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ABSTRACT 

  

In this study, a framework of fractional nonlinear Schrödinger equations 

(FNLSEs) is modelled that utilizes the effective fractional group-velocity dispersion 

(FGVD), which was recently provided to the experiment, to model the co-propagation 

of optical waves carried by distinct wavelengths in fibre-laser cavities. The FGVD 

terms are denoted in the FNLSE system through Riesz derivatives, each accompanied 

by its corresponding Levy Index (LI). The FNLSEs, which comprise self-phase 

modulation (SPM) nonlinearity, are coupled by cross-phase modulation (XPM) terms 

and separated by a group-velocity mismatch (rapidity). We examine collisions and 

bound states of solitons in the XPM-coupled system utilizing systematic simulations, 

altering the LI and GV mismatch. Collisions between solitons can result in rebound, 

conversion of single-component solitons into two-component ones, merger into a 

breather,  and elastic effects. Additionally, families consisting of stable two-component 

soliton-bound states are generated, exhibiting an intermediate rate of acceleration 

between the two components. 

 
 

 

  



 D 

ACKNOWLEDGEMENT S 
 

ACKNOWLEDGEMENTS 

  

It would not have been feasible for me to complete this thesis, "Collision between 

fractional solitons in fibre lasers," without the kind assistance of a network of 

acquaintances, both personal and professional. First and foremost, the Royal University 

of Bhutan (RUB) and Naresuan University (NU) have my profound gratitude and sincere 

appreciation for allowing me to pursue a master’s degree in electrical engineering 

(Communication Engineering). In addition, I would like to extend my gratitude to the 

Department of Electrical Engineering, Faculty of Electrical and Computer Engineering, 

Naresuan University, Thailand, for fostering an environment conducive to my research 

and studies. 

Without expressing appreciation to my direct supervisor, Associate Professor Dr. 

Thawatchai Mayteevarunyoo, the goal of this acknowledgement would not have been 

achieved. I am deeply grateful to the professor for providing me with this fascinating and 

pertinent research topic. Special appreciations are extended for all productive talks, 

important recommendations, and critical remarks. Furthermore, I would like to express 

my gratitude to the Professor for his unwavering support and diligent approach, both of 

which significantly impacted my coursework and my trajectory in life. 

Professor Boris A. Malomed from Tel Aviv University, Tel Aviv, Israel deserves 

my heartfelt gratitude and appreciation for his instrumental contributions to this research 

in terms of intellectual input and wealth of knowledge. 

I would like to thank Associate Professor Dr. Surachet Kanprachar and Assistant 

Professor Dr. Sommart Sang-Ngern for serving as an internal examiner and  Associate 

Professor Dr. Athikom Roeksabutr for serving as an external examiner for useful 

constructive comments. 

I also want to express my gratitude to my parents and siblings for their 

unwavering support and encouragement, which have been instrumental in helping me 

overcome challenges and embrace valuable opportunities. I want to express my gratitude 

to my friends for consistently assisting and supporting me in sharing thoughts when 

necessary. 

  

 

Tandin  Zangmo 
 

 



E 

 

TABLE OF CONTENTS 

 Page 

ABSTRACT .................................................................................................................. C 

ACKNOWLEDGEMENTS .......................................................................................... D 

TABLE OF CONTENTS .............................................................................................. E 

LIST OF FIGURES ...................................................................................................... G 

ABBREVIATIONS ...................................................................................................... K 

NOMENCLATURE FOR SYMBOLS ........................................................................ M 

CHAPTER I  INTRODUCTION ................................................................................. 14 

1.1 Background ........................................................................................................ 14 

1.2 Problem statement ............................................................................................... 3 

1.3 Aims and Objectives. ........................................................................................... 5 

1.3.1 Aim: ............................................................................................................ 5 

1.3.2 Objectives: .................................................................................................. 5 

1.4 Purpose and Significances of Study .................................................................... 5 

1.5 Scope of study ...................................................................................................... 6 

1.6 Organization of the Thesis ................................................................................... 7 

CHAPTER II  LITERATURE REVIEW ...................................................................... 9 

2.1 Fractional Schrödinger Equation in spatial domain ............................................. 9 

2.2 Fractional Schrödinger Equation in the temporal domain ................................. 11 

2.3 Mathematical analysis of fibre laser .................................................................. 13 

2.3.1 Application of fractional soliton in fibre laser. ........................................ 14 

2.4 Optical soliton in fractional medium ................................................................. 14 

2.4.1 Collision between soliton in optical fibre. ................................................ 17 

2.5 Numerical methods for finding soliton solution. ............................................... 19 

2.6 Numerical simulations using Split Step Fourier method. .................................. 20 

CHAPTER III  METHODOLOGY ............................................................................. 22 

                                                   



 F 

3.1 Introduction ........................................................................................................ 22 

3.2 Research approach ............................................................................................. 22 

3.3 Research model .................................................................................................. 22 

3.3.1 Collisions between solitons ...................................................................... 23 

3.3.2 A bound state of two solitons ................................................................... 28 

CHAPTER IV  SIMULATION RESULTS ................................................................. 32 

4.1 Introduction ........................................................................................................ 32 

4.2 Collisions between solitons ............................................................................... 32 

4.2.1 Case I: when α = 2. ................................................................................... 32 

4.2.2 Case II: when α = 1.5. .............................................................................. 35 

4.2.3 Case III: when α = 1.2. ............................................................................. 39 

4.2.4 Case IV: when α = 1.1. ............................................................................. 42 

4.3 Summary of the collisions of two single independent solitons. ........................ 45 

4.4 A bound state of two solitons. ........................................................................... 46 

4.5 Summary of the collisions of two bound states of solitons. .............................. 49 

CHAPTER V  CONCLUSION AND FUTURE WORKS .......................................... 51 

5.1 Conclusion ......................................................................................................... 51 

5.2 Future works ...................................................................................................... 52 

REFERENCES ............................................................................................................ 54 

APPENDIX .................................................................................................................. 59 

BIOGRAPHY .............................................................................................................. 69 

 



G 

 

LIST OF FIGURES 

 Page 

Figure 1 Architectural set-up of FSE in the temporal domain. .................................... 12 

Figure 2 Initial soliton profile for μ =1. ....................................................................... 16 

Figure 3 The evolution of stable fractional solitons for α =2 (a); α =1.5 (b)  and α 

=1.1(c) .......................................................................................................................... 16 

Figure 4 (a) A temporal fractional soliton in equation (44)-(45) and  k = 1 with α =

2.0.  (b) error diagrams for MSOM at optimalγ, Δt values (see text). ......................... 25 

Figure 5 (a) A temporal fractional soliton in equation (44)-(45) and  k = 1 with α =

1.1.  (b) error diagrams for MSOM at optimalγ, Δt values (see text). ......................... 25 

Figure 6 No collision between (a) u-soliton (top left) and (b) v-soliton with c = 0  

(left bottom) for α = 2.0. (c) The energy (right top) and momentum (right bottom) of 

the system vs. z. ........................................................................................................... 27 

Figure 7 (a) Collision between stationary u-soliton (top left) and (b) v-soliton with 

c = -1.0  (left bottom) for α = 2.0. (c) The energy (right top) and momentum (right 

bottom) of the system vs. z. ......................................................................................... 27 

Figure 8 (a) Collisions between u-soliton (left top) and v-soliton (left bottom) at c = -1 

for α = 2. (b) The top panel presents the initial locations of both the solitons with 

dotted lines and final location at the end of the propagation distance with solid lines. 

The middle panels: |𝑢|2 (blue solid lines) and the frequency chirp defined as per 

equation (71) (black dashed lines), as functions of 𝜏, in the 𝑢-component of the two 

compound solitons generated by the collision, in the .................................................. 34 

Figure 9 (a) Collisions between u-soliton (left top) and v-soliton (left bottom) at c = -2 

for α = 2. (b) The top panel presents the initial locations of both the solitons with 

dotted lines and final location at the end of the propagation distance with solid lines. 

The bottom left panel: |𝑣|2 (the red solid line) and frequency chirp 𝐶(𝜏) (the black 

dashed line), as functions of 𝜏, in the right soliton in its final state, at = 30. The 

bottom right panel: |𝑢|2 (the blue solid line) and 𝐶(𝜏) (black dashed line) for the left 

soliton at 𝑧 = 30. (c) The energy (top) and the momentum (bottom). ......................... 35 

Figure 10 (a) Collisions between u-soliton (left top) and v-soliton (left bottom) at c = -

0.3 for α = 1.5. (b) The top panel presents the initial locations of both the solitons with 

dotted lines and final location at the end of the propagation distance with solid lines. 

The middle panels: |𝑢| 2 (blue solid lines) and frequency chirp 𝐶(𝜏) (black dashed 

                                                   



 H 

lines) as a function of 𝜏, for the compound solitons in the final state, at 𝑧 = 100. The 

bottom panels: |𝑣| 2 (red solid lines) and 𝐶(𝜏) (black dashed lines) as functions of 𝜏 for 

the solitons at 𝑧 = 100. (c) The energy (top) and the momentum (bottom). ................ 36 

Figure 11 (a) Collisions between u-soliton (left top) and v-soliton (left bottom) at c = -

0.5 for α = 1.5. (b) The top panel presents the initial locations of both the solitons with 

dotted lines and final location at the end of the propagation distance with solid lines. 

The bottom left panel: |𝑢|2 (blue solid lines) and the frequency chirp 𝐶(𝜏) (black 

dashed lines) as a function of 𝜏. The bottom right panel: |𝑣|2 (red solid lines) and 𝐶(𝜏) 

(black dashed lines) as a function of 𝜏 for solitons in the final state, at 𝑧 = 100. (c) The 

energy (top) and the momentum (bottom). .................................................................. 37 

Figure 12 (a) Collisions between u-soliton (left top) and v-soliton (left bottom) at c = -

0.6 for α = 1.5. (b) The top panel presents the initial locations of both the solitons with 

dotted lines and final location at the end of the propagation distance with solid lines. 

The middle panels:|𝑢|2 (blue solid lines) and the frequency chirp 𝐶(𝜏) (black dashed 

lines) as functions of 𝜏, in the final state at 𝑧 = 80. The bottom panels: |𝑣|2 (red solid 

lines) and 𝐶(𝜏) (black dashed lines) as functions of 𝜏 for the solitons at 𝑧 = 80. (c) The 

energy (top) and the momentum (bottom). .................................................................. 38 

Figure 13 (a) Collisions between u-soliton (left top) and v-soliton (left bottom) at c = -

1 for α = 1.5. (b) The top panel presents the initial locations of both the solitons with 

dotted lines and final location at the end of the propagation distance with solid lines. 

The middle panels: |𝑢|2 (blue solid lines) and the frequency chirp 𝐶(𝜏) (black dashed 

lines) as functions of 𝜏. The bottom panels: |𝑣|2 (red solid lines) and 𝐶(𝜏) (black 

dashed lines) as functions of 𝜏 for solitons in the final state at 𝑧 = 60. (c) The energy 

(top) and the momentum (bottom). .............................................................................. 39 

Figure 14(a) Collisions between u-soliton (left top) and v-soliton (left bottom) at c = -

0.2 for α = 1.2. (b) The top panel presents the initial locations of both the solitons with 

dotted lines and final location at the end of the propagation distance with solid lines. 

The bottom left panel: |𝑢|2 (blue solid lines) and the frequency chirp 𝐶(𝜏) (black 

dashed lines) as functions of 𝜏. The bottom right panel: |𝑣|2 (red solid lines) and 𝐶(𝜏) 

(black dashed lines), as functions of 𝜏, for the solitons in the final state, at z = 60. (c) 

The energy (top) and the momentum (bottom). ........................................................... 40 

Figure 15 (a) Collisions between u-soliton (left top) and v-soliton (left bottom) at c = -

0.7 for α = 1.2. (b) The top panel presents the initial locations of both the solitons with 

dotted lines and final location at the end of the propagation distance with solid lines. 

The middle panel: |𝑢|2 (blue solid lines) and the frequency chirp 𝐶(𝜏) (black dashed 

lines) as functions of 𝜏. The bottom panel: |𝑣|2 (red solid lines) and 𝐶(𝜏) (black dashed 

 



 I 

lines), as functions of 𝜏, for the solitons in the final state, at z = 60. (c) The energy 

(top) and the momentum (bottom). .............................................................................. 41 

Figure 16 (a) Collisions between u-soliton (left) and v-soliton (right) at c = -2 for α = 

1.2. (b) The top panel presents the initial locations of both the solitons with dotted 

lines and final location at the end of the propagation distance with solid lines. The 

bottom left panel: |𝑢|2 (blue solid lines) and the frequency chirp 𝐶(𝜏) (the black dashed 

line) as functions of 𝜏. The bottom right panel: |𝑣|2 (the red solid line) and 𝐶(𝜏) (the 

black dashed line), as a function of 𝜏, for the solitons in the final states, at 𝑧 = 15. (c) 

The energy (top) and the momentum (bottom). ........................................................... 42 

Figure 17 (a) Collisions between u-soliton (left top) and v-soliton (left bottom) at c = -

1.1 for α = 1.1. (b) The top panel presents the initial locations of both the solitons with 

dotted lines and final location at the end of the propagation distance with solid lines. 

The middle panels: |𝑢|2 (the blue solid line) and the frequency chirp 𝐶(𝜏) (the black 

dashed line) as functions of 𝜏, for the soliton in the final state, at 𝑧 = 80. The bottom 

panels: |𝑣|2 (the red solid line) and 𝐶(𝜏) (the black dashed line), as functions of 𝜏, for 

the soliton at 𝑧 = 80. (c) The energy (right) and the momentum (right). ..................... 43 

Figure 18 (a) Collisions between u-soliton (left top) and v-soliton (left bottom) at c = -

1.5 for α = 1.1. (b) The top panel presents the initial locations of both the solitons with 

dotted lines and final location at the end of the propagation distance with solid lines. 

The bottom left panel: |𝑢|2 (the blue solid line) and the frequency chirp 𝐶(𝜏) (the black 

dashed line), as functions of 𝜏 in the soliton in the final state, at 𝑧 = 80. The bottom 

right panel: |𝑣|2 (the red solid line) and 𝐶(𝜏) (the black dashed line), as a function of 𝜏, 

for the soliton at 𝑧 = 80. (c) The energy (top) and the momentum (bottom). .............. 44 

Figure 19 (a) Collisions between u-soliton (left top) and v-soliton (left bottom) at c = -

2 for α = 1.1. (b) The top panel presents the initial locations of both the solitons with 

dotted lines and final location at the end of the propagation distance with solid lines. 

The bottom left panel: |𝑢|2 (the blue solid line) and the frequency chirp 𝐶(𝜏) (the black 

dashed line), as a function of 𝜏, for the soliton in the final state, at 𝑧 = 60. The bottom 

right panel: |𝑣|2 (the red solid line) and 𝐶(𝜏) (the black dashed line), as functions of 𝜏, 

for the soliton at 𝑧 = 60. (c) The energy (top) and the momentum (bottom). .............. 45 

Figure 20 Collision border in the plane (α, c) .............................................................. 46 

Figure 21 (a) The stable u-soliton (Left top) and v-soliton (Left bottom). (b) (Right 

top) The profiles of the initial solutions at z = 0, (middle) the energy of solitons vs. z, 

(bottom) the amplitude peak vs. z for 𝑐 = 0.9 and 𝛼 = 2.0. .......................................... 47 

Figure 22 (a)The stable u-soliton (Left top) and v-soliton (Left bottom). (b) (Right 

top) The profiles of the initial solutions at z = 0, (middle) the energy of solitons vs. z, 

(bottom) the amplitude peak vs. z for 𝑐 = 0.4 and 𝛼 = 1.1. .......................................... 48 



 J 

Figure 23 (a) The stable u-soliton (Left top) and v-soliton (Left bottom). (b) (Right 

top) The profiles of the initial solutions at z = 0, (middle) the energy of solitons vs. z, 

(bottom) the amplitude peak vs. z for 𝑐 = 0.7 and 𝛼 = 1.5. .......................................... 48 

Figure 24 The energies (a) and amplitudes (b) of the established u- and v- components 

(blue and red curves, respectively) of the compound solitons vs. their established 

rapidity, cfinal, for the same value of LI, used in the above figures. ............................. 49 

Figure 25 The final rapidity of the established two-component soliton, cfinal, vs. the 

GV mismatch parameter 𝑐 for three values of LI, 𝛼 = 2 (the ordinary non-fractional 

GVD), 𝛼 = 1.5 (moderate fractionality), and 𝛼 = 1.1 (strong fractionality). ............... 50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  



 K 

ABBREVIATIONS 

 

 

WDM = Wavelength Division Multiplexing  

FOC = Fibre Optic Communications 

GVD =        Group Velocity Dispersion 

FGVD = Fractional Group Velocity Dispersion 

CD = Chromatic Dispersion 

1D = One Dimensional 

LI = Levy Index 

QM = Quantum Mechanics 

FQM = Fractional Quantum Mechanics 

SPM = Self-Phase Modulation  

DCF =       Dispersion Compensation Fiber 

SMF = Single Mode Fiber 

LASERS = Light Amplification by Simulated Emission of 

Radiation  

CPM / XPM = Cross Phase Modulation  

FWM = Four-Wave Mixing 

NLSE = Nonlinear Schrödinger Equation  

TOD = Third Order Dispersion 

PDE = Partial Differential Equation 

ODE = Ordinary Differential Equation 

NPDE = Nonlinear Partial Differential Equation 

FSE = Fractional Schrödinger Equation 

FPDE = Fractional Partial Differential Equation 

FNPDE = Fractional Nonlinear Partial Differential Equation 

FNLSE = Fractional Nonlinear Schrödinger Equation 

TFSE = Time-dependent Fractional Schrödinger Equation 

SFSE = Space-dependent Fractional Schrödinger Equation 

NLSE = Nonlinear Schrödinger Equation 



 L 

NLEE = Nonlinear Evolution Equation 

FT = Fourier Transform 

IFT = Inverse Fourier Transform 

KdV = Korteweg-de Vries 

SOM = Squared Operator method 

MSOM = Modified Squared Operator method 

SSFM = Split Step Fourier method 

FT = Fourier Transform 

IFT = Inverse Fourier Transform 

 



 

NOMENCLATURE FOR SYMBOLS 

 

 

Symbol  Meaning   

γ  Nonlinear coefficient  

λ  Wavelength  

α  Levy Index  

β2  Second Order Dispersion  

A  Optical intensity or amplitude 

𝜓  Wave function 

τ  Time  

𝑉  Potential  

𝑝  momentum 

ħ  Reduced Planck’s constant  

𝑚  Mass of the particle  

𝛽𝑘  kth order GVD 

𝑘  Wave number 

𝑧  Propagation distance  

𝐸  The energy content of the soliton 

   

 

 

 



 

CHAPTER I 

 

INTRODUCTION 

1.1 Background  

 An essential direction in theoretical and experimental studies in modern-day 

physics is the creation and studies of artificial media which realize various “exotic” 

properties that are impossible in natural systems. Well-known examples are 

metamaterials and meta-surfaces in photonics, which make it possible to demonstrate 

unusual linear and nonlinear properties of optical and plasmonic waves, such as 

negative refraction, cloaking, etc. (Keren-Zur et al., 2018). A new remarkable result in 

this area is the creation of photonic counterparts of topological insulators (Khanikaev 

et al., 2013). 

Another direction in the development of artificial settings makes use of Bose-

Einstein condensates (BECs) in atomic gases. They make it possible to emulate various 

fundamental effects which are known in much more complex forms in condensed-

matter physics, such as spin-orbit coupling (SOC) (Zhai, 2015). 

A specific class of artificial optical media features effectively fractional paraxial 

diffraction. First, this concept was introduced in quantum mechanics, as the fractional 

Schrödinger equation for the wave function of a particle moving by random jumps 

(Lévy flights) by (Laskin, 2000). 

 

   𝑖
∂𝜓

∂𝑡
= 𝒟𝛼 (−

∂2

∂𝑥2
)
𝛼/2

𝜓 + 𝑉(𝑥)𝜓                                            (1)                          

 

where 𝛼 is the Levy index (1 < 𝛼 ≤ 2), 𝒟𝛼  is a scale constant, 𝑉(𝑥) is the external 

potential, and  𝜓 = 𝜓(𝑥, 𝑡) is the particle wave function. In equation (1), the kinetic 

term in the Hamiltonian is represented by the quantum Riesz derivative (fractional 

Laplacian) of order 𝛼 , which is defined by (Kilbas et al., 2006): 

 

 (−
∂2

∂𝑥2)
𝛼/2

𝜓(𝑥) =
1

2𝜋
∬  

∞

−∞
𝑑𝑝𝑑𝜉|𝑝|𝛼𝜓(𝜉)exp [𝑖𝑝(𝑥 − 𝜉)]  (2) 



 2 

 

The ordinary Schrödinger equation is obtained in the limiting case 𝛼 = 2. The 

realization of equation (1) from (Stickler, 2013) is based on lattice dynamics in Levy 

crystals. While the experimental realization of fractional quantum mechanics is 

missing, the well-known similarity of the quantum-mechanical Schrödinger equation 

to the paraxial wave-propagation equation in optics suggests a possibility of simulating 

FSE in optics (Longhi, 2015). In this context, fractional diffraction may be implemented 

by transforming the spatial structure of the light beam into its Fourier counterpart, 

applying the fractional diffraction in its straightforward form in the Fourier layer, and 

then transforming the result back into the spatial structure. Very recently, this 

possibility was realized experimentally in the form of fractional dispersion in fibre 

lasers (Liu et al., 2023). 

Fractional Calculus has gained considerable recognition and growth in the 

domains of science and engineering owing to its applications in fields such as Quantum 

Mechanics (QM), fluid dynamics, thermal dynamics, diffusion, material science and 

Schrodinger equations to name a few (Miller & Ross, 1993; Nishimoto, 1984; Oldham 

& Spanier, 1974; Ortigueira, 2011). Differential Equations of many kinds, including 

differential equations with fractional order and their extensions, have been solved by 

using fractional calculus operators and their generalizations (Alhorani & Khalil, 2018; 

Diethelm & Ford, 2002; Lakshmikantham & Vatsala, 2008; Podlubny, 1999; Vázquez 

et al., 2011). Multiple studies (Alshehry et al., 2022; Chen & Jiang, 2018; Feng & 

Meng, 2017; Feng & Ma, 2023; Kurt et al., 2019; Odabasi & Mısırlı, 2018; Pu et al., 

2014; Wang & Zheng, 2019) have examined both Fractional Partial Differential 

Equations (FPDE) and Nonlinear Partial Differential Equations (NPDE) which is a 

special case of FPDEs for providing numerous analyses in nonlinear optics, fluid 

dynamics, optical fibre, signal processing and so on.  

In recent decades, numerous investigations have been conducted on optical 

soliton (Cao & Dai, 2021; Chen et al., 2019; Felmer et al., 2012; Mehboob et al., 2019; 

Qiu et al., 2020). The study of optical soliton is a fascinating subject that involves 

examining the propagation of solitons across nonlinear optical fibres (Agrawal, 2000). 

Optical solitons are confined electromagnetic waves that exist in a nonlinear dispersive 

medium and maintain a constant intensity by balancing the effects of Group Velocity 
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Dispersion (GVD) and nonlinear effects. The dynamics of nonlinear wave propagation 

are governed by the Nonlinear Schrodinger Equations (NLSE) and to obtain analytical 

solutions of these Nonlinear PDEs are vital for studying nonlinear processes. Numerous 

methods have been developed to derive solutions over the years such as the trial 

solution method (Biswas et al., 2016), the sine-Gordon expansion method (Bulut et al., 

2018), solitary wave ansatz (Bhrawy et al., 2014), the functional variable methods 

(Rezazadeh, 2018), the inverse scattering methods (Ghosh & Nandy, 1999), and the 

Kudryashov-expansion method (Alquran et al., 2019), etc.  

 

1.2 Problem statement 

A lot of research on optical solitons has been done on integer-ordered (non-

fractional) properties of the medium, where the solitons' dispersion and refractive index 

either change linearly with wavelength or stay the same. The concept of fractionalizing 

the medium in optical and nonlinear settings has only been around for two decades, and 

much is still unknown, which only attracts attention.  

The study of optical solitons in a fractional medium is an insufficiently explored area 

with limited comprehensive investigation in the current literature. In application point 

of view, experimental realisation of the fractional soliton in a standard single mode 

fibre (SMF) and optical resonator cavities have been performed by (Chen et al., 2019; 

Esen et al., 2018; Fujioka et al., 2010; Longhi, 2015; Mehboob et al., 2019; Wu et al., 

2020), however, the application has not been extended to active optical devices such as 

fibre lasers.  

The fibre laser in this research is intentionally treated as a passive device to 

simplify the analysis of fractional soliton propagation dynamics. By ignoring the 

complications associated with gain and loss mechanisms, the mathematical treatment 

becomes more manageable, allowing for a more focused exploration of the FNLSE's 

dispersive and nonlinear effects. In addition, it also allows to isolate and comprehend 

the fundamental behaviour of fractional solitons within the fibre medium prior to 

introducing additional complexities while this idealised passive device model may not 

fully capture the complexities of a real-world fibre laser, it is an important step towards 

a more complete understanding of fractional soliton propagation in active systems.  
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As a result, this study uses this simplified passive device formulation as a basic 

framework, laying the door for possible future developments that include gain and loss 

dynamics. 

Additionally, the majority has explored the space or spatiotemporal (space-

time) aspects of the fractional soliton with only a few in the temporal domain in recent 

years which is another reason to carry out this study in temporal domain to learn more 

insights. 

The literature lacks comprehensive research on the existence and interaction 

(collision) events of many fractional solitons within a cavity laser emulating a WDM 

environment. Investigating this topic has the potential to greatly enhance our 

understanding in a broader field and could even lead to improvements in its practical 

uses beyond photonics. This gap is filled by conducting thorough numerical simulations 

utilising the WDM framework by using two fractional solitons and investigating their 

dynamical behaviour when co-propagating with and without the effects of XPM. Two 

fractional solitons are defined as u and v component or in optical communication, it can 

be seen as two wavelengths or channels. Although in this study, for the simplicity, it is 

in normalized form and assumed to have same solution profile. 

The study aims to achieve a comprehensive understanding of the fractional 

soliton in fractional medium and how different it is compared to the standard system 

with integer-order derivatives. The analysis examines various characteristics such as 

fractional order, soliton amplitude, soliton spacing, and soliton phase. Here, the 

numerical method is employed to solve the FNLSE equations, and, through numerical 

simulation, the results are presented graphically by varying the parameters. The 

Modified Squared Operator method is an iteration method that exhibits fast 

convergence, is time-efficient, and provides accurate results (finding solutions). 

Furthermore, it is indifferent to dimensions and suitable to a broad variety of solitary 

and soliton waves due to which they are termed as universally convergent technique by 

Yang in 2007. Using Split Step Fourier Method for direct simulation is another 

significant part of numerical approach as its very easy to implement and faster and 

accurate method apart from being a popular technique especially for studies related to 

fractional dimensions and in optical domain. 
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Additionally, it uncovers some novel characteristics and provides opportunities 

for manipulating fractional solitons in fibre lasers. Moreover, this study makes a 

substantial contribution to the progress of fractional calculus and nonlinear optics, 

perhaps influencing other disciplines that include fractional-order systems. 

 

1.3 Aims and Objectives.  

 1.3.1 Aim: 

  To study collision between fractional solitons in the fibre lasers using 

numerical simulations using the Split-Step Fourier (SSF) method. The model is 

described by coupled Fractional Nonlinear Schrödinger Equations (FNLSE) which is 

relevant for the system with two different carrier wavelengths (as an element in the 

WDM setup) 

1.3.2 Objectives: 

To fulfil the above aim, this study has the following objectives. 

1. Introduce the model equation (FNLSE) describing the co-propagation of two 

fractional solitons in fibre-laser cavities with fractional dispersion (FGVD) and 

Kerr nonlinearity (SPM and XPM). 

2. Study the dynamics of fractional solitons with and without the direct effect of 

XPM on the co-propagating solitons by separating studies into two cases. 

3. Find fractional soliton solutions in both the cases by adopting Modified Square 

Operator Method (MSOM) as an iterative method followed by direct simulation 

using Split Step Fourier Method. 

4. Compare the numerically found fractional soliton solutions of each case with 

the available analytical solutions of each case at k = 1 and α = 2 which 

corresponds to a system described by ordinary NLSE (standard system). 

5. Using systematic simulations with different α and velocity mismatch (c), 

examine collisions and bound states of solitons in the XPM-coupled system. 

 

1.4 Purpose and Significances of Study 

 The current study uses a numerical simulation approach using MATLAB 

software to simulate and generate visual and graphical illustrations to demonstrate the 

effect of collisions between two channels in a fibre laser. The fibre laser here is the 
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fractional nonlinear medium through which multiple soliton channels will propagate 

and collide. The equations governing the propagation of these fractional solitons are 

described by Fractional Nonlinear Schrödinger Equations (FNLSE) which will be 

solved by using Split Step Fourier Transform.  

Studying the dynamic behaviour of optical solitons continues to fascinate 

researchers from diverse fields such as fluid mechanics, plasma, nonlinear optics, 

photonics, quantum mechanics, thermodynamics etc. After (Longhi, 2015) introduced 

the applicability of the Fractional Schrödinger Equation (FSE) in optics, it opened the 

door to new possibilities in fibre optic communication and the development of optical 

components and devices. Knowing how to manipulate and control the fractional 

solitons in an optical communication system gives insights to optimize and enhance the 

performances.  

In a nonfractional medium, when multiple channels co-propagate with 

proximity, due to nonlinear effects such as Self Phase Modulation and Cross Phase 

Modulation (XPM), collision of solitons takes place giving rise to many undesired 

phenomena. Collision dynamics in a fractional medium is a relatively new idea with no 

record of previous studies.  

The study expands its existing knowledge base beyond optics into various 

science and engineering domains in understanding complex systems and processes in a 

broad sense. A comprehensive understanding of collision dynamics of the fractional 

soliton can contribute to all future researchers in refining the idea and concept. The 

design and development of efficient optical devices in the fractional medium could be 

of huge benefit. 

 

1.5 Scope of study 

The study seeks to examine the impacts of soliton collisions in a fibre laser. 

Fibre lasers are active optical devices renowned for their versatile uses in the 

generation, propagation, and amplification of light beams. It can be described as a 

fusion of rare-earth-doped fibre amplifier (DFA) and transmission fibre, specifically 

designed to handle high-power transmissions. The main objective is to examine the 

collision caused by Kerr nonlinearity in a WDM environment while considering the 

effects of SPM and XMP between two channels.  
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The mathematical equation employed to represent it is a fractional extension 

of the Nonlinear Schrödinger Equation (NLSE) incorporating fractional derivatives. 

The conventional nonlinear Schrodinger equation features a derivative of integer order. 

However, when this integer-order derivative is substituted with fractional-order (non-

integer) derivatives, it gives rise to a fractional nonlinear Schrödinger equation (NLSE). 

The optical soliton can be fractionalized in various aspects, such as its nonlinearity, 

refractive index, medium, and dispersion. In this scenario, the consideration is 

exclusively in the temporal domain, meaning only time domain dispersion. Here, the 

substitution of the conventional second-order derivative of the nonlinear Schrödinger 

equation (NLSE) with a fractional derivative of order  𝛼 .(Fujioka et al., 2010) 

conducted a study where they investigated the temporal propagation of solitons in a 

fractional medium. They achieved this by incorporating higher-order dispersion and 

higher-order nonlinearity, however, multichannel was not mentioned.  

The FNLSE is solved using the SSFT method to obtain numerical results. 

Additionally, numerical simulation is conducted to validate these results and visually 

illustrate the collision events. Within the WDM setting, the nonlinear effects that arise 

include Self-Phase Modulation (SPM) and Cross-Phase Modulation (XMP), which 

exhibit soliton characteristics. Additionally, the specific parameters of the Split-Step 

Fourier Transform (SSFT) method are employed to evaluate these events. The present 

study, being the first of its kind, focuses on design simplicity and therefore excludes 

the consideration of external potential, higher-order dispersion, loss, amplification 

(gain), higher-order nonlinearity, FWM effects, and different solitons in two channels. 

These aspects are part of the conceptual framework in nonlinear optics and are 

commonly used in applications within fibre laser devices. It is worth noting that no 

prior study has been conducted on this idea. 

 

1.6 Organization of the Thesis 

The remainder of this thesis is structured as follows: 

1. Chapter 2: The literature review provides a comprehensive overview of the 

fractional Schrödinger equations in linear systems with its generalized extension in time 

and space variables. The nonlinear extension of FSE known as FNLSE is explored in 

context with optics and optical systems in terms of optical solitons in the fractional 
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medium. The methods to solve and study the collisions between two fractional solitons 

using modified squared operator methods are discussed along with numerical 

simulation methods using Split Step Fourier methods. 

2. Chapter 3: Methodology describes the process of carrying out the study by 

developing the mathematical model by incorporating FNLSE with nonlinear effects. 

The solution of the solitons will be obtained by solving the FNLSE with nonlinear 

effects (SPM and XPM) using MSOM methods and numerical simulation will be 

performed by MATLAB for the visual realization of the solution for various values of 

LI and GV mismatch.  

3. Chapter 4: Computational simulation is performed to investigate the effects 

of a collision between two fractional solitons. Graphical illustrations of the results are 

presented, and the summary of collisions is presented. 

4. Chapter 5: Conclusion and future work summarise the key contribution and 

outline potential areas for future research. 



 

 

CHAPTER II 

 

LITERATURE REVIEW 

 

2.1 Fractional Schrödinger Equation in spatial domain  

Fractional Schrödinger Equation (FSE) with a space derivative of order 𝛼 in 

place of the second order (𝛼 = 2) space derivative in a standard wave equation becomes 

Space Fractional Schrödinger Equation (SFSE). Path integrals over Brownian motion 

are based on the Gaussian distribution of all possible paths used by (Feynman & Hibbs, 

1965) to derive the classical (non-fractional) Schrödinger Equation as a basic wave 

equation to describe the dynamics of a system through a wave function. One 

Dimensional (1D) of the SE is given as  

 

  𝑖ħ
∂𝜓

∂𝑡
= −

ħ
2

2𝑚

∂
2
𝜓

∂𝑥2 + 𝑉(𝑥)𝜓,      (3) 

 

where 𝜓 = 𝜓(𝑥, 𝑡)  is the wave function, 𝑖  is the imaginary unit, ħ is the reduced 

Planck’s constant, 𝑉(𝑥) is the external potential and 𝑚 is the mass of the particle. The 

first term on the left side of the equation (3) is the first-order time derivative and the 

first term on the right is the second-order space derivative. The second term on the same 

side is the external potential. 

Fractionalizing the Standard Schrödinger Equation by Laskin led to the 

fractionalization of Quantum Mechanics (QM) into Fractional Quantum Mechanics 

(FQM) (Laskin, 2000; Laskin, 2002, 2008). He formulated the Space Fractional 

Schrödinger Equation by adopting the Feynman path integral approach over the Levy 

flights based on non-Gaussian Levy distribution. The derivative of fractional order is 

known as Levy index (LI), 0 < 𝛼 ≤ 2. An interesting observation to note is at 𝛼 =2, 

Levy motion converts into Brownian motion. Later, (Dong & Xu, 2007) and (Guo & 

Jiang, 2006) further explored another subject with the addition of specific potential  

fields. Longhi is credited for introducing the application of SFSE in the optical field 

whereby he realized laser implementation (Longhi, 2015). Since then, it paved the way 
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for the optical realization of FSE in optics. Afterwards, (Zhang et al., 2015) investigated 

optical beam with harmonic potential, (Al-Raeei & El-Daher, 2020) with Riemann-

Liouville derivative for SFSE with morse potential, (Ali & Maneea, 2023) for 

applications of SFSE in the realization of an optical soliton with Riesz derivative. 

Replacing a second-order space derivative in equation (3) with a space derivative of 

order 𝛼  whilst still retaining the first-order time derivative, gives one-dimensional 

Space FSE (Dong & Xu, 2007)  

 

 𝑖ħ
∂𝜓

∂𝑡
= −𝐷𝛼 (ħ2 ∂2

∂𝑥2
)
𝛼/2

𝜓 + 𝑉(𝑥)𝜓     (4) 

 

here, 𝐷𝛼 is a parameter dependent on 𝛼 (𝐷𝛼=1/2 𝑚 for 𝛼 = 2, 𝑚 denotes the mass of a 

particle), (−ħ2 ∂2

∂𝑥2)
𝛼/2

 is a space fractional operator. Equation (4) can be written in an 

operator form as  

 

  𝑖ħ
∂𝜓

∂𝑡
= 𝐻𝛼𝜓         (5) 

  

where 𝐻𝛼 is the fractional Hamiltonian operator with (1 < 𝛼 ⩽ 2) given as  

 

  𝐻𝛼 = 𝐷𝛼 (−ħ2 ∂2

∂𝑥2)
𝛼/2

+ 𝑉(𝑥).      (6) 

 

here, (−ħ2 ∂2

∂𝑥2)
𝛼/2

 is the quantum Riesz fractional operator. Based on the methods 

discussed by Longhi and assuming ħ = 1, equation (4) can be written as  

 

 𝑖
∂𝜓

∂𝑧
= [𝐷𝛼 (−

∂2

∂𝑥2)
𝛼/2

+ 𝑉(𝑥)]𝜓     (7) 

 

where 𝑧  is the propagation distance,   𝛼  is the fractional order known as LI 

(1 < 𝛼 ⩽ 2),  the kinetic term in the Hamiltonian, (−
∂2

∂𝑥2)
𝛼/2

 is represented by the 

quantum Riesz fractional derivative of the order 𝛼 defined by 
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  (−
∂2

∂𝑥2)
𝛼/2

𝜓 =
1

2𝜋
∫  

+∞

−∞
d𝑝𝑒𝑖𝑝𝑥|𝑝|𝛼 ∫  

+∞

−∞
𝑒−𝑖𝑝𝑥𝜓d𝑥.   (8) 

 

2.2 Fractional Schrödinger Equation in the temporal domain 

 Another linear FSE is the Time-dependent Fractional Schrödinger Equation 

(TFSE) or FSE in the temporal domain introduced by (Naber, 2004) defined by Caputo 

fractional derivatives. Commonly used fractional derivatives for converting integer 

order derivates to non-integer order derivates in fractional partial differential equations 

besides Caputo are Riemann-Liouville fractional derivatives and Riesz fractional 

derivatives (Oldham & Spanier, 1974; Podlubny, 1999). Naber used fractional diffusion 

equation analogy to derive the TFSE and his work has been followed by (Wang & Jiang, 

2007) for space-time FSE in combination with Laskin’s derivative.   

A recent paper by (Liu et al., 2023) experimentally realized fractional optical 

medium through fractional GVD in TFSE. Advantages such as spatial profile 

preservation, easy manipulation of temporal properties, and “fractional phase 

protector” ensure its realization in current fibre optics along with waveguides and the 

possibility of including dispersive losses and Kerr nonlinearity effects are strongly 

indicated. Based on this paper, the FSE in the temporal domain is given for an optical 

pulse propagating in a complex dispersive material as 

 

 𝑖
∂𝜓

∂𝑧
= [

𝐷

2
(−

∂2

∂𝜏2)
𝛼/2

− ∑  𝑘=2,3…
𝛽𝑘

𝑘!
(𝑖

∂

∂𝜏
)
𝑘

+ 𝑉(𝜏)]𝜓  (9) 

 

here, 𝜓 = 𝜓(𝜏, 𝑧) is the slowly varying amplitude of the electrical field, 𝑧 and 𝜏 are 

propagation distance and time derivatives respectively, 𝐷 is the fractional dispersion 

coefficient. The first term is the fractional time derivative of the order 𝛼, the second 

term is the regular 𝑘th GVD with coefficient 𝛽𝑘 and the third term 𝑉(𝜏), is the potential. 

So, in equation (9), the fractional derivative is defined in terms of the Riesz fractional 

operator (Cai & Li, 2019) as  

 

  (−
∂2

∂𝜏2
)
𝛼/2

𝜓 =
1

2𝜋
∫  

+∞

−∞
∫  

+∞

−∞
𝑑𝜃𝑑𝜔|𝜔|𝛼𝑒−𝑖𝜔(𝜃−𝜏)𝜓(𝜃)           (10) 
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The frequency domain of equation (9) is obtained by applying Fourier 

Transform which provides a solution as below.  

  Ψ(𝜔, 𝑧) = exp [−𝑖 (
𝐷

2
|𝜔|𝛼 − ∑  𝑘=2,3,…

𝛽𝑘

𝑘!
𝜔𝑘) 𝑧]Ψinput (𝜔),          (11)  

 

The equation (11) has a frequency domain input wave profile Ψinput (𝜔), which 

can be manipulated by pulse shapers (Monmayrant et al., 2010; Weiner, 2011). 

Introducing the fractional phase shift in the frequency domain results in a temporal 

profile that matches the FSE equation solution. 

The experimental setup to realize FSE in the temporal domain to study the 

pulse dynamic is given by (Liu et al., 2023) in Figure 1(a). The setup is divided into 

three parts namely: 

(1) Initial stage, the input ultrafast pulse is passed through a first hologram 

to shape the pulse. 

(2) Propagation stage, the path emulating Levy waveguide is the second 

hologram which adds spectral phase shift to the pulse. 

(3) Measurement stage, the received pulse’s amplitude and phase are 

obtained by the method of single-shot SSI techniques. 

 

 

Figure 1 Architectural set-up of FSE in the temporal domain. 
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The evolution of the pulse depends on both LI and the initial input pulse, 

𝜓input (𝜏, 𝑧 = 0). At the initial section of the setup, the second-order GVD (𝛽2) and 

dispersion length 𝐿GVD introduces the phase shift, 𝜙GVD = −𝛽2 ∗ 𝐿GVD ∗ 𝜔2/2, which 

corresponds to the input pulse in equation (10) where Ψ𝑧=0(𝜔) is frequency domain 

input pulse with Gaussian profile from a laser source.  

 

  Ψinput (𝜏) = 𝐹−1[Ψ𝑧=0(𝜔) ⋅ exp (−𝑖𝛽2𝐿GVD𝜔2/2)]             (12) 

 

For the constant value of 𝛽2 = −21 ∗ 10−3𝑝𝑠2/𝑚 , the effects of 𝐿GVD  is 

observed with LI as depicted in Figure 1(b) in four quadrants Q1, Q2, Q3 and Q4. Q1 

and Q2 belong to the case with 𝐿GVD > 0 whilst Q3 and Q4 with 𝐿GVD < 0. As 𝛼 

becomes closer to value 2, the pulse propagation resembles that in the regular dispersive 

materials whilst it is different for smaller values of 𝛼.  

 

2.3 Mathematical analysis of fibre laser 

To mathematically depict the transformation of pulses in contemporary fibre 

lasers, a few physical effects must be considered. Included among these are dispersion 

effects, fibre nonlinearities, power amplification and losses. The study of such laser 

systems is more complicated because of the dispersion effects and the nonlinear 

dynamics of the cavity radiation (Yarutkina et al., 2015). The energy of the soliton is 

determined by the balance of saturated gain and non-saturated losses in the laser cavity, 

whereas dispersion and nonlinear factors determine pulse production and form 

(Turitsyn, 2009; Turitsyn et al., 2012). As a result, dispersion and nonlinear effects can 

be overlooked when analysing energy dynamics. 

The mathematical expression for output energy based on cavity gain/loss 

parameters is generalized and the Schrödinger equation may accurately represent 

energy evolution in the gain medium (Haus, 1975; Siegman, 1986).  

 

∂𝐴

∂𝑧
= −

𝑖𝛽2

2

∂2𝐴

∂𝑡2
+

𝛽3

6

∂3𝐴

∂𝑡3
+ 𝑖𝛾|𝐴|2𝐴 +

g𝐴

2(1+𝐸/𝐸sat )
𝐴 −

𝛼𝐴

2
𝐴,                 (13) 
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The function 𝐴(𝑧, 𝑡) represents the envelope of the electromagnetic field. The 

variable 𝑧 represents the spatial position, while 𝑡 represents the time. 𝛽2 and 𝛽3 are the 

dispersion coefficients, and 𝛾 is the nonlinear coefficient. The input field is represented 

by the function 𝐴𝑖𝑛(𝑡) =  𝐴(𝑧 = 0, 𝑡), where 𝛼𝐴 represents the fibre loss coefficient, 

g𝐴 is the small signal gain, and 𝐸sat  is the saturation energy. 

 

 2.3.1 Application of fractional soliton in fibre laser. 

 Literature on optical solitons in a fractional medium strongly indicates 

its application in optical cavities including LASERS. Studies in optical fibre and optical 

lasers are extensively carried out and it’s only natural that the application can be 

extended to fibre lasers.   

 This active device is a combination of optical fibre and an amplifier 

which generates high-power light beams using pump power (Kasai et al., 2017) and 

supports the simultaneous existence of solitons (Kasai et al., 2018). Initially designed 

with a traditional optical pulse has now been found to support optical solitons. The key 

to stable generation and amplification of light beams in a fibre laser is governed by its 

dynamical properties and controlling those properties is crucial. 

 The core of the fibre laser is doped with rare earth element which absorbs 

incoming photons and emits high-power optical beams. These highly precise beams are 

used in medicines and industries. 

 

2.4 Optical soliton in fractional medium  

 One-dimensional (1D) Fractional Nonlinear Schrödinger Equation (FNLSE) 

of optical soliton given by (Malomed, 2021), is 

 

  𝑖
∂𝜓

∂𝑧
=

1

2
(−

∂2

∂𝑥2)
𝛼/2

𝜓 +  𝑉(𝑥)𝜓 −  𝑔|𝜓|2 𝜓               (14) 

 

where 𝜓 =  𝜓(𝑥, 𝑧) is the slowly varying amplitude of the optical field, 𝑧 and 𝑥 are the 

propagation distance and transverse coordinates respectively, 𝑔 is the Kerr nonlinearity 

coefficient. The fractional derivative with the LI, α is defined, in the form of the Riesz 

derivative, 
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  (−
∂2

∂𝑥2)
𝛼/2

𝜓 =
1

2𝜋
∫  

+∞

−∞
𝑑𝑝|𝑝|𝛼 ∫  

+∞

−∞
𝑑𝜉𝑒𝑖𝑝(𝑥−𝜉)𝜓(𝜉)             (15) 

 

The basic soliton family solution of the equation (15) with propagation 

constant −𝜇 is given as  

 

   𝜓(𝑥, 𝑧) = 𝑈(𝑥)exp (−𝑖𝜇𝑧)                  (16) 

 

with real function 𝑈(𝑥) satisfying the stationary equation and without potential (𝑉 =

0).  

 𝜇 = −
1

2
(

∂2

∂𝑥2)
𝛼/2

𝑈 −  𝑔𝑈3                  (17) 

 

The stationary states are characterized by their energy (N). 

 

  𝑁 = ∫  
+∞

−∞
|𝑈(𝑥)|2𝑑𝑥                 (18) 

 

The effect of LI on the profile of solitons after solving equation (16) utilizing 

the Modified Squared Operator method (MSOM) is given in Figure 2.  
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Figure 2 Initial soliton profile for 𝝁 =1. 

 

 

The temporal propagation of these solitons for different values of LI is given 

below. 

  

Figure 3 The evolution of stable fractional solitons for 𝜶 =2 (a); 𝜶 =1.5 (b)  

and 𝜶 =1.1(c) 
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 2.4.1 Collision between soliton in optical fibre. 

 The transmission of optical information has benefited immensely from 

WDM techniques with simultaneous transmission of several separate channels over the 

SMF. Solitons in the WDM system further propelled the capacity of the optical 

transmission system with its characteristics and stability. A WDM soliton system 

suffers from collisions among soliton channels as they propagate at proximity. It is 

observed that, aside from slight temporal and phase shifts experienced by the solitons 

during collisions, it fully regains its original self after collision.  

 If the assumption is that the nonlinear effects have a negligible impact 

on the fibre modes, it may simplify the equation by factoring out the transverse 

dependence and writing a slowly varying function of time as 𝐸𝑗(𝑟, 𝑡)  in the form 

(Agrawal, 2019).  

 

  𝐸𝑗(𝑟, 𝑡) = 𝐹𝑗(𝑥, 𝑦)𝐴𝑗(𝑧, 𝑡) exp(𝑖𝛽0𝑗𝑧)              (19) 

 

where 𝐹𝑗(𝑥, 𝑦) is the transverse distribution of the fibre mode for the 𝑗th field ( 𝑗 =

1, 2) , 𝐴𝑗(𝑧, 𝑡)  is the slowly varying amplitude, and 𝛽0𝑗  is the corresponding 

propagation constant. To account for dispersive effects, the frequency-dependent 

propagation constant 𝛽𝑗(𝜔)for each wave is expanded with the quadratic term retained. 

The outcome of this equation for propagation becomes: 

 

 
∂𝐴𝑗

∂𝑧
+ 𝛽1𝑗

∂𝐴𝑗

∂𝑡
+

𝑖𝛽2𝑗 ∂2𝐴𝑗

2𝑡2
+

𝛼𝑗

2
𝐴𝑗 =

𝑖𝑛2𝜔𝑗

𝑐
(𝑓𝑗𝑗|𝐴𝑗|

2
+ 2𝑓𝑗𝑘|𝐴𝑘|

2)       (20) 

 

here 𝛽1𝑗 = 1/ 𝑣g𝑗  , with 𝑣g𝑗   is the group velocity, 𝛽2𝑗 is the GVD parameter, 𝛼𝑗 is the 

attenuation coefficient for 𝑘 ≠ 𝑗. The overlap integral 𝑓𝑗𝑘 is defined as  

 

 𝑓jk =
∬  

∞
−∞

|𝐹𝑗(𝑥,𝑦)|
2
|𝐹𝑘(𝑥,𝑦)|2d𝑥d𝑦

∬  
∞
−∞

|𝐹𝑗(𝑥,𝑦)|
2
d𝑥d𝑦 ∬  

∞
−∞

|𝐹𝑘(𝑥,𝑦)|2d𝑥d𝑦
                 (21) 

 

The disparities among the overlap integrals can be substantial if the two waves 

propagate in distinct fibre modes. In single-mode fibres, the values of 𝑓11 , 𝑓22 and 𝑓12 
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may vary due to the frequency dependency of 𝐹𝑗(𝑥, 𝑦). The disparity is minimal, yet it 

might be disregarded in practical situations. Therefore, equation (19) can be expressed 

as a combination of two interconnected nonlinear Schrödinger equations.  

 

 
∂𝐴1

∂𝑧
+

1∂𝐴1

𝑣g1 ∂𝑡
+ 

i𝛽21 ∂2𝐴1

2∂𝑡2 +
𝛼1

2
𝐴1 =  i𝛾1(|𝐴1|

2 + 2|𝐴2|
2)𝐴1            (22) 

 

 
∂𝐴2

∂𝑧
+

1∂𝐴2

𝑣g2 ∂𝑡
+

i𝛽22 ∂2𝐴2

2∂𝑡2 +
𝛼2

2
𝐴2 =  i𝛾2(|𝐴2|

2 + 2|𝐴1|
2)𝐴2            (23) 

 

where the nonlinear parameter 𝛾𝑗 is defined as  

 

 𝛾𝑗 = n2 𝜔j / (cAeff ), (j = 1, 2),                (24) 

 

here Aeff   is the effective mode area and assumed the same for both the optical waves. 

The evolution of the two pulses along the fibre length is therefore governed by 

equation (22) and equation (23), which also consider the effects of GVD, SPM, XPM, 

and group velocity mismatch. For simplicity's sake, if fibre losses are left out, these 

formulae become: 

  
∂𝐴1

∂𝑧
+

i𝛽21 ∂2𝐴1

2∂𝑇2 = i𝛾1(|𝐴1|
2 + 2|𝐴2|

2)𝐴1               (25)  

 

  
∂𝐴2

∂𝑧
+ 𝑑

∂𝐴2

∂𝑇
+

i𝛽22 ∂2𝐴2

2∂𝑇2
= i𝛾2(|𝐴2|

2 + 2|𝐴1|
2)𝐴2              (26) 

 

where 

  𝑇 = 𝑡 −
𝑧

𝑣g1
,  𝑑 =

𝑣g1−𝑣g2

𝑣g1𝑣g2
                 (27) 

 

here, T is time measured in a reference frame moving with the pulse travelling at the 

speed 𝑣g1 and 𝑑 is a group velocity mismatch between the two pulses. 
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2.5 Numerical methods for finding soliton solution.  

 The dynamic nature of numerous physical phenomena is significantly 

influenced by nonlinearity, including but not limited to nonlinear wave motions, 

mechanical vibrations, population dynamics, electronic circuits, laser physics, 

astrophysics, the heartbeat, plasma physics, and chemical reactions in solutions. 

Nonlinear evolution equations (NLEEs) such as the Korteweg de Vries equation (KdV), 

the sine Gordon equation and the nonlinear Schrödinger equation (NLSE) are 

developed to characterize these processes. 

 A fractional version of NLSE is one such nonlinear equation used for studying 

the evolution of wave propagation of optical solitons in nonlinear optics. The soliton 

solutions of this equation are majorly applied in optics and photonics for ultrafast laser 

pulses and in optical devices for manipulating particles. The investigation of exact or 

analytical solutions for solitary waves and soliton is crucial for understanding diverse 

nonlinear processes despite their complexities and extreme difficulty in obtaining them.  

Another alternative approach resorted by many researchers is the numerical 

approach based on approximations which are easier to compute and solve, however are 

prone to certain errors. Simulating nonlinear fractional dynamics and evolution is 

carried out using various numerical methods such as finite difference methods and 

function approximation methods. An interesting classification of numerical methods is 

iteration methods as the name suggests, the solution is obtained by repeated calculation 

of the equations with initial approximation and finding the convergence to the desired 

results. Common iteration methods used for soliton solutions are Newton’s methods 

(Cheung, 1979), Petviashvili method (Petviashvili, 1976), shooting methods (Yang, 

2002) and Self-consistency methods however one or the other falls short of giving the 

desired results due to one or the other reasons.  

In 2007, Yang and Lakoba proposed a new iteration method that fulfilled most 

of the conditions in terms of accuracy, insensitivity to the number of dimensions, time 

efficiency,  and inclusivity of all the solitary waves (Yang & Lakoba, 2007). The 

squared operator method (SOM) and modified SOM (MSOM) are termed universally 

convergent iteration methods for solitary waves in general. The SOM is given as  
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  𝐮𝑛+1 = 𝐮𝑛 − [𝐌−1𝐋1
†𝐌−1𝐋0𝐮]

𝐮=𝐮𝑛
Δ𝑡.               (28) 

 

where 𝐋0𝐮 is a general solitary wave, 𝐮 is the vector solitary wave solution, 𝐋1 is the 

linearized operator of 𝐋0𝐮 in the case of complex-valued, 𝐌 is the real-valued positive 

definite Hermitian operator which also accelerates the process, Δ𝑡 is the time step.  

SOM when modified further could converge faster than SOM and MSOM is 

given as  

 𝐮𝑛+1 = 𝐮𝑛 − [𝐌−1𝐋1
†𝐌−1𝐋0𝐮 − 𝛼𝑛⟨𝐆𝑛, 𝐋1

†𝐌−1𝐋0𝐮⟩𝐆𝑛]
𝐮=𝐮𝑛

Δ𝑡    (29) 

where,  

   𝛼𝑛 =
1

⟨𝐌𝐆𝑛,𝐆𝑛⟩
−

1

⟨𝐋1𝐆𝑛,𝐌−1𝐋1𝐆𝑛⟩Δ𝑡
                (30) 

 

Users can specify the function, 𝑮𝑛 = 𝒆𝑛 ≡ 𝒖𝑛 − 𝒖𝑛−1.  

These iteration methods are verified for various solitary waves including 

solitons using NLSE and have suggested its applicability in arbitrary dimensions with 

little change in the programming and easier to implement.  

 

2.6 Numerical simulations using Split Step Fourier method. 

 In fibre optics, since both the dispersion and nonlinear effects are represented 

independently in NLSE, a numerical method is crucial for comprehending the 

nonlinearity such as the split-step Fourier method (SSFM) (Agrawal, 2000). It can be 

utilized precisely to simulate the propagation of light pulses through an optical fibre as 

it is easier to implement and considered a stable approach. Taking a wave equation such 

as NLSE, it is firstly split into linear and nonlinear operators and then solved 

independently by applying Fourier Transform (FT) and inverse FT (IFT) as given by 

(Farag et al., 2021) 

 

  𝑖
∂𝜓

∂𝑧
= (−

∂2

∂𝑥2)  𝜓 − | 𝜓|2 𝜓                 (31) 

 

where, L = −
∂2

∂𝑥2 is the linear operator and N = −|𝜓|2 is the nonlinear operator. After 



 21 

solving separately, the final equation looks like  

 

 𝜓(𝑥, 𝑧 + Δ𝑧) = 𝐹−1(exp (−𝑖𝜔2Δ𝑧) ⋅ 𝐹(exp (𝑖Δ𝑧|𝜓|2)𝜓))             (32) 

 

Similarly, the introduction of the FSE in optical systems  launched possibilities 

for optical controls (Huang et al., 2017). Features of solitons in Kerr medium have been 

researched (Huang & Dong, 2016), and nonlinear effects as a function of the Lévy index 

have been studied by (Zhang et al., 2016). The optical soliton propagation based on  

nonlinear FSE is given by (Ghalandari & Solaimani, 2019)  

 

  𝑖
∂𝜓

∂𝑧
= [

1

2
(−

∂2

∂𝑥2)
𝑎/2

− 𝑖|𝜓|2 + 𝑉(𝑥)]𝜓              (33) 

 

here, 𝜓 is the amplitude, 𝑧 and 𝑥 are the propagation distance and transverse 

coordinate, respectively. Using SSFM, the equation (31) can be written in the form as  

 

 𝑖
∂𝜓

∂𝑧
= (𝐷̂ + 𝑁̂)𝜓                  (34) 

 

where 𝐷̂ is the linear differential operator and  𝑁̂ is the nonlinear operator. 

 𝐷̂ = −
𝑖

2
(−

∂2

∂𝑥2)

𝑎

2
− 𝑖𝑉(𝑥)                  (35) 

  𝑁̂ = 𝑖|𝜓|2                  (36) 

The final equation after FT and IFT looks like  

𝜓(𝑧 + ℎ, 𝑥) ≅ 𝐹−1exp [−(
𝑖

2
) ℎ|𝑘|𝑎] 𝐹exp [−𝑖ℎ(𝑉(𝑥) − 𝑖|𝜓|2]𝜓          (37) 

 

here, ℎ is the short distance considered for the equation, 𝐹 stands for FT and 𝐹−1 stands 

for IFT, 𝑘 is the wave number in the Fourier domain. By solving the FSE by the SSFM 

approach, they have shown the effects of LI on the amplitude of the oscillation, 

dispersion, and the position of the peak intensity. This study can be used as a reference 

base for many such studies using various solitons in nonlinear FPDEs. 
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CHAPTER III 

 

METHODOLOGY  

 

3.1 Introduction 

This chapter outlines the methodology employed to solve the equation 

governing the model in fractional and WDM settings by numerical simulation. 

 

3.2 Research approach 

For this research, a computational and numerical simulation approach is 

chosen. The theoretical information related to optical soliton in fractional NLSE and 

their dynamics in co-propagating when interpreted in terms of simulation work, the 

understanding and the replication of the work becomes easier for future researchers to 

perform and verify or modify the work.  

Finding exact or analytical solutions is challenging and often difficult to 

obtain, another simpler and more effective approach is adopting numerical methods to 

obtain approximate solutions. Therefore, the numerical simulation-based approach is 

the right choice for this study.  

To calculate the absolute error, the comparison of the approximate values to 

the equivalent values of the known exact answer is performed. As a result, it can be 

concluded that the employed methods are highly effective, dependable, and 

straightforward to implement in a series form that converges rapidly to the precise 

solution, thus demonstrating the methods' benefits. 

 

3.3 Research model  

 The models are based on the system of coupled fractional NLS equations, 

which are relevant for fibre optic (fibre lasers) (Liu et al., 2023) are 

 

 𝑖
∂𝑢

∂𝑧
=

1

2
(−

∂2

∂𝜏2
)
𝛼/2

𝑢 + (|𝑢|2 + 2|𝑣|2)𝑢                (38) 

 



23 

 

 𝑖
∂𝑣

∂𝑧
= −𝑖𝑐

∂𝑣

∂𝜏
+

1

2
(−

∂2

∂𝜏2
)
𝛼/2

𝑣 + (|𝑣|2 + 2|𝑢|2)𝑣               (39) 

 

where real 𝑢  and 𝑣  are the two different soliton channels or wavelengths, c is the 

difference of the inverse group velocity between the two waves, and the Levy index α 

(1 < α ≤ 2), represents the fractional group-velocity dispersion (GVD).  

The fractional derivative is defined as the Riesz derivative, i.e., 

 

 (−
∂2

∂𝜏2)
𝛼/2

𝑢 =
1

2𝜋
∫  

+∞

−∞
𝑑𝜔|𝜔|𝛼 ∫  

+∞

−∞
𝑑𝜉𝑒𝑖𝜔(𝑡−𝜏)𝑢(𝑡)              (40) 

 

The system has three dynamical invariants: two norms(energies):  

 

 𝐸𝑢 = ∫  
+∞

−∞
|𝑢(𝜏)|2𝑑𝜏,         𝐸𝑣 = ∫  

+∞

−∞
|𝑣(𝜏)|2𝑑𝜏                         (41) 

 

The total momentum,  

 

                    𝑝 = 𝑖 ∫  (𝑢
∂𝑢

∂𝜏

∗
+ 𝑣

∂𝑣

∂𝜏

∗
)

+∞

−∞

𝑑𝜏                (42) 

 

 3.3.1 Collisions between solitons  

  It is well known that equations (38)-(39) admit stable single-component 

soliton solutions, 

 

  𝑢(𝑧, 𝑡) = exp(𝑖𝑘𝑢𝑧) 𝑈(𝜏), 𝑣 = 0,                           (43) 

 

 𝑢 = 0, 𝑣(𝑧, 𝑡) = exp(𝑖𝑘𝑣𝑧)𝑉(𝜏̃), 𝜏̃ ≡  𝜏 − 𝑐𝑧 + 𝜏0             (44)  

 

where 𝑘𝑢 and 𝑘𝑣 are positive propagation constants (generally speaking, 𝑘𝑢 ≠ 𝑘𝑣), 𝜏0 

is an initial temporal distance between the two solitons, and functions U(𝜏) and V (𝜏), 

which may be assumed real, and satisfy equations. 
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 𝑘𝑢𝑈 +
1

2
 (−

𝑑2

𝑑𝜏2
)
𝛼/2

𝑈 + 𝑈3 = 0                (45) 

 

 𝑘𝑣𝑉 +
1

2
 (−

𝑑2

𝑑𝜏2)
𝛼/2

𝑉 + 𝑉3 = 0                (46) 

 

 It may be enough to focus on the case of 𝑘𝑢 = 𝑘𝑣 ≡ k, when two equations 

(45) and (46) are identical. Then, employing scaling, we may set k ≡ 1. 

We apply the MSOM method to equation (43) with k=1 for various values of 

LI, starting from the initial condition.  

 

       𝑢(0, 𝜏) = 𝑎0𝑒𝑥𝑝 (−𝜏2),                (47) 

 

         𝑣(0, 𝜏) = 𝑎0𝑒𝑥𝑝 (−(𝜏 − 𝜏0)
2),                           (48) 

 

     

where 𝑎0 is constant, 𝜏0 = 8.0 is chosen as an optimal value which is neither too large 

(takes longer time to observe collision) nor too small (collision observed will be too 

fast) to efficiently observe collision at the optimum separation. In addition, we choose 

the acceleration operator M as   

  𝐌 = 𝐌𝒖 = 𝐌𝒗 =  𝜸 −
𝟏

𝟐
(−

𝛛𝟐

𝛛𝝉𝟐)
𝜶/𝟐

                                      (49) 

 

 The temporal derivatives as well as 𝐌−𝟏 are computed by the discrete 

Fourier transform. The computational domain is −128 ≤ 𝜏 ≤ +128, discretized in 

each dimension by 2048 grid points. For this scheme, we found that the optimal (or 

nearly optimal) parameters is (𝛾, 𝛥𝑡) = (3.8,0.6) for MSOM. With these choices of 

parameters, the error diagrams versus the number of iterations are displayed in Figures 

4 and 5. Here the error is defined as the difference between successive iteration 

functions: 

 

  𝑒𝑛 = √⟨𝑈𝑛 − 𝑈𝑛−1 , 𝑈𝑛 − 𝑈𝑛−1⟩ + ⟨𝑉𝑛 − 𝑉𝑛−1 , 𝑉𝑛 − 𝑉𝑛−1⟩           (50) 

 

 We see that all this scheme converges rather quickly at around 100 

iterations to reach the error tolerance which is generally accepted and defined at 10-10. 
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Figure 4 (a) A temporal fractional soliton in equation (44)-(45) and  𝒌 = 𝟏 with 

𝜶 = 𝟐. 𝟎.  (b) error diagrams for MSOM at optimal(𝜸, 𝜟𝒕) values (see text). 

 

 

 

Figure 5 (a) A temporal fractional soliton in equation (44)-(45) and  𝒌 = 𝟏 with 

𝜶 = 𝟏. 𝟏.  (b) error diagrams for MSOM at optimal(𝜸, 𝜟𝒕) values (see text). 

 

 In the case of the ordinary (non-fractional) GVD, with 𝛼 = 2, the commonly 

known classical soliton solutions for 𝑘𝑢 = 𝑘𝑣 = 1 are 

 

  𝑈sol = √2sech (√2𝜏), 𝑉sol = √2sech (√2𝜏̃)              (51) 

 

the energy of each one being 𝐸𝑢 = 𝐸𝑣 = 2√2. The numerically found energy for the u 

and v profiles as shown in Figure 4 is 2.8284, which is equivalent to the value of 𝐸𝑢 
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and 𝐸𝑣. 

 To test the stability, the direct simulations (38)-(39) were performed by 

using the split-step Fourier method with the optimum step size 𝛥𝑧 = 0.01 and window 

size T = 128. Thus, we take its split operators as  

 

 𝐷̂𝑢 = 
1

2
(−

∂2

∂𝜏2)
𝑎/2

                 (52) 

 

 𝐷̂𝑣 = 
1

2
(−

∂2

∂𝜏2
)
𝑎/2

                 (53) 

 

 𝑁̂𝑢 = (|𝑢|2 + 2|𝑣|2)                 (54) 

 

 𝑁̂𝑣 = (|𝑣|2 + 2|𝑢|2)                 (55) 

 

                   𝐶𝑣 = −𝑖𝑐
∂𝑣

∂𝜏
                 (56) 

 

A typical example of the stable temporal fractional solitons with 𝑐 = 0 for 𝛼 = 2.0 is 

displayed in Figure 6.  
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Figure 6 No collision between (a) 𝒖-soliton (top left) and (b) 𝒗-soliton with 𝒄 = 𝟎  

(left bottom) for 𝜶 = 𝟐. 𝟎. (c) The energy (right top) and momentum (right 

bottom) of the system vs. 𝒛. 

 

 

 

Figure 7 (a) Collision between stationary 𝒖-soliton (top left) and (b) 𝒗-soliton 

with 𝒄 = −𝟏. 𝟎  (left bottom) for 𝜶 = 𝟐. 𝟎. (c) The energy (right top) and 

momentum (right bottom) of the system vs. 𝒛. 
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 One can see from Figure 6 that the u- and v-soliton preserve their shapes 

over the distance  𝑧 = 100 and do not collide. However, when 𝑐 ≠ 0 , say 𝑐 = −1.0, 

𝑢- and 𝑣-solitons are splitting into two solitons after collision as shown in Figure 7. In 

the simulation presented above, the conservation of the dynamical invariants holds with 

a relative accuracy of ~ 10-6. So, in Figures 6 and 7, the variation in the values (y-axis) 

is negligible and is considered constant and invariant. For 𝑢 - and 𝑣 -solitons, the 

momentum is almost zero and the energy is preserved. This indicates the accuracy of 

our numerical simulations.  

 

 3.3.2 A bound state of two solitons 

 A stationary bound state of the 𝑢- and 𝑣 -solitons in the system may be 

looked for in the form of 

 

    𝑢(𝑧, 𝑡) = 𝑒𝑥𝑝 (𝑖𝑘𝑢𝑧)𝑈( ), 𝑣(𝑧, 𝑡) = 𝑒𝑥𝑝 (𝑖𝑘𝑣𝑧)𝑉( ),            (57) 

 

(unlike the above ansatz (43), (44), here functions 𝑈 and 𝑉 are not real). As above, we 

can focus on the case of 𝑘𝑢 = 𝑘𝑣 ≡ 1. Then, the substitution of ansatz (57) in equations 

(38) and (39) leads to the stationary system: 

 

 𝑘𝑢𝑈 +
1

2
 (−

𝑑2

𝑑𝜏2
)
𝛼/2

𝑈 + (|𝑈|2 + 2|𝑉|2)𝑈 = 0              (58) 

 

 𝑘𝑣𝑉 − 𝑖𝑐
𝑑𝑉

𝑑𝜏
+

1

2
 (−

𝑑2

𝑑𝜏2)
𝛼/2

𝑉 + (|𝑉|2 + 2|𝑈|2)𝑉 = 0             (59) 

 

By writing 𝑈 and 𝑉 to their real and imaginary components, 𝑈 = 𝑈r + i𝑈i  

and𝑉 = 𝑉r +  i𝑉i,  we get equations for the real functions 𝑈r , 𝑈i , 𝑉r  and 𝑉i as 

 

  𝐿ur  ≡  𝑈r +
1

2
 (−

𝑑2

𝑑𝜏2)
𝛼/2

𝑈r + [𝑈r
2 + 𝑈i

2 + 2(𝑉r
2 + 𝑉i

2)]𝑈r = 0          (60) 

 

 𝐿ui ≡ 𝑈i +
1

2
 (−

𝑑2

𝑑𝜏2)
𝛼/2

𝑈i + [𝑈r
2 + 𝑈i

2 + 2(𝑉r
2 + 𝑉i

2)]𝑈i = 0             (61) 
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                 𝐿vr ≡ 𝑉r + 𝑖𝑐
𝑑𝑽i

𝑑𝜏
+

1

2
 (−

𝑑2

𝑑𝜏2
)
𝛼/2

𝑉r + [2(𝑈r
2 + 𝑈i

2) + 𝑉r
2 + 𝑉i

2]𝑉r = 0  (62) 

 

                𝐿vi ≡ 𝑉i + 𝑖𝑐
𝑑𝑽r

𝑑𝜏
+

1

2
 (−

𝑑2

𝑑𝜏2)
𝛼/2

𝑉i + [2(𝑈r
2 + 𝑈i

2) + 𝑉r
2 + 𝑉i

2]𝑉i = 0   (63) 

 

 Equations (60)-(63) were solved using the Modified Squared Operator 

Method. For equations (60)-(63), the linearization operator. 

 

  𝐿1 =  [

𝐿11 𝐿12 𝐿13 𝐿14

𝐿21 𝐿22 𝐿23 𝐿24

𝐿31 𝐿32   𝐿33 𝐿34

𝐿41 𝐿42   𝐿43 𝐿44

]   

where, 

 𝐿11 = 
∂𝐿ur

∂𝑈r
 ≡  𝑘 +

1

2
(−

𝑑2

𝑑𝜏2)
𝛼/2

+ 3𝑈r
2 + 𝑈i

2 + 2(𝑉r
2 + 𝑉i

2) 

 𝐿12 = 
∂𝐿ur

∂𝑈i
 ≡  2𝑈i𝑈r 

 𝐿13 = 
∂𝐿ur

∂𝑉r
 ≡  4𝑉r𝑈r 

 𝐿14 = 
∂𝐿ur

∂𝑉I
 ≡  4𝑉i𝑈r 

 𝐿21 = 
∂𝐿ui

∂𝑈r
 ≡  2𝑈r𝑈I   

 𝐿22 = 
∂𝐿ui

∂𝑈i
 ≡  𝑘 +

1

2
(−

𝑑2

𝑑𝜏2)
𝛼/2

+ 𝑈r
2 + 3𝑈i

2 + 2(𝑉r
2 + 𝑉i

2) 

𝐿23 = 
∂𝐿ui

∂𝑉i
 ≡  4𝑉r𝑈i   

 𝐿24 = 
∂𝐿ui

∂𝑉i
 ≡  4𝑉i𝑈i 

 𝐿31 = 
∂𝐿vr

∂𝑈r
 ≡  4𝑈r𝑉r 

 𝐿32 = 
∂𝐿vr

∂𝑈i
 ≡  4𝑈i𝑉r   

 𝐿33 = 
∂𝐿vr

∂𝑉i
 ≡  𝑘 +

1

2
(−

𝑑2

𝑑𝜏2
)
𝛼/2

+ 2(𝑈r
2 + 𝑈i

2) + 3𝑉r
2 + 𝑉i

2 

 𝐿34 = 
∂𝐿vr

∂𝑉i
 ≡  𝑐

𝑑

𝑑𝜏
+ 2𝑉i𝑉r  

 𝐿41 = 
∂𝐿vi

∂𝑈r
 ≡  4𝑈𝑟𝑉𝑖 
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 𝐿42 = 
∂𝐿vi

∂𝑈i
 ≡  4𝑈𝑖𝑉𝑖 

 𝐿43 = 
∂𝐿vi

∂𝑉i
 ≡  2𝑉𝑟𝑉𝑖 − 𝑐

𝑑

𝑑𝜏
 

 𝐿44 = 
∂𝐿vi

∂𝑉i
 ≡ 𝑘 +

1

2
(−

𝑑2

𝑑𝜏2)
𝛼/2

+ 2(𝑈r
2 + 𝑈i

2) + 𝑉r
2 + 3𝑉i

2 

 

The Hermitian of 𝐿1 is the transpose of 𝐿1 and it is given by 

 

𝐿1
𝑇 = 

[
 
 
 
 
 
 𝐿11 𝐿21 𝐿31 𝐿41
𝐿12 𝐿22 𝐿32 𝐿42
𝐿13 𝐿23  𝐿33 𝐿43
𝐿14 𝐿24   𝐿34 𝐿44]

 
 
 
 
 
 

  

 

The acceleration operator M is taken as equation (48)  

 𝐌 = 𝐌𝒖 = 𝐌𝒗 =  𝜸 −
𝟏

𝟐
(−

𝛛𝟐

𝛛𝝉𝟐)
𝜶/𝟐

                (64) 

 

As the initial condition, we take. 

 

 𝑈r0 = 𝑎0𝑒𝑥𝑝 (−(𝜏)2),                (65) 

 

 𝑈i0 = 𝑎0𝑒𝑥𝑝 (−(𝜏)2),                            (66) 

 

 𝑉r0 = 𝑎0𝑒𝑥𝑝 (−(𝜏)2),                            (67) 

 

 𝑉i0 = 𝑎0𝑒𝑥𝑝 (−(𝜏)2)sin (𝜏).                                      (68) 

 

where 𝜏0 is the initial position of the solitons and 𝑎0 is a constant. 

 

 In the same case of 𝛼 = 2 but 𝑐 = 0, the obvious solution of equations (58) 

and (59) is the two-component soliton, 

 

  𝑢 = 𝑣 = √
2

3
𝑒𝑖𝑧sech (√2𝜏)                   (69) 
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with energies of its components  𝐸𝑢 = 𝐸𝑣 = 2√2/3. In this case, we found 

simultaneously the numerical energy for u and v, which corresponds to 0.9428, is the 

same as the analytical one. 

 In the appendix, the simple MATLAB code for calculating the bound state 

of two solitons is displayed. 

 

 



 

 

CHAPTER IV 

 

SIMULATION RESULTS 

 

4.1 Introduction 

This chapter presents the graphical results of the numerical simulation 

performed for two cases and the summary of each case is generated. 

 

4.2 Collisions between solitons  

In this study, we consider the combined u-soliton and v-soliton as a single-

component soliton. To investigate the collisional effects between these two 

constituents, the u-soliton is designated as the stationary soliton positioned at τ = 0. The 

v-soliton, characterized by a velocity 𝑐, is initially located at τ = 8 and propagates 

towards the u-soliton.  

The collision is observed at ᴢ ≈ τ0 /𝑐 where τ0 = 8.0, the separation between u-

soliton and v-soliton. The outcome of the collision is yet to be determined at various 

values of 𝑐 . Two control parameters identified are FGVD ‘α’ and GVD mismatch 

velocity 𝑐.  

The reference is α = 2, which is the standard non-fractional GVD, and all the 

results obtained for fractional GVD 1 < α ≤ 2 are compared with standard non-fractional 

GVD. Firstly, the values of α are fixed and 𝑐 is varied and the effects of collisions are 

observed such as elastic, inelastic, quasi-elastic, splitting or merging.  

 

 4.2.1 Case I: when α = 2. 

 In the case of non-fractionality, the LI value is α = 2 and when 𝑐 = 0, the 

system has independent u- and v-solitons propagating separately on its path without 

ever crossing each other.  

The solutions to equations (45) and (46) for u-soliton and v-soliton are found 

utilizing MSOM. The u-solution for the propagation constant ku = kv =1 has the energy  

 

𝐸 = ∫ |𝑢|2  
+∞

−∞
𝑑𝜏 =  2.8284 or 141.42 pJ  and  
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the width of the solitons τ𝐹𝑊𝐻𝑀 = 1.2465. As the initial condition, we take,

  

  
𝑢(0, 𝜏) = exp (−𝜏2)

𝑣(0, 𝜏) = exp (−(𝜏 − 𝜏0)
2)

                (70) 

 

The direct simulation of equations (38) and (39) is performed by employing the 

Split-Step Fourier method. The τ -interval is taken to be [128, 128], discretized by 4096 

grid points, and the discrete Fourier transform is used to calculate (−∂2/ ∂𝜏2)𝛼/2. 

When the velocity 𝑐 < 1 such as 𝑐 = -1, both u- and v-solitons demonstrate 

splitting into two solitons after collisions as displayed in Figure 8.  The formation of a 

pair of two-component solitons indicates an inelastic outcome, with unequal energies 

of the components. The emerging compound solitons keep approximately the same 

rapidities (0 or 𝑐) that their dominant components had before the collision. For 𝑐 > 1 

such as 𝑐 = -2, a collision between solitons is nearly elastic for 𝑐 = -2 as seen in Figure 

9.  

The figure displays both the power profiles of the 𝑢- and 𝑣-components of the 

emerging compound solitons and the profile of the frequency chirp, 

 

   𝐶 ≡ −∂2𝜙/ ∂𝜏2                                       (71) 

 

for these components (𝜙 is phase, in each case). A conspicuous chirp is observed only 

in decaying tails of the emerging solitons, not in their main bodies. The compound 

solitons keep approximately the same rapidities (0 or 𝑐) that their dominant components 

had before the collision.   
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Figure 8 (a) Collisions between u-soliton (left top) and v-soliton (left bottom) at 𝒄 

= -1 for α = 2. (b) The top panel presents the initial locations of both the solitons 

with dotted lines and final location at the end of the propagation distance with 

solid lines. The middle panels: |𝑢|2 (blue solid lines) and the frequency chirp 

defined as per equation (71) (black dashed lines), as functions of 𝜏, in the 𝑢-

component of the two compound solitons generated by the collision, in the 

final state, at 𝑧 = 60. The bottom panels: |𝑣|2 (red solid lines) and the frequency 

chirp (black dashed lines) for the 𝑣-component of the same solitons. (c) The 

energy (top) and the momentum (bottom).  
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Figure 9 (a) Collisions between u-soliton (left top) and v-soliton (left bottom) at 𝒄 

= -2 for α = 2. (b) The top panel presents the initial locations of both the solitons 

with dotted lines and final location at the end of the propagation distance with 

solid lines. The bottom left panel: |𝑣|2 (the red solid line) and frequency chirp 

𝐶(𝜏) (the black dashed line), as functions of 𝜏, in the right soliton in its final state, 

at = 30. The bottom right panel: |𝑢|2 (the blue solid line) and 𝐶(𝜏) (black dashed 

line) for the left soliton at 𝑧 = 30. (c) The energy (top) and the momentum 

(bottom).  

 

 4.2.2 Case II: when α = 1.5. 

 In this case, a moderate degree of fractionality corresponds to the LI 

value of α = 1.5. For this fixed LI, when 𝑐 = -0.3, the outcome after the collision is 

splitting both the solitons into two unequal components as displayed in Figure 10. The 

rapidities of the emerging components are the same as the dominant components.  

When 𝑐 = -0.5, u-soliton and v-soliton merge into one soliton and form a breather-like 

structure along the v-soliton path, see Figure 11. When v-soliton with 𝑐 = -0.6 collides 

with stationary u-soliton, the outcome is quasi-elastic meaning elastic splitting of the 
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components into unequal components which is different from the previous velocity, see 

Figure 12. Similarly, collisions at 𝑐  = -1 also gives an increasing degree of elastic 

outcomes as seen in Figure 13. 

 

 

Figure 10 (a) Collisions between u-soliton (left top) and v-soliton (left bottom) at 

𝒄 = -0.3 for α = 1.5. (b) The top panel presents the initial locations of both the 

solitons with dotted lines and final location at the end of the propagation distance 

with solid lines. The middle panels: |𝑢| 2 (blue solid lines) and frequency chirp 

𝐶(𝜏) (black dashed lines) as a function of 𝜏, for the compound solitons in the final 

state, at 𝑧 = 100. The bottom panels: |𝑣| 2 (red solid lines) and 𝐶(𝜏) (black dashed 

lines) as functions of 𝜏 for the solitons at 𝑧 = 100. (c) The energy (top) and the 

momentum (bottom). 
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Figure 11 (a) Collisions between u-soliton (left top) and v-soliton (left bottom) at 

𝒄 = -0.5 for α = 1.5. (b) The top panel presents the initial locations of both the 

solitons with dotted lines and final location at the end of the propagation distance 

with solid lines. The bottom left panel: |𝑢|2 (blue solid lines) and the frequency 

chirp 𝐶(𝜏) (black dashed lines) as a function of 𝜏. The bottom right panel: |𝑣|2 

(red solid lines) and 𝐶(𝜏) (black dashed lines) as a function of 𝜏 for solitons in the 

final state, at 𝑧 = 100. (c) The energy (top) and the momentum (bottom). 
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Figure 12 (a) Collisions between u-soliton (left top) and v-soliton (left bottom) at 

𝒄 = -0.6 for α = 1.5. (b) The top panel presents the initial locations of both the 

solitons with dotted lines and final location at the end of the propagation distance 

with solid lines. The middle panels:|𝑢|2 (blue solid lines) and the frequency chirp 

𝐶(𝜏) (black dashed lines) as functions of 𝜏, in the final state at 𝑧 = 80. The bottom 

panels: |𝑣|2 (red solid lines) and 𝐶(𝜏) (black dashed lines) as functions of 𝜏 for the 

solitons at 𝑧 = 80. (c) The energy (top) and the momentum (bottom). 

 

 

 



39 

 

 

Figure 13 (a) Collisions between u-soliton (left top) and v-soliton (left bottom) at 

𝒄 = -1 for α = 1.5. (b) The top panel presents the initial locations of both the 

solitons with dotted lines and final location at the end of the propagation distance 

with solid lines. The middle panels: |𝑢|2 (blue solid lines) and the frequency chirp 

𝐶(𝜏) (black dashed lines) as functions of 𝜏. The bottom panels: |𝑣|2 (red solid 

lines) and 𝐶(𝜏) (black dashed lines) as functions of 𝜏 for solitons in the final state 

at 𝑧 = 60. (c) The energy (top) and the momentum (bottom). 

 

 4.2.3 Case III: when α = 1.2. 

 In this case, the fractionality is very strong at α = 1.2 and features 

different collision outcomes, unlike higher values of α. When 𝑐 = -0.2, the solitons 

repulse, and the velocity is exchanged between u-soliton and v-soliton in a way that the 

initial velocity of u-soliton is 𝑐 = 0 and after the collision its velocity becomes almost 

like v-soliton. As for the v-soliton, it drops its velocity after collision. When 𝑐 = -0.3 

and -0.7, the solitons split into two with breather-like intensity profiles as displayed in 
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Figures 14 and 15. When the velocity 𝑐 is increased further such as 𝑐 = -5, the collision 

outcome is completely elastic as shown in Figure 16.  

 

 

Figure 14(a) Collisions between u-soliton (left top) and v-soliton (left bottom) at 𝒄 

= -0.2 for α = 1.2. (b) The top panel presents the initial locations of both the 

solitons with dotted lines and final location at the end of the propagation distance 

with solid lines. The bottom left panel: |𝑢|2 (blue solid lines) and the frequency 

chirp 𝐶(𝜏) (black dashed lines) as functions of 𝜏. The bottom right panel: |𝑣|2 (red 

solid lines) and 𝐶(𝜏) (black dashed lines), as functions of 𝜏, for the solitons in the 

final state, at z = 60. (c) The energy (top) and the momentum (bottom). 
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Figure 15 (a) Collisions between u-soliton (left top) and v-soliton (left bottom) at 

𝒄 = -0.7 for α = 1.2. (b) The top panel presents the initial locations of both the 

solitons with dotted lines and final location at the end of the propagation distance 

with solid lines. The middle panel: |𝑢|2 (blue solid lines) and the frequency chirp 

𝐶(𝜏) (black dashed lines) as functions of 𝜏. The bottom panel: |𝑣|2 (red solid lines) 

and 𝐶(𝜏) (black dashed lines), as functions of 𝜏, for the solitons in the final state, 

at z = 60. (c) The energy (top) and the momentum (bottom).  
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Figure 16 (a) Collisions between u-soliton (left) and v-soliton (right) at 𝒄 = -2 for 

α = 1.2. (b) The top panel presents the initial locations of both the solitons with 

dotted lines and final location at the end of the propagation distance with solid 

lines. The bottom left panel: |𝑢|2 (blue solid lines) and the frequency chirp 𝐶(𝜏) 

(the black dashed line) as functions of 𝜏. The bottom right panel: |𝑣|2 (the red 

solid line) and 𝐶(𝜏) (the black dashed line), as a function of 𝜏, for the solitons in 

the final states, at 𝑧 = 15. (c) The energy (top) and the momentum (bottom). 

 

 

 4.2.4 Case IV: when α = 1.1. 

 In this case, the fractionality is very strong at α = 1.1. When 𝑐 = -1.1, the 

solitons split into three components with two strong components with breather-like 

intensity profile and one with weak intensity plain profile as seen in Figure 17. When 

the velocity is further increased to 𝑐 = -1.5, the initial intensity of both the solitons after 

the collision peaks very high and rapidly drops to a small intensity throughout the 

distance, see Figure 18. When 𝑐 = -2, quasi-elastic is the outcome after the collision 

which results in a periodic breather-like intensity structure as displayed in Figure 19. 
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Figure 17 (a) Collisions between u-soliton (left top) and v-soliton (left bottom) at 

𝒄 = -1.1 for α = 1.1. (b) The top panel presents the initial locations of both the 

solitons with dotted lines and final location at the end of the propagation distance 

with solid lines. The middle panels: |𝑢|2 (the blue solid line) and the frequency 

chirp 𝐶(𝜏) (the black dashed line) as functions of 𝜏, for the soliton in the final 

state, at 𝑧 = 80. The bottom panels: |𝑣|2 (the red solid line) and 𝐶(𝜏) (the black 

dashed line), as functions of 𝜏, for the soliton at 𝑧 = 80. (c) The energy (right) and 

the momentum (right). 
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Figure 18 (a) Collisions between u-soliton (left top) and v-soliton (left bottom) at 

𝒄 = -1.5 for α = 1.1. (b) The top panel presents the initial locations of both the 

solitons with dotted lines and final location at the end of the propagation distance 

with solid lines. The bottom left panel: |𝑢|2 (the blue solid line) and the frequency 

chirp 𝐶(𝜏) (the black dashed line), as functions of 𝜏 in the soliton in the final 

state, at 𝑧 = 80. The bottom right panel: |𝑣|2 (the red solid line) and 𝐶(𝜏) (the 

black dashed line), as a function of 𝜏, for the soliton at 𝑧 = 80. (c) The energy 

(top) and the momentum (bottom). 
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Figure 19 (a) Collisions between u-soliton (left top) and v-soliton (left bottom) at 

𝒄 = -2 for α = 1.1. (b) The top panel presents the initial locations of both the 

solitons with dotted lines and final location at the end of the propagation distance 

with solid lines. The bottom left panel: |𝑢|2 (the blue solid line) and the frequency 

chirp 𝐶(𝜏) (the black dashed line), as a function of 𝜏, for the soliton in the final 

state, at 𝑧 = 60. The bottom right panel: |𝑣|2 (the red solid line) and 𝐶(𝜏) (the 

black dashed line), as functions of 𝜏, for the soliton at 𝑧 = 60. (c) The energy (top) 

and the momentum (bottom). 

 

 

4.3 Summary of the collisions of two single independent solitons. 

 Figure 19 below shows the summary of the collisions between u-soliton and 

v-soliton for various values of α and 𝑐. The x-axis displays the LI values between 1 and 

2 and correspondingly, the velocity 𝑐 is on the y-axis.  

For lower values of α (1.1 ≤ α ≤ 1.3) with strong fractional GVD, the results of 

the collision are diverse for lower values of 𝑐 (0 ≤ 𝑐 ≤ 1.5) such as repulsion, splitting, 

and merger followed by splitting and finally for higher velocities (1.5 ≤ 𝑐 ≤ 3), it enters 

quasi-elastic and dominates the results.  
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For moderate values of α (1.4 ≤ α ≤ 1.6) with moderate fractional GVD, the 

outcomes of the collision for lower values of 𝑐 are like those of lower values of α 

however, the majority results in splitting. As the velocity increases from 1.5 to 3, 

splitting is soon replaced by quasi-elastic.  

For higher values of α (1.8 ≤ α ≤ 2) with weak fractional GVD, the main 

outcome is splitting for all lower and mid-values of 𝑐 (0 to 2) and above 𝑐 = -2, the 

outcome is completely elastic.  

 

 

 

Figure 20 Collision border in the plane (α, c) 

 

4.4 A bound state of two solitons.  

 Here, the solitons exist simultaneously and are affected by each other’s 

existence and the aim is to observe the outcomes of their collision. Unlike above ansatz 

(43) and (44), the functions U and V are not real, meaning the complex component must 

be included which adds complexity to the whole process. Equation (57) when 

substituted in equations (38) and (39) generates equations (58) and (59) which are in 

ODE forms and have the presence of XPM coupling. 

The two-component solutions of equations (58) and (59) are used as the input 

for the full system of FNLSEs. As a result, the two-component bound state moves with 
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deceleration and slightly varying amplitudes, quickly relaxing towards a stable 

stationary two-component soliton, with a constant rapidity and constant amplitudes of 

its components at various values of 𝛼 and 𝑐 as given in the figures below. 

 

 

Figure 21 (a) The stable u-soliton (Left top) and v-soliton (Left bottom). (b) 

(Right top) The profiles of the initial solutions at z = 0, (middle) the energy of 

solitons vs. z, (bottom) the amplitude peak vs. z for 𝑐 = 0.9 and 𝛼 = 2.0. 
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Figure 22 (a)The stable u-soliton (Left top) and v-soliton (Left bottom). (b) 

(Right top) The profiles of the initial solutions at z = 0, (middle) the energy of 

solitons vs. z, (bottom) the amplitude peak vs. z for 𝑐 = 0.4 and 𝛼 = 1.1. 

 

 

 

Figure 23 (a) The stable u-soliton (Left top) and v-soliton (Left bottom). (b) 

(Right top) The profiles of the initial solutions at z = 0, (middle) the energy of 

solitons vs. z, (bottom) the amplitude peak vs. z for 𝑐 = 0.7 and 𝛼 = 1.5. 
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4.5 Summary of the collisions of two bound states of solitons. 

The energies of the solitons are different for different values of α and are 

influenced by values of the GV mismatch factor, i.e., 𝑐. Figure 23 below displays the 

impacts of 𝑐 on energy E for different values of α.  

For higher LI, α = 2, the energy is highest compared to all other values and the 

velocity increases from 0 to 1, the energy of v-soliton increases exponentially whereas 

the energy of u-soliton decreases exponentially in the same manner.  

For α = 1.5, the energies of both u- and v-solitons increase and decrease 

respectively in a similar manner as α = 2, but the changes are very slow and stop at 𝑐 = 

0.8. 

For α = 1.1, the energies of u-soliton are almost linear with negligible increase 

with c whereas v-soliton decreases gradually. Both the energies stop at 𝑐 = 0.5.  

It can be concluded that, since the velocity of the u-soliton is fixed at 0, the 

energy increases as the velocity, 𝑐 increases from 0 to. However, v-soliton is a different 

case, since it moves towards u-soliton while travelling, its energies decrease with 𝑐 but 

does not reach 0. So, these changes in the energies are very small and negligible and as 

a result, the energy is conserved. 

 

 

Figure 24 The energies (a) and amplitudes (b) of the established u- and v- 

components (blue and red curves, respectively) of the compound solitons vs. their 

established rapidity, cfinal, for the same value of LI, used in the above figures. 
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Figure 25 The final rapidity of the established two-component soliton, cfinal, vs. 

the GV mismatch parameter 𝑐 for three values of LI, 𝛼 = 2 (the ordinary non-

fractional GVD), 𝛼 = 1.5 (moderate fractionality), and 𝛼 = 1.1 (strong 

fractionality). 



 

 

CHAPTER V 

 

CONCLUSION AND FUTURE WORKS 

 

5.1 Conclusion 

In this final chapter, we draw conclusions based on the findings presented in 

Chapter 4 regarding the collisions between two fractional solitons. Additionally, we 

discuss potential avenues for future research aimed at expanding our understanding of 

soliton dynamics and their applications. 

The investigation of fractional solitons' collisions has yielded important 

insights into the nonlinear interactions of these structures. We have evaluated the 

stability of collision-induced patterns, recognized different collision results, and 

tracked the evolution of soliton profiles using graphical representations and analysis. 

The results of this study enhance the overall comprehension of soliton dynamics and 

their conduct in the context of collision situations. 

By mentioning WDM environment, it’s worth noting that for this study, in the 

assumed laser cavities, the existence and copropagating of two fractional solitons with 

fractional dispersion with SPM and XPM as nonlinear terms can be understood as 

passive system. The main goal is to investigate the effects of fractional dispersion, SPM 

and XPM on fractional solitons during co-propagating and the outcomes of those 

solitons colliding with each other and how it’s different than standard system with 

ordinary dispersion of ordinary solitons. The outcomes of the fractional solitons’ 

collisions are compared with ordinary solitons using same parameter variations of α 

and velocity mismatch. The simulated results show that when α = 2 (now becomes 

standard system) has only two outcomes namely splitting (inelastic) and elastic as 

velocity mismatch c > 2.6. As α decreases or as fractionality increases, variations of 

outcomes are observed such as repulsion, merger into single exhibiting breather-like 

amplitude profile, splitting and finally into quasi-elastic as c increases. The numerically 

found solutions using MSOM when compared (plotted for α = 2 and k = 1) with the 

available analytical solutions are observed to be exactly same further confirming the 

accuracy of the adopted numerical method. The bound state of two fractional solitons 
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by incorporating the effects of XPM when co-propagating with initial velocity is 

observed to accelerate initially followed by deceleration after certain distance which 

becomes constant and termed as final velocity. 

In the fibre cavity with the effective FGVD (fractional group-velocity 

dispersion), which is currently accessible for experimentation, we have also taken into 

consideration the co-propagation of optical pulses that are carried by the light of varying 

wavelengths. The system is represented by the XPM-coupled system of FNLSEs, where 

the FGVD is described by the Riesz fractional derivatives. The Lévy index, denoted as 

𝛼, has values between 1 and 2 (inclusive), with 𝛼 = 2 corresponding to the ordinary 

non-fractional GVD. The system comprises the SPM nonlinear terms and the group-

velocity (GV) mismatch c to study the fractional solitons collision and addition of XPM 

nonlinear terms to study the bound state of two fractional solitons.  

The numerical findings presented in this paper illustrate the numerically found 

fractional soliton solutions and their co-propagating dynamics. 

 

5.2 Future works 

Several scientific and technical fields will be impacted by the study's findings. 

Since solitons are resistant to dispersion effects, they are used for signal transmission 

in modern optical communication systems; hence, an understanding of soliton 

collisions is essential. This work also has applications in the domains of fluid dynamics, 

plasma physics, and nonlinear optics, where soliton-like phenomena are observed. 

Furthermore, the investigation of soliton collisions enhances our comprehension of 

complex dynamical systems by contributing to foundational research on nonlinear wave 

interactions. 

The next research step would be to incorporate an additional significant 

nonlinear factor, such as Four Wave Mixing (FWM), to examine its influence on the 

collision of the fractional solitons. Furthermore, the omission of characteristics such as 

loss and amplification (gain) in the fibre cavity in this research opens new avenues for 

further exploration of the subject. 

Although the findings given in this thesis offer interesting insights, it is 

important to acknowledge several limitations that should be considered for future 

research. A weakness of the study is its narrow focus on collisions involving only two 
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fractional solitons, which may not encompass the entirety of collision scenarios 

observed in complicated nonlinear systems. Further research could investigate 

collisions that involve several soliton-like structures or interactions in nonlinear media 

with different characteristics. Furthermore, this thesis primarily emphasizes numerical 

simulations in its study. Conducting experiments to confirm the collision dynamics 

found in simulations would increase the dependability and practicality of the results. 

Furthermore, studying the impact of external disturbances, such as noise or disruptions, 

on soliton collisions could offer an additional understanding of the resilience of soliton-

like structures in real-life situations. 

Overall, the investigation into the collisions of fractional solitons has yielded 

a significant understanding of the dynamics of soliton interactions. The outcomes 

detailed in this thesis make a valuable contribution to the progression of knowledge 

regarding nonlinear wave phenomena and carry significant implications for a wide 

range of scientific and technological implementations. Moving forward, more research 

efforts aimed at examining various collision scenarios, experimental validation, and 

investigating the impacts of external perturbations will improve our understanding of 

soliton dynamics and possible applications. 
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APPENDIX 

CASE I: Finding the soliton solution using MSOM. 

 

clear all; close all; 
 
T=60; nfft=2^12;                           % grid parameters 
ds=T/nfft; 
s=[-T/2:ds:T/2-ds]; 
freq=(2*pi/T)*[0:nfft/2]; 
w=[freq(1:nfft/2),-freq(nfft/2+1:-1:2)]; 
 
max_iteration=1e5; error_tolerance=1e-10;       
%=========================== 
alph = 2; 
w_alpha=(w.^2).^(alph/2); 
tau=1; 
%=========================== 
c=3.8; DT=0.6; 
 
k=-1; 
 
A=1; 
U=A*exp(-1*(s-0).^2);  
V=A*exp(-1*(s-8).^2); 
 
for nn=1:max_iteration                             % MSOM iterations start                    
    Uold=U; 
    Vold=V; 
     
    L0U=1/2*ifft((-w_alpha).*fft(U))+k.*U + U.*(U.^2); 
    L0V=1/2*ifft((-w_alpha).*fft(V))+k.*V + V.*(V.^2); 
     
    MinvL0U=ifft(fft(L0U)./(1/2*(w_alpha)+c)); 
    MinvL0V=ifft(fft(L0V)./(1/2*(w_alpha)+c)); 
     
    
L1HermitMinvL0U=1/2*ifft((w_alpha).*fft(MinvL0U))+k.*MinvL0U+(3*U.^2).*Minv
L0U;   
L1HermitMinvL0V=1/2*ifft((w_alpha).*fft(MinvL0V))+k.*MinvL0V+(3*V.^2).*Minv
L0V; 
     
    MinvL1HermitMinvL0U=ifft(fft(L1HermitMinvL0U)./(1/2*(w_alpha)+c)); 
    MinvL1HermitMinvL0V=ifft(fft(L1HermitMinvL0V)./(1/2*(w_alpha)+c)); 
    if nn == 1 
        U=U-MinvL1HermitMinvL0U*DT; 
        V=V-MinvL1HermitMinvL0V*DT; 
    else 
        L1G1=1/2*ifft(-w_alpha.*fft(G1))+k.*G1+(3*U.^2).*G1; 
        L1G2=1/2*ifft(-w_alpha.*fft(G2))+k.*G2+(3*V.^2).*G2; 
         
        MinvL1G1=ifft(fft(L1G1)./(1/2*(w_alpha)+c)); 
        MinvL1G2=ifft(fft(L1G2)./(1/2*(w_alpha)+c)); 
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        MG1=ifft(fft(G1).*(1/2*(w_alpha)+c)); 
        MG2=ifft(fft(G2).*(1/2*(w_alpha)+c)); 
         
          alpha1=1/sum(conj(MG1).*G1+conj(MG2).*G2)-
1/(DT*sum(conj(L1G1).*MinvL1G1+conj(L1G2).*MinvL1G2)); 
         
        
innerproduct=sum(real(G1).*real(L1HermitMinvL0U)+imag(G1).*imag(L1HermitMin
vL0U)+real(G2).*real(L1HermitMinvL0V)+imag(G2).*imag(L1HermitMinvL0V));  
 
         
        U=U-(MinvL1HermitMinvL0U-alpha1*innerproduct*G1)*DT; 
        V=V-(MinvL1HermitMinvL0V-alpha1*innerproduct*G2)*DT; 
    end 
    G1=U-Uold; 
    G2=V-Vold; 
    Uerror(nn)=sqrt(sum(abs(U-Uold).^2))*ds; Uerror(nn) 
    if Uerror(nn) < error_tolerance  
         break 
    end 
end 
 Power = sum(abs(U).^2+abs(V).^2)*ds 
 Power = sum(abs(U).^2)*ds 
 Peak=max(abs(U).^2) 
 u_analyt = sqrt(2)*sech(sqrt(2)*s); 
figure(1), plot(s,abs(U),'r',s,abs(V),'b-') %,s,abs(u_analyt).^2,'--k' 
 xlabel('\tau'), ylabel('')%legend('U','Exact solitons') 
  
figure(6), semilogy(1:length(Uerror), Uerror, 'linewidth', 2) 
%xlabel('number of CG iterations', 'fontsize', 16); ylabel('error', 
'fontsize', 16) 
 
 
 
 

CASE II:  Numerical solution for bound state solitons 

 

clear all; close all; 
 
T=256; nfft=2^12;                           % grid parameters 
ds=T/nfft; 
s=[-T/2:ds:T/2-ds]; 
freq=(2*pi/T)*[0:nfft/2]; 
w=[freq(1:nfft/2),-freq(nfft/2+1:-1:2)]; 
 
max_iteration=1e5; error_tolerance=2e-9;       
%=========================== 
alph = 1.1; 
w_alpha=(w.^2).^(alph/2); 
tau=1; 
%=========================== 
c=5.8; DT=0.6; 
k=-1; 
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pos=110; 
vel=0.45; 
 
Au=0.38;  
Av=Au; 
Ur=Au*exp(-1*(s+pos).^2); 
Ui=Au*exp(-1*(s+pos).^2)  
Vr=Av*exp(-1*(s+pos).^2); 
Vi=Av*exp(-1*(s+pos).^2).*sin(s+pos); 
 
for nn=1:max_iteration                             % MSOM iterations start                    
    Urold=Ur; 
    Uiold=Ui; 
    Vrold=Vr; 
    Viold=Vi; 
     
    
L0Ur=1/2*ifft((w_alpha).*fft(Ur))+k.*Ur+(Ur.^2+Ui.^2+2*(Vr.^2+Vi.^2)).*Ur;   
L0Ui=1/2*ifft((w_alpha).*fft(Ui))+k.*Ui+(Ur.^2+Ui.^2+2*(Vr.^2+Vi.^2)).*Ui; 
    
L0Vr=1/2*ifft((w_alpha).*fft(Vr))+vel*ifft(1i*w.*fft(Vi))+k.*Vr+(2*(Ur.^2+U
i.^2)+Vr.^2+Vi.^2).*Vr; 
    
L0Vi=1/2*ifft((w_alpha).*fft(Vi))vel*ifft(1i*w.*fft(Vr))+k.*Vi+(2*(Ur.^2+Ui
.^2)+Vr.^2+Vi.^2).*Vi; 
     
    MinvL0Ur=ifft(fft(L0Ur)./(1/2*(w_alpha)+c)); 
    MinvL0Ui=ifft(fft(L0Ui)./(1/2*(w_alpha)+c)); 
    MinvL0Vr=ifft(fft(L0Vr)./(1/2*(w_alpha)+c)); 
    MinvL0Vi=ifft(fft(L0Vi)./(1/2*(w_alpha)+c)); 
     
    
L1HermitMinvL0Ur=1/2*ifft((w_alpha).*fft(MinvL0Ur))+(k+3*Ur.^2+Ui.^2+2*(Vr.
^2+Vi.^2)).*MinvL0Ur+2*Ur.*Ui.*MinvL0Ui+4*Ur.*Vr.*MinvL0Vr+4*Ur.*Vi.*MinvL0
Vi; 
 
L1HermitMinvL0Ui=1/2*ifft((w_alpha).*fft(MinvL0Ui))+(k+3*Ui.^2+Ur.^2+2*(Vr.
^2+Vi.^2)).*MinvL0Ui+2*Ur.*Ui.*MinvL0Ur+4*Ui.*Vr.*MinvL0Vr + 
4*Ui.*Vi.*MinvL0Vi; 
 
L1HermitMinvL0Vr=1/2*ifft((w_alpha).*fft(MinvL0Vr))vel*ifft(1i*w.*fft(MinvL
0Vi))+(k+3*Vr.^2+Vi.^2+2*(Ur.^2+Ui.^2)).*MinvL0Vr+4*Vr.*Ur.*MinvL0Ur+4*Vr.*
Ui.*MinvL0Ui+2*Vr.*Vi.*MinvL0Vi; 
 
L1HermitMinvL0Vi=1/2*ifft((w_alpha).*fft(MinvL0Vi))+vel*ifft(1i*w.*fft(Minv
L0Vr))+(k+3*Vi.^2+Vr.^2+2*(Ur.^2+Ui.^2)).*MinvL0Vi+4*Vi.*Ur.*MinvL0Ur+4*Vi.
*Ui.*MinvL0Ui+2*Vi.*Vr.*MinvL0Vr; 
     
    MinvL1HermitMinvL0Ur=ifft(fft(L1HermitMinvL0Ur)./(1/2*(w_alpha)+c)); 
    MinvL1HermitMinvL0Ui=ifft(fft(L1HermitMinvL0Ui)./(1/2*(w_alpha)+c)); 
    MinvL1HermitMinvL0Vr=ifft(fft(L1HermitMinvL0Vr)./(1/2*(w_alpha)+c)); 
    MinvL1HermitMinvL0Vi=ifft(fft(L1HermitMinvL0Vi)./(1/2*(w_alpha)+c)); 
    if nn == 1 
        Ur=Ur-MinvL1HermitMinvL0Ur*DT; 
        Ui=Ui-MinvL1HermitMinvL0Ui*DT; 
        Vr=Vr-MinvL1HermitMinvL0Vr*DT; 
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        Vi=Vi-MinvL1HermitMinvL0Vi*DT; 
    else 
        
L1G1=1/2*ifft(w_alpha.*fft(G1))+(k+3*Ur.^2+Ui.^2+2*(Vr.^2+Vi.^2)).*G1+2*Ur.
*Ui.*G2 + 4*Ur.*Vr.*G3 + 4*Ur.*Vi.*G4; %G1=Ur 
 
L1G2=1/2*ifft(w_alpha.*fft(G2))+(k+3*Ui.^2+Ur.^2+2*(Vr.^2+Vi.^2)).*G2+2*Ur.
*Ui.*G1 + 4*Ui.*Vr.*G3 + 4*Ui.*Vi.*G4; %G2=Ui 
 
L1G3=1/2*ifft(w_alpha.*fft(G3))vel*ifft(1i*w.*fft(G4))+(k+3*Vr.^2+Vi.^2+2*(
Ur.^2+Ui.^2)).*G3+4*Vr.*Ur.*G1+4*Vr.*Ui.*G2+2*Vr.*Vi.*G4; %G3=Vr 
 
L1G4=1/2*ifft(w_alpha.*fft(G4))+vel*ifft(1i*w.*fft(G3))+(k+3*Vi.^2+Vr.^2+2*
(Ur.^2+Ui.^2)).*G4+4*Vi.*Ur.*G1+4*Vi.*Ui.*G2+2*Vi.*Vr.*G3; %G4=Vi 
         
        MinvL1G1=ifft(fft(L1G1)./(1/2*(w_alpha)+c)); 
        MinvL1G2=ifft(fft(L1G2)./(1/2*(w_alpha)+c)); 
        MinvL1G3=ifft(fft(L1G3)./(1/2*(w_alpha)+c)); 
        MinvL1G4=ifft(fft(L1G4)./(1/2*(w_alpha)+c)); 
         
        MG1=ifft(fft(G1).*(1/2*(w_alpha)+c)); 
        MG2=ifft(fft(G2).*(1/2*(w_alpha)+c)); 
        MG3=ifft(fft(G3).*(1/2*(w_alpha)+c)); 
        MG4=ifft(fft(G4).*(1/2*(w_alpha)+c)); 
         
        
alpha1=1/sum(conj(MG1).*G1+conj(MG2).*G2+conj(MG3).*G3+conj(MG4).*G4)1/(DT*
sum(conj(L1G1).*MinvL1G1+conj(L1G2).*MinvL1G2+conj(L1G3).*MinvL1G3+conj(L1G
4).*MinvL1G4)); 
         
        
innerproduct=sum(real(G1).*real(L1HermitMinvL0Ur)+imag(G1).*imag(L1HermitMi
nvL0Ur)+real(G2).*real(L1HermitMinvL0Ui)+imag(G2).*imag(L1HermitMinvL0Ui)+r
eal(G3).*real(L1HermitMinvL0Vr)+imag(G3).*imag(L1HermitMinvL0Vr)+real(G4).*
real(L1HermitMinvL0Vi)+imag(G4).*imag(L1HermitMinvL0Vi));  
         
        Ur=Ur-(MinvL1HermitMinvL0Ur-alpha1*innerproduct*G1)*DT; 
        Ui=Ui-(MinvL1HermitMinvL0Ui-alpha1*innerproduct*G2)*DT; 
        Vr=Vr-(MinvL1HermitMinvL0Vr-alpha1*innerproduct*G3)*DT; 
        Vi=Vi-(MinvL1HermitMinvL0Vi-alpha1*innerproduct*G4)*DT; 
    end 
    G1=Ur-Urold; 
    G2=Ui-Uiold; 
    G3=Vr-Vrold; 
    G4=Vi-Viold; 
     
    Uerror(nn)=sqrt(sum(abs(Ur-Urold).^2+abs(Ui-Uiold).^2+abs(Vr-
Vrold).^2+abs(Vi-Viold).^2))*ds; Uerror(nn) 
    if Uerror(nn) < error_tolerance  
         break 
    end 
end 
 
 U=Ur+i*Ui; 
 V=Vr+i*Vi; 
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 EU = sum(abs(U).^2)*ds 
 EV = sum(abs(V).^2)*ds 
 E = sum(abs(U).^2+abs(V).^2)*ds 
 uv_analytic = sqrt(2/3)*sech(sqrt(2)*s); 
 E_analytic = sum(abs(uv_analytic).^2)*ds 
 Peaku=max(abs(U)) 
 Peakv=max(abs(V)) 
 figure(1), 
 pos1 = [0.22 0.55 0.7 0.3]; 
 subplot('position',pos1) 
 plot(s,real(U),'-m',s,imag(U),'--k',s,real(V),'-b',s,imag(V),'--b'), 
xlim([-115 -105]) 
 xlabel('$\tau$'), 
legend('$\Re{(U)}$','$\Im{(U)}$','$\Re{(V)}$','$\Im{(V)}$') 
  
figure(6), semilogy(1:length(Uerror), Uerror, 'linewidth', 2) 
 

 

 

CASE III: Direct simulation for the evolution of soliton collision  ( Split Step 

Fourier   Transform)  

 

clear all; close all; 
 
load 'H:\MATLAB Research\Fractional Fiber Laser\Collision 
Solitons\FracSolUV.mat' 
%T=1024; nfft=2^13;                           % grid parameters  
 
L = 60; 
dz = 0.001; 
step=100; 
z= [0:dz:L]; 
ds=T/nfft; 
s=[-T/2:ds:T/2-ds]; 
freq=(2*pi/T)*[0:nfft/2]; 
w=[freq(1:nfft/2),-freq(nfft/2+1:-1:2)]; 
%========== Physical Units ======================= 
t=1; %ps 
xi=10; %m 
gamma=50; %W 
%==================== damping edge ================================= 
sdamp=[0:ds:2*ds]; 
negdamp=exp(-(sdamp(length(sdamp):-1:1)/max(sdamp)).^2); 
posdamp=exp(-(sdamp/max(sdamp)).^2); 
damp=[negdamp,ones(size(1:nfft-2*length(sdamp))),posdamp]; 
damp=1; 
%================================================================ 
u0=U; 
v0=V; 
u=u0; 
v=v0; 
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vel=-2; 
count=0; 
dist=0; 
mm=0; 
nn=0; 
threeu=(zeros([round(length(z)/step)+1,nfft])); 
threev=(zeros([round(length(z)/step)+1,nfft])); 
threeuv=(zeros([round(length(z)/step)+1,nfft])); 
nmax = round(length(z)/step)+1; 
 
for ii=1:nmax 
   dist 
   %figure(1), 
plot(s,abs(u).^2,'b',s,abs(v).^2,'r',s,abs(u0).^2,'b:',s,abs(v0).^2,'r:') 
   %pause(0.01) 
   for jj=1:step 
       dist=dist+dz; 
   [u,v]=BPM_FracSolFiberLaser(u,v,w,dz,damp,alph,vel); 
   end 
   mm=mm+1; 
    
   Pu(mm) = trapz(abs(u).^2)*ds; 
   Pv(mm) = trapz(abs(v).^2)*ds; 
   peaku(mm) = max(abs(u).^2); 
   peakv(mm) = max(abs(v).^2); 
   M(mm)=i*sum(u.*ifft(i*w.*fft(conj(u)))+v.*ifft(i*w.*fft(conj(v))))*ds; 
   threeu(mm,:) = u; 
   threev(mm,:) = v; 
   Eu = sum(abs(u(nfft/2:end)).^2)*ds; 
   Ev = sum(abs(v(1:nfft/2)).^2)*ds;  
   Tu(mm) = 1/Eu*sum(s.*abs(u).^2)*ds; 
   Tv(mm) = 1/Ev*sum(s.*abs(v).^2)*ds; 
    
end 
dist = z(1:step:length(z)); 
SP=round(L/(step*dz*60)); 
figure(2) 
pos2 = [0.22 0.55 0.7 0.3]; 
subplot('position',pos2) 
plot(dist,Pu,'b-',dist,Pv,'r-'),ylabel('$E$','rot',0)%,xlabel('$z 
[\mathrm{m}]$') 
legend('$u$-soliton','$v$-soliton','Location','southwest') 
pos2 = [0.22 0.13 0.7 0.3]; 
subplot('position',pos2) 
plot(dist,real(M),'r-'),ylabel('$\mathrm{Momentum}$'),xlabel('$z$') 
%dist*xi,real(M),'b-',dist*xi,imag(M),'k-',dist*xi, 
xlim([0 dist(end)]) 
 
%xL=44; xR=nx-44+2; 
figure(3),  
axh = axes; 
waterfall(s(1:2529),dist(1:SP:end),abs(threeu(1:SP:end,1:2529)).^2), % 
257:5377(1:2529) (545:1:1345) (705:1:1345) (385:1:1665) (1729:2369) 
grid off, pbaspect([1 1 0.3]) 
xlabel('$\tau$'), ylabel('$z$'),  zlabel('$|u|^{2}$','rot',0), 
azimuth = -45; 
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elevation = 35.264; 
view(axh,azimuth,elevation); 
camproj 
unitx = [1;0;0]; 
unity = [0;1;0]; 
unitz = [0;0;1]; 
projectedunitx = rotx(elevation) * rotz(-azimuth) * unitx; 
projectedunity = rotx(elevation) * rotz(-azimuth) * unity; 
xlabelangle = atan2d(projectedunitx(3),projectedunitx(1)); %#ok 
xlabelangle = 29.9998; 
ylabelangle = -(180 - atan2d(projectedunity(3),projectedunity(1))); %#ok 
ylabelangle = -29.9998; 
xlabelhandle = axh.XLabel; 
ylabelhandle = axh.YLabel; 
xlabelhandle.Rotation = xlabelangle; 
ylabelhandle.Rotation = ylabelangle; 
xlimits = xlim(axh); 
ylimits = ylim(axh); 
zlimits = zlim(axh); 
xmean = mean(xlimits); 
ymean = mean(ylimits); 
xbottom = xlimits(1); 
ybottom = ylimits(1); 
zbottom = zlimits(1); 
xlabelhandle.Position = [xmean ybottom zbottom]; 
ylabelhandle.Position = [xbottom ymean zbottom]; 
 
figure(4),  
axh = axes; 
waterfall(s(1:2529),dist(1:SP:end),abs(threev(1:SP:end,1:2529)).^2), 
%(449:2529) 
grid off, pbaspect([1 1 0.3]) 
xlabel('$\tau$'), ylabel('$z$'),  zlabel('$|v|^{2}$','rot',0), 
azimuth = -45; 
elevation = 35.264; 
view(axh,azimuth,elevation); 
camproj 
unitx = [1;0;0]; 
unity = [0;1;0]; 
unitz = [0;0;1]; 
projectedunitx = rotx(elevation) * rotz(-azimuth) * unitx; 
projectedunity = rotx(elevation) * rotz(-azimuth) * unity; 
xlabelangle = atan2d(projectedunitx(3),projectedunitx(1)); %#ok 
xlabelangle = 29.9998; 
ylabelangle = -(180 - atan2d(projectedunity(3),projectedunity(1))); %#ok 
ylabelangle = -29.9998; 
xlabelhandle = axh.XLabel; 
ylabelhandle = axh.YLabel; 
xlabelhandle.Rotation = xlabelangle; 
ylabelhandle.Rotation = ylabelangle; 
xlimits = xlim(axh); 
ylimits = ylim(axh); 
zlimits = zlim(axh); 
xmean = mean(xlimits); 
ymean = mean(ylimits); 
xbottom = xlimits(1); 
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ybottom = ylimits(1); 
zbottom = zlimits(1); 
xlabelhandle.Position = [xmean ybottom zbottom]; 
ylabelhandle.Position = [xbottom ymean zbottom]; 
 
figure(5),pos2 = [0.22 0.55 0.7 0.3]; 
subplot('position',pos2) 
plot(s,abs(u).^2,'b',s,abs(v).^2,'r',s,abs(u0).^2,'b:',s,abs(v0).^2,'r:') 
xlabel('$\tau$'),%ylabel('Intensity')%,xlim([-15 15]) 
 
figure(6) 
pos2 = [0.22 0.55 0.7 0.3]; 
subplot('position',pos2) 
plot(dist,peaku,'b-',dist,peakv,'r-
'),%ylabel('$\mathrm{Energy[pJ]}$')%,xlabel('$z [\mathrm{m}]$') 
legend('$u$-soliton','$v$-soliton','Location','southwest') 
 
figure(7),subplot(211), 
plot(s,abs(u),'b',s,abs(v),'r',s,abs(u0),'b:',s,abs(v0),'r:') 
xlabel('$\tau$'),ylabel('$\mathrm{Intensity}$')%,xlim([-15 15]) 
subplot(212), plot(dist,unwrap(Tu),'b-',dist,unwrap(Tv),'r-') 
ylabel('Position'),xlabel('$z$') 
 
%===== Calculation of the frequency chirp ========== 
 
phi_u = unwrap(angle(threeu(end,:))); 
chirp_u = -Diff2nd(s,phi_u); 
phi_v = unwrap(angle(threev(end,:))); 
chirp_v = -Diff2nd(s,phi_v); 
 
figure(8), 
pos1 = [0.1 0.6 0.35 0.35]; 
subplot('position',pos1) 
plot(s,chirp_u,'--k',s,abs(threeu(end,:)).^2,'b'), xlim([-62.4 -60.2]), 
ylim([-1 2]) 
xlabel('$\tau$'), text(-61.1,1,'$|u|^{2}$'),text(-61.5,-0.5,'$C(\tau)$') 
pos2 = [0.55 0.6 0.35 0.35]; 
subplot('position',pos2) 
plot(s,chirp_v,'--k',s,abs(threeu(end,:)).^2,'b'), xlim([8 10.35]), ylim([-
1 2]) 
xlabel('$\tau$'), text(8.6,1.4,'$|u|^{2}$'),text(9,-0.5,'$C(\tau)$') 
pos3 = [0.1 0.15 0.35 0.35]; 
subplot('position',pos3) 
plot(s,chirp_v,'--k',s,abs(threev(end,:)).^2,'r'), xlim([-63.1 -59.8]), 
ylim([-1 2]) 
xlabel('$\tau$'), text(-62.1,1.4,'$|v|^{2}$'),text(-62,-0.5,'$C(\tau)$') 
pos4 = [0.55 0.15 0.35 0.35]; 
subplot('position',pos4) 
plot(s,chirp_v,'--k',s,abs(threev(end,:)).^2,'r'), xlim([8 10.35]), ylim([-
1 2]) 
xlabel('$\tau$'), text(8.7,1,'$|v|^{2}$'),text(9,-0.5,'$C(\tau)$') 
 
 
figure(9), 
pos1 = [0.1 0.6 0.35 0.35]; 
subplot('position',pos1) 
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plot(s,chirp_u,'--k',s,abs(threeu(end,:)).^2,'b'), xlim([-21.35 -20.65]), 
ylim([-10 8]) 
xlabel('$\tau$'), text(-20.92,5,'$|u|^{2}$'),text(-21,-5,'$C(\tau)$') 
pos2 = [0.55 0.6 0.35 0.35]; 
subplot('position',pos2) 
plot(s,chirp_v,'--k',s,abs(threev(end,:)).^2,'r'), xlim([-21.4 -20.7]), 
ylim([-10 8]) 
xlabel('$\tau$'), text(-20.92,5,'$|v|^{2}$'),text(-21.2,-5,'$C(\ 
 
 
 

Calling a function  

 
 function [u,v]=BPM_FracSolFiberLaser(u,v,w,dz,damp,alph,vel) 
 
linearFrac = exp(1i/2*(abs(w).^(alph))*dz/2); 
XPMu=abs(u).^2+2*abs(v).^2; 
XPMv=abs(v).^2+2*abs(u).^2; 
movFac = exp(-1i*vel*w*dz); 
 
u = ifft(fft(u).*linearFrac); 
v = ifft(fft(v).*linearFrac); 
 
u = u.*exp(-1i*(XPMu)*dz); 
v = v.*exp(-1i*(XPMv)*dz); 
 
u = ifft(fft(u).*linearFrac); 
v = ifft(fft(v).*linearFrac); 
 
v = ifft(fft(v).*movFac); 
u=u; 
v=v; 
 
 
 

Numerical Differentiation for the second derivative  

 

Calling a function  

 
function [ddfx] = Diff2nd(x,fx) 
 
dx = x(2) - x(1); 
n = length(x); 
 
ddfx(1) = (2*fx(1)+-5*fx(2)+4*fx(3)-fx(4))/(dx^2); 
ddfx(2) = (2*fx(2)+-5*fx(3)+4*fx(4)-fx(5))/(dx^2); 
 
for j = 3:n-2 
    ddfx(j) = (-fx(j+2)+16*fx(j+1)-30*fx(j)+16*fx(j-1)-fx(j-2))/(12*dx^2); 
end 
ddfx(n-1) = (2*fx(n-1)-5*fx(n-2)+4*fx(n-3)-fx(n-4))/(dx^2); 
ddfx(n)   = (2*fx(n)-5*fx(n-1)+4*fx(n-2)-fx(n-3))/(dx^2); 
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