOWN          |
| 321 | Uncharacterized protein                                     | ACIAD0489   | 0.002490898 | -1.28480816  | 2.603643986 | DOWN          |
| 322 | Putative transcriptional regulator (AtrsR family)           | ACIAD1865   | 0.002496676 | -0.608859899 | 2.602637835 | DOWN          |
| 323 | Putative glutathione S-transferase                          | ACIAD0017   | 0.002730641 | -0.745017673 | 2.563735467 | DOWN          |
| 324 | proton-translocating NAD(P)(+) transhydrogenase             | pntA-1      | 0.002788924 | -0.761656174 | 2.554563338 | DOWN          |

**Table 18 (Cont.)**

| No. | proteinDescription                                             | Gene symbol | pval        | log2fc       | padj        | diffexpressed |
|-----|----------------------------------------------------------------|-------------|-------------|--------------|-------------|---------------|
| 325 | Thioesterase                                                   | ACIAD2585   | 0.002899436 | -0.837148069 | 2.537686473 | DOWN          |
| 326 | Stringent starvation protein A                                 | sspA        | 0.002906218 | -0.815425242 | 2.53667183  | DOWN          |
| 327 | Regulator of ribonuclease activity B domain-containing protein | ACIAD0716   | 0.002918844 | -0.765192054 | 2.534789052 | DOWN          |
| 328 | Adenosylmethionine-8-amino-7-oxononanoate aminotransferase     | bioA        | 0.00315992  | -1.05438144  | 2.500323864 | DOWN          |
| 329 | 4-hydroxybenzoyl-CoA thioesterase                              | ACIAD0575   | 0.003190749 | -1.128552191 | 2.496107422 | DOWN          |
| 330 | Putative ferric siderophore receptor protein                   | ACIAD2082   | 0.003361296 | -0.920126616 | 2.473493227 | DOWN          |
| 331 | DUF1176 domain-containing protein                              | ACIAD0815   | 0.003364732 | -0.602713274 | 2.473049475 | DOWN          |
| 332 | Putative transcriptional regulator                             | ACIAD2672   | 0.003433099 | -1.316323575 | 2.464313634 | DOWN          |
| 333 | Uncharacterized protein                                        | ACIAD1136   | 0.003578489 | -0.722774828 | 2.446300336 | DOWN          |
| 334 | Uncharacterized protein                                        | ACIAD1192   | 0.003648591 | -0.685150224 | 2.437874768 | DOWN          |
| 335 | Outer membrane protein assembly factor BamB                    | bamB        | 0.003708967 | -0.66620048  | 2.430747038 | DOWN          |
| 336 | Putative bifunctional protein                                  | ACIAD2236   | 0.003896681 | -0.757623936 | 2.409305105 | DOWN          |
| 337 | Putative sulfonate monooxygenase (MsuD)                        | ACIAD3471   | 0.003943818 | -1.271490575 | 2.40408311  | DOWN          |
| 338 | Putative ferric siderophore receptor protein                   | ACIAD1764   | 0.004911775 | -0.650747749 | 2.308761528 | DOWN          |
| 339 | Putative transcriptional regulator                             | ACIAD3490   | 0.005298    | -0.86803622  | 2.275888022 | DOWN          |

**Table 18 (Cont.)**

| No. | proteinDescription                                          | Gene symbol | pval         | log2fc       | padj        | diffexpressed |
|-----|-------------------------------------------------------------|-------------|--------------|--------------|-------------|---------------|
| 340 | Zinc finger/thioredoxin putative domain-containing protein  | ACIAD2444   | 0.005806946  | -1.183665263 | 2.236052209 | DOWN          |
| 341 | DUF2520 domain-containing protein                           | ACIAD1273   | 0.0066667239 | -1.783142734 | 2.176053959 | DOWN          |
| 342 | Putative acetyltransferase                                  | ACIAD2293   | 0.006929262  | -0.670787489 | 2.15931302  | DOWN          |
| 343 | Putative enoyl-CoA hydratase (PaaG-like)                    | ACIAD1829   | 0.007262868  | -1.154241162 | 2.13889184  | DOWN          |
| 344 | UDP-N-acetylglucosaminylglucosamine reductase               | murB        | 0.007476406  | -0.615171748 | 2.126307137 | DOWN          |
| 345 | Adenylyl kinase                                             | ACIAD2987   | 0.008470169  | -0.817630623 | 2.07210794  | DOWN          |
| 346 | Putative intracellular sulfur oxidation protein (DsrE-like) | ACIAD1892   | 0.009505911  | -0.641429143 | 2.022006272 | DOWN          |
| 347 | Uncharacterized protein                                     | ACIAD0333   | 0.009658196  | -0.655304497 | 2.015103987 | DOWN          |
| 348 | Putative pseudouridylate synthase                           | ACIAD2377   | 0.010026848  | -1.126336975 | 1.998835585 | DOWN          |
| 349 | Outer membrane protein                                      | czcC        | 0.010121067  | -0.801879026 | 1.994773699 | DOWN          |
| 350 | S6PP domain-containing protein                              | ACIAD1961   | 0.011601187  | -0.766295208 | 1.935472021 | DOWN          |
| 351 | SEC-C motif domain protein                                  | ACIAD0231   | 0.011686868  | -0.791611671 | 1.932301879 | DOWN          |
| 352 | Uncharacterized protein                                     | ACIAD1962   | 0.01182082   | -0.60557196  | 1.927352402 | DOWN          |
| 353 | Phosphofructokinase                                         | fruK        | 0.011955914  | -0.688328921 | 1.92241723  | DOWN          |
| 354 | SCP2 domain-containing protein                              | ACIAD1406   | 0.011974811  | -1.229259251 | 1.921731342 | DOWN          |
| 355 | PEGA domain-containing protein                              | ACIAD3559   | 0.012758697  | -0.645836571 | 1.894193672 | DOWN          |

**Table 18 (Cont.)**

| No. | proteinDescription                                                        | Gene symbol | pval        | log2fc       | padj        | diffexpressed |
|-----|---------------------------------------------------------------------------|-------------|-------------|--------------|-------------|---------------|
| 356 | Putative alkylphosphonate uptake protein (PhnA) in phosphonate metabolism | ACIAD0719   | 0.014380422 | -0.75137943  | 1.842228365 | DOWN          |
| 357 | Putative short-chain dehydrogenase/reductase SDR protein                  | ACIAD1828   | 0.01477857  | -3.685008007 | 1.830367576 | DOWN          |
| 358 | Malonyl-[acyl-carrier protein] O-methyltransferase                        | bioC        | 0.01525527  | -0.742746411 | 1.816580099 | DOWN          |
| 359 | Putative transcriptional regulator (AraC family)                          | ACIAD0160   | 0.015865611 | -0.754603917 | 1.799543189 | DOWN          |
| 360 | protein-tyrosine-phosphatase                                              | ptp         | 0.017073678 | -0.715131791 | 1.767672913 | DOWN          |
| 361 | Putative aldolase                                                         | ACIAD1293   | 0.019329703 | -1.712165176 | 1.713774826 | DOWN          |
| 362 | RNA pyrophosphohydrolase                                                  | rppH        | 0.020106253 | -0.807612142 | 1.69666885  | DOWN          |
| 363 | Glutamate/aspartate transport protein (ABC superfamily, atp_bind)         | gltL        | 0.0206344   | -0.907702258 | 1.685408144 | DOWN          |
| 364 | EH_Signature domain-containing protein                                    | ACIAD3456   | 0.021656183 | -0.804021619 | 1.664418078 | DOWN          |
| 365 | pH adaptation potassium efflux system E transmembrane protein             | phaE        | 0.023436671 | -0.868793157 | 1.630104074 | DOWN          |
| 366 | Putative transcriptional regulator (LysR family)                          | ACIAD1543   | 0.023442552 | -0.620493467 | 1.629995111 | DOWN          |
| 367 | HTH-type transcriptional regulator AlkR                                   | alkR        | 0.024862027 | -1.045645725 | 1.604463458 | DOWN          |

Table 18 (Cont.)

| No. | proteinDescription                                                            | Gene symbol | pval        | log2fc       | padj         | diffexpressed |
|-----|-------------------------------------------------------------------------------|-------------|-------------|--------------|--------------|---------------|
| 368 | ABC transporter substrate-binding protein Pnra-like domain-containing protein | ACIAD0198   | 0.025052029 | -0.693329671 | 1.6011571    | DOWN          |
| 369 | Type IV pilus biogenesis protein                                              | pilJ        | 0.02648438  | -1.373718162 | 1.5777010182 | DOWN          |
| 370 | FilA                                                                          | filA        | 0.030911027 | -1.048476582 | 1.509886564  | DOWN          |
| 371 | Exported protein                                                              | ACIAD0269   | 0.033187018 | -1.226685928 | 1.479031763  | DOWN          |
| 372 | Putative oxidoreductase, short-chain dehydrogenase/reductase                  | ACIAD1824   | 0.035331892 | -1.329407806 | 1.451833105  | DOWN          |
| 373 | Cyclopropane-fatty-acyl phospholipid synthase                                 | ACIAD1632   | 0.036831252 | -0.629628463 | 1.433783513  | DOWN          |
| 374 | DcaE                                                                          | dcaE        | 0.044113816 | -0.898093733 | 1.355425377  | DOWN          |
| 375 | Protein PsiE                                                                  | ACIAD0621   | 0.045408393 | -0.659662466 | 1.342863872  | DOWN          |
| 376 | Uncharacterized protein                                                       | ACIAD2716   | 0.046624097 | -0.613243968 | 1.331389562  | DOWN          |

## CHAPTER V

### DISCUSSION

The average genome size of 13 entomopathogenic bacterial strains was approximately 4.6 Mb, with an average of 24 biosynthetic gene clusters (BGCs). This is consistent with previous reports that found an average of 22 BGCs across 45 strains of these bacteria (Yi-Ming, Merle, Yan-Ni, Shabbir, et al., 2022), which is two-to-tenfold higher than the average BGC levels observed in other Enterobacteria. For example, *Serratia* was found to have an average of 17.8 BGCs, *Yersinia* had 13.7, and *Proteus* had 8.4 (Omkar et al., 2022). The greater genome size of *Xenorhabdus* and *Photorhabdus* appears to have a linear relationship with the number of BGCs, indicating a greater potential for producing bioactive compounds and secondary metabolites (Kazuya et al., 2014; Shi et al., 2022). These findings are supported by pan-core genome analysis conducted using the Anvi'o platform (Eren et al., 2015). Which core genes are shared by all species. In contrast, accessory genes are present in some species, while singleton genes are found in only one species. The results revealed that *Xenorhabdus* and *Photorhabdus* share a conserved set of core genes that are essential for fundamental cellular functions and relatively stable in sequence and function (Tettelin et al., 2005). However, notable distinctions exist between the two genera was found in accessory and singleton region (Figure 13). Each genus possesses a unique set of genes, which shape their distinct characteristics and lifestyles (Yi-Ming, Merle, Yan-Ni, & Helge, 2022). Interestingly, although BGCs are prolific in all genomes, most of their BGCs are distributed across the accessory and singleton regions. These findings reflect adaptations to diverse ecological niches, including regulatory elements and the production of secondary metabolites, including antibiotics and toxins, which are rarely found in other organisms (Jordan et al., 2001).

NRPS were the most abundant BGCs in both genera genomes, consistent with findings by Shi et al. (2022a), highlighting their potential ecological significance. The "others" group ranked second, possibly aiding in specific bacterial functions, while hybrid PKS/NRPS clusters showed moderate enrichment. In contrast, PKS, RiPPs, and terpene BGCs were relatively scarce.

Certain widely shared clusters resembled known BGCs for betalactone production (Yi-Ming, Merle, Yan-Ni, Shabbir, et al., 2022), followed by GameXpeptides (Nollmann et al., 2015b) and photoxenobactin-associated clusters (Yi-Ming, Merle, Yan-Ni, Shabbir, et al., 2022). The products of betalactone and Gxps clusters have been identified as playing a role in insect immune suppression, while photoxenobactin has been shown to possess insecticidal properties (Shi et al., 2022). Other clusters exhibited similarities to various types of bioactive compounds with antibacterial, insecticidal, antiprotozoal, antifungal, and antiparasitic properties (Bode et al., 2017; Nicholas et al., 2017; Yi-Ming & Helge, 2018), as well as broad-spectrum compounds like fabclavine (Wenski et al., 2019). However, some clusters were strain-specific, such as acinetobactin, ATred, butyrolactone, cuidadopeptide, PAX peptides, and RXPs in *X. stockiae* genomes. Unique discoveries included althiomycin in *X. indica* strain KK26.2, andrimid in *P. temperata* strain MW27.4, and malonomycin in *P. akhurstii* strain NN168.5.

To prioritize candidate strains from extensive genomic data, further characterization of BGCs was performed using BiG-SCAPE-COROSON. The tools offer a framework for natural product discovery by grouping similar BGCs, predicting their potential functions, and enabling researchers to explore the diversity of biosynthetic pathways. The analysis revealed significant BGC diversity across the two genera, identifying a total of 181 biosynthetic clusters (Table 14). Among these, 145 clusters matched known BGCs, while 36 were classified as unknown, suggesting the potential novelty of the associated metabolites. This finding aligns with previous discoveries of novel compounds using similar approaches, such as detoxin or rimosamide analogs from actinobacteria (Jorge et al., 2020). Other studies have successfully linked phylogenetic trees to BGC-guided genome mining, uncovering aryl polyenes from *Escherichia coli* (Pablo et al., 2016), arsено-organic metabolites from *Streptomyces lividans* (Pablo et al., 2016), corbomycin from *Streptomyces* sp. WAC01529 (Culp et al., 2020), and cepacin A from *Burkholderia ambifaria* (Alex et al., 2019).

Given these insights, strains *X. stockiae* RT25.5, *X. stockiae* SBRx11.1, *X. japonica* MW12.3, *X. indica* KK26.2, *X. miraniensis* MH16.1, *P. akhurstii* NN168.5, *P. temperata* MW27.4, and *P. hainanensis* NN169.4 emerge as promising candidates

for further exploration in the discovery of novel compounds. Among them, *X. stockiae* RT25.5, *X. stockiae* SBRx11.1, *X. indica* KK26.2, *P. temperata* MW27.4, and *P. akhurstii* NN168.5 stand out as strong candidates for experimental natural product discovery due to their richness in unique and unknown clusters. We subsequently selected then *X. stockiae* RT25.5 for further studies due to an intriguing orphan cluster containing genes related to transcription regulation and transport. Previous research has emphasized the significance of transcription regulation and transport mechanisms in the biosynthesis of antibiotics such as oleandomycin (Dyson, 2009) and spiramycin (Nguyen et al., 2010).

The strain *X. stockiae* RT25.5 underwent high-throughput whole genome sequencing, assembly, and annotation, followed by bioinformatics analyses. AntiSMASH and manual refinements identified 21 BGCs. Remarkably, cluster-2 showed homology with aryl polyenes (Gina et al., 2019), part of a widely distributed category of bacterial pigmented polyketides. Cluster-4 exhibited high similarity to fabclavine biosynthesis clusters, known for their broad-spectrum activity against bacteria, fungi, and eukaryotic cells (Fuchs et al., 2014) (Wenski et al., 2019). Cluster-6, an NRPS cluster, shared similarity with bovienimide, previously shown to suppress insect immune responses and potentially cause fatal immunosuppressive conditions (Yi-Ming, Merle, Yan-Ni, Shabbir, et al., 2022). The conservativeness of this biosynthetic gene cluster in *Xenorhabdus* spp. has been acknowledged by the Crawford laboratory (J.-H. Li et al., 2021). Cluster-7 was likely related to Acinetobactin, an NRP-siderophore involved in iron acquisition. Clusters-8 and 9 resembled xenemotide and xenobactin, respectively, with xenemotide exhibiting moderate antibacterial and weak insecticidal activity (Crawford et al., 2011), and xenobactin showing potent antiprotozoal and specific antibiotic activity (Grundmann et al., 2013). Cluster-10, identified as a Peptide-Antimicrobial-Xenorhabdus (PAX) cluster, shared 73% gene similarity with *X. innexi* strain HGB1681 and 28% with *X. bovienii* CS03 (Dreyer et al., 2019; Gualtieri et al., 2009). The most significant difference lied in the last amino acid (Gln vs. Ser) (Figure 18). We inferred that the structures and functions of compounds originating from *X. stockiae* strain RT25.5 may differ from those found in the published clusters. Cluster-11 was similar to nematophin biosynthesis, known for nematocidal and antifungal activity (Cai et al., 2017). Cluster-12 was linked to

Rhabdopeptide/Xenortide-like peptides, confirmed through manual verification, with antiprotozoal activity. Cluster-13 resembled, with antibacterial activity (Fu et al., 2012). Cluster-15 was classified as a carotenoid, essential for photoprotection and oxidative stress defense (Takashi, 2020). Cluster-16 was like cuidadopeptide, while cluster-17 resembled ATred (Andreas et al., 2020). Cluster-18 was linked to pyrrolizixenamide, a plant alkaloid with potent toxicity, and cluster-19 showed similarity to xenoamicin from *X. doucetiae*, with antiprotozoal activity (Qiuqin et al., 2013). Notably, among the unknown BGCs, there is one interesting hybrid T1PKS-NRPS clusters (cluster-14) were identified. The hybrid cluster included genes encoding a drug-resistance transporter (EmrB/QacA efflux family protein), with transport-related genes located near the hybrid-encoding BGC. This suggests a mechanism to protect the producing organism from the metabolite's potentially harmful effects (Ellis et al., 2019). Several bioactive compounds such as griselimycin (Angela et al., 2015), salinosporamide A (Andrew et al., 2011), and platensimycin (Ryan et al., 2014), have been identified using resistance-guided genome mining, emphasizing the utility of such strategies in discovering new natural products.

Mass spectrometry data from LC-MSMS combined with molecular network analysis using the GNPS database led to the detection of several bioactive compounds in *X. stockiae* strain RT25.5 culture. GameXPeptides A and C are known for their broad spectrum of antimicrobial, antifungal, and insecticidal activities, with potential efficacy against various microorganisms. These peptides may also exhibit additional biological properties, such as immunomodulatory effects or interactions with host organisms, depending on their structure (Friederike et al., 2015). Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3 (phenylmethyl), a natural compound found in organisms like *Streptomyces antoxidans*, *Streptomyces xiamenensis*, and *Vibrio anguillarum*, has been identified as an antibiotic against multidrug-resistant *Staphylococcus aureus* (MDRSA) (George Seghal et al., 2018). Spectroscopic analysis confirmed its identity and showed it possesses non-hemolytic behavior and antioxidant properties, emphasizing its bioactivity potential. Meanwhile, PE(16:1/0:0) and PE(18:1/0:0), identified through the GNPS database, were not associated with any reported biological activities, similar to Alpha-L-Asp-L-Phe from NIST14, which also lacked known activities. Xenobactins, on the other hand, are known to modulate host immune

responses (Dreyer et al., 2019; Grundmann et al., 2013; Tobias et al., 2017). Pyrrolizixenamide A and B, found in *X. szentirmaii* and *X. stockiae*, are pyrrolizidine alkaloids (PAs) with diverse pharmacological activities, some of which have antibacterial and antitumor properties. While most PAs originate from plants, a few bacterial PAs have been identified, suggesting they may influence the immune response of symbiotic hosts like nematodes, potentially promoting stable symbiosis with *Xenorhabdus* bacteria (Fang et al., 2021; Schimming et al., 2015).

Integrating *in silico* and *in vitro* approaches revealed a gap in the compounds detected by both methods. *In vitro* analysis failed to detect compounds such as fabclavine, bovienimide A, acinetobactin, xenemotide, PAX peptides, nematophin, rhabdopeptide/xenortide-like peptides (RXPs), and xenoamicin. While, *in silico* analysis cannot predict the presence of Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(phenylmethyl), which could correspond to one of the unknown clusters. These findings highlight the need for further characterization of unknown clusters to fully understand secondary metabolite production in *X. stockiae* strain RT25.5. Genome analysis provided a foundation for predicting biosynthetic pathways, while *in vitro* detection shown the presence of specific compounds. This integrated approach not only validated genetic predictions but also facilitated the further exploration of potential applications and the discovery of new compounds that may have been overlooked.

To unveil the unknown clusters, easyPACId (Edna et al., 2019; Edna et al., 2023), an efficient tool for specialized metabolite production, which allows direct bioactivity testing, was employed. The *X. stockiae* strain RT25.5  $\Delta hfq$  mutant was successfully created. The mutant was colorless and exhibited an absence of most natural products (NPs), as shown in base peak chromatograms (BPC). However, targeting NP production in the  $\Delta hfq$  mutants was unsuccessful. This limitation may arise from the nature of biosynthetic gene clusters, which often consist of multiple separated transcription units. Activating only one transcription unit may result in partial BGC activation, leading to incomplete or no NP production. To fully activate the BGC and achieve complete compound production, several promoters must be activated simultaneously (Sebnem Hazal et al., 2022). Further investigations are needed to overcome this challenge and optimize NP production.

The antimicrobial activities of *X. stockiae* strain RT25.5 were comprehensively examined through various biological approaches, demonstrating its potential as a valuable source for antimicrobial agent discovery, particularly against challenging bacterial infections such as *Acinetobacter baumannii*. Antibacterial susceptibility tests, including MIC and MBC assays, highlighted the potency and spectrum of the RT25.5 extract. To investigate its specific impact on bacterial cells, electron microscopy revealed morphological changes in *A. baumannii* treated with the extract, such as cytoplasmic vacuolization, nucleoid aggregation, increased membrane permeability, and eventual cell lysis. These findings suggest that the extract disrupted cell membrane integrity, leading to ribonucleic acid loss but sparing deoxyribonucleic acid, potentially implying a transcription-inhibition mode of action (Mareike et al., 2010). Proteomic analysis further revealed significant changes in protein expression within *A. baylyi* treated with the RT25.5 extract. A total of 229 proteins showed increased expression, linked to critical biological processes such as enzymatic degradation of antimicrobial agents, modifications of bacterial proteins targeted by antimicrobials, and alterations in membrane permeability. These findings suggest the involvement of multiple immune-related pathways in bacterial host responses. Conversely, 147 proteins exhibited reduced expression, including those involved in essential cellular processes such as heme de-cyclizing activity, transcriptional regulation, tRNA binding, and siderophore-iron transmembrane transport. These findings supported our hypothesis, highlighting the impact of the treatment on protein expressions, particularly in crucial cellular processes and transcriptional regulatory mechanisms. These results provide valuable insights into the antimicrobial mechanisms of the RT25.5 extract and its potential applications in combating multidrug-resistant pathogens.

Genome analysis provided a foundation for predicting biosynthetic pathways, while in vitro detection confirmed the presence of specific bioactive compounds. This integrated approach not only validated genetic predictions but also enabled the discovery of novel compounds that may have been previously overlooked. The observed antimicrobial activity of *X. stockiae* strain RT25.5 highlights its potential as a valuable resource for developing effective antimicrobial agents, particularly against multidrug-resistant bacterial infections. Proteomic analysis further revealed significant

changes in protein expression in *A. baylyi* treated with the crude extract, offering key insights into the antimicrobial mechanisms of strain RT25.5. These findings emphasize the importance of genome mining as a powerful tool for identifying bioactive compound-producing strains and expanding the repertoire of potential therapeutic agents. Future research should focus on characterizing the specific bioactive molecules responsible for the antimicrobial effects, optimizing their production, and evaluating their efficacy in clinical applications, paving the way for the development of next-generation antibiotics.



## REFERENCES

Ahmadi Badi, S., Moshiri, A., Fateh, A., Rahimi Jamnani, F., Sarshar, M., Vaziri, F., & Siadat, S. D. (2017). Microbiota-derived extracellular vesicles as new systemic regulators. *Frontiers in Microbiology*, 8, 1610. <https://doi.org/https://doi.org/10.3389/fmicb.2017.01610>

Ajiboye, T. O., Skiebe, E., & Wilharm, G. (2018). Contributions of ferric uptake regulator Fur to the sensitivity and oxidative response of *Acinetobacter baumannii* to antibiotics. *Microbial Pathogenesis*, 119, 35-41.

Akhurst, R. J. (1980). Morphological and functional dimorphism in *Xenorhabdus* spp., bacteria symbiotically associated with the insect pathogenic nematodes *Neoaplectana* and *Heterorhabditis*. *Microbiology*, 121(2), 303-309.

Akhurst, R. J. (1982). Antibiotic Activity of *Xenorhabdus* spp., Bacteria Symbiotically Associated with Insect Pathogenic Nematodes of the Families *Heterorhabditidae* and *Steinernematidae*. *Microbiology*, 128(12), 3061-3065. <https://doi.org/https://doi.org/10.1099/00221287-128-12-3061>

Alex, J. M., James, A. H. M., Matthew, J. B., Matthew, J., Cerith, J., Gordon, W., Angharad, E. G., Daniel, R. N., Thomas, R. C., & Julian, P. (2019). Genome mining identifies cepacin as a plant-protective metabolite of the biopesticidal bacterium *Burkholderia ambifaria*. *Nature Microbiology*, 4(6), 996-1005.

Alexandre, L., Karl, G., Shiyuyun, T., & Mark, B. (2018). Modeling leaderless transcription and atypical genes results in more accurate gene prediction in prokaryotes. *Genome Research*, 28(7), 1079-1089.

Ali, H. M., Salem, M. Z., El-Shikh, M. S., Megeed, A. A., Alogaibi, Y. A., & Talea, I. A. (2017). Investigation of the virulence factors and molecular characterization of the clonal relations of multidrug-resistant *Acinetobacter baumannii* isolates. *Journal of AOAC International*, 100(1), 152-158.

Ambler, R. P. (1980). The structure of  $\beta$ -lactamases Philosophical. *Transactions of the Royal Society*, 289, 321-331.

Ambrosi, C., Scribano, D., Aleandri, M., Zagaglia, C., Di Francesco, L., Putignani, L., & Palamara, A. T. (2017). *Acinetobacter baumannii* virulence traits: a

comparative study of a novel sequence type with other Italian endemic international clones. *Frontiers in Microbiology*, 8, 1977.

Andreas, T., Yan-Ni, S., Max, K., & Helge, B. B. (2020). Nonribosomal peptides produced by minimal and engineered synthetases with terminal reductase domains. *ChemBioChem*, 21(19), 2750-2754.

Andrew, J. K., Ryan, P. M., Anna, L., & Bradley, S. M. (2011). Bacterial self-resistance to the natural proteasome inhibitor salinosporamide A. *ACS Chemical Biology*, 6(11), 1257-1264.

Andrey, P., Dmitry, A., Dmitry, M., Alla, L., & Anton, K. (2020). Using SPAdes de novo assembler. *Current Protocols in Bioinformatics*, 70(1), e102.

Angela, K., Peer, L., Deepak, V. A., Armin, B., Evelyne, F., Sylvie, S., Nestor, Z., Jennifer, H., Silke, C. W., & Claudia, K. (2015). Targeting DnaN for tuberculosis therapy using novel griselimycins. *Science*, 348(6239), 1106-1112.

Antunes, L. C., Imperi, F., Carattoli, A., & Visca, P. (2011). Deciphering the multifactorial nature of *Acinetobacter baumannii* pathogenicity. *PloS One*, 6(8), e22674.

Aranda, J., Bardina, C., Beceiro, A., Rumbo, S., Cabral, M. P., Barbé, J., & Bou, G. (2011). *Acinetobacter baumannii* RecA protein in repair of DNA damage, antimicrobial resistance, general stress response, and virulence. *Journal of Bacteriology*, 193(15), 3740-3747. <https://doi.org/10.1128/jb.00389-11>

Arroyo, L. A., Herrera, C. M., Fernandez, L., Hankins, J. V., Trent, M. S., & Hancock, R. E. (2011). The pmrCAB operon mediates polymyxin resistance in *Acinetobacter baumannii* ATCC 17978 and clinical isolates through phosphoethanolamine modification of lipid A. *Antimicrobial Agents and Chemotherapy*, 55(8), 3743-3751.

Ayoub Moubareck, C., & Hammoudi Halat, D. (2020). Insights into *Acinetobacter baumannii*: A Review of Microbiological, Virulence, and Resistance Traits in a Threatening Nosocomial Pathogen. *Antibiotics (Basel)*, 9(3), 119. <https://doi.org/10.3390/antibiotics9030119>

Azar, Z. S., Kary, N. E., & Mohammadi, D. (2025). Characterization of two novel isolates of *Photorhabdus* and *Xenorhabdus*: Molecular identification, growth

rate, virulence, and antibacterial susceptibility. *International Journal of Tropical Insect Science*, 1-13. <https://doi.org/https://doi.org/10.1007/s42690-024-01396-1>

Babitzke, P., & Romeo, T. (2007). CsrB sRNA family: sequestration of RNA-binding regulatory proteins. *Current Opinion in Microbiology*, 10(2), 156-163.

Baek, C. H., Wang, S., Roland, K. L., & Curtiss, R. (2009). Leucine-responsive regulatory protein (Lrp) acts as a virulence repressor in *Salmonella enterica* serovar Typhimurium. *Journal of Bacteriology*, 191(4), 1278-1292.

Bager, R., Roghanian, M., Gerdes, K., & Clarke, D. J. (2016). Alarmone (p)ppGpp regulates the transition from pathogenicity to mutualism in *Photobacterium luminescens*. *Molecular Microbiology*, 100(4), 735-747.

Barbara, R. T., Kai, B., Jorge, C. N.-M., Nicole, E. A., Marc, G. C., Susan, E., Sanghoon, L., David, M., Michael, J. J. R., & Zachary, L. R. (2023). MIBiG 3.0: a community-driven effort to annotate experimentally validated biosynthetic gene clusters. *Nucleic Acids Research*, 51(D1), D603-D610.

Basler, M., Ho, B., & Mekalanos, J. (2013). Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions. *Cell*, 152(4), 884-894.

Beceiro, A., Llobet, E., Aranda, J., Bengoechea, J. A., Doumith, M., Hornsey, M., Dhanji, H., Chart, H., Bou, G., & Livermore, D. M. (2011). Phosphoethanolamine modification of lipid A in colistin-resistant variants of *Acinetobacter baumannii* mediated by the pmrAB two-component regulatory system. *Antimicrobial Agents and Chemotherapy*, 55(7), 3370-3379.

Beemelmanns, C., Guo, H., Rischer, M., & Poulsen, M. (2016). Natural products from microbes associated with insects. *Beilstein Journal of Organic Chemistry*, 12(1), 314-327.

Benmahmod, A. B., Said, H. S., & Ibrahim, R. H. (2019). Prevalence and mechanisms of carbapenem resistance among *Acinetobacter baumannii* clinical isolates in Egypt. *Microbial Drug Resistance*, 25(4), 480-488.

Bentancor, L. V., Routray, A., Bozkurt-Guzel, C., Camacho-Pérez, A., Pier, G. B., & Maira-Litrán, T. (2012). Evaluation of the trimeric autotransporter Ata as a vaccine candidate against *Acinetobacter baumannii* infections. *Infection and Immunity*, 80(10), 3381-3388. <https://doi.org/10.1128/iai.06096-11>

Bhargava, N., Sharma, P., & Capalash, N. (2010). Quorum sensing in *Acinetobacter*: an emerging pathogen. *Critical Reviews in Microbiology*, 36(4), 349-360.

Bhuiyan, M. S., Ellett, F., Murray, G. L., Kostoulias, X., Cerqueira, G. M., Schulze, K. E., Mahamad Maifiah, M. H., Li, J., Creek, D. J., Lieschke, G. J., & Peleg, A. Y. (2016). *Acinetobacter baumannii* phenylacetic acid metabolism influences infection outcome through a direct effect on neutrophil chemotaxis. *Proceedings of the National Academy of Sciences*, 113(34), 9599-9604. <https://doi.org/10.1073/pnas.1523116113>

Bird, A. F., & Akhurst, R. J. (1983). The nature of the intestinal vesicle in nematodes of the family Steinernematidae. *International Journal for Parasitology*, 13(6), 599-606.

Bock, C. H., Shapiro-Ilan, D. I., Wedge, D. E., & Cantrell, C. L. (2014). Identification of the antifungal compound, trans-cinnamic acid, produced by *Photorhabdus luminescens*, a potential biopesticide against pecan scab. *Journal of Pest Science*, 87(1), 155-162.

Bode, E., Brachmann, A. O., Kegler, C., Simsek, R., Dauth, C., Zhou, Q., Kaiser, M., Klemmt, P., & Bode, H. B. (2015). Simple “on-demand” production of bioactive natural products. *ChemBioChem*, 16(7), 1115-1119.

Bode, E., He, Y., Vo, T. D., Schultz, R., Kaiser, M., & Bode, H. B. (2017). Biosynthesis and function of simple amides in *Xenorhabdus doucetiae*. *Environmental Microbiology*, 19(11), 4564-4575.

Bode, H. B. (2009). Entomopathogenic bacteria as a source of secondary metabolites. *Current Opinion in Chemical Biology*, 13(2), 224-230.

Boemare, N. (2002). *Biology, taxonomy and systematics of Photorhabdus and Xenorhabdus*. CABI Press.

Boemare, N., & Tailliez, P. (2009). Molecular approaches and techniques for the study of entomopathogenic bacteria. In *Insect pathogens: Molecular approaches and techniques* (pp. 32-49). CABI Wallingford UK.

Boemare, N. E., Akhurst, R. J., & Mourant, R. G. (1993). DNA relatedness between *Xenorhabdus* spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer *Xenorhabdus*

*luminescens* to a new genus, *Photorhabdus* gen. nov. *International Journal of Systematic and Evolutionary Microbiology*, 43(2), 249-255.

Bogaerts, P., Naas, T., El Garch, F., Cuzon, G., Deplano, A., Delaire, T., Huang, T.-D., Lissoir, B., Nordmann, P., & Glupczynski, Y. (2010). GES extended-spectrum  $\beta$ -lactamases in *Acinetobacter baumannii* isolates in Belgium. *Antimicrobial Agents and Chemotherapy*, 54(11), 4872-4878.

<https://doi.org/10.1128/aac.00871-10>

Boll, J. M., Tucker, A. T., Klein, D. R., Beltran, A. M., Brodbelt, J. S., Davies, B. W., & Trent, M. S. (2015). Reinforcing lipid A acylation on the cell surface of *Acinetobacter baumannii* promotes cationic antimicrobial peptide resistance and desiccation survival. *MBio*, 6(3).

<https://doi.org/https://doi.org/10.1128/mbio.00478-15>

Borgeaud, S., Metzger, L. C., Scignari, T., & Blokesch, M. (2015). The type VI secretion system of *Vibrio cholerae* fosters horizontal gene transfer. *Science*, 347(6217), 63-67.

Böszörményi, E., Érsek, T., Fodor, A., Fodor, A., Földes, L. S., Hevesi, M., Hogan, J., Katona, Z., Klein, M., & Kormány, A. (2009). Isolation and activity of *Xenorhabdus* antimicrobial compounds against the plant pathogens *Erwinia amylovora* and *Phytophthora nicotianae*. *Journal of Applied Microbiology*, 107(3), 746-759.

Bou, G., Cerveró, G., Dominguez, M. A., Quereda, C., & Martínez-Beltrán, J. (2000). Characterization of a nosocomial outbreak caused by a multiresistant *acinetobacter baumannii* strain with a carbapenem-hydrolyzing enzyme: high-level carbapenem resistance in *A. baumannii* Is Not Due solely to the presence of  $\beta$ -lactamases. *Journal of Clinical Microbiology*, 38(9), 3299-3305.

Bowden, S. D., Eyres, A., Chung, J. C., Monson, R. E., Thompson, A., Salmond, G. P., Spring, D. R., & Welch, M. (2013). Virulence in *Pectobacterium atrosepticum* is regulated by a coincidence circuit involving quorum sensing and the stress alarmone,(p)ppGpp. *Molecular Microbiology*, 90(3), 457-471.

Brachmann, A. O., Brameyer, S., Kresovic, D., Hitkova, I., Kopp, Y., Manske, C., Schubert, K., Bode, H. B., & Heermann, R. (2013). Pyrones as bacterial signaling molecules. *Nature Chemical biology*, 9(9), 573-578.

Brachmann, A. O., Forst, S., Furgani, G. M., Fodor, A., & Bode, H. B. (2006). Xenofuranones A and B: phenylpyruvate dimers from *Xenorhabdus szentirmaii*. *Journal of Natural Products*, 69(12), 1830-1832.

Brachmann, A. O., Joyce, S. A., Jenke-Kodama, H., Schwär, G., Clarke, D. J., & Bode, H. B. (2007). A Type II Polyketide Synthase is Responsible for Anthraquinone Biosynthesis in *Photorhabdus luminescens*. *ChemBioChem*, 8(14), 1721-1728. <https://doi.org/10.1002/cbic.200700300>

Brachmann, A. O., Kirchner, F., Kegler, C., Kinski, S. C., Schmitt, I., & Bode, H. B. (2012). Triggering the production of the cryptic blue pigment indigoidine from *Photorhabdus luminescens*. *J Biotechnol*, 157(1), 96-99. <https://doi.org/10.1016/j.jbiotec.2011.10.002>

Brinkman, A. B., Ettema, T. J., De Vos, W. M., & Van Der Oost, J. (2003). The Lrp family of transcriptional regulators. *Molecular Microbiology*, 48(2), 287-294.

Brock, D. A., Douglas, T. E., Queller, D. C., & Strassmann, J. E. (2011). Primitive agriculture in a social amoeba. *Nature*, 469(7330), 393-396.

Brown, A., Fernández, I. S., Gordiyenko, Y., & Ramakrishnan, V. (2016). Ribosome-dependent activation of stringent control. *Nature*, 534(7606), 277-280.

Bush, K., Jacoby, G. A., & Medeiros, A. A. (1995). A functional classification scheme for beta-lactamases and its correlation with molecular structure. *Antimicrobial Agents and Chemotherapy*, 39(6), 1211-1233.

Butaye, P., Cloeckaert, A., & Schwarz, S. (2003). Mobile genes coding for efflux-mediated antimicrobial resistance in Gram-positive and Gram-negative bacteria. *International Journal of Antimicrobial Agents*, 22(3), 205-210.

Camacho, M. I., Alvarez, A. F., Chavez, R. G., Romeo, T., Merino, E., & Georgellis, D. (2015). Effects of the global regulator CsrA on the BarA/UvrY two-component signaling system. *Journal of Bacteriology*, 197(5), 983-991.

Camarena, L., Bruno, V., Euskirchen, G., Poggio, S., & Snyder, M. (2010). Molecular mechanisms of ethanol-induced pathogenesis revealed by RNA-sequencing.

*PLoS Pathog*, 6(4), e1000834.  
<https://doi.org/https://doi.org/10.1371/journal.ppat.1000834>

Carruthers, M. D., Nicholson, P. A., Tracy, E. N., & Munson Jr, R. S. (2013). *Acinetobacter baumannii* utilizes a type VI secretion system for bacterial competition. *PloS One*, 8(3), e59388.  
<https://doi.org/https://doi.org/10.1371/journal.pone.0059388>

Castillo-Juarez, I., Lopez-Jacome, L. E., Soberón-Chávez, G., Tomás, M., Lee, J., Castañeda-Tamez, P., Hernández-Bárragan, I. Á., Cruz-Muñiz, M. Y., Maeda, T., & Wood, T. K. (2017). Exploiting quorum sensing inhibition for the control of *Pseudomonas aeruginosa* and *Acinetobacter baumannii* biofilms. *Current Topics in Medicinal Chemistry*, 17(17), 1915-1927.

Catel-Ferreira, M., Coadou, G., Molle, V., Mugnier, P., Nordmann, P., Siroy, A., Jouenne, T., & Dé, E. (2011). Structure–function relationships of CarO, the carbapenem resistance-associated outer membrane protein of *Acinetobacter baumannii*. *Journal of Antimicrobial Chemotherapy*, 66(9), 2053-2056.

Catel-Ferreira, M., Martí, S., Guillón, L., Jara, L., Coadou, G., Molle, V., Bouffartigues, E., Bou, G., Shalk, I., & Jouenne, T. (2016). The outer membrane porin OmpW of *Acinetobacter baumannii* is involved in iron uptake and colistin binding. *FEBS Letters*, 590(2), 224-231.

Celmer, W. D., & Solomons, I. (1955). The structures of thiolutin and aureothrinic, antibiotics containing a unique pyrrolinonodithiole nucleus. *Journal of the American Chemical Society*, 77(10), 2861-2865.

Cerdeira, G. M., Kostoulias, X., Khoo, C., Aibinu, I., Qu, Y., Traven, A., & Peleg, A. Y. (2014). A Global Virulence Regulator in *Acinetobacter baumannii* and Its Control of the Phenylacetic Acid Catabolic Pathway. *The Journal of Infectious Diseases*, 210(1), 46-55. <https://doi.org/10.1093/infdis/jiu024>

Chalabaev, S., Turlin, E., Bay, S., Ganneau, C., Brito-Fravallo, E., Charles, J.-F., Danchin, A., & Biville, F. (2008). Cinnamic acid, an autoinducer of its own biosynthesis, is processed via Hca enzymes in *Photobacterium luminescens*. *Applied and Environmental Microbiology*, 74(6), 1717-1725.

Challinor, V. L., & Bode, H. B. (2015). Bioactive natural products from novel microbial sources. *Annals of the New York Academy of Sciences*, 1354(1), 82-97. <https://doi.org/10.1111/nyas.12954>

Chaston, J. M., Suen, G., Tucker, S. L., Andersen, A. W., Bhasin, A., Bode, E., Bode, H. B., Brachmann, A. O., Cowles, C. E., & Cowles, K. N. (2011). The entomopathogenic bacterial endosymbionts *Xenorhabdus* and *Photorhabdus*: convergent lifestyles from divergent genomes. *PloS One*, 6(11), e27909. <https://doi.org/https://doi.org/10.1371/journal.pone.0027909>

Chen, G. (1996). *Antimicrobial activity of the nematode symbionts, Xenorhabdus and Photorhabdus (Enterobacteriaceae), and the discovery of two groups of antimicrobial substances, nematophin and xenorxides* [Doctoral dissertation, Dept. of Biological Sciences]/Simon Fraser University]. [https://summit.sfu.ca/\\_flysystem/fedora/sfu\\_migrate/7145/b18292021.pdf](https://summit.sfu.ca/_flysystem/fedora/sfu_migrate/7145/b18292021.pdf)

Chen, H., Cao, J., Zhou, C., Liu, H., Zhang, X., & Zhou, T. (2017). Biofilm formation restrained by subinhibitory concentrations of tigecycline in *Acinetobacter baumannii* is associated with downregulation of efflux pumps. *Chemotherapy*, 62(2), 128-133.

Chin, C. Y., Gregg, K. A., Napier, B. A., Ernst, R. K., & Weiss, D. S. (2015). A PmrB-regulated deacetylase required for lipid A modification and polymyxin resistance in *Acinetobacter baumannii*. *Antimicrobial Agents and Chemotherapy*, 59(12), 7911-7914.

Choi, C. H., Lee, E. Y., Lee, Y. C., Park, T. I., Kim, H. J., Hyun, S. H., Kim, S. A., Lee, S. K., & Lee, J. C. (2005). Outer membrane protein 38 of *Acinetobacter baumannii* localizes to the mitochondria and induces apoptosis of epithelial cells. *Cellular Microbiology*, 7(8), 1127-1138.

Choi, C. H., Lee, J. S., Lee, Y. C., Park, T. I., & Lee, J. C. (2008). *Acinetobacter baumannii* invades epithelial cells and outer membrane protein A mediates interactions with epithelial cells. *BMC Microbiology*, 8(1), 216. <https://doi.org/10.1186/1471-2180-8-216>

Chopra, I., & Roberts, M. (2001). Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. *Microbiology and Molecular Biology Reviews*, 65(2), 232-260.

Ciche, T. A., Blackburn, M., Carney, J. R., & Ensign, J. C. (2003). Photobactin: a catechol siderophore produced by *Photorhabdus luminescens*, an entomopathogen mutually associated with *Heterorhabditis bacteriophora* NC1 nematodes. *Applied and Environmental Microbiology*, 69(8), 4706-4713.

Cisneros, J. M., & Rodríguez-Baño, J. (2002). Nosocomial bacteremia due to *Acinetobacter baumannii*: epidemiology, clinical features and treatment. *Clinical Microbiology and Infection*, 8(11), 687-693.

Clarke, D. J. (2016). The regulation of secondary metabolism in *Photorhabdus*. In *The Molecular Biology of Photorhabdus Bacteria* (pp. 81-102). Springer.

Cowles, K. N., Cowles, C. E., Richards, G. R., Martens, E. C., & Goodrich-Blair, H. (2007). The global regulator Lrp contributes to mutualism, pathogenesis and phenotypic variation in the bacterium *Xenorhabdus nematophila*. *Cellular Microbiology*, 9(5), 1311-1323.

Coyne, S., Courvalin, P., & Périchon, B. (2011). Efflux-mediated antibiotic resistance in *Acinetobacter* spp. *Antimicrobial Agents and Chemotherapy*, 55(3), 947-953.

Cramton, S. E., Gerke, C., Schnell, N. F., Nichols, W. W., & Götz, F. (1999). The intercellular adhesion (ica) locus is present in *Staphylococcus aureus* and is required for biofilm formation. *Infection and Immunity*, 67(10), 5427-5433.

Crawford, J. M., Kontnik, R., & Clardy, J. (2010). Regulating alternative lifestyles in entomopathogenic bacteria. *Current Biology*, 20(1), 69-74.

Crawford, J. M., Mahlstedt, S. A., Malcolmson, S. J., Clardy, J., & Walsh, C. T. (2011). Dihydrophenylalanine: a prephenate-derived *Photorhabdus luminescens* antibiotic and intermediate in dihydrostilbene biosynthesis. *Chemistry & Biology*, 18(9), 1102-1112.

<https://doi.org/10.1016/j.chembiol.2011.07.009>

Crawford, J. M., Portmann, C., Zhang, X., Roeffaers, M. B., & Clardy, J. (2012). Small molecule perimeter defense in entomopathogenic bacteria. *Proceedings of the National Academy of Sciences*, 109(27), 10821-10826.

Davies, J. A., Harrison, J. J., Marques, L. L., Foglia, G. R., Stremick, C. A., Storey, D. G., Turner, R. J., Olson, M. E., & Ceri, H. (2007). The GacS sensor kinase controls phenotypic reversion of small colony variants isolated from biofilms of *Pseudomonas aeruginosa* PA14. *FEMS Microbiology Ecology*, 59(1), 32-46.

de Breij, A., Dijkshoorn, L., Lagendijk, E., van der Meer, J., Koster, A., Bloemberg, G., Wolterbeek, R., van den Broek, P., & Nibbering, P. (2010). Do biofilm formation and interactions with human cells explain the clinical success of *Acinetobacter baumannii*? *PloS One*, 5(5), e10732. <https://doi.org/https://doi.org/10.1371/journal.pone.0010732>

del Mar Tomás, M., Beceiro, A., Pérez, A., Velasco, D., Moure, R., Villanueva, R., Martínez-Beltrán, J., & Bou, G. (2005). Cloning and functional analysis of the gene encoding the 33-to 36-kilodalton outer membrane protein associated with carbapenem resistance in *Acinetobacter baumannii*. *Antimicrobial Agents and Chemotherapy*, 49(12), 5172-5175.

Derzelle, S., Duchaud, E., Kunst, F., Danchin, A., & Bertin, P. (2002). Identification, characterization, and regulation of a cluster of genes involved in carbapenem biosynthesis in *Photobacterium luminescens*. *Applied and Environmental Microbiology*, 68(8), 3780-3789.

Dreyer, J., Marina, R., Booysen, E., Staden, A. D. V., Deane, S. M., & Dicks, L. M. T. (2019). Xenorhabdus khowasanae SB10 produces Lys-rich PAX lipopeptides and a Xenocoumacin in its antimicrobial complex. *BMC Microbiology*, 19, 1-11.

Dubois, D., Prasad Rao, N. V., Mittal, R., Bret, L., Roujou-Gris, M., & Bonnet, R. (2009). CTX-M  $\beta$ -lactamase production and virulence of *Escherichia coli* K1. *Emerging Infectious Diseases*, 15(12), 1988.

Duchaud, E., Rusniok, C., Frangeul, L., Buchrieser, C., Givaudan, A., Taourit, S., Bocs, S., Boursaux-Eude, C., Chandler, M., & Charles, J.-F. (2003). The

genome sequence of the entomopathogenic bacterium *Photorhabdus luminescens*. *Nature Biotechnology*, 21(11), 1307-1313.

Dudnik, A., Bigler, L., & Dudler, R. (2013). Heterologous expression of a *Photorhabdus luminescens* syrbactin-like gene cluster results in production of the potent proteasome inhibitor glidobactin A. *Microbiol Res*, 168(2), 73-76. <https://doi.org/10.1016/j.micres.2012.09.006>

Dupont, M., Pagès, J.-M., Lafitte, D., Siroy, A., & Bollet, C. (2005). Identification of an OprD Homologue in *Acinetobacter baumannii*. *Journal of Proteome Research*, 4(6), 2386-2390.

Dyson, P. (2009). *Streptomyces* (3rd th ed.). Academic Press. <https://doi.org/https://doi.org/10.1016/B978-012373944-5.00037-7>

Easom, C. A., & Clarke, D. J. (2012). HdfR is a regulator in *Photorhabdus luminescens* that modulates metabolism and symbiosis with the nematode *Heterorhabditis*. *Environmental Microbiology*, 14(4), 953-966.

Edna, B., Antje, K. H., Merle, H., Desalegne, A., Yan-Ni, S., Tien Duy, V., Frank, W., Yi-Ming, S., Peter, G., & Svenja, S. (2019). Promoter activation in  $\Delta$ hfq mutants as an efficient tool for specialized metabolite production enabling direct bioactivity testing. *Angewandte Chemie*, 131(52), 19133-19139.

Edna, B., Daniela, A., Petra, H., Elmar, M., Karin, M., Nicole, R., & Helge, B. B. (2023). easyPACId, a simple method for Induced Production, isolation, identification, and testing of Natural products from Proteobacteria. *Bio-Protocol*, 13(3), 1-13.

Elhosseiny, N. M., Amin, M. A., Yassin, A. S., & Attia, A. S. (2015). *Acinetobacter baumannii* universal stress protein A plays a pivotal role in stress response and is essential for pneumonia and sepsis pathogenesis. *International Journal of Medical Microbiology*, 305(1), 114-123. <https://doi.org/https://doi.org/10.1016/j.ijmm.2014.11.008>

Elhosseiny, N. M., El-Tayeb, O. M., Yassin, A. S., Lory, S., & Attia, A. S. (2016). The secretome of *Acinetobacter baumannii* ATCC 17978 type II secretion system reveals a novel plasmid encoded phospholipase that could be implicated in lung colonization. *International Journal of Medical Microbiology*, 306(8), 633-641.

Ellis, C. O. N., Michelle, S., Charles, B. L., & Natalie, M.-A. (2019). Targeted antibiotic discovery through biosynthesis-associated resistance determinants: Target directed genome mining. *Critical Reviews in Microbiology*, 45(3), 255-277. [https://doi.org/https://doi.org/10.1080/1040841X.2019.1590307](https://doi.org/10.1080/1040841X.2019.1590307)

Eren, A. M., Özcan, C. E., Christopher, Q., Joseph, H. V., Hilary, G. M., Mitchell, L. S., & Tom, O. D. (2015). Anvi'o: an advanced analysis and visualization platform for 'omics data. *PeerJ*, 3, e1319. <https://doi.org/https://doi.org/10.7717/peerj.1319>

Espinal, P., Pantel, A., Rolo, D., Martí, S., López-Rojas, R., Smani, Y., Pachón, J., Vila, J., & Lavigne, J.-P. (2019). Relationship between different resistance mechanisms and virulence in *Acinetobacter baumannii*. *Microbial Drug Resistance*, 25(5), 752-760.

Ettlinger, L., Gäumann, E., Hütter, R., Keller-Schierlein, W., Kradolfer, F., Neipp, L., Prelog, V., Reusser, P., & Zähner, H. (1959). Stoffwechselprodukte von Actinomyceten, XVI. Cinerubine. *Chemische Berichte*, 92(8), 1867-1879.

Fernández-Cuenca, F., Smani, Y., Gómez-Sánchez, M. C., Docobo-Pérez, F., Caballero-Moyano, F. J., Domínguez-Herrera, J., Pascual, A., & Pachón, J. (2011). Attenuated virulence of a slow-growing pandrug-resistant *Acinetobacter baumannii* is associated with decreased expression of genes encoding the porins CarO and OprD-like. *International Journal of Antimicrobial Agents*, 38(6), 548-549.

Fiester, S. E., Arivett, B. A., Schmidt, R. E., Beckett, A. C., Ticak, T., Carrier, M. V., Ghosh, R., Ohneck, E. J., Metz, M. L., & Sellin Jeffries, M. K. (2016). Iron-regulated phospholipase C activity contributes to the cytolytic activity and virulence of *Acinetobacter baumannii*. *PloS One*, 11(11), e0167068. <https://doi.org/https://doi.org/10.1371/journal.pone.0167068>

Friederike, I. N., Christina, D., Geraldine, M., Carsten, K., Marcel, K., Nick, R. W., & Helge, B. B. (2015). Insect-specific production of new GameXPeptides in *Photorhabdus luminescens* TTO1, widespread natural products in entomopathogenic bacteria. *ChemBioChem*, 16(2), 205-208.

Fu, J., Bian, X., Hu, S., Wang, H., Huang, F., Seibert, P. M., Plaza, A., Xia, L., Müller, R., & Stewart, A. F. (2012). Full-length RecE enhances linear-linear

homologous recombination and facilitates direct cloning for bioprospecting. *Nature Biotechnology*, 30(5), 440-446.

Fuchs, S. W., Grundmann, F., Kurz, M., Kaiser, M., & Bode, H. B. (2014). Fabclavines: Bioactive Peptide–Polyketide-Polyamino Hybrids from *Xenorhabdus*. *ChemBioChem*, 15(4), 512-516.

Fuchs, S. W., Proschak, A., Jaskolla, T. W., Karas, M., & Bode, H. B. (2011). Structure elucidation and biosynthesis of lysine-rich cyclic peptides in *Xenorhabdus nematophila*. *Organic & Biomolecular Chemistry*, 9(9), 3130-3132.

Fukruksa, C., Yimthin, T., Suwannaroj, M., Muangpat, P., Tandhavanant, S., Thanwisai, A., & Vitta, A. (2017). Isolation and identification of *Xenorhabdus* and *Photorhabdus* bacteria associated with entomopathogenic nematodes and their larvicidal activity against *Aedes aegypti*. *Parasites & Vectors*, 10(1), 440. <https://doi.org/10.1186/s13071-017-2383-2>

Gaca, A. O., Colomer-Winter, C., & Lemos, J. A. (2015). Many means to a common end: the intricacies of (p) ppGpp metabolism and its control of bacterial homeostasis. *Journal of Bacteriology*, 197(7), 1146-1156.

Gaca, A. O., Kudrin, P., Colomer-Winter, C., Beljantseva, J., Liu, K., Anderson, B., Wang, J. D., Rejman, D., Potrykus, K., & Cashel, M. (2015). From (p)ppGpp to (pp)pGpp: characterization of regulatory effects of pGpp synthesized by the small alarmone synthetase of *Enterococcus faecalis*. *Journal of Bacteriology*, 197(18), 2908-2919.

Gaddy, J. A., Arivett, B. A., McConnell, M. J., López-Rojas, R., Pachón, J., & Actis, L. A. (2012). Role of acinetobactin-mediated iron acquisition functions in the interaction of *Acinetobacter baumannii* strain ATCC 19606T with human lung epithelial cells, *Galleria mellonella* caterpillars, and mice. *Infection and Immunity*, 80(3), 1015-1024.

Gaddy, J. A., Tomaras, A. P., & Actis, L. A. (2009). The *Acinetobacter baumannii* 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. *Infection and Immunity*, 77(8), 3150-3160.

Gallego, L., & Towner, K. J. (2001). Carriage of class 1 integrons and antibiotic resistance in clinical isolates of *Acinetobacter baumannii* from Northern Spain. *Journal of Medical Microbiology*, 50(1), 71-77.  
<https://doi.org/https://doi.org/10.1099/0022-1317-50-1-71>

Gebhardt, M. J., Gallagher, L. A., Jacobson, R. K., Usacheva, E. A., Peterson, L. R., Zurawski, D. V., & Shuman, H. A. (2015). Joint transcriptional control of virulence and resistance to antibiotic and environmental stress in *Acinetobacter baumannii*. *MBio*, 6(6), e01660-01615.  
<https://doi.org/10.1128/mBio.01660-15>

Gehrlein, M., Leying, H., Cullmann, W., Wendt, S., & Opferkuch, W. (1991). Imipenem resistance in *Acinetobacter baumanii* is due to altered penicillin-binding proteins. *Chemotherapy*, 37(6), 405-412.

Geisinger, E., Huo, W., Hernandez-Bird, J., & Isberg, R. R. (2019). *Acinetobacter baumannii*: envelope determinants that control drug resistance, virulence, and surface variability. *Annual Review of Microbiology*, 73, 481-506.

Geisinger, E., & Isberg, R. R. (2015). Antibiotic modulation of capsular exopolysaccharide and virulence in *Acinetobacter baumannii*. *PLoS Pathog*, 11(2), e1004691. <https://doi.org/https://doi.org/10.1371/journal.ppat.1004691>

George Seghal, K., Sethu, P., Arya, S., Amrudha, R., & Joseph, S. (2018). An antibiotic agent pyrrolo 1, 2-a pyrazine-1, 4-dione, hexahydro isolated from a marine bacteria *Bacillus tequilensis* MSI45 effectively controls multi-drug resistant *Staphylococcus aureus*. *RSC Advances*, 8, 17837-17846.

Gina, L. C. G., Maximilian, S., Kudratullah, K., Yi-Ming, S., Tim, A. S. n., Nicholas, J. T., Nina, M., Michael, G., & Helge, B. B. (2019). An uncommon type II PKS catalyzes biosynthesis of aryl polyene pigments. *Journal of the American Chemical Society*, 141(42), 16615-16623.

Glare, T., Jurat-Fuentes, J.-L., & O'callaghan, M. (2017). Basic and applied research: entomopathogenic bacteria. In *Microbial control of insect and mite pests* (pp. 47-67). Elsevier.

Goodrich-Blair, H., & Clarke, D. J. (2007). Mutualism and pathogenesis in *Xenorhabdus* and *Photobacterium*: two roads to the same destination. *Molecular Microbiology*, 64(2), 260-268.

Gordon, N. C., & Wareham, D. W. (2010). Multidrug-resistant *Acinetobacter baumannii*: mechanisms of virulence and resistance. *International Journal of Antimicrobial Agents*, 35(3), 219-226.

Grant, J. R., & Stothard, P. (2008). The CGView Server: a comparative genomics tool for circular genomes. *Nucleic Acids Research*, 36(suppl\_2), W181-W184.

Grundmann, F., Kaiser, M., Kurz, M., Schiell, M., Batzer, A., & Bode, H. B. (2013). Structure determination of the bioactive depsipeptide xenobactin from *Xenorhabdus* sp. PB30. 3. *RSC Advances*, 3(44), 22072-22077.

Gualtieri, M., Aumelas, A., & Thaler, J.-O. (2009). Identification of a new antimicrobial lysine-rich cyclolipopeptide family from *Xenorhabdus nematophila*. *The Journal of Antibiotics*, 62(6), 295-302.

Harding, C. M., Hennon, S. W., & Feldman, M. F. (2018). Uncovering the mechanisms of *Acinetobacter baumannii* virulence. *Nature Reviews Microbiology*, 16(2), 91-102.

Harding, C. M., Kinsella, R. L., Palmer, L. D., Skaar, E. P., & Feldman, M. F. (2016). Medically relevant *Acinetobacter* species require a type II secretion system and specific membrane-associated chaperones for the export of multiple substrates and full virulence. *PLoS Pathogens*, 12(1), e1005391.  
<https://doi.org/https://doi.org/10.1371/journal.ppat.1005391>

Hart, B. R., & Blumenthal, R. M. (2011). Unexpected coregulator range for the global regulator Lrp of *Escherichia coli* and *Proteus mirabilis*. *Journal of Bacteriology*, 193(5), 1054-1064.

Haseley, S. R., Pantophlet, R., Brade, L., Holst, O., & Brade, H. (1997). Structural and serological characterisation of the O-antigenic polysaccharide of the lipopolysaccharide from *Acinetobacter junii* strain 65. *European Journal of Biochemistry*, 245(2), 477-481.

Hauryliuk, V., Atkinson, G. C., Murakami, K. S., Tenson, T., & Gerdes, K. (2015). Recent functional insights into the role of (p) ppGpp in bacterial physiology. *Nature Reviews Microbiology*, 13(5), 298-309.

Heather, S. K., & Randy, G. (2009). *Entomopathogenic nematode and bacteria mutualism*. CRC Press.

Heeb, S., & Haas, D. (2001). Regulatory Roles of the GacS/GacA Two-Component System in Plant-Associated and Other Gram-Negative Bacteria. *Molecular Plant-Microbe Interactions*, 14(12), 1351-1363.  
<https://doi.org/10.1094/mpmi.2001.14.12.1351>

Herbert, E. E., & Goodrich-Blair, H. (2007). Friend and foe: the two faces of *Xenorhabdus nematophila*. *Nature Reviews Microbiology*, 5(8), 634-646.

Hesketh, A., Chen, W. J., Ryding, J., Chang, S., & Bibb, M. (2007). The global role of ppGpp synthesis in morphological differentiation and antibiotic production in *Streptomyces coelicolor* A3 (2). *Genome Biology*, 8(8), R161.  
<https://doi.org/https://doi.org/10.1186/gb-2007-8-8-r161>

Hood, M. I., Jacobs, A. C., Sayood, K., Dunman, P. M., & Skaar, E. P. (2010). *Acinetobacter baumannii* increases tolerance to antibiotics in response to monovalent cations. *Antimicrobial Agents and Chemotherapy*, 54(3), 1029-1041.

Hood, M. I., Mortensen, B. L., Moore, J. L., Zhang, Y., Kehl-Fie, T. E., Sugitani, N., Chazin, W. J., Caprioli, R. M., & Skaar, E. P. (2012). Identification of an *Acinetobacter baumannii* zinc acquisition system that facilitates resistance to calprotectin-mediated zinc sequestration. *PLoS Pathog*, 8(12), e1003068.  
<https://doi.org/https://doi.org/10.1371/journal.ppat.1003068>

Hu, K., Li, J., Li, B., Webster, J. M., & Chen, G. (2006). A novel antimicrobial epoxide isolated from larval *Galleria mellonella* infected by the nematode symbiont, *Photorhabdus luminescens* (Enterobacteriaceae). *Bioorganic & Medicinal Chemistry*, 14(13), 4677-4681.

Hu, K., Li, J., Wang, W., Wu, H., Lin, H., & Webster, J. M. (1998). Comparison of metabolites produced *in vitro* and *in vivo* by *Photorhabdus luminescens*, a bacterial symbiont of the entomopathogenic nematode *Heterorhabditis megidis*. *Canadian Journal of Microbiology*, 44(11), 1072-1077.  
<https://doi.org/10.1139/w98-098>

Hu, K., Li, J., & Webster, J. M. (1996). 3, 5-Dihydroxy-4-isopropylstilbene: a selective nematicidal compound from the culture filtrate of *Photorhabdus luminescens*. *Canadian Journal of Plant Pathology*, 18, 104.

Huang, W., Wang, S., Yao, Y., Xia, Y., Yang, X., Long, Q., Sun, W., Liu, C., Li, Y., & Ma, Y. (2015). OmpW is a potential target for eliciting protective immunity against *Acinetobacter baumannii* infections. *Vaccine*, 33(36), 4479-4485.

Huang, W., Yao, Y., Wang, S., Xia, Y., Yang, X., Long, Q., Sun, W., Liu, C., Li, Y., & Chu, X. (2016). Immunization with a 22-kDa outer membrane protein elicits protective immunity to multidrug-resistant *Acinetobacter baumannii*. *Scientific Reports*, 6(1), 1-12.

Hussa, E. A., Casanova-Torres, Á. M., & Goodrich-Blair, H. (2015). The global transcription factor Lrp controls virulence modulation in *Xenorhabdus nematophila*. *Journal of Bacteriology*, 197(18), 3015-3025.

Imai, Y., Meyer, K. J., Iinishi, A., Favre-Godal, Q., Green, R., Manuse, S., Caboni, M., Mori, M., Niles, S., & Ghiglieri, M. (2019). A new antibiotic selectively kills Gram-negative pathogens. *Nature*, 576(7787), 459-464.

Inmaculada, G., Manuel Carlos, L., Adriana, E., Génesis, P., Bartolomé, C., Celia, B., Marina, S., Manuel, S., Emma, C., & Thomas, M. C. (2023). Differential expression profile of genes involved in the immune response associated to progression of chronic Chagas disease. *PLOS Neglected Tropical Diseases*, 17(7), e0011474. [https://doi.org/https://doi.org/10.1371/journal.pntd.0011474](https://doi.org/10.1371/journal.pntd.0011474)

Iwashkiw, J. A., Seper, A., Weber, B. S., Scott, N. E., Vinogradov, E., Stratilo, C., Reiz, B., Cordwell, S. J., Whittal, R., & Schild, S. (2012). Identification of a general O-linked protein glycosylation system in *Acinetobacter baumannii* and its role in virulence and biofilm formation. *PLoS Pathog*, 8(6), e1002758. [https://doi.org/https://doi.org/10.1371/journal.ppat.1002758](https://doi.org/10.1371/journal.ppat.1002758)

Jacobs, A. C., Hood, I., Boyd, K. L., Olson, P. D., Morrison, J. M., Carson, S., Sayood, K., Iwen, P. C., Skaar, E. P., & Dunman, P. M. (2010). Inactivation of phospholipase D diminishes *Acinetobacter baumannii* pathogenesis. *Infection and Immunity*, 78(5), 1952-1962.

Jeon, J. H., Lee, J. H., Lee, J. J., Park, K. S., Karim, A. M., Lee, C.-R., Jeong, B. C., & Lee, S. H. (2015). Structural basis for carbapenem-hydrolyzing mechanisms of carbapenemases conferring antibiotic resistance. *International Journal of Molecular Sciences*, 16(5), 9654-9692.

Ji, D., & Kim, Y. (2004). An entomopathogenic bacterium, *Xenorhabdus nematophila*, inhibits the expression of an antibacterial peptide, cecropin, of the beet armyworm, *Spodoptera exigua*. *Journal of Insect Physiology*, 50(6), 489-496.

Jianxiong, L., Genhui, C., & John, M. W. (1997). Nematophin, a novel antimicrobial substance produced by *Xenorhabdus nematophilus* (Enterobactereaceae). *Canadian Journal of Microbiology*, 43(8), 770-773.

Jianxiong, L., Genhui, C., & Webster, J. M. (1997). Synthesis and antistaphylococcal activity of nematophin and its analogs. *Bioorganic & Medicinal Chemistry Letters*, 7(10), 1349-1352.

Jin, J. S., Kwon, S.-O., Moon, D. C., Gurung, M., Lee, J. H., Kim, S. I., & Lee, J. C. (2011). *Acinetobacter baumannii* secretes cytotoxic outer membrane protein A via outer membrane vesicles. *PloS One*, 6(2), e17027. <https://doi.org/https://doi.org/10.1371/journal.pone.0017027>

Johnson, T. L., Waack, U., Smith, S., Mobley, H., & Sandkvist, M. (2016). *Acinetobacter baumannii* is dependent on the type II secretion system and its substrate LipA for lipid utilization and *in vivo* fitness. *Journal of Bacteriology*, 198(4), 711-719.

Jones, C. L., Clancy, M., Honnold, C., Singh, S., Snesrud, E., Onmus-Leone, F., McGann, P., Ong, A. C., Kwak, Y., & Waterman, P. (2015). Fatal outbreak of an emerging clone of extensively drug-resistant *Acinetobacter baumannii* with enhanced virulence. *Clinical Infectious Diseases*, 61(2), 145-154.

Jordan, I. K., Kira, S. M., John, L. S., Yuri, I. W., & Eugene, V. K. (2001). Lineage-specific gene expansions in bacterial and archaeal genomes. *Genome Research*, 11(4), 555-565.

Jorge, C. N.-M., Nelly, S.-M., Michael, W. M., Satria, A. K., James, H. T., Elizabeth, I. P., Emmanuel, L. C. D. L. S., Marley, Y., Pablo, C.-M., & Sahar, A. (2020). A computational framework to explore large-scale biosynthetic diversity. *Nature Chemical biology*, 16(1), 60-68.

Joshi, N. A., & Fass, J. N. (2011). *Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33)*. In *GitHub* [Software]. <https://github.com/najoshi/sickle>

Joyce, S. A., Brachmann, A. O., Glazer, I., Lango, L., Schwär, G., Clarke, D. J., & Bode, H. B. (2008). Bacterial Biosynthesis of a Multipotent Stilbene. *Angewandte Chemie International Edition*, 47(10), 1942-1945. <https://doi.org/10.1002/anie.200705148>

Joyce, S. A., & Clarke, D. J. (2003). A *hexA* homologue from *Photorhabdus* regulates pathogenicity, symbiosis and phenotypic variation. *Molecular Microbiology*, 47(5), 1445-1457.

Joyce, S. A., Lango, L., & Clarke, D. J. (2011). Chapter 1 - The Regulation of Secondary Metabolism and Mutualism in the Insect Pathogenic Bacterium *Photorhabdus luminescens*. In A. I. Laskin, S. Sariaslani, & G. M. Gadd (Eds.), *Advances in Applied Microbiology* (Vol. 76, pp. 1-25). Academic Press. <https://doi.org/https://doi.org/10.1016/B978-0-12-387048-3.00001-5>

Jun, S. H., Lee, J. H., Kim, B. R., Kim, S. I., Park, T. I., Lee, J. C., & Lee, Y. C. (2013). *Acinetobacter baumannii* outer membrane vesicles elicit a potent innate immune response via membrane proteins. *PloS One*, 8(8), e71751. <https://doi.org/https://doi.org/10.1371/journal.pone.0071751>

Juttukonda, L. J., Chazin, W. J., & Skaar, E. P. (2016). *Acinetobacter baumannii* coordinates urea metabolism with metal import to resist host-mediated metal limitation. *MBio*, 7(5). <https://doi.org/https://doi.org/10.1128/mbio.01475-16>

Kai, B., Simon, S., Alexander, M. K., Zach, C.-P., Gilles, P. V. W., Marnix, H. M., & Tilmann, W. (2021). antiSMASH 6.0: improving cluster detection and comparison capabilities. *Nucleic Acids Research*, 49(W1), W29-W35.

Kazuya, Y., Kirk, A. R., Roland, D. K., Katherine, S. R., David, J. G., Victor, N., Pieter, C. D., & Bradley, S. M. (2014). Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. *Proceedings of the National Academy of Sciences*, 111(5), 1957-1962.

Kenyon, J. J., & Hall, R. M. (2013). Variation in the complex carbohydrate biosynthesis loci of *Acinetobacter baumannii* genomes. *PloS One*, 8(4), e62160. <https://doi.org/https://doi.org/10.1371/journal.pone.0062160>

Kim, S. W., Choi, C. H., Moon, D. C., Jin, J. S., Lee, J. H., Shin, J.-H., Kim, J. M., Lee, Y. C., Seol, S. Y., & Cho, D. T. (2009). Serum resistance of

*Acinetobacter baumannii* through the binding of factor H to outer membrane proteins. *FEMS Microbiology Letters*, 301(2), 224-231.

Kim, Y. J., Kim, S. I., Kim, Y. R., Hong, K. W., Wie, S. H., Park, Y. J., Jeong, H., & Kang, M. W. (2012). Carbapenem-resistant *Acinetobacter baumannii*: diversity of resistant mechanisms and risk factors for infection. *Epidemiology & Infection*, 140(1), 137-145.

Knapp, S., Wieland, C. W., Florquin, S., Pantophlet, R., Dijkshoorn, L., Tshimbalanga, N., Akira, S., & van der Poll, T. (2006). Differential Roles of CD14 and Toll-like Receptors 4 and 2 in Murine *Acinetobacter Pneumonia*. *American Journal of Respiratory and Critical Care Medicine*, 173(1), 122-129.

Koenigs, A., Stahl, J., Averhoff, B., Göttig, S., Wichelhaus, T. A., Wallich, R., Zipfel, P. F., & Kraiczy, P. (2016). CipA of *Acinetobacter baumannii* Is a Novel Plasminogen Binding and Complement Inhibitory Protein. *The Journal of Infectious Diseases*, 213(9), 1388-1399. <https://doi.org/10.1093/infdis/jiv601>

Koenigs, A., Zipfel, P. F., & Kraiczy, P. (2015). Translation Elongation Factor Tuf of *Acinetobacter baumannii* Is a Plasminogen-Binding Protein. *PloS One*, 10(7), e0134418. <https://doi.org/10.1371/journal.pone.0134418>

Kontnik, R., Crawford, J. M., & Clardy, J. (2010). Exploiting a Global Regulator for Small Molecule Discovery in *Photorhabdus luminescens*. *ACS Chemical Biology*, 5(7), 659-665. <https://doi.org/10.1021/cb100117k>

Korotkov, K. V., Sandkvist, M., & Hol, W. G. (2012). The type II secretion system: biogenesis, molecular architecture and mechanism. *Nature Reviews Microbiology*, 10(5), 336-351.

Krin, E., Chakroun, N., Turlin, E., Givaudan, A., Gaboriau, F., Bonne, I., Rousselle, J.-C., Frangeul, L., Lacroix, C., & Hullo, M.-F. (2006). Pleiotropic role of quorum-sensing autoinducer 2 in *Photorhabdus luminescens*. *Applied and Environmental Microbiology*, 72(10), 6439-6451.

Krin, E., Derzelle, S., Bedard, K., Adib-Conquy, M., Turlin, E., Lenormand, P., Hullo, M. F., Bonne, I., Chakroun, N., & Lacroix, C. (2008). Regulatory role of UvrY in adaptation of *Photorhabdus luminescens* growth inside the insect. *Environmental Microbiology*, 10(5), 1118-1134.

Kuo, S. C., Chang, S. C., Wang, H. Y., Lai, J. F., Chen, P. C., Shiau, Y. R., Huang, I. W., & Lauderdale, T. L. Y. (2012). Emergence of extensively drug-resistant *Acinetobacter baumannii* complex over 10 years: nationwide data from the Taiwan Surveillance of Antimicrobial Resistance (TSAR) program. *BMC Infectious Diseases*, 12(1), 200. [https://doi.org/https://doi.org/10.1186/1471-2334-12-200](https://doi.org/10.1186/1471-2334-12-200)

Kwon, S. O., Gho, Y. S., Lee, J. C., & Kim, S. I. (2009). Proteome analysis of outer membrane vesicles from a clinical *Acinetobacter baumannii* isolate. *FEMS Microbiology Letters*, 297(2), 150-156.

Lang, G., Kalvelage, T., Peters, A., Wiese, J., & Imhoff, J. F. (2008). Linear and cyclic peptides from the entomopathogenic bacterium *Xenorhabdus nematophilus*. *Journal of Natural Products*, 71(6), 1074-1077.

Lango-Scholey, L., Brachmann, A. O., Bode, H. B., & Clarke, D. J. (2013). The expression of *stlA* in *Photobacterium luminescens* is controlled by nutrient limitation. *PloS One*, 8(11), e82152. <https://doi.org/https://doi.org/10.1371/journal.pone.0082152>

Lango, L., & Clarke, D. J. (2010). A metabolic switch is involved in lifestyle decisions in *Photobacterium luminescens*. *Molecular Microbiology*, 77(6), 1394-1405.

Lapouge, K., Schubert, M., Allain, F. H. T., & Haas, D. (2008). Gac/Rsm signal transduction pathway of  $\gamma$ -proteobacteria: from RNA recognition to regulation of social behaviour. *Molecular Microbiology*, 67(2), 241-253.

Lasa, I., & Penadés, J. R. (2006). Bap: a family of surface proteins involved in biofilm formation. *Research in Microbiology*, 157(2), 99-107.

Lee, C. R., Lee, J. H., Park, M., Park, K. S., Bae, I. K., Kim, Y. B., Cha, C. J., Jeong, B. C., & Lee, S. H. (2017). Biology of *Acinetobacter baumannii*: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options [Review]. *Frontiers in Cellular and Infection Microbiology*, 7(55). <https://doi.org/10.3389/fcimb.2017.00055>

Lee, J., & Zhang, L. (2015). The hierarchy quorum sensing network in *Pseudomonas aeruginosa*. *Protein Cell*, 6(1), 26-41. <https://doi.org/10.1007/s13238-014-0100-x>

Lee, J. S., Choi, C. H., Kim, J. W., & Lee, J. C. (2010). *Acinetobacter baumannii* outer membrane protein A induces dendritic cell death through mitochondrial targeting. *The Journal of Microbiology*, 48(3), 387-392.

Lees-Miller, R. G., Iwashkiw, J. A., Scott, N. E., Seper, A., Vinogradov, E., Schild, S., & Feldman, M. F. (2013). A common pathway for O-linked protein-glycosylation and synthesis of capsule in *Acinetobacter baumannii*. *Molecular Microbiology*, 89(5), 816-830.

Li, B., Wever, W. J., Walsh, C. T., & Bowers, A. A. (2014). Dithioliopyrrolones: biosynthesis, synthesis, and activity of a unique class of disulfide-containing antibiotics. *Natural Product Reports*, 31(7), 905-923.

Li, B., Wever, W. J., Walsh, C. T., & Bowers, A. A. (2015). Correction: Dithioliopyrrolones: biosynthesis, synthesis, and activity of a unique class of disulfide-containing antibiotics. *Natural Product Reports*, 32(2), 348-349.

Li, F. J., Starrs, L., & Burgio, G. (2018). Tug of war between *Acinetobacter baumannii* and host immune responses. *Pathogens and Disease*, 76(9), ftz004. [https://doi.org/https://doi.org/10.1093/femspd/ftz004](https://doi.org/10.1093/femspd/ftz004)

Li, J.-H., Cho, W., Hamchand, R., Oh, J., & Crawford, J. M. (2021). A conserved nonribosomal peptide synthetase in *Xenorhabdus bovienii* produces citrulline-functionalized lipopeptides. *Journal of Natural Products*, 84(10), 2692-2699.

Li, J., Chen, G., & Webster, J. M. (1997). Nematophin, a novel antimicrobial substance produced by *Xenorhabdus nematophilus* (Enterobactereaceae). *Canadian journal of microbiology*, 43(8), 770-773.

Li, J., Chen, G., Webster, J. M., & Czyzewska, E. (1995). Antimicrobial metabolites from a bacterial symbiont. *Journal of Natural Products*, 58(7), 1081-1086.

Li, J. H., Cho, W., Hamchand, R., Oh, J., & Crawford, J. M. (2021). A Conserved Nonribosomal Peptide Synthetase in *Xenorhabdus bovienii* Produces Citrulline-Functionalized Lipopeptides. *J Nat Prod*, 84(10), 2692-2699. <https://doi.org/10.1021/acs.jnatprod.1c00573>

Li, Z. T., Zhang, R. L., Bi, X. G., Xu, L., Fan, M., Xie, D., Xian, Y., Wang, Y., Li, X. J., & Wu, Z. D. (2015). Outer membrane vesicles isolated from two clinical

*Acinetobacter baumannii* strains exhibit different toxicity and proteome characteristics. *Microbial Pathogenesis*, 81, 46-52.

Lin, L., Tan, B., Pantapalangkoor, P., Ho, T., Baquir, B., Tomaras, A., Montgomery, J. I., Barbacci, E. G., Hujer, K., & Bonomo, R. A. (2012). Inhibition of LpxC protects mice from resistant *Acinetobacter baumannii* by modulating inflammation and enhancing phagocytosis. *MBio*, 3(5).

<https://doi.org/https://doi.org/10.1128/mbio.00312-12>

Lin, M. F., & Lan, C. Y. (2014). Antimicrobial resistance in *Acinetobacter baumannii*: From bench to bedside. *World Journal of Clinical Cases: WJCC*, 2(12), 787-814.

Lin, W., Kovacikova, G., & Skorupski, K. (2007). The quorum sensing regulator HapR downregulates the expression of the virulence gene transcription factor AphA in *Vibrio cholerae* by antagonizing Lrp-and VpsR-mediated activation. *Molecular Microbiology*, 64(4), 953-967.

Liu, C. C., Kuo, H. Y., Tang, C. Y., Chang, K. C., & Liou, M. L. (2014). Prevalence and mapping of a plasmid encoding a type IV secretion system in *Acinetobacter baumannii*. *Genomics*, 104(3), 215-223.

Liu, D., Liu, Z. S., Hu, P., Cai, L., Fu, B. Q., Li, Y. S., Lu, S. Y., Liu, N. N., Ma, X. L., Chi, D., Chang, J., Shui, Y. M., Li, Z. H., Ahmad, W., Zhou, Y., & Ren, H. L. (2016). Characterization of surface antigen protein 1 (SurA1) from *Acinetobacter baumannii* and its role in virulence and fitness. *Veterinary Microbiology*, 186, 126-138.

<https://doi.org/https://doi.org/10.1016/j.vetmic.2016.02.018>

Liu, M. Y., & Romeo, T. (1997). The global regulator CsrA of *Escherichia coli* is a specific mRNA-binding protein. *Journal of Bacteriology*, 179(14), 4639-4642.

Loehfelm, T. W., Luke, N. R., & Campagnari, A. A. (2008). Identification and characterization of an *Acinetobacter baumannii* biofilm-associated protein. *Journal of Bacteriology*, 190(3), 1036-1044.

Luísa, C. S. A., Paolo, V., & Kevin, J. T. (2014). *Acinetobacter baumannii*: evolution of a global pathogen. *Pathogens and Disease*, 71(3), 292-301.

Luke, N. R., Sauberan, S. L., Russo, T. A., Beanan, J. M., Olson, R., Loehfelm, T. W., Cox, A. D., Michael, F. S., Vinogradov, E. V., & Campagnari, A. A. (2010). Identification and characterization of a glycosyltransferase involved in *Acinetobacter baumannii* lipopolysaccharide core biosynthesis. *Infection and Immunity*, 78(5), 2017-2023.

Mack, D., Fischer, W., Krokotsch, A., Leopold, K., Hartmann, R., Egge, H., & Laufs, R. (1996). The intercellular adhesin involved in biofilm accumulation of *Staphylococcus epidermidis* is a linear beta-1, 6-linked glucosaminoglycan: purification and structural analysis. *Journal of Bacteriology*, 178(1), 175-183.

Maira-Litrán, T., Kropec, A., Abeygunawardana, C., Joyce, J., Mark III, G., Goldmann, D. A., & Pier, G. B. (2002). Immunochemical properties of the staphylococcal poly-N-acetylglucosamine surface polysaccharide. *Infection and Immunity*, 70(8), 4433-4440.

Mak, J. K., Kim, M.-J., Pham, J., Tapsall, J., & White, P. A. (2009). Antibiotic resistance determinants in nosocomial strains of multidrug-resistant *Acinetobacter baumannii*. *Journal of Antimicrobial Chemotherapy*, 63(1), 47-54.

Mareike, H., Marina, B., Jacques, H., Mohammad Fotouhi, A., Dagmar, G., & Anne, S. U. (2010). Damage of the bacterial cell envelope by antimicrobial peptides gramicidin S and PGLa as revealed by transmission and scanning electron microscopy. *Antimicrobial Agents and Chemotherapy*, 54(8), 3132-3142.

McConnell, M. J., Actis, L., & Pachón, J. (2013). *Acinetobacter baumannii*: human infections, factors contributing to pathogenesis and animal models. *FEMS Microbiology Reviews*, 37(2), 130-155. <https://doi.org/10.1111/j.1574-6976.2012.00344.x>.

McInerney, B. V., Taylor, W. C., Lacey, M. J., Akhurst, R. J., & Gregson, R. P. (1991). Biologically active metabolites from *Xenorhabdus* spp., Part 2. Benzopyran-1-one derivatives with gastroprotective activity. *Journal of Natural Products*, 54(3), 785-795.

McQueary, C. N., Kirkup, B. C., Si, Y., Barlow, M., Actis, L. A., Craft, D. W., & Zurawski, D. V. (2012). Extracellular stress and lipopolysaccharide modulate

*Acinetobacter baumannii* surface-associated motility. *Journal of Microbiology*, 50(3), 434-443.

Mendes, R. E., Farrell, D. J., Sader, H. S., & Jones, R. N. (2010). Comprehensive assessment of tigecycline activity tested against a worldwide collection of *Acinetobacter* spp. (2005–2009). *Diagnostic Microbiology and Infectious Disease*, 68(3), 307-311.

Moffatt, J. H., Harper, M., Harrison, P., Hale, J. D., Vinogradov, E., Seemann, T., Henry, R., Crane, B., Michael, F. S., & Cox, A. D. (2010). Colistin resistance in *Acinetobacter baumannii* is mediated by complete loss of lipopolysaccharide production. *Antimicrobial Agents and Chemotherapy*, 54(12), 4971-4977.

Moon, D. C., Choi, C. H., Lee, J. H., Choi, C.-W., Kim, H.-Y., Park, J. S., Kim, S. I., & Lee, J. C. (2012). *Acinetobacter baumannii* outer membrane protein A modulates the biogenesis of outer membrane vesicles. *The Journal of Microbiology*, 50(1), 155-160.

Moore, J. L., Becker, K. W., Nicklay, J. J., Boyd, K. L., Skaar, E. P., & Caprioli, R. M. (2014). Imaging mass spectrometry for assessing temporal proteomics: analysis of calprotectin in *Acinetobacter baumannii* pulmonary infection. *Proteomics*, 14(7-8), 820-828.

Morikawa, M., Kagihiro, S., Haruki, M., Takano, K., Branda, S., Kolter, R., & Kanaya, S. (2006). Biofilm formation by a *Bacillus subtilis* strain that produces  $\gamma$ -polyglutamate. *Microbiology*, 152(9), 2801-2807.

Morris, F. C., Dexter, C., Kostoulias, X., Uddin, M. I., & Peleg, A. (2019). The mechanisms of disease caused by *Acinetobacter baumannii*. *Frontiers in Microbiology*, 10, 1601.

Moubareck, C., Brémont, S., Conroy, M.-C., Courvalin, P., & Lambert, T. (2009). GES-11, a Novel Integron-Associated GES Variant in <em>Acinetobacter baumannii</em>. *Antimicrobial Agents and Chemotherapy*, 53(8), 3579-3581. <https://doi.org/10.1128/aac.00072-09>

Mougous, J. D., Cuff, M. E., Raunser, S., Shen, A., Zhou, M., Gifford, C. A., Goodman, A. L., Joachimiak, G., Ordoñez, C. L., & Lory, S. (2006). A

virulence locus of *Pseudomonas aeruginosa* encodes a protein secretion apparatus. *Science*, 312(5779), 1526-1530.

Mussi, M. A., Limansky, A. S., & Viale, A. M. (2005). Acquisition of resistance to carbapenems in multidrug-resistant clinical strains of *Acinetobacter baumannii*: natural insertional inactivation of a gene encoding a member of a novel family of  $\beta$ -barrel outer membrane proteins. *Antimicrobial Agents and Chemotherapy*, 49(4), 1432-1440.

Nairn, B. L., Lonergan, Z. R., Wang, J., Braymer, J. J., Zhang, Y., Calcutt, M. W., Lisher, J. P., Gilston, B. A., Chazin, W. J., & de Crécy-Lagard, V. (2016). The response of *Acinetobacter baumannii* to zinc starvation. *Cell Host & Microbe*, 19(6), 826-836.

Nelson, L. K., Stanton, M. M., Elphinstone, R. E., Helwerda, J., Turner, R. J., & Ceri, H. (2010). Phenotypic diversification *in vivo*: *Pseudomonas aeruginosa* *gacS*- strains generate small colony variants *in vivo* that are distinct from *in vitro* variants. *Microbiology*, 156(12), 3699-3709.

Nemec, A., Dolzani, L., Brisse, S., van den Broek, P., & Dijkshoorn, L. (2004). Diversity of aminoglycoside-resistance genes and their association with class 1 integrons among strains of pan-European *Acinetobacter baumannii* clones. *Journal of Medical Microbiology*, 53(12), 1233-1240.  
<https://doi.org/https://doi.org/10.1099/jmm.0.45716-0>

Newman, D. J., & Cragg, G. M. (2012). Natural products as sources of new drugs over the 30 years from 1981 to 2010. *Journal of Natural Products*, 75(3), 311-335.

Nguyen, H. C., Karray, F., Lautru, S., Gagnat, J., Lebrihi, A., Ho Huynh, T. D., & Pernodet, J. L. (2010). Glycosylation steps during spiramycin biosynthesis in *Streptomyces ambofaciens*: involvement of three glycosyltransferases and their interplay with two auxiliary proteins. *Antimicrob Agents Chemother*, 54(7), 2830-2839. <https://doi.org/https://doi.org/10.1128/aac.01602-09>

Nicholas, J. T., Antje, K. H., Helena, E., Patrick, R. W., Nick, N., Rolf, B., & Helge, B. B. (2017). *Photorhabdus*-nematode symbiosis is dependent on *hfq*-mediated regulation of secondary metabolites. *Environmental Microbiology*, 19(1), 119-129.

Niu, C., Clemmer, K. M., Bonomo, R. A., & Rather, P. N. (2008). Isolation and characterization of an autoinducer synthase from *Acinetobacter baumannii*. *Journal of Bacteriology*, 190(9), 3386-3392.

Nollmann, F. I., Dauth, C., Mulley, G., Kegler, C., Kaiser, M., Waterfield, N. R., & Bode, H. B. (2015). Insect-specific production of new GameXPeptides in *Photorhabdus luminescens* TTO1, widespread natural products in entomopathogenic bacteria. *ChemBioChem*, 16(2), 205-208.

Nollmann, F. I., Dowling, A., Kaiser, M., Deckmann, K., Grösch, S., & Bode, H. B. (2012). Synthesis of szentiamide, a depsipeptide from entomopathogenic *Xenorhabdus szentirmaii* with activity against *Plasmodium falciparum*. *Beilstein Journal of Organic Chemistry*, 8(1), 528-533.

Ohlendorf, B., Simon, S., Wiese, J., & Imhoff, J. F. (2011). Szentiamide, an N-formylated cyclic depsipeptide from *Xenorhabdus szentirmaii* DSM 16338T. *Natural Product Communications*, 6(9).  
<https://doi.org/https://doi.org/10.1177/1934578X1100600909>

Olivia, S., Victoria, L. C., Nicholas, J. T., Hélène, A., Peter, G., Laura, P., Christian, R., Harald, S., & Helge, B. B. (2015). Structure, biosynthesis, and occurrence of bacterial pyrrolizidine alkaloids. *Angewandte Chemie International Edition*, 54(43), 12702-12705.

Omkar, S. M., Colton, J. L., Jonathan, M. M., Tilmann, W., & Bernhard, O. P. (2022). Pangenome analysis of Enterobacteria reveals richness of secondary metabolite gene clusters and their associated gene sets. *Synthetic and Systems Biotechnology*, 7(3), 900-910.

Pablo, C.-M., Johannes Florian, K., Christian, M.-G., Luis Alfonso, Y.-G., Nelly, S.-M., Hilda, R.-A., Jörg, F., & Francisco, B.-G. (2016). Phylogenomic analysis of natural products biosynthetic gene clusters allows discovery of arsено-organic metabolites in model streptomycetes. *Genome Biology and Evolution*, 8(6), 1906-1916.

Palma, L., Frizzo, L., Kaiser, S., Berry, C., Caballero, P., Bode, H. B., & Del Valle, E. E. (2024). Genome Sequence Analysis of Native Xenorhabdus Strains Isolated from Entomopathogenic Nematodes in Argentina. *Toxins*, 16(2), 108. <https://www.mdpi.com/2072-6651/16/2/108>

Park, D., Ciezki, K., Van Der Hoeven, R., Singh, S., Reimer, D., Bode, H. B., & Forst, S. (2009). Genetic analysis of xenocoumacin antibiotic production in the mutualistic bacterium *Xenorhabdus nematophila*. *Molecular Microbiology*, 73(5), 938-949.

Park, H. B., & Crawford, J. M. (2015). Lumiquinone A, an  $\alpha$ -aminomalonate-derived aminobenzoquinone from *Photorhabdus luminescens*. *Journal of Natural Products*, 78(6), 1437-1441.

Patricia Stock, S., Campbell, J. F., & Nadler, S. A. (2001). Phylogeny of Steinernema Travassos, 1927 (Cephalobina: Steinernematidae) inferred from ribosomal DNA sequences and morphological characters. *Journal of Parasitology*, 87(4), 877-889.

Paul, S., Andrew, M., Owen, O., Nitin, S. B., Jonathan, T. W., Daniel, R., Nada, A., Benno, S., & Trey, I. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. *Genome Research*, 13(11), 2498-2504.

Paul, V. J., Frautschy, S., Fenical, W., & Nealson, K. H. (1981). Isolation and structure assignment of several new antibacterial compounds from the insect-symbiotic bacteria *Xenorhabdus* spp. *Journal of Chemical Ecology*, 7, 589-597.

Pelletier, M. R., Casella, L. G., Jones, J. W., Adams, M. D., Zurawski, D. V., Hazlett, K. R., Doi, Y., & Ernst, R. K. (2013). Unique structural modifications are present in the lipopolysaccharide from colistin-resistant strains of *Acinetobacter baumannii*. *Antimicrobial Agents and Chemotherapy*, 57(10), 4831-4840.

Penwell, W. F., Arivett, B. A., & Actis, L. A. (2012). The *Acinetobacter baumannii* *entA* gene located outside the acinetobactin cluster is critical for siderophore production, iron acquisition and virulence. *PloS One*, 7(5).  
<https://doi.org/https://doi.org/10.1371/journal.pone.0036493>

Pereira, C. S., Thompson, J. A., & Xavier, K. B. (2013). AI-2-mediated signalling in bacteria. *FEMS Microbiology Reviews*, 37(2), 156-181.

Pérez, A., Merino, M., Rumbo-Feal, S., Álvarez-Fraga, L., Vallejo, J. A., Beceiro, A., Ohneck, E. J., Mateos, J., Fernández-Puente, P., Actis, L. A., Poza, M., &

Bou, G. (2017). The FhaB/FhaC two-partner secretion system is involved in adhesion of *Acinetobacter baumannii* AbH12O-A2 strain. *Virulence*, 8(6), 959-974. <https://doi.org/10.1080/21505594.2016.1262313>

Pernestig, A.-K., Georgellis, D., Romeo, T., Suzuki, K., Tomenius, H., Normark, S., & Melefors, Ö. (2003). The *Escherichia coli* BarA-UvrY two-component system is needed for efficient switching between glycolytic and gluconeogenic carbon sources. *Journal of Bacteriology*, 185(3), 843-853.

Piel, J. (2009). Metabolites from symbiotic bacteria. *Natural Product Reports*, 26(3), 338-362.

Pires, S., & Parker, D. (2019). Innate immune responses to *Acinetobacter baumannii* in the airway. *Journal of Interferon & Cytokine Research*, 39(8), 441-449.

Poinar, G. O. (1966). The presence of *Achromobacter nematophilus* in the infective stage of a *Neoaplectana* sp. (Steinernematidae: Nematoda). *Nematologica*, 12(1), 105-108.

Poinar, G. O. (1975). Description and biology of a new insect parasitic rhabditoid, *Heterorhabditis bacteriophora* n. gen., n. sp. (Rhabditida; Heterorhabditidae n. fam.). *Nematologica*, 21(4), 463-470.

Poinar, G. O., Gaugler, R., & Kaya, H. K. (1990). Entomopathogenic nematodes in biological control. *Taxonomy and Biology of Steinernematidae and Heterorhabditidae*. CRC Press, Boca Raton, Florida, 23-74.

Poinar, G. O., Hess, R. T., Lanier, W., Kinney, S., & White, J. H. (1989). Preliminary observations of a bacteriophage infecting *Xenorhabdus luminescens* (Enterobacteriaceae). *Experientia*, 45(2), 191-192.

Poinar, G. O., & Thomas, G. M. (1966). Significance of *Achromobacter nematophilus* Poinar and Thomas (Achromobacteraceae: Eubacteriales) in the development of the nematode, DD-136 (*Neoaplectana* sp. Steinernematidae). *Parasitology*, 56(2), 385-390.

Poinar Jr, G., Hess, R., & Thomas, G. (1980). Isolation of defective bacteriophages from *Xenorhabdus* spp. (Enterobacteriaceae). *IRCS Medical Science: Microbiology, Parasitology and Infectious Diseases*, 8(3-4). <https://www.cabidigitallibrary.org/doi/full/10.5555/19800869444>

Poinar Jr, G. O., & Grewal, P. (2012). History of entomopathogenic nematology. *Journal of Nematology*, 44(2), 153.

Poinar Jr, G. O., & Leutenegger, R. (1968). Anatomy of the infective and normal third-stage juveniles of *Neoaplectana carpocapsae* Weiser (Steinernematidae: Nematoda). *The Journal of Parasitology*, 54(2), 340-350.

Poinar Jr, G. O., Thomas, G., Haygood, M., & Nealson, K. H. (1980). Growth and luminescence of the symbiotic bacteria associated with the terrestrial nematode, *Heterorhabdus bacteriophora*. *Soil Biology and Biochemistry*, 12(1), 5-10.

Poinar Jr, G. O., & Thomas, G. M. (1967). The nature of *Achromobacter nematophilus* as an insect pathogen. *Journal of Invertebrate Pathology*, 9(4), 510-514.

Proschak, A., Schultz, K., Herrmann, J., Dowling, A. J., Brachmann, A. O., ffrench-Constant, R., Müller, R., & Bode, H. B. (2011). Cytotoxic fatty acid amides from *Xenorhabdus*. *ChemBioChem*, 12(13), 2011-2015.

Proschak, A., Zhou, Q., Schöner, T., Thanwisai, A., Kresovic, D., Dowling, A., Proschak, E., & Bode, H. B. (2014). Biosynthesis of the insecticidal xenocyloins in *Xenorhabdus bovienii*. *ChemBioChem*, 15(3), 369-372.

Půža, V., & Machado, R. A. R. (2024). Systematics and phylogeny of the entomopathogenic nematobacterial complexes Steinernema–Xenorhabdus and Heterorhabditis–Photorhabdus. *Zoological Letters*, 10(1), 13. <https://doi.org/10.1186/s40851-024-00235-y>

Qin, Z., Huang, S., Yu, Y., & Deng, H. (2013). Dithioliopyrrolone natural products: isolation, synthesis and biosynthesis. *Marine Drugs*, 11(10), 3970-3997.

Qiuqin, Z., Florian, G., Marcel, K., Matthias, S., Sophie, G., Andreas, B., Michael, K., & Helge, B. B. (2013). Structure and biosynthesis of xenoamicins from entomopathogenic *Xenorhabdus*. *Chemistry–A European Journal*, 19, 16772-16779.

Quale, J., Bratu, S., Landman, D., & Heddurshetti, R. (2003). Molecular epidemiology and mechanisms of carbapenem resistance in *Acinetobacter baumannii* endemic in New York City. *Clinical Infectious Diseases*, 37(2), 214-220.

Queenan, A. M., & Bush, K. (2007). Carbapenemases: the Versatile  $\beta$ -Lactamases. *Clinical Microbiology Reviews*, 20(3), 440-458. <https://doi.org/10.1128/cmr.00001-07>

Reimer, D. (2013). *Identification and characterization of selected secondary metabolite biosynthetic pathways from Xenorhabdus nematophila* [Doctoral dissertation, Ph. D. thesis, Johann Wolfgang Groethe-Universität, Frankfurt, Germany].

Reimer, D., Cowles, K., Proschak, A., Nollmann, F., Dowling, A., & Kaiser, M. (2013). R. ffrench-Constant, H. Goodrich-Blair and HB Bode. *ChemBioChem*, 14, 1991-1997.

Reimer, D., Luxenburger, E., Brachmann, A. O., & Bode, H. B. (2009). A new type of pyrrolidine biosynthesis is involved in the late steps of xenocoumacin production in *Xenorhabdus nematophila*. *ChemBioChem*, 10(12), 1997-2001.

Repizo, G. D., Gagné, S., Foucault-Grunenwald, M.-L., Borges, V., Charpentier, X., Limansky, A. S., Gomes, J. P., Viale, A. M., & Salcedo, S. P. (2015). Differential Role of the T6SS in *Acinetobacter baumannii* Virulence. *PloS One*, 10(9), e0138265. <https://doi.org/10.1371/journal.pone.0138265>

Ricardo, A. R. M., Arthur, M., Shimaa, M. G., Aunchalee, T., Sylvie, P., Helge, B. B., Mona, A. H., Kamal, M. K., & Louis, S. T. (2021). *Photorhabdus heterorhabditis* subsp. *aluminescens* subsp. nov., *Photorhabdus heterorhabditis* subsp. *heterorhabditis* subsp. nov., *Photorhabdus australis* subsp. *thailandensis* subsp. nov., *Photorhabdus australis* subsp. *australis* subsp. nov., and *Photorhabdus aegyptia* sp. nov. isolated from Heterorhabditis entomopathogenic nematodes. *International Journal of Systematic and Evolutionary Microbiology*, 71(1), 004610. <https://doi.org/https://doi.org/10.1099/ijsem.0.004610>

Richards, G. R., Herbert, E. E., Park, Y., & Goodrich-Blair, H. (2008). *Xenorhabdus nematophila* *lrhA* is necessary for motility, lipase activity, toxin expression, and virulence in *Manduca sexta* insects. *Journal of Bacteriology*, 190(14), 4870-4879.

Richardson, W. H., Schmidt, T. M., & Nealson, K. H. (1988). Identification of an anthraquinone pigment and a hydroxystilbene antibiotic from *Xenorhabdus*

*luminescens*. *Applied and Environmental Microbiology*, 54(6), 1602-1605.  
<https://doi.org/10.1128/AEM.54.6.1602-1605.1988>

Rill, A., Zhao, L., & Bode, H. B. (2024). Genetic toolbox for *Photorhabdus* and *Xenorhabdus*: pSEVA based heterologous expression systems and CRISPR/Cpf1 based genome editing for rapid natural product profiling. *Microbial Cell Factories*, 23(1), 98. <https://doi.org/10.1186/s12934-024-02363-8>

Romeo, T. (1998). Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. *Molecular Microbiology*, 29(6), 1321-1330.

Ruiz, F. M., Santillana, E., Spínola-Amilibia, M., Torreira, E., Culebras, E., & Romero, A. (2015). Crystal Structure of Hcp from *Acinetobacter baumannii*: A Component of the Type VI Secretion System. *PLoS One*, 10(6), e0129691. <https://doi.org/10.1371/journal.pone.0129691>

Rumbo, C., Fernández-Moreira, E., Merino, M., Poza, M., Mendez, J. A., Soares, N. C., Mosquera, A., Chaves, F., & Bou, G. (2011). Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles: a new mechanism of dissemination of carbapenem resistance genes in *Acinetobacter baumannii*. *Antimicrobial Agents and Chemotherapy*, 55(7), 3084-3090.

Rumbo, C., Tomás, M., Moreira, E. F., Soares, N. C., Carvajal, M., Santillana, E., Beceiro, A., Romero, A., & Bou, G. (2014). The *Acinetobacter baumannii* Omp33-36 porin is a virulence factor that induces apoptosis and modulates autophagy in human cells. *Infection and Immunity*, 82(11), 4666-4680.

Russo, T. A., Luke, N. R., Beanan, J. M., Olson, R., Sauberan, S. L., MacDonald, U., Schultz, L. W., Umland, T. C., & Campagnari, A. A. (2010). The K1 capsular polysaccharide of *Acinetobacter baumannii* strain 307-0294 is a major virulence factor. *Infection and Immunity*, 78(9), 3993-4000.

Russo, T. A., MacDonald, U., Beanan, J. M., Olson, R., MacDonald, I. J., Sauberan, S. L., Luke, L. W., & Umland, T. C. (2009). Penicillin-binding protein 7/8 contributes to the survival of *Acinetobacter baumannii* *in vitro* and *in vivo*.

*The Journal of Infectious Diseases*, 199(4), 513-521.  
<https://doi.org/10.1086/596317>

Rutherford, S. T., & Bassler, B. L. (2012). Bacterial quorum sensing: its role in virulence and possibilities for its control. *Cold Spring Harbor Perspectives in Medicine*, 2(11), a012427.  
<https://perspectivesinmedicine.cshlp.org/content/2/11/a012427.short>

Ryan, M. P., Tingting, H., Jeffrey, D. R., Michael, J. S., & Ben, S. (2014). Mechanisms of self-resistance in the platensimycin-and platencin-producing *Streptomyces platensis* MA7327 and MA7339 strains. *Chemistry & Biology*, 21(3), 389-397.

Saha, R., Saha, N., Donofrio, R. S., & Bestervelt, L. L. (2013). Microbial siderophores: a mini review. *Journal of Basic Microbiology*, 53(4), 303-317.

Sahly, H., Navon-Venezia, S., Roesler, L., Hay, A., Carmeli, Y., Podschun, R., Hennequin, C., Forestier, C., & Ofek, I. (2008). Extended-spectrum  $\beta$ -lactamase production is associated with an increase in cell invasion and expression of fimbrial adhesins in *Klebsiella pneumoniae*. *Antimicrobial Agents and Chemotherapy*, 52(9), 3029-3034.

Sajnaga, E., Kazimierczak, W., Karaś, M. A., & Jach, M. E. (2024). Exploring Xenorhabdus and Photorhabdus Nematode Symbionts in Search of Novel Therapeutics. *Molecules*, 29(21), 5151. <https://www.mdpi.com/1420-3049/29/21/5151>

Schooling, S. R., & Beveridge, T. J. (2006). Membrane vesicles: an overlooked component of the matrices of biofilms. *Journal of Bacteriology*, 188(16), 5945-5957.

Sebnem Hazal, G., Evren, T., Edna, B., Harun, C., Hatice, E., Derya, U., Sema, E., Sebastian, L. W., Mustapha, T., & Canan, H. (2022). Antiprotozoal activity of different Xenorhabdus and Photorhabdus bacterial secondary metabolites and identification of bioactive compounds using the easyPACId approach. *Scientific Reports*, 12(1), 10779.  
<https://doi.org/https://doi.org/10.1038/s41598-022-13722-z>

Sechi, L. A., Karadenizli, A., Deriu, A., Zanetti, S., Kolayli, F., Balikci, E., & Vahaboglu, H. (2004). PER-1 type beta-lactamase production in

*Acinetobacter baumannii* is related to cell adhesion. *Med Sci Monit*, 10(6), Br180-184.

Septer, A. N., Bose, J. L., Lipzen, A., Martin, J., Whistler, C., & Stabb, E. V. (2015). Bright luminescence of *Vibrio fischeri* aconitase mutants reveals a connection between citrate and the G ac/C sr regulatory system. *Molecular Microbiology*, 95(2), 283-296.

Shi, H., Zeng, H., Yang, X., Zhao, J., Chen, M., & Qiu, D. (2012). An insecticidal protein from *Xenorhabdus ehlersii* triggers prophenoloxidase activation and hemocyte decrease in *Galleria mellonella*. *Current Microbiology*, 64(6), 604-610.

Shi, Y.-M., Hirschmann, M., Shi, Y.-N., Ahmed, S., Abebew, D., Tobias, N. J., Grün, P., Crames, J. J., Pöschel, L., & Kuttenlochner, W. (2022). Global analysis of biosynthetic gene clusters reveals conserved and unique natural products in entomopathogenic nematode-symbiotic bacteria. *Nature Chemistry*, 14(6), 701-712.

Shneider, M. M., Buth, S. A., Ho, B. T., Basler, M., Mekalanos, J. J., & Leiman, P. G. (2013). PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. *Nature*, 500(7462), 350-353.

Simon, A. (2010). FastQC: a quality control tool for high throughput sequence data. <http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>

Singh, J. K., Adams, F. G., & Brown, M. H. (2019). Diversity and function of capsular polysaccharide in *Acinetobacter baumannii*. *Frontiers in Microbiology*, 9, 3301. <https://doi.org/https://doi.org/10.3389/fmicb.2018.03301>

Siroy, A., Molle, V., Lemaître-Guillier, C., Vallenet, D., Pestel-Caron, M., Cozzzone, A. J., Jouenne, T., & Dé, E. (2005). Channel formation by CarO, the carbapenem resistance-associated outer membrane protein of *Acinetobacter baumannii*. *Antimicrobial Agents and Chemotherapy*, 49(12), 4876-4883.

Smani, Y., Dominguez-Herrera, J., & Pachón, J. (2013). Association of the outer membrane protein Omp33 with fitness and virulence of *Acinetobacter baumannii*. *The Journal of Infectious Diseases*, 208(10), 1561-1570.

Smani, Y., Fàbrega, A., Roca, I., Sánchez-Encinales, V., Vila, J., & Pachón, J. (2014). Role of OmpA in the multidrug resistance phenotype of *Acinetobacter baumannii*. *Antimicrobial Agents and Chemotherapy*, 58(3), 1806-1808.

Smani, Y., McConnell, M. J., & Pachón, J. (2012). Role of fibronectin in the adhesion of *Acinetobacter baumannii* to host cells. *PloS One*, 7(4), e33073. <https://doi.org/https://doi.org/10.1371/journal.pone.0033073>

Smith, S. G. J., Mahon, V., Lambert, M. A., & Fagan, R. P. (2007). A molecular Swiss army knife: OmpA structure, function and expression. *FEMS Microbiology Letters*, 273(1), 1-11. <https://doi.org/10.1111/j.1574-6968.2007.00778.x>

Snyder, H., Stock, S. P., Kim, S.-K., Flores-Lara, Y., & Forst, S. (2007). New Insights into the Colonization and Release Processes of *Xenorhabdus nematophila* and the Morphology and Ultrastructure of the Bacterial Receptacle of Its Nematode Host, *Steinernema carpocapsae*. *Applied and Environmental Microbiology*, 73(16), 5338-5346. <https://doi.org/10.1128/aem.02947-06>

Srinivasan, V. B., Vaidyanathan, V., & Rajamohan, G. (2015). AbuO, a TolC-like outer membrane protein of *Acinetobacter baumannii*, is involved in antimicrobial and oxidative stress resistance. *Antimicrobial Agents and Chemotherapy*, 59(2), 1236-1245.

Stacy, D. M., Welsh, M. A., Rather, P. N., & Blackwell, H. E. (2012). Attenuation of quorum sensing in the pathogen *Acinetobacter baumannii* using non-native N-Acyl homoserine lactones. *ACS Chemical Biology*, 7(10), 1719-1728.

Stahl, J., Bergmann, H., Göttig, S., Ebersberger, I., & Averhoff, B. (2015). *Acinetobacter baumannii* virulence is mediated by the concerted action of three phospholipases D. *PloS One*, 10(9), e0138360. <https://doi.org/https://doi.org/10.1371/journal.pone.0138360>

Stallforth, P., Brock, D. A., Cantley, A. M., Tian, X., Queller, D. C., Strassmann, J. E., & Clardy, J. (2013). A bacterial symbiont is converted from an inedible producer of beneficial molecules into food by a single mutation in the *gacA* gene. *Proceedings of the National Academy of Sciences*, 110(36), 14528-14533.

Stein, M. L., Beck, P., Kaiser, M., Dudler, R., Becker, C. F. W., & Groll, M. (2012). One-shot NMR analysis of microbial secretions identifies highly potent proteasome inhibitor. *Proceedings of the National Academy of Sciences*, 109(45), 18367-18371. <https://doi.org/10.1073/pnas.1211423109>

Steinberger, R., & Holden, P. (2005). Extracellular DNA in single-and multiple-species unsaturated biofilms. *Applied and Environmental Microbiology*, 71(9), 5404-5410.

Steven, F., Barbara, D., Noel, B., & Erko, S. (1997). Xenorhabdus and *Photobacterium* spp.: bugs that kill bugs. *Annual Review of Microbiology*, 51(1), 47-72

Su, C. H., Wang, J. T., Hsiung, C. A., Chien, L. J., Chi, C. L., Yu, H. T., Chang, F. Y., & Chang, S. C. (2012). Increase of carbapenem-resistant *Acinetobacter baumannii* infection in acute care hospitals in Taiwan: association with hospital antimicrobial usage. *PloS One*, 7(5), e37788. <https://doi.org/10.1371/journal.pone.0037788>

Szittner, R., & Meighen, E. (1990). Nucleotide sequence, expression, and properties of luciferase coded by *lux* genes from a terrestrial bacterium. *The Journal of Biological Chemistry*, 265(27), 16581-16587.

Tacconelli, E., Magrini, N., Kahlmeter, G., & Singh, N. (2017). Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. *World Health Organization*, 27, 318-327.

Taitt, C. R., Leski, T. A., Stockelman, M. G., Craft, D. W., Zurawski, D. V., Kirkup, B. C., & Vora, G. J. (2014). Antimicrobial resistance determinants in *Acinetobacter baumannii* isolates taken from military treatment facilities. *Antimicrobial Agents and Chemotherapy*, 58(2), 767-781.

Takashi, M. (2020). Carotenoids as natural functional pigments. *Journal of Natural Medicines*, 74(1), 1-16.

Takeuchi, K., Yamada, K., & Haas, D. (2012). ppGpp controlled by the Gac/Rsm regulatory pathway sustains biocontrol activity in *Pseudomonas fluorescens* CHA0. *Molecular Plant-Microbe Interactions*, 25(11), 1440-1449.

Tang, J., Chen, Y., Wang, X., Ding, Y., Sun, X., & Ni, Z. (2020). Contribution of the AbaI/AbaR Quorum Sensing System to Resistance and Virulence of

*Acinetobacter baumannii* Clinical Strains. *Infection and Drug Resistance*, 13, 4273.

Tatiana, T., Michael, D., Azat, B., Vyacheslav, C., Eric, P. N., Leonid, Z., Alexandre, L., Kim, D. P., Mark, B., & James, O. (2016). NCBI prokaryotic genome annotation pipeline. *Nucleic Acids Research*, 44(14), 6614-6624.

Tettelin, H., Masignani, V., Cieslewicz, M. J., Donati, C., Medini, D., Ward, N. L., Angiuoli, S. V., Crabtree, J., Jones, A. L., Durkin, A. S., DeBoy, R. T., Davidsen, T. M., Mora, M., Scarselli, M., Margarit y Ros, I., Peterson, J. D., Hauser, C. R., Sundaram, J. P., Nelson, W. C., . . . Fraser, C. M. (2005). Genome analysis of multiple pathogenic isolates of *Streptococcus agalactiae*: Implications for the microbial “pan-genome”. *Proceedings of the National Academy of Sciences*, 102(39), 13950-13955. <https://doi.org/doi:10.1073/pnas.0506758102>

Theodore, C. M., King, J. B., You, J., & Cichewicz, R. H. (2012). Production of cytotoxic glidobactins/luminmycins by *Photorhabdus asymbiotica* in liquid media and live crickets. *Journal of Natural Products*, 75(11), 2007-2011. <https://doi.org/10.1021/np300623x>

Thomas, G. M., & Poinar, G. O. (1979). *Xenorhabdus* gen. nov., a genus of entomopathogenic, nematophilic bacteria of the family Enterobacteriaceae. *International Journal of Systematic and Evolutionary Microbiology*, 29(4), 352-360.

Tietze, A., Shi, Y. N., Kronenwerth, M., & Bode, H. B. (2020). Nonribosomal peptides produced by minimal and engineered synthetases with terminal reductase domains. *ChemBioChem*, 21(19), 2750-2754.

Tiku, V., Kofoed, E. M., Yan, D., Kang, J., Xu, M., Reichelt, M., Dikic, I., & Tan, M.-W. (2021). Outer membrane vesicles containing OmpA induce mitochondrial fragmentation to promote pathogenesis of *Acinetobacter baumannii*. *Scientific Reports*, 11(1), 1-16.

Tipton, K. A., & Rather, P. N. (2017). An *ompR/envZ* two-component system ortholog regulates phase variation, osmotic tolerance, motility, and virulence in *Acinetobacter baumannii* strain AB5075. *Journal of Bacteriology*, 199(3), e00705-00716. <https://doi.org/10.1128/jb.00705-16>

Tobias, N. J., Mishra, B., Gupta, D. K., Sharma, R., Thines, M., Stinear, T. P., & Bode, H. B. (2016). Genome comparisons provide insights into the role of secondary metabolites in the pathogenic phase of the *Photorhabdus* life cycle. *BMC Genomics*, 17(1), 537.

Tomaras, A. P., Dorsey, C. W., Edelmann, R. E., & Actis, L. A. (2003). Attachment to and biofilm formation on abiotic surfaces by *Acinetobacter baumannii*: involvement of a novel chaperone-usher pili assembly system. *Microbiology*, 149(12), 3473-3484. [https://doi.org/https://doi.org/10.1099/mic.0.26541-0](https://doi.org/10.1099/mic.0.26541-0)

Tomaras, A. P., Flagler, M. J., Dorsey, C. W., Gaddy, J. A., & Actis, L. A. (2008). Characterization of a two-component regulatory system from *Acinetobacter baumannii* that controls biofilm formation and cellular morphology. *Microbiology*, 154(11), 3398-3409. [https://doi.org/https://doi.org/10.1099/mic.0.2008/019471-0](https://doi.org/10.1099/mic.0.2008/019471-0)

Torsten, S. (2014). Prokka: rapid prokaryotic genome annotation. *Bioinformatics*, 30(14), 2068-2069.

Traxler, M. F., Zacharia, V. M., Marquardt, S., Summers, S. M., Nguyen, H. T., Stark, S. E., & Conway, T. (2011). Discretely calibrated regulatory loops controlled by ppGpp partition gene induction across the 'feast to famine' gradient in *Escherichia coli*. *Molecular Microbiology*, 79(4), 830-845.

Turner, P. J., Greenhalgh, J., & Group, M. S. (2003). The activity of meropenem and comparators against *Acinetobacter* strains isolated from European hospitals, 1997–2000. *Clinical Microbiology and Infection*, 9(6), 563-567.

Turton, J. F., Ward, M. E., Woodford, N., Kaufmann, M. E., Pike, R., Livermore, D. M., & Pitt, T. L. (2006). The role of ISAbal in expression of OXA carbapenemase genes in *Acinetobacter baumannii*. *FEMS Microbiology Letters*, 258(1), 72-77. [https://doi.org/https://doi.org/10.1111/j.1574-6968.2006.00195.x](https://doi.org/10.1111/j.1574-6968.2006.00195.x)

Uppalapati, S. R., Sett, A., & Pathania, R. (2020). The outer membrane proteins OmpA, CarO, and OprD of *Acinetobacter baumannii* confer a two-pronged defense in facilitating its success as a potent human pathogen. *Frontiers in Microbiology*, 11. [https://doi.org/https://doi.org/10.3389/fmicb.2020.589234](https://doi.org/10.3389/fmicb.2020.589234)

Vakulskas, C. A., Potts, A. H., Babitzke, P., Ahmer, B. M. M., & Romeo, T. (2015). Regulation of Bacterial Virulence by Csr (Rsm) Systems. *Microbiology and*

*Molecular Biology Reviews*, 79(2), 193-224.  
<https://doi.org/10.1128/mmbr.00052-14>

Van Dessel, H., Dijkshoorn, L., van der Reijden, T., Bakker, N., Paauw, A., van den Broek, P., Verhoef, J., & Brisse, S. (2004). Identification of a new geographically widespread multiresistant *Acinetobacter baumannii* clone from European hospitals. *Research in Microbiology*, 155(2), 105-112.

Vercruyse, M., Fauvert, M., Jans, A., Beullens, S., Braeken, K., Cloots, L., Engelen, K., Marchal, K., & Michiels, J. (2011). Stress response regulators identified through genome-wide transcriptome analysis of the (p) ppGpp-dependent response in *Rhizobium etli*. *Genome Biology*, 12(2), 1-19.

Vidal, R., Dominguez, M., Urrutia, H., Bello, H., Garcia, A., Gonzalez, G., & Zemelman, R. (1997). Effect of imipenem and sulbactam on sessile cells of *Acinetobacter baumannii* growing in biofilm. *Microbios*, 91(367), 79-87.

Vila, J., Ruiz, J., Goni, P., Marcos, A., & De Anta, T. J. (1995). Mutation in the *gyrA* gene of quinolone-resistant clinical isolates of *Acinetobacter baumannii*. *Antimicrobial Agents and Chemotherapy*, 39(5), 1201-1203.

Vuong, C., Voyich, J. M., Fischer, E. R., Braughton, K. R., Whitney, A. R., DeLeo, F. R., & Otto, M. (2004). Polysaccharide intercellular adhesin (PIA) protects *Staphylococcus epidermidis* against major components of the human innate immune system. *Cellular Microbiology*, 6(3), 269-275.

Waack, U., Warnock, M., Yee, A., Huttinger, Z., Smith, S., Kumar, A., Deroux, A., Ginsburg, D., Mobley, H. L. T., Lawrence, D. A., & Sandkvist, M. (2018). CpaA Is a Glycan-Specific Adamalysin-like Protease Secreted by *Acinetobacter baumannii* That Inactivates Coagulation Factor XII. *MBio*, 9(6), e01606-01618. <https://doi.org/10.1128/mBio.01606-18>

Wang, N., Ozer, E. A., Mandel, M. J., & Hauser, A. R. (2014). Genome-wide identification of *Acinetobacter baumannii* genes necessary for persistence in the lung. *MBio*, 5(3). <https://doi.org/https://doi.org/10.1128/mbio.01163-14>

Waterfield, N. R., Ciche, T., & Clarke, D. (2009). *Photorhabdus* and a host of hosts. *Annual Review of Microbiology*, 63(1), 557-574.

Weber, B. S., Miyata, S. T., Iwashkiw, J. A., Mortensen, B. L., Skaar, E. P., Pukatzki, S., & Feldman, M. F. (2013). Genomic and functional analysis of the type VI

secretion system in *Acinetobacter*. *PLoS One*, 8(1), e55142.  
<https://doi.org/https://doi.org/10.1371/journal.pone.0055142>

Webster, J., Li, J., & Hu, K. (1999). Nematicidal metabolites produced by *Photorhabdus luminescens* (Enterobacteriaceae), bacterial symbiont of entomopathogenic nematodes. *Nematology*, 1(5), 457-469.

Webster, J. M., Chen, G., Hu, K., & Li, J. (2002). *Entomopathogenic nematology* (G. R., Ed.). CABI Publishing.

Weilbacher, T., Suzuki, K., Dubey, A. K., Wang, X., Gudapaty, S., Morozov, I., Baker, C. S., Georgellis, D., Babitzke, P., & Romeo, T. (2003). A novel sRNA component of the carbon storage regulatory system of *Escherichia coli*. *Molecular Microbiology*, 48(3), 657-670.

Wenski, S. L., Kolbert, D., Grammbitter, G. L., & Bode, H. B. (2019). Fabclavine biosynthesis in *X. szentirmaii*: Shortened derivatives and characterization of the thioester reductase FclG and the condensation domain-like protein FclL. *Journal of Industrial Microbiology and Biotechnology*, 46(3-4), 565-572.

Whitchurch, C. B., Tolker-Nielsen, T., Ragas, P. C., & Mattick, J. S. (2002). Extracellular DNA required for bacterial biofilm formation. *Science*, 295(5559), 1487-1487.

World Health Organization. (2020). *Antimicrobial resistance*.  
<https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance>

Wright, M. S., Haft, D. H., Harkins, D. M., Perez, F., Hujer, K. M., Bajaksouzian, S., Benard, M. F., Jacobs, M. R., Bonomo, R. A., & Adams, M. D. (2014). New insights into dissemination and variation of the health care-associated pathogen *Acinetobacter baumannii* from genomic analysis. *MBio*, 5(1), 10-1128.

Wu, X., Chavez, J. D., Scheppe, D. K., Zheng, C., Weisbrod, C. R., Eng, J. K., Murali, A., Lee, S. A., Ramage, E., & Gallagher, L. A. (2016). In vivo protein interaction network analysis reveals porin-localized antibiotic inactivation in *Acinetobacter baumannii* strain AB5075. *Nature Communications*, 7(1), 1-14.

Yi-Ming, S., & Helge, B. B. (2018). Chemical language and warfare of bacterial natural products in bacteria–nematode–insect interactions. *Natural Product Reports*, 35, 309-335.

Yi-Ming, S., Merle, H., Yan-Ni, S., & Helge, B. B. (2022). Cleavage Off-Loading and Post-assembly-Line Conversions Yield Products with Unusual Termini during Biosynthesis. *ACS Chemical Biology*, 17(8), 2221-2228.

Yi-Ming, S., Merle, H., Yan-Ni, S., Shabbir, A., Desalegne, A., Nicholas, J. T., Peter, G., Jan, J. C., Laura, P., & Wolfgang, K. (2022). Global analysis of biosynthetic gene clusters reveals conserved and unique natural products in entomopathogenic nematode-symbiotic bacteria. *Nature Chemistry*, 14(6), 701-712.

Yoon, E.-J., Chabane, Y. N., Goussard, S., Snesrud, E., Courvalin, P., Dé, E., & Grillot-Courvalin, C. (2015). Contribution of resistance-nodulation-cell division efflux systems to antibiotic resistance and biofilm formation in *Acinetobacter baumannii*. *MBio*, 6(2).  
<https://doi.org/https://doi.org/10.1128/mbio.00309-15>

Zarrilli, R. (2016). *Acinetobacter baumannii* virulence determinants involved in biofilm growth and adherence to host epithelial cells. *Virulence*, 7(4), 367-368.

Zhou, Q., Dowling, A., Heide, H., Wöhnert, J., Brandt, U., Baum, J., Ffrench-Constant, R., & Bode, H. B. (2012). Xentrivalpeptides A–Q: depsipeptide diversification in *Xenorhabdus*. *Journal of Natural Products*, 75(10), 1717-1722.

Zhou, Q., Grundmann, F., Kaiser, M., Schiell, M., Gaudriault, S., Batzer, A., Kurz, M., & Bode, H. B. (2013). Structure and biosynthesis of xenoamicins from entomopathogenic *Xenorhabdus*. *Chemistry—A European Journal*, 19(49), 16772-16779.

Zimbler, D. L., Park, T. M., Arivett, B. A., Penwell, W. F., Greer, S. M., Woodruff, T. M., Tierney, D. L., & Actis, L. A. (2012). Stress response and virulence functions of the *Acinetobacter baumannii* NfuA Fe-S scaffold protein. *Journal of Bacteriology*, 194(11), 2884-2893.

Zoued, A., Brunet, Y. R., Durand, E., Aschtgen, M.-S., Logger, L., Douzi, B., Journet, L., Cambillau, C., & Cascales, E. (2014). Architecture and assembly of the Type VI secretion system. *Biochimica et Biophysica Acta (BBA)-Molecular Cell Research*, 1843(8), 1664-1673.





## APPENDIX A CULTURE MEDIUM AND CHEMICALS PREPARATION

### **Nutrient bromothymol blue triphenyl tetazolium chioride agar (NBTA)** (for bacteria isolation)

#### Components for 1 L

|                                                                  |       |                                                    |
|------------------------------------------------------------------|-------|----------------------------------------------------|
| Nutrient agar (Oxoid, Ltd, England)                              | 28    | g                                                  |
| Bromothymol blue                                                 | 0.025 | g                                                  |
| Filtered 0.004% tetrazolium chloride<br>alcohol, 0.22 µm filter) | 500   | µL (dissolved with 90%<br>alcohol, 0.22 µm filter) |

Distilled water 1 L

#### Preparation

Dissolve all components in distilled water in a flask, then sterilize the flask by placing it in an autoclave at 121°C for 15 minutes. After sterilization, allow the medium in the flask to cool to approximately 50°C, then add tetrazolium chloride. Finally, pour the medium into sterilized petri dishes and let it cool until it solidifies into agar. The NBTA is now ready for use or can be stored in a refrigerator at 4°C.

### **Luria-Bertani (LB) broth**

#### Components for 1 L

|                                                     |    |   |
|-----------------------------------------------------|----|---|
| Luria-Bertani broth (LB) powder (Caisson LABS, USA) | 25 | g |
| Distilled water                                     | 1  | L |

#### Preparation

Dissolve LB powder in distilled water in a flask, then sterilize the solution by autoclaving at 121°C for 15 minutes. After sterilization, allow the medium to cool down in the flask. The LB medium is now ready for use or can be stored in a refrigerator at 4°C.

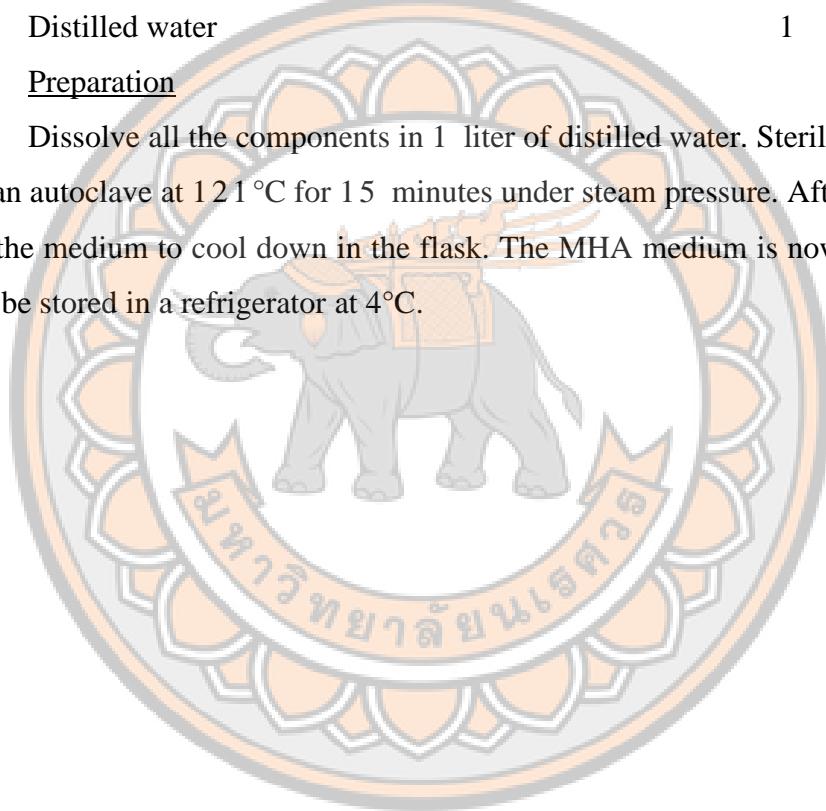
### **Luria-Bertani (LB) Agar**

#### Components for 1 L

|                                                     |     |   |
|-----------------------------------------------------|-----|---|
| Luria-Bertani broth (LB) powder (Caisson LABS, USA) | 25  | g |
| Distilled water                                     | 1   | L |
| Agar                                                | 1.5 | % |

### Preparation

Dissolve all components in distilled water in a flask, then sterilize the solution by autoclaving at 121°C for 15 minutes. After sterilization, allow the medium to cool down in the flask. The LB medium is now ready for use or can be stored in a refrigerator at 4°C.


### **Preparation of Muller Hinton Agar (MHA)**

#### Components for 1 L

|                                                |    |   |
|------------------------------------------------|----|---|
| Muller Hinton Agar (MHA) (Oxoid, Ltd, England) | 38 | g |
| Distilled water                                | 1  | L |

### Preparation

Dissolve all the components in 1 liter of distilled water. Sterilize the solution using an autoclave at 121 °C for 15 minutes under steam pressure. After sterilization, allow the medium to cool down in the flask. The MHA medium is now ready for use or can be stored in a refrigerator at 4°C.



## APPENDIX B BIOINFORMATICS SCRIPTS WRITTEN

AntiSMASH (antibiotics & Secondary Metabolite Shell – loop version)

```
#!/bin/bash
```

```
# Define an array of sample names
```

```
samples=("sample1" "sample2" "sample3")
```

```
# Define the base directory where your input files are located
```

```
base_directory="/path/to/your/input/foulder/$sample.gbk"
```

```
# Define the directory where you want to store antiSMASH results
```

```
output_directory="/path/to/your/output/foulder/$sample_antismash_output"
```

```
# Loop through the samples and run antiSMASH
```

```
for sample in "${samples[@]}"; do
```

```
echo "Running antiSMASH for $sample..."
```

```
# Define the input GenBank file path
```

```
input_gbk="$base_directory/$sample/$sample.gbk"
```

```
# Define the output directory for the current sample
```

```
sample_output_dir="$output_directory/$sample"
```

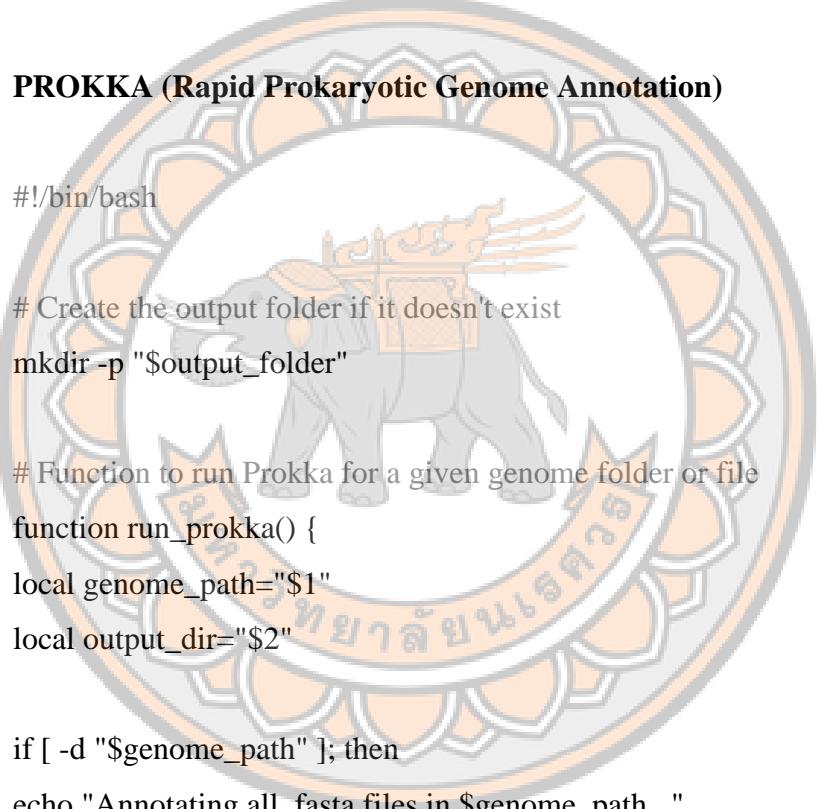
```
# Create the sample-specific output directory
```

```
mkdir -p "$sample_output_dir"
```

```
# Run antiSMASH with specified options
```

```
antismash \
```

```
--cc-mibig \
```


```
--cb-knownclusters \
```

```
--cb-subclusters \
```

```
--genefinding-tool prodigal \
--output-dir "$sample_output_dir" \
--output-basename "$sample" \
"$input_gbk"

echo "antiSMASH for $sample completed."
done
echo "All antiSMASH jobs completed."
```

### PROKKA (Rapid Prokaryotic Genome Annotation)



```
#!/bin/bash

# Create the output folder if it doesn't exist
mkdir -p "$output_folder"

# Function to run Prokka for a given genome folder or file
function run_prokka() {
local genome_path="$1"
local output_dir="$2"

if [ -d "$genome_path" ]; then
echo "Annotating all .fasta files in $genome_path..."
prokka --outdir "$output_dir" \
--prefix "$(basename "$genome_path")" \
--locustag "$(basename "$genome_path")" \
--cpus 16 \
"$genome_path"/*.fasta
elif [ -f "$genome_path" ]; then
echo "Annotating $genome_path..."
prokka --outdir "$output_dir" \
--prefix "$(basename "$genome_path" .fasta)" \
```

```

--locustag "$(basename "$genome_path" .fasta)" \
--cpus 16 \
"$genome_path"
else
echo "Invalid genome path: $genome_path"
exit 1
fi
}

# Function to check if the input folder contains .fasta files directly
function check_input_folder() {
local genome_folder="$1"

if [[ $(find "$genome_folder" -maxdepth 1 -type f -name "*.fasta" | wc -l) -gt
0 ]]; then
echo "Found .fasta files in $genome_folder."
else
echo "No .fasta files found in $genome_folder."
exit 1
fi
}

# Read the list file line by line and run Prokka for each genome folder
while IFS= read -r genome_name; do
genome_path="$input_folder/$genome_name"
annotation_output="$output_folder/$genome_name"

echo "Checking if $genome_path is a directory or a file..."
run_prokka "$genome_path" "$annotation_output"

echo "Annotation of $genome_name complete."
echo

```

```
done < "$list_file"

echo "All genomes have been annotated."
```

### BiG-SCAPE / CORASON

```
#!/bin/bash
```



```
# BiG-SCAPE Executable Path
BIGSCAPE_PATH="/path/to/bigscape.py"

# Input folder containing .gbk files
INPUT_FOLDER="/path/to/your/input/folder"

# Output folder for BiG-SCAPE results
OUTPUT_FOLDER="/path/to/output/folder"

# Set optional parameters
CUTOFF=0.30      # Similarity cutoff (default: 0.30)
MODE="hybrids"    # BiG-SCAPE mode: 'all', 'hybrids', 'pfam', etc.
CPU=4            # Number of threads to use
MIN_NR_GCF=1      # Minimum number of GCF members (default: 1)
CLUSTERING="single" # Clustering method: 'single', 'average', or 'complete'

# Run BiG-SCAPE
python3 $BIGSCAPE_PATH \
--inputdir $INPUT_FOLDER \
--outputdir $OUTPUT_FOLDER \
--cutoff $CUTOFF \
--mibig \
--mode $MODE \
--clustering $CLUSTERING \
```

```

--cpu $CPU \
--min_nr_gcf $MIN_NR_GCF

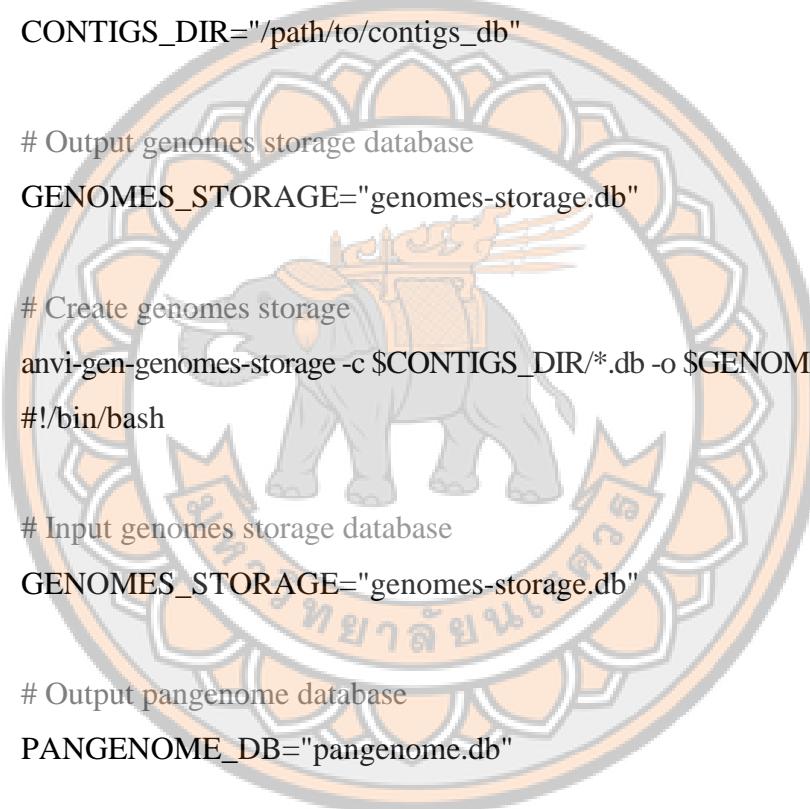
echo "BiG-SCAPE analysis completed. Results are stored in
$OUTPUT_FOLDER"

# Save the script to a file, e.g., run_bigscape.sh.
# Make the script executable
chmod +x run_bigscape.sh

#Execute the script:
./run_bigscape.sh

Pangenomics - Anvi'o

#!/bin/bash


# Directory containing genome FASTA files
GENOMES_DIR="/path/to/genomes"

# Directory to store contigs databases
CONTIGS_DIR="/path/to/contigs_db"
mkdir -p $CONTIGS_DIR

# Create contigs databases
for genome in $GENOMES_DIR/*.fasta; do
  genome_name=$(basename $genome .fasta)
  anvi-gen-contigs-database -f $genome -o
  $CONTIGS_DIR/$genome_name.db --project-name $genome_name
done

# Directory containing contigs databases

```



```

CONTIGS_DIR="/path/to/contigs_db"

# Annotate each contigs database
for contigs_db in $CONTIGS_DIR/*.db; do
    anvi-run-ncbi-cogs -c $contigs_db --num-threads 4
done

# Directory containing contigs databases
CONTIGS_DIR="/path/to/contigs_db"

# Output genomes storage database
GENOMES_STORAGE="genomes-storage.db"
anvi-gen-genomes-storage -c $CONTIGS_DIR/*.db -o $GENOMES_STORAGE
#!/bin/bash

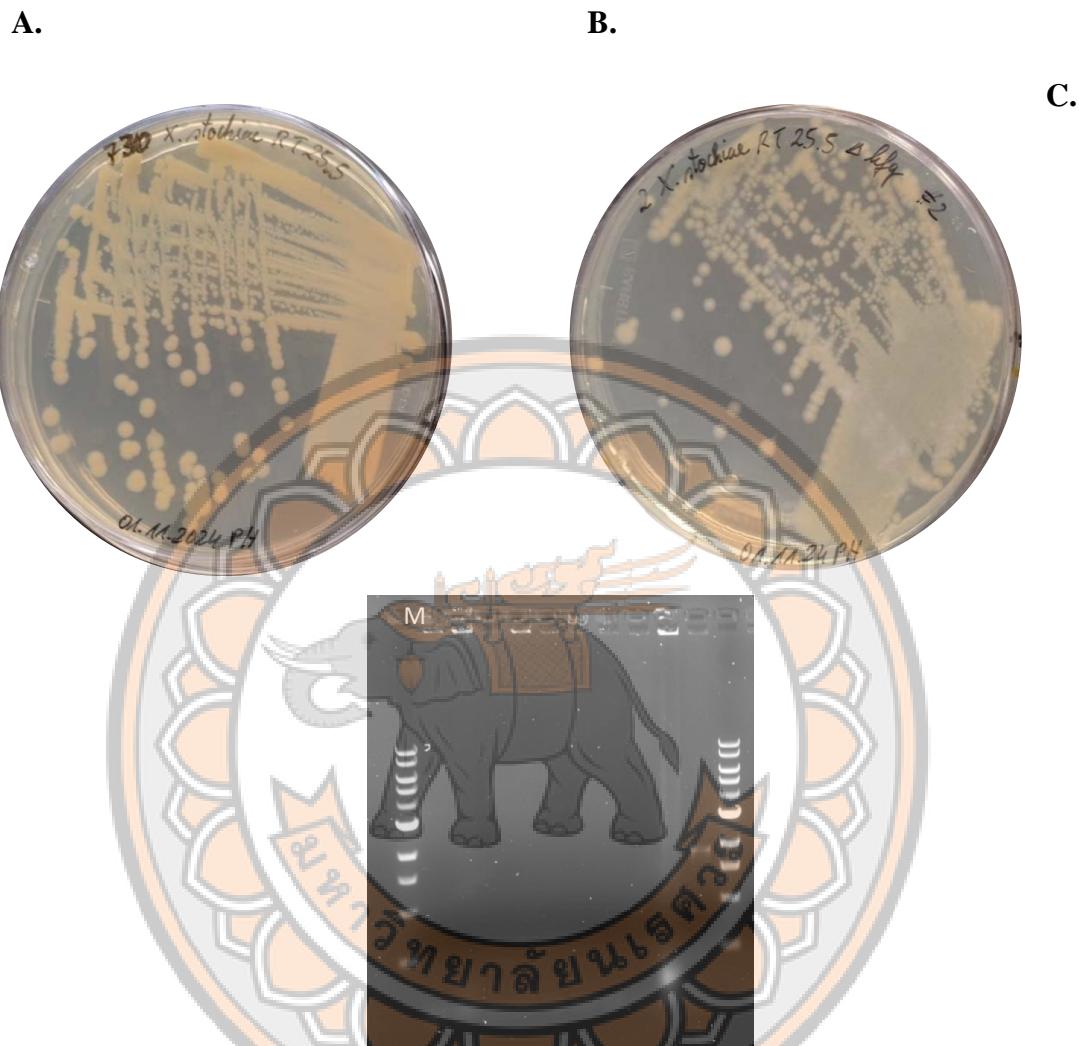
# Input genomes storage database
GENOMES_STORAGE="genomes-storage.db"

# Output pangenome database
PANGENOME_DB="pangenome.db"
anvi-pan-genome -g $GENOMES_STORAGE -o $PANGENOME_DB --
minbit 0.5 --mcl-inflation 10 --num-threads 4

# Visualize the Pangenome
anvi-display-pan -p pangenome.db --server-only

# Export Summary of the Pangenome
anvi-summarize -p pangenome.db -o pangenome_summary

```


## APPENDIX C BINDING SITES OF PRIMERS FOR GENE DELETION

**Table 19 Binding sites of primers for *hfq* gene deletion.** (The *hfq* gene is highlighted in yellow, while the primers are highlighted in blue. P1 and P4 primers also contain overhangs specific to the plasmid pEB17, which are highlighted in grey.)


| Primer P5 Forward                                                          |
|----------------------------------------------------------------------------|
| GATTCTGCACTGGTTATCGTGCATGGATATTGGTACTGCGAAACCGTCCGCAGA                     |
| AGAGCAGGCTCAGGCTCCGCATCGTTGATTGATATTCTGGATCCTGCCGACGTGT                    |
| <b>Primer P1 Forward with overhang of plasmid pEB17 (in red alphabets)</b> |
| ATTCTGCTGCTGATTCGATCCTCTAGAGTCGACCTGCAGCGTCGCGATGCGCTGG                    |
| AACAAATGGCAGAAATTACGGCTGCAGGGAGAATTCCGCTCCTGGTCGGCGAAC                     |
| CATGCTATATTCAAAGCATTACTGGAAGGGTTATCACCACACCTTCAGCAGACC                     |
| CTGAAGTCAGGGCGGTATTGAGCAGGAGGCAGAGGAACACGGGTGGGAGGCATT                     |
| GCATCAGCAATTGCAGGAGATTGATCCGGTTGCAGCAGCAAGAATCCATCCAAAT                    |
| GATCCACAACGTCTTACTCGTGCAGTGGAGTTTCGGATTTCGGTAACACTCTA                      |
| ACTACATTGACAGAAACGCTGGGAAGTATTGCCTATCGTGTTCATCAGTCGC                       |
| CATTGCGCCTGCAAGCCGTGAAATTTCATCAGCGCATTGCAGCCGATTGAAC                       |
| AGATGATCAAATCAGGGTTGAAGATGAAGATTAAAGCGCTTATGCTCGTAGCGAT                    |
| TTGCATACGGATTACCCCTCATTGTTGTTGGTTATCGTCAAATGTGGTCTTAC                      |
| CTCGCAGGCAGATTCTCATGATGAGATGGTTATCGTGGTATCTGCCTCGAACACTCG                  |
| CCAGCTGGCGAACCGTCAGATAACCTGGCTCAGGGGTGGACGATGTGGCCTGG                      |
| TTGGACAGCGACCAGCCTGAGCAGGCCCTGAAAACAGTCATGCAGGTTATTGGTAC                   |
| ATAAATTGTTGATTGTGTACAATTATCAGTACAAAGCGTCATTGGTAGTTAC                       |
| TTTTCGAACCAACGGTTCTAGTTAAAAACAACAAAATAAGGAAATATAGAAT                       |
| GGCTAACGGGCAATCTTGCAAGATCCATTCTGAACGCATTACGTCGTGAAAGGG                     |
| <b>Primer P2 Reward</b>                                                    |
| TCCCGGTTCTATTATTTAGTCACGGCATCAAATTGCAAGGGTCAGATTGAGTCTT                    |
| TTGACCAGTTGTCATTGCTGAAAAACACGGTTAGCCAGATGGTTATAAACAC                       |
| GCCATCTACTGTTGTGCCTTCCCGTCCGGTATCTCACCAACGGTAGCAATGCTAAT                   |
| <b>Primer P3 Forward</b>                                                   |
| ATGGCATCCAGCGTGGAAATTATCAGGCTGGTAAACAGTCCGGCAGCACACAGG                     |

AAAATGATATCGCTGAATAAATCAGTGATAATGCCTGACATAAATAAAAACATAG  
 GTAGGGAGACTTACCTATGTTTCCTATGGAATTATACCCAATGGATTCGAG  
 TTGCATCTCGGTAGCTTACGAAGACGAAGGGATACTCAGCCTGAGGGTTGCACCAT  
 TGTTGATCGTTACGAAGGCGGAGAACTAGCTGTTCTGGTGCATGTTTTCTCAC  
 AGGAAAAAGACACGGAAAATCTCAGTGAATTGAATCATTGGTACTTCCGCAGG  
 TGTTCTCCTGTGCAGATTGTGACAGGAAGCCGAAGGCTCCGCATCCGAAATATT  
 TTGTCGGGAAGGCAAGGCAGAAGAAATTGCTGAAGCAGTCAAAACAGTGGTGC  
 AGATGTGGTGCTGTTGATCACGCACCTTCTCCTGCTCAGGAACGTAATCTGGAAC  
 GCTTGTGCCAATGTCGTGTTGATCGTACTGGTGTAAACTGGATATTGGCC  
 AGCGGGCGAGAACTCATGAAGGTAAGTTGCAGGTAGAACTTGCACAGTTACGCCA  
 TTTATCTACTCGCTTAGTCCGAGGCTGGACCCATCTGAACGCCAGAAAGGCGGAA  
 TTGGTTACGTGGCCCCGGTGAACCCAGCTGGAAATCAGATGCCGTATGTTGCGC  
 GATAAAATTAAACAGATTCTGGGGCGTCTGGTAAAGTAGAAAGACACGCGTGAAC  
 AGGGCGTCAGGCGCGCAACAAAGCAGATATTCCCACCGTTCTCTGTTGGTTAC  
 ACCAATGCCGAAAATCAAGTTATTCAATAGAATAACCTCGGCTGAGGTATATGC  
**Primer P4 Reward with overhang of plasmid pEB17 (in red alphabets)**  
 TGCTGATCAGTTTGCTACTCTGACCCGACATTGCGTCGGATCGCTGTAAATGA  
 TGCGGCCGGTTCTGGCTTGACACCGTTGGTTCTCGTCACGTGACGAATGA  
**AACCAACGGTGTCTTACCCATGATTGGTGGCAGCGTTAAGGCCACTTGCAGG**  
**Primer P6 Reward**  
 AAACAAGGCAGGCAAGGTTATTGCTTCATGTTGTTGATGCGGCTGATAACCGGCTG  
 GATGAGAACATTCTTGCAGTGGACAGTGTCTGGAAG

## APPENDIX D GENE DELETION



**Figure 22 Hfq Deletion.** (A) *Xenorhabdus Stockiae* RT25.5 WT (B) *Xenorhabdus stockiae* RT25.5<sub>Δ</sub>hfq; light-colored colonies were selected for PCR verification. (C) Colony PCR verification of selected colonies.



**Figure 23** The base peak chromatograms (BPCs) of cell-free supernatants extracted with methanol from *Xenorhabdus stockiae* RT25.5 wild type (WT) and the *X. stockiae* RT25.5 $\Delta$ hfq mutant reveal differences in metabolite profiles, providing insights into the effects of the  $\Delta$ hfq mutation on secondary metabolite production

Green Line: Represents the BPC of the methanol-extracted supernatant from the WT strain (*X. stockiae* RT25.5). This chromatogram displays peaks corresponding to various natural products (NPs) synthesized by the WT strain, reflecting the normal biosynthetic activity of its biosynthetic gene clusters (BGCs).

Red Line: Represents the BPC of the methanol-extracted supernatant from the  $\Delta$ hfq mutant. The significant reduction or absence of peaks in this chromatogram suggests that the mutation in the *hfq* gene disrupts the expression or activation of many BGCs, resulting in reduced production of almost NPs



**Figure 24** The results of antibacterial activity testing using crude compounds from bacteria.