
  

  

SEGMENTATION OF MEDIAN NERVE BY SIGNAL PROCESSING AND 

ARTIFICIAL INTELLIGENCE ON ULTRASOUND IMAGES 
 

KUENZANG  THINLEY 
 

A Thesis Submitted to the Graduate School of Naresuan University 

in Partial Fulfillment of the Requirements 

for the Master of Engineering in Electrical Engineering 

2021 

Copyright by Naresuan University 
 

 

 



  

SEGMENTATION OF MEDIAN NERVE BY SIGNAL PROCESSING AND 

ARTIFICIAL INTELLIGENCE ON ULTRASOUND IMAGES 
 

KUENZANG  THINLEY 
 

A Thesis Submitted to the Graduate School of Naresuan University 

in Partial Fulfillment of the Requirements 

for the Master of Engineering in Electrical Engineering 

2021 

Copyright by Naresuan University 
 

 

 



 

Thesis entitled "Segmentation of Median Nerve by Signal Processing and Artificial 

Intelligence on Ultrasound Images" 

By KUENZANG  THINLEY 

has been approved by the Graduate School as partial fulfillment of the requirements 

for the Master of Engineering in Electrical Engineering of Naresuan University 

  

Oral Defense Committee 

  
 

Chair 

(Professor Kosin Chamnongthai, Ph.D.) 
 

  
 

Advisor 

(Associate Professor Surachet Kanprachar, Ph.D.) 
 

  
 

Co Advisor 

( Settha Tangkawanit, Ph.D.) 
 

  
 

Internal Examiner 

( Chairat Pinthong, Ph.D.) 
 

  

  

  Approved 

    

(Associate Professor Krongkarn Chootip, Ph.D.) 
 

  

 Dean of the Graduate School 

 

 

 



 C 

ABST RACT  

Title SEGMENTATION OF MEDIAN NERVE BY SIGNAL 

PROCESSING AND ARTIFICIAL INTELLIGENCE ON 

ULTRASOUND IMAGES 

Author KUENZANG THINLEY 

Advisor Associate Professor Surachet Kanprachar, Ph.D. 

Co-Advisor Settha Tangkawanit, Ph.D. 

Academic Paper M.Eng. Thesis in Electrical Engineering, Naresuan 

University, 2021 

Keywords U-Net, Median Nerve, Carpal Tunnel Syndrome (CTS), 

Signal Processing, Convolutional Neural Network 

  

ABSTRACT 

  

In medical sciences, visualizing the internal dynamics and structures of the 

human body throughout bodily function is critical, and ultrasound imaging (US) is 

one of the most extensively utilized medical imaging technologies. Carpal tunnel 

syndrome (CTS) is a kind of peripheral neuropathy, a frequently occurring disease in 

the wrist that affects many people. When the median nerve is compressed within the 

carpal tunnel, it produces a variety of nerve function problems that manifest as CTS. 

In this study, automatic segmentation of median nerve using signal processing and 

convolutional neural network (CNN)-based methods were studied. 

In signal processing, mathematical morphology, edge detection, and 

contouring are employed, while in convolutional neural network (CNN), U-Net is 

used. The performance of signal processing techniques was engineered by 

concentrating on structural or kernel alterations for the signal processing method. The 

base U-Net, U-Net with pre-processed data, and U-Net with augmented and pre-

processed data with batch norm layer are the three architectures evaluated in deep 

learning. The dice score, accuracy, Jaccard Similarity coefficient, recall, precision, 

and F1 score are all used to compare the results. 

The signal processing technique observed a significant correlation of cross-

correlation coefficient (CSA) between the ground truth (GT) and the segmented 

image with a close resemblance of over 90% with a  correlation coefficient of 0.962 
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when tested on the 35 images. However, the model has estimated the CSA of the 

median nerve as normal in several situations, even when the expert or sonographer 

evaluated it as abnormal. The process of feature extraction, however, is where this 

technique's shortcoming lies. It took more time and processing to manually modify 

the kernel's weight and iterate numerous times to segment the median nerve. 

Furthermore, the approach was not reliable and favored certain feature images over 

others. 

The U-Net model trained with pre-processed data, and augmented data with 

batch norm layer surpassed the two other models and achieves amazing results in 

median nerve segmentation. When evaluated on test datasets, an accuracy of 99.8% 

was achieved, which is 14.1 % higher than approach one (base U-Net) and 

4.4%  higher than approach two (U-Net with pre-processed data). The method was 

also quite successful in finding the median nerve, with a dice similarity coefficient 

(DSC) of 0.899, which was much higher than the other two approaches. This shows 

that when deep learning is given additional training data and the input data is cleaned, 

the outcomes are more accurate. This implies that data pre-processing and data 

augmentation are important not just for cleaning data and expanding the number of 

datasets, but also for improving accuracy. This demonstrates that this model could be 

used as a screening tool in clinical practice to expedite the identification, diagnosis, 

and assessment of CTS. 
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CHAPTER I 

 

INTRODUCTION 

 

1.1 Background  

Our hands provide us with a great deal of assistance. Many of our daily tasks, 

such as writing, driving, cooking, and so on are made possible by our hands. They 

play a crucial role in who we are and how we view ourselves. The human hand is 

made up of palm, wrist, and fingers which consist of 27 bones, 27 joints, 34 muscles, 

over 100 ligaments, and tendons, and numerous blood arteries and nerves. The wrist 

has a complicated mechanism with many articulations and soft tissue components that 

keep our hands stable. Wrist functions include giving the hand flexibility and strength, 

transmitting forces from the hand, and moving the hand back and forth and side to 

side, and it inhouse many nerves and soft tissues. Hand nerves send electrical 

impulses from the brain to the muscles of the forearm and hand, allowing them to 

move. They also transport touch, pain, and temperature sensations from the hands to 

the brain. The ulnar nerve, radial nerve, and median nerve are the three major nerves 

of the hand and wrist which carry out different activities to keep our hand functioning. 

Each of the three nerves begins at the shoulder and travels down the arm to the hand. 

There are sensory and motor components to each of these nerves. Figure 1 shows the 

overall anatomy of the human wrist.  

 

 

 

Figure  1 Anatomy of the Wrist in the Human Hand 
 

Source: Image from (Mark E. Pruzansky) 
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Figure  2 Anatomy of Carpal Tunnel in the Wrist 

 

Source: Image from (Reed, 2005) 

 

Carpal tunnel syndrome (CTS) is one of the frequently occurring diseases in 

the wrist. Carpal tunnel syndrome (CTS) is a kind of peripheral neuropathy that 

affects many people. When the median nerve is compressed within the carpal tunnel, 

it causes numerous abnormalities in nerve function that appear as CTS. CTS 

symptoms include numbness, weakness, and discomfort in the hand and wrist (Ferry 

et al., 1998). It also reduces blood supply to the nerve due to compression, adding to 

the physiological alterations that lead to nerve dysfunction (Topp & Boyd, 2006). 

CTS results in thickening of transverse carpal ligament, fibrotic alterations in the sub-

synovial connective tissues, and reduces the carpal tunnel space (Yang et al., 2021).  

Symptoms are more common in the morning following a night's sleep or at night, with 

localization in the hand's extremities, however in more severe cases, discomfort 

spreads to the forearm, arm, and shoulder (Padua et al., 2016).  

The carpal tunnel houses the median nerve (MN) as well as the tendons that 

bend the fingers (Figure 2). The MN gives motor innervation to the hand and wrist 

and also supplies sensation to the thumb, second &third finger, (although not the little 

finger) (Newington et al., 2015). The CTS condition affects 99 out of every 100,000 

persons in the general population. Globally the prevalence rates range from 7% to 

19% (Newington et al., 2015). According to the Royal College of Surgeons 

Commissioning Guide 2017, the prevalence of Carpal Tunnel Syndrome is expected 
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to be between 7 % and 16 % in the UK, and incidence rates in the United States are 

about 5% (Dale et al., 2013). Although CTSs are common to all age groups, people 

older than 40 are the most common age group who are likely to suffer from CTS 

while, women account for about 65-75% of cases (Duncan & Kakinoki, 2017). 

Experts believe this is because women’s carpal tunnels are smaller in comparison to a 

man. Women are also 3 to 5 times more likely than men to get Rheumatoid Arthritis, 

with the fact that women go through pregnancy (Kazantzidou et al., 2021). It also 

affects the working population, with a focus on manual labor, and also affects 

occupations that need sophisticated hands movements, such as musicians and dentists 

(Burton et al., 2018).  Carpal tunnel syndrome is typically caused by a combination of 

events that increase pressure on the median nerve and tendons in the carpal tunnel, 

rather than a problem with the nerve itself. Swelling produced by a sprain or fracture 

to the wrist; an overactive pituitary gland; an underactive thyroid gland; All these 

conditions, as well as rheumatoid arthritis, are significant causes. 

The primary and well-established examination techniques for the diagnosis of 

CTS are physical examination and electrophysiological nerve conduction studies 

(Ibrahim et al., 2012) and are considered the gold standard.  However, 

electrophysiology-based diagnosis has been linked to a high prevalence of false-

positive and false-negative findings due to the presence of other neurologic diseases, 

such as diabetic neuropathy (Gazioglu et al., 2011; Stevens, 1997), and also produces 

discomfort to the patients and the results are often ambiguous and inconclusive. 

Hence, a novel physical assessment procedure of the CTS, such as the manual tactile 

test and the pinch-holding-up activity evaluation, is created and presented, allowing 

for a further improvement in the sensitivity of clinical examination among a well-

established clinical test.  

Lately, the high-frequency ultrasound (US) imaging technique was extensively 

used and adapted in various medical fields to assess and diagnose the internal health 

of our human body. One such application is tissue characterization, i.e. assessment of 

musculoskeletal and neuromuscular diseases (Chang et al., 2017; Chang et al., 2018), 

as well as peripheral nerve pathologies (Im Suk et al., 2013). Ultrasound imaging has 

a sensitivity and specificity of up to 94 % and 98%, respectively (Duncan et al., 

1999). Changes in the geometry of the median nerve and adjacent tissues, such as 
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tendons, have been quantified using ultrasound imaging (Filius et al., 2015; Mhoon et 

al., 2012; Mohammadi et al., 2010; Moran et al., 2009).  

The mean nerve cross-sectional area (CSA) of the median nerve (MNA) is the 

most often used parameter to measure CTS, with cut-off values diagnostic for MN 

pathology defined from 9 mm2 to 14 mm2 in various analytical settings (Möller et al., 

2018; Seror, 2008; A. Torres-Costoso et al., 2018). However, the value of 9 mm2 for 

MNA is the most trusted cut-off value for MN pathology during CTS as shown by 

NCS investigations (Tai et al., 2012).   

Due to the great variety and complexity of medical images, as well as the fact 

that they are frequently contaminated by noise, automatic segmentation of medical 

images is a difficult undertaking. Over the previous two decades, the research 

community has made significant progress, with several methods for medical image 

segmentation. Some of these techniques include thresholding, clustering, edge, and 

region-based segmentation. Some of the reliable methods have been included in 

commercial software. They are, however, usually restricted to certain segmenting 

tasks like the segmentation of bones. Designing automated partitioning methods for 

more complicated organs is still a challenge. One such example is in the wrist, 

localizing and segmentation of median nerve in ultrasound images. Hence, the precise 

identification of these tissues is frequently the foundation for accurate diagnosis. Deep 

learning approaches based on various types of deep artificial neural networks have 

recently been effective and widely utilized in a variety of common computer vision 

applications, including image identification, classification, and segmentation. This 

work will concentrate on the segmentation of the median nerve in ultrasound images 

using signal processing and artificial intelligence. The results from these studies could 

be used as one of the parameters for the faster diagnosis of CTS by the doctor. 

 

1.2 Problem Statement 

One significant hindrance of ultrasonography in the diagnosis and detection of 

the morphology of median nerve is the sonographer’s freedom to place a hand-held 

probe on the wrist (Kaymak et al., 2008). The type of transducer used, and its 

bandwidth also affect the proper diagnosis. As a result, even when probe alignment is 

consistent, interpretation of the data may differ since the results rely not only on 
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objective nerve planimetry but also on interpreting nerve brightness as displayed on 

the screen in the US B-mode. The interpretation by the "human sight," on the other 

hand, leaves a significant range of subjectivity and is too slow to locate and detect the 

median nerve. As a result, there is a significant demand for a reliable measure that is 

fast and that can assist CTS diagnosis to replace the image's subjectivity and 

relativism.  

Despite numerous good results in earlier attempts to characterize, segment, 

and detect median nerve from US-based imaging, one drawback of US nerve imaging 

techniques was, it has significant variability, both across patients and in scanning 

parameters (Byra et al., 2020), and also tracking median nerve areas of interest with 

ultrasonic imaging is difficult (Horng et al., 2020) and challenging as it required a 

very experienced and skilled operator to detect the median nerve from the US images 

due to the close closeness of many small bones and soft-tissue structures, as well as 

small articulations.  

There had been an effort to develop an automatic detection of the median 

nerve in ultrasound images using a contour detection framework (Wang et al., 2015), 

however, the method was not robust and more biased to certain feature images. The 

reference contour remains a guiding factor in contour calculation and any faulty 

reference contour may result in segmenting the false area. 

  

1.3 Purpose of the Study 

Recently, the breakthrough and development in deep learning have 

revolutionized the field of computer vision in particular segmentation of the medical 

image, and are now a widely adopted technique in image processing tasks. Many 

breakthrough approaches have been developed over the years to address the diverse 

obstacles of traditional approaches in image processing using deep learning, and fresh 

research continues to lead to the creation of more creative and inventive solutions. A 

fundamental benefit of deep learning is its ability to quickly analyze vast and complex 

quantities of data and extract important image characteristics from the original data. It 

is made up of many processing levels. The main objective of these layers is to learn 

and extract all the image's fine details at multiple levels. As a result, deep learning has 

emerged as a must-have tool in the realm of image analysis.  
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One of the most prevalent and frequently used deep learning techniques is the 

convolutional neural network (CNN). Through a succession of approaches, CNN has 

been able to minimize the computer vision problem with a huge quantity of data and 

eventually train it. Some of its applications are automatic brain tumor segmentation 

(Khan et al., 2021; Menze et al., 2014; Pereira et al., 2016; Ranjbarzadeh et al., 2021), 

detection of breast cancer (Benhammou et al., 2020; Bhogal et al., 2021; Bychkov et 

al., 2021; Eskreis-Winkler et al., 2021; Gamble et al., 2021; Saber et al., 2021), liver 

(Chen et al., 2020; Hectors et al., 2021; Kiani et al., 2020), and so on. Recently it is 

also used in the early detection of Covid-19 (Dansana et al., 2020; Jia et al., 2021; 

Kassania et al., 2021; Mohammad-Rahimi et al., 2021).  

One deep learning approach that has shown remarkable performance gains on 

a variety of medical image segmentation tasks, establishing a new state-of-the-art is 

U-net (Ronneberger et al., 2015). The use of U-Net in medical imaging has increased 

dramatically since its introduction in 2015. Researchers are now adopting new 

methodologies or blending other imaging modalities into the U-net model to make it 

more robust and to bring numerous improvements to U-net architecture. The U-Net’s 

ingenious idea of using skip connection achieves high accuracy from a relatively 

small dataset. The main purpose of the study is the segmentation and localization of 

the median nerve in an ultrasound image using a U-Net model with the following 

objectives:  

1. Train CNN model (U-Net) to segment the median nerve on Ultrasound 

images.  

2. Apply preprocessing technique using signal processing technique to clean the 

input image and increase the accuracy of the model prediction. 

3. Apply data augmentation technique to enhance the data by artificially adding 

diversity and variation to existing data. 

 

1.4 Expected Outcome 

This research has the expected outcome as follows: 

1. Wrist ultrasound image datasets.  

2. Able to localize median nerve in ultrasound images. 
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3. Able to segment median nerve in ultrasound images. 

 

1.5 Significant of Study  

This study will bring some uplift in the field of medical imaging especially in 

the segmentation of median nerve in ultrasound images to diagnose CTS. Some of 

them are: 

• Precise segmentation and location of the median nerve in ultrasound images. 

• Faster segmentation of the median nerve in the wrist by replacing the 

traditional method of manual segmentation with the use of deep learning.  

• Provide robustness to the median nerve segmentation in ultrasound images. 

• This study will benefit the clinical physicians or doctors to diagnose CTS at a 

faster rate. It will also reduce the dependency on skilled sonographers to detect 

median nerves in ultrasound images.  

 

1.6 Scope of Study  

The scope of the study is: 

1. Datasets: For this study since there are no free available datasets online hence 

secondary data (ultrasound images) is used. The secondary data is collected 

from the Fort Somdej Phra Naresuan Maharaj Hospital, Phitsanulok, Thailand. 

However, no physical experiments on the patient or individual were involved 

in the process of the collection of data. We collected the ultrasound images of 

hand wrists which are already been experimented with in previous years and 

stored them in the database of the ultrasound machine. Moreover, this study 

only focuses on the segmentation of the distal median nerve type in the hand 

wrist, hence we collected only ultrasound images of this type. The secondary 

data (stored ultrasound image) does not contain any personal and medical 

information of the patient and those which contained some information were 

kept protected, confidential, and secret. The experiments were carryout by a 

trained specialist (doctor)  who has 11 years of experience in the field of 

medicine and works in the rehabilitation clinic/department in Fort Somdej 

Phra Naresuan Maharaj Hospital, Phitsanulok, Thailand, and has a degree in 

doctor of medicine M.D with specialization in the rehabilitation medicine. 
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Before the collection of data, proper permission is asked from the higher 

management authorities of the hospital for the access of data for research. 

2. Study area: Segmentation of median nerve in ultrasound images using 

convolutional neural network (CNN) a subfield of artificial intelligence (AI) 

and signal processing technique. This study adapted the supervised type 

learning method.  In this type of learning each input data to the network is 

labeled and tagged with the desired output value, allowing the system to 

determine how the output will be when the input is received. To function well 

and to get reliable and accurate output, a supervised learning model sometimes 

necessitates the size of a large dataset from ground truth observations. These 

larger datasets which include a more historical example to learn from, allow 

the algorithms to include multiple cases and generate a model that can manage 

them. 

3. CNN model: This study adopted the U-Net architecture (Ronneberger et al., 

2015) for the segmentation task. It includes the training and validation results 

from pre-processing, use of activation, and cost function. 

4. Result verification and evaluation: The accuracy, Jaccard similarity 

coefficient, Recall, Precision, F1 score,  and Dice similarity coefficient (DSC) 

are used as performance measures in the assessment. The result is verified and 

compared with the ground truth images from the hospital which are manually 

segmented by a sonographer. 

 

 

 

 

 

 

 

 

 

 



CHAPTER II 

 

LITERATURE REVIEW AND RELATED THEORY 

 

2.1 Introduction  

Recently deep learning has been progressively adopted in a wide range of 

computational fields, consistently giving remarkable output on a range of challenging 

tasks. It outputs equal or even outperformed human performance in numerous 

situations. The ability to handle a large amount of complex data is the prime benefit of 

deep learning.  It extended its popularity in numerous disciplines such as natural 

language processing, medicine, robotics, and more. Therefore, in the first sub-section 

of Chapter II, the holistic introduction of neural & DL is presented to understand the 

fundamentals of ML, and a comprehensive survey of the most recent trends and 

development in DL is outlined.  Subsequently, it details the architecture layers and 

important terminology of convolutional neural network (CNN) and some of the neural 

network regularization methods. The second sub-section of Chapter II will present a 

review of some of the recent works focusing on image segmentation problems.  

 

2.2 Basics of Artificial Neural Network 

Artificial neurons are replicas of the biological neurons system (Figure 3). The 

roles and specialties of each component of a biological neuron are unique. Beginning 

with the neuron's center, the cell body or soma. The cell body contains genetic 

information and serves as the neuron's major source of energy. 

 

 

Figure  3 The Biological Neuron 

 

Source: Wikipedia 
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Dendrites are the tree-like structure that branches out from the cell body and 

surrounds it. Its primary function is to receive signals from other neurons' axons via a 

biological process known as neurotransmission. The signal is subsequently processed 

and delivered to the next neurons through an axon, which is a long, tail-like structure. 

Many axons are surrounded and insulated by a fatty material called the myelin sheath, 

which helps to speed up the transmission process.  

One of the most significant components of our nervous system is 

interconnected neurons. Action potentials are used by neurons to send and receive 

messages from and to one other. In a nutshell, it's the change in a neuron's electric 

potential induced by ion movement within the cell. This technique allows a sequence 

of neurons to send synapses, allowing us to do simple tasks like moving our arms, 

smelling objects, and so on. 

Artificial neurons, like biological neurons, are linked to one another and 

stimulate one another via these connections. As the name implies, an artificial neural 

network is a network made up of artificial neuron units with connections between 

them. Perception is the first kind of artificial algorithm that was invented in 1958 by 

Frank Rosenblatt (Rosenblatt, 1958). It calculates the output by using the function in 

Equation (2.2) and its pictorial representation in Figure 4. Where 𝑢𝑁, 𝑤𝑁, 𝜃, and 𝑋 

represents the number of inputs, weights corresponding to each input, bias, and output 

respectively. Multiplication and addition are the most typical mathematical operations 

that will be implemented for a normal neuron. The first step is to multiply each of the 

inputs by the weights assigned to them, as shown below: 

 

( ) ( ) ( )1 1 1 1, ., ,N N N Nu w u w u w− −                                         (2.1) 

 

After getting the products of each input and the accompanying weight, the 

sum of these products is calculated and added with a bias 𝜃. 

 

1

 
N

j j

j

a f u w 
=

= +                                                           (2.2) 

 

https://en.wikipedia.org/wiki/Frank_Rosenblatt
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Figure  4 Artificial Neuron (Perception) 

 

The network is referred to as a feedforward network if the connections 

between neurons are exclusively in one direction. In other words, a neuron cannot be 

linked to another neuron that is closer to the input. In feedforward neural networks, 

connections between neurons in the same layer or nonconsecutive layers are not 

permitted. For a multilayer feedforward network, the input-output relation can be 

deduced by Equation (2.3), where 𝑥𝑖 represents the output of the 𝑖𝑡ℎ neuron.  

 

     
1

  
N

i j ji

j

x f u w 
=

 
=  + 

 
                                                      (2.3) 

 

The input-output relationship is written in matrix form to make the 

computation easier, as illustrated in Equation (2.4), where 𝑋,𝑊,𝑈 are output vector, 

weight matrix whose first row is equal to the bias vector 𝜃 and input vector 

respectively.  

 

( )TX f W U=                                                               (2.4) 
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2.3 Optimization of Neural Network  

The principle of optimization of the neural network is to reduce the losses or 

errors and make the network perform the task more accurately by updating the 

weights of the neurons. This process is done with the idea of backpropagation. 

Backpropagation by (Rumelhart, Hinton, & Williams, 1986) revitalized the concept of 

AI and became more popular. The fundamental goal of backpropagation is to 

minimize the cost function by modifying the weights of the model. The weights are 

updated until the difference between the actual and calculated output is minimum or 

equal.  

Assume the network contains 𝑢 as an input, 𝑥 as an output, and 𝑦 as the goal 

output (or the ground truth). So that 𝑥 =  𝑦, the network's weights should be updated. 

To accomplish this, a cost function like mean square error must first be used. The 

mean square error may be calculated using Equation (2.5), where 𝑁 is the number of 

samples. 

 

( )
2

1

1 N

j j

j

e y x
N =

= −                                                     (2.5) 

 

Equation (2.5) can be minimized using a variety of optimization techniques. F

or example, Newton’s approach has adapted the second-order derivatives to calculate 

the roots of a cost function (Baydar, 2018). When compared to approaches such as 

gradient descent (Kiefer & Wolfowitz, 1952; Robbins & Monro, 1951), which employ 

first-order derivatives, it greatly increases the computing complexity. Because of this, 

most neural networks are trained via gradient descent. As a result, only gradient 

descent will be used in this thesis, which will be thoroughly discussed. 

 

2.3.1 Gradient Descent  

Gradient Descent is a method that iteratively finds a (local) minimum by 

utilizing the function’s gradient. The current point’s gradient is determined at each 

iteration. A step is taken in proportion to the gradient’s negative. To make it simpler 

to understand, imagine the function as a valley, and each iteration’s points as a ball 

rolling down the valley. When the ball is on the valley’s right wall, it will roll to the 
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left at a rate proportionate to the slope until it attains the local minima. For the left 

wall, it is just the opposite, as shown in Figure 5. 

 

 

Figure  5 Gradient Descent 

 

When a single neuron is examined, the update of weights at iteration 𝑖 may be 

expressed as in Equation (2.6), assuming MSE as a cost function. 

 

( ) ( ) ( )1w i w i w i+ = +                                                    (2.6) 

 

( )1 ,w i + ( )w i  & ( )w i  is the new updated weight at 𝑖𝑡ℎ iteration, initial 

wight at ( )1i −  iteration and change in weight at 𝑖𝑡ℎ iteration respectively. The weight 

change can be expressed by Equation (2.7). 

( ) ( ) ( )e w iw i  = −                                                   (2.7) 

Where 𝜇 is the learning rate. It regulates how much weight is updated and how 

quickly the weights are updated and  ()e is the cost function with weight ( )w i . The

( )( )e w i  is deduced by Equation (2.8). 

( )( )
( )

de
e w i

d w i
 =                                                  (2.8) 
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( )j j jx u w i=                                                            (2.9) 

Substituting Equation (2.5) in Equation (2.8) 

( )( )
( )

( )

2

1

1 N

j j

j

y x
N

e w i
w i

=

 
  − 

  =



                                            (2.10) 

 

Substituting Equation (2.9) in Equation (2.10) 

 

( )( )
( )( )

( )

2

1

1 N

j j j

j

y u w i
N

e w i
w i

=

 
  − 

  =



                                    (2.11) 

 

( )( ) ( )
1

2
 

N

j j j

j

e w i y x u
N =

 = −  −                                       (2.12) 

 

These are steps involved in the weight updating approach using gradient 

descent. Some of the variants of gradient descent are Stochastic Gradient Descent 

(SGD) and mini-batch stochastic gradient descent (MBSGD). 

Stochastic Gradient Descent (SGD):   Bottou (2010) introduces the simple 

technique to update the parameter. Rather than performing the gradient computation 

on the entire set it randomly samples the training data in each epoch to training. This 

approach is both more efficient and memory-efficient and significantly quicker than 

BGD for large-sized training datasets. However, it is regularly updated, and it makes 

incredibly noisy steps towards the solution, causing the convergence behavior to 

become exceedingly unstable. The stochastic gradient has the disadvantage of being 

readily stuck in a local minimum. Furthermore, because weights are updated by the 

reaction of a single sample rather than the responses of the entire sample, inconsistent 

outcomes might be achieved. 

Mini-batch Gradient Descent: In this technique, the training samples are 

divided into multiple mini-batches, each mini-batch may be thought of as a small 

collection of samples with no overlaps (Hinton et al., 2012). The small batch's sample 
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count is predetermined. This approach aims to combine gradient descent with a single 

sample and complete gradient descent with a single sample. The training period is 

greater than single-sample gradient descent, but it can avoid local minimums. As a 

result, it is the most extensively employed of the three methods. The batch size is 

determined by the hardware's capability, the size of the dataset, and the outcomes of 

the experiments Although gradients were extensively adopted as the optimizer for 

much deep learning, however, they are often considered sluggish and do not ensure a 

smooth and rapid convergence for the following reasons: 

• Choosing a suitable learning rate in SGD is critical and tricky. A low learning 

rate causes delayed convergence, whereas a high learning rate impedes 

convergence and causes the loss function to oscillate around the minimum. As 

a result, the learning rate is now considered a configurable hyper-parameter. 

• In the case of high-dimensional parameters, SGD uses the same learning rate 

for each dimension since each dimension contributes to the total cost 

distinctly. 

• Another SDG difficulty is avoiding becoming stuck in global minimum when 

the gradient is vanishingly small. 

 

To solve the challenges, numerous optimizers have been developed, such as 

learning rate annealing approaches or allocating a different learning rate to each 

dimension of the parameters. Another approach is to use the cost function's second-

order derivatives to guide and accelerate the gradient descent. The expense of 

computation, however, is exorbitant. As a result, the most effective solutions are 

aiming to approximate the second-order data. SGD with momentum, AdaGrad, 

Adadelta, RMSProp, and Adam are some of the most often used SGD variations 

presented. 

Momentum:  It improves both the accuracy and training speed of Equation 

(2.7) by adding the calculated gradient from the previous training steps by a factor 𝛿. 

Where 𝛿 is the momentum factor. Equation (2.13) (Qian, 1999; Rumelhart, Hinton, & 

McClelland, 1986) gives the mathematical representation of the momentum gradient. 

The value of the momentum factor ranges between 0 and 1, as a result, the step size of 

the weight update grows in the direction of the bare minimum to reduce inaccuracy. 
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As the momentum value falls below a certain threshold, the model loses its capacity 

to escape the local bare minimum. In contrast, when the momentum components 

value increases, the model acquires the capacity to converge faster. If a large 

momentum factor is employed in conjunction with LR, the model may miss the global 

bare minimum by crossing over it. 

 

( ) ( ) ( )( )1w i w i e w i  =  − −                                               (2.13) 

 

Adaptive Momentum Estimation (Adam): Adam (adaptive moment 

estimation) (Kingma & Ba, 2014) is a stochastic optimization technique that only 

utilizes first-order gradients and takes relatively low resources. The method calculates 

unique adaptive learning rates for various variables by predicting the first and second 

moments of the gradients. The methodology blends the features of two optimizers i.e., 

AdaGrad (Duchi et al., 2011), which performs well with sparse gradients, and 

RMSProp (Tieleman & Hinton, 2012), which performs well in non-stationary and 

online settings.  

The critical point in machine learning is to optimize the network by updating 

the weights of neurons by reducing the learning rate with the iteration. This is handled 

by Adam on his own. It also gives each learned parameter a separate learning rate. For 

updates, Adam also uses a moving average of the first and second momentums. 

Another useful aspect of Adam is that it does a bias adjustment before updating the 

parameters. This eliminates huge step sizes and, as a result, divergence (Baydar, 2018; 

Duchi et al., 2011). Mathematically Adam can be calculated by Equation (2.14).  

 

( ) ( )
1

1

1 1  
m

w i w i
v e

 + =  − −
+

                                          (2.14) 

 

Where im and iv are the compute bias-corrected first moment estimates and 

compute bias-corrected second raw moment respectively, and can be calculated by the 

following Equation (2.15) and (2.16): 
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                                                             (2.15) 
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i
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v
v


=

−
                                                             (2.16) 

 

Here 𝑚𝑖 & 𝑣𝑖 represents the update biased first-moment estimate and update 

biased second-row moment estimate respectively.  

 

2.4 Backpropagation  

The backpropagation algorithm is perhaps the most basic component of a 

neural network. It was initially introduced in the 1960s, and Rumelhart, Hinton, and 

Williams popularized it nearly 30 years later (Rumelhart, Hinton, & Williams, 1986). 

Through a mechanism called chain rule, the algorithm is utilized to successfully train 

a neural network (LeCun et al., 1998; Rumelhart, Hinton, & McClelland, 1986).  The 

backpropagation on a deep neural network is accomplished by using the chain rule to 

determine the change in output 𝑥𝑘  with respect to weight of 𝑗𝑡ℎ input of 𝑖𝑡ℎ neuron in 

𝐿𝑡ℎ layer 𝑤𝐿,𝑗,𝑖.  

Using Equation (2.4), we may describe a single output 𝑥𝑘 in terms of the 

weights in the final layer and the outputs of the preceding layer, as illustrated in 

Equation (2.17). 

 

( )( 1),

T

k L k Lx f W x+=                                                     (2.17) 

 

Where ( )f  represents the activation function. The output of a neuron in the 

hidden layer may also be represented as shown in Equation (2.18) 

( ), ,

T

L i L ix f W u=                                                      (2.18) 
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To calculate the gradient decent of , ,L j iw  
, ,L j i

e

w




 is required. Where 𝜖 is the 

cost function say MSE, defined in Equation (2.5). Thus, 
, ,L j i

e

w




can be calculated by 

performing the chain rule (Equation (2.21)) operation. 

 

, , , ,

k

L j i k L j i

xe e

w x w

 
=

  
                                                      (2.19) 
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                                                  (2.20) 

 

, ,

, , , , , ,

L j ik

L j i k L j i L j i

xxe e

w x w w

 
=

   
                                               (2.21) 

Which, using Equations (2.17) and (2.18), becomes Equation (2.22) 

 

( ) ( )( 1), ( 1), , ,

, ,

2
( ) ( )T T

k k L k L L i k L u j

L j i

e
t x f W x w f W u u

w M

 

+ +


= −  −


                (2.22) 

 

When the weight is updated through the process of back propagation, , ,L j iw  is 

affected by all the weight's ( )1 , ,L j k
w

+
 positions. Where 𝑘 spans from 1 to 𝑀. Hence, 

Equation (2.23) can be derived by adding these partial derivatives.  

 

( ) ( )( 1), ( 1), , ,

1, ,

2
( ) ( )( )

M
T T

k k L k L L i k L u j

kL j i

e
t x f W x w f W u u

w M

 

+ +

=


= −  −


           (2.23) 

 

If the gradient of the activation function ()f  is straightforward and simple, the 

solution to Equation (2.23) becomes simple and less difficult. 
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2.5 Deep Learning (DL) 

Deep learning is a subfield of machine learning that emulates human brain 

behavior. DL is a data-hungry machine that requires a large amount of data to operate 

to produce a precise and accurate output. Deep learning algorithms conduct 

experiments with a predefined logical framework to reach comparable findings to 

man. It achieves this by adopting a multi-layered neuron called a neural network, with 

each of the layers functions a unique interpretation of the data that the network is fed 

(LeCun et al., 2015). 

 A neural network is made up of many neurons where each neuron can be 

thought of as a discrete single processor performing a unique function. Hence, the 

name deep learning was coined after the concatenation of multiple hidden layers to 

form the network as shown in Figure 6. DL has become an exceedingly popular type 

of ML approach in recent years as a result of the massive development and progress 

in the area of big data (Najafabadi et al., 2015). 

Deep learning technology has had an impact on nearly every scientific subject. 

The usage of DL has already disrupted and revolutionized most sectors and 

businesses. The world's largest technological and economy-focused companies are 

competing to improve DL and recently it has surpassed human performance on image 

classification tasks based on ImageNet datasets (Figure 7) (Alzubaidi et al., 2021). 

 

 

 

Figure  6 General Structure of the Deep Neural Network 
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Figure  7 Comparison of Image Classification on ImageNet Datasets Using 

Different Deep Learning Architecture and Humans 

 

Source:  (Alzubaidi et al., 2021) 

 

Some of the reasons why DL has outperformed the many machines learning 

are listed below: 

• Robustness, and Universal 

• Scalability  

• Generalization & reproducibility  

 

Deep learning is classified into three types namely supervised, unsupervised, 

and semi-supervised. Furthermore, reinforcement learning (RL), also often referred to 

as DRL (deep reinforcement learning), is another type of DL that is generally 

characterized as a partially supervised (and sometimes unsupervised) approach.  

Supervised is the most prominent type of learning. In this type of learning 

each input data to the network is labeled and tagged with the desired output value, 

allowing the system to determine how the output will be when the input is received. 

To function well and to get a reliable and accurate output, a supervised learning 

model sometimes necessitates the size of a large dataset from ground truth 

observations. These larger datasets which include a more historical example to learn 

from, allow the algorithms to include multiple cases and generate a model that can 
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manage them. The downside of supervised learning is it suffers from overstraining 

decision boundary when training sets lacks samples that belong in a class. 

In unsupervised learning the network is fed with datasets without any labels, 

the model discovers the inherent structure and extracts useful hidden features and 

information from datasets. It allows users to perform more complex tasks with 

minimal human intervention. However, detailed validation needs to be put by the data 

analyst to make it more ascertain the accurate information. The unsupervised learning 

model is generally deployed to perform a task such as clustering, association, and 

dimensionality reduction. Unsupervised learning's key drawbacks are its inability to 

give precise data sorting information and it is computationally complex.   

In semi-supervised learning, the input data to the network are semi-labeled 

datasets. One of the benefits of this method is that it reduces the amount of labeled 

data required. However, the disadvantage of this type of learning is it may produce 

inaccurate information or decisions due to the irrelevant input features contained in 

the training data. One of the most well-known applications of this type of learning is 

the text documents classifier (Alzubaidi et al., 2021). 

 

2.6 Convolutional Neural Network (CNN) 

A convolutional neural network (CNN) is the dominant and frequently used 

algorithm inspired by the combination of DL with image processing. It has resulted in 

various successes and advancements in the development of computer vision tasks, 

such as image classification, segmentation, feature extraction, and pattern recognition, 

to mention a few. The fundamental advantage of CNN over other neural networks is 

the ability to automatically detect important features without the need for human 

intervention (Gu et al., 2018).  

From its inception to its current state, the convolutional neural network has 

passed through stages of theoretical, experimental development, large-scale 

application, and in-depth research (Liu et al., 2021). Like a traditional neural network, 

the structure of CNN was inspired by neurons in human and animal brains. In 

particular, the complicated succession of cells forms the visual cortex of a cat’s brain 

(Hubel & Wiesel, 1962). They concluded through biological research that the 

multilayer receptive field is used to transmit visual information from the retina to the 
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brain. Based on the concept of receptive fields, Fukushima and Miyake (1982) 

presented a neurocognitive machine and it’s regarded as the first implementation of 

CNN.   

However, the development of CNN was not at an exponential rate and was in 

a dormant state until 2012 when Krizhevsky et al. (2012) introduced AlexNet. This 

was the first CNN architecture that brought success in image classification from 

ImageNet datasets. This brought a key steppingstone for the researcher to consider 

CNN as an un-droppable tool for computer vision applications. The state-of-art 

review of CNN and its future direction is presented in (Alzubaidi et al., 2021). The 

basic schematic architecture of CNN is shown in Figure 8 and its building blocks in 

Figure 9. 

 

 

Figure  8 Basic Architecture of CNN 

 

 

 

Figure  9 Basic Building Blocks of CNN 

 

Source: Goodfellow et al. (2016) 
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The basic block of CNN includes the input layer, the convolutional layer, and 

the output layer. The function of each block will be explained in the following 

section. The convolutional layer is the fundamental component of a CNN. 

Convolutional layers generally comprise many consecutive processes, such as 

convolution, nonlinearity activation, and pooling, as shown in Figure 9. CNNs can 

view increasingly greater areas of the picture by stacking convolutional layers, and 

extracting higher-order, more complicated information as the depth increases. 

 

2.6.1 Different Layers of CNN 

Input Layer  

The input layer contains all the CNN's input data. It usually represents the 

image's pixel matrix in a neural network for image processing. Depending on the 

types of images the number of channels will be either 3 (RGB) or 1(gray).  

 

Convolutional Layer 

The convolutional layer is the brain of the CNN network, consisting of 

multiple layers of neurons. These neurons are the filters, also known as convolutional 

kernels, responsible for learning or extracting the many local information during the 

training phase. It conducts the dot operation by convolving the kernels with the input 

picture to produce the output feature map. 

Convolution is a mathematical process that determines the degree of overlay 

between two functions of a real-valued input. Let ( )g t  and ( )f t be the two functions 

convolve. If ( )s t  is the output generated by the convolution of two functions, then 

mathematically it can be defined as the integral of the product of the two functions 

after one is shifted by factor 𝜏 over the other function (Bracewell & Bracewell, 1986). 

It can be expressed as: 

 

( ) ( )( ) ( ) ( )s t f g t f g t d  =  = −                                             (2.24) 
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However, the commutative property of convolution (Damelin & Miller Jr, 

2012), on the other hand, is not retained in CNN, and the convolution process has a 

new meaning. The first argument ( )f t to the convolution is frequently referred to as 

the input, the second argument ( )g t  as the kernel/ filter, and the output ( )s t  as the 

feature map in CNN nomenclature.  

In CNN, convolution is more of a cross-correlation operation (Bracewell & 

Bracewell, 1986), as illustrated in Equation (2.25), which is a similarity measure of 

two series as a function of one’s displacement relative to the other, also known as a 

sliding dot product or sliding inner-product. Cross-correlation is implemented in a lot 

of machine learning libraries, including deep learning libraries, but it is called 

convolution. 

( ) ( )( )
 

 

( ) ( )s t f g t f t g




 
= 

=−

=  = +                                         (2.25) 

 

Figure 10 shows an illustration of 2D convolution. Let I  and K  be the two 

functions namely the input image and the kernel and I K  is the convolution output. 

The input gray image I having 6 6  dimensions is convolved with a kernel K  with 

dimensions 3 3  resulting in an output feature map of 4 4 dimensions. The green 

area is called the local receptive field. A dot operation is performed between the I  

and K  by sliding or shifting the kernel by the stride of 1 (the   value) from left to 

right and top to bottom and generates an output feature map. Thus, the 2D 

convolution may be expanded to N-D convolution based on the dimensions of both 

the input and the kernel. where N is the kernel's spatial dimensions.  

As depicted in Figures 11 (a) and (b), CNN employs several kernels in each 

layer to learn the individual traits and features of that layer, such as aligned edges, 

corners, or blobs. Furthermore, the most fundamental distinction between CNN 

convolution filters (kernels) and kernels employed in basic computer vision tasks is 

how kernel weights are changed during network optimization. In basic computer 

vision tasks, the kernel weights are hand-crafted, but in CNN, the weights are 

automatically updated by optimizing the entire network on training data using the 

objective function as a guide (Chen, 2019). 
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Figure  10 2D Convolution Operation 

 

 

(a) 

 

(b) 

Figure  11 Multiple Kernels used in Each Layer to Extract Different Local 

Features 

 

Source: Wei et al. (2017) 
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Some of the challenges with convolution are  

• Loss of corner information: One disadvantage is that pixels from the image's 

corners are only used in a few outputs, but pixels from the central area 

contribute more, resulting in data loss from the corners of our original image. 

• Shrinking output: One of the most difficult aspects of convolving is that if we 

conduct convolutional operations in numerous layers, the image size will 

continue to decrease. If the deep neural network has 100 hidden layers and we 

conduct convolution operations on each layer, the image size will drop after 

each convolutional layer resulting in the shrinking output. 

 

To alleviate the aforementioned problem of convolution, padding was used. 

Padding is the process of adding additional pixels to an input image. It makes the 

output picture the same size as the original image. Padding is classified into two 

types: valid padding and the same padding. When the same padding is applied, the 

output image has the same size as the input image, whereas valid padding is the same 

as no padding. 

Suppose if 𝐾 is the filter size, 𝑆 is the stride, 𝐼 is the picture's size, and 𝑃 is the 

amount of padding we need, then the output image size can find as in Figure 12 and 

mathematically can be calculated using the Equation (2.26).  

 

 

Figure  12 Padding Operation 



 27 

 

2
Output size 1

I K P

S

− +
= +                                                       (2.26) 

 

We can see that by setting zero padding to 1(when the condition is set to the 

same), we were able to keep the original image's size. When 0P =  i.e., when padding 

is valid, signifies no padding at. 

Pooling Layer: The primary function of the pooling layer is to provide 

translational invariance by subsampling the feature maps. This method reduces the 

size of the feature map by maintaining the important characteristic information at each 

stage of the pooling layer. Even though the overall number of parameters in a network 

decrease after every convolution, we still need to minimize the number of parameters 

and computation time in the network by further condensing the spatial size of the 

representation. This is done by the pooling layer, which speeds up the calculation 

while also highlighting some of the key characteristics of the input image.  

The filter size and stride are the two main hyperparameters that determine the 

step of downsizing. The value of stride and kernel size are assigned similarly to the 

convolution operation. Some of the pooling strategies are max pooling, tree pooling, 

gated pooling, average pooling, global average pooling (GAP) min pooling, and 

global max pooling. The max, min, and GAP pooling methods are the most well-

known and widely used pooling algorithms. Figure 13 shows the example for max 

pooling. 

 

 

Figure  13 Max Pooling Operation 
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Activation Function: It decides whether or not a neuron activates depending 

on the weighted sum of input. It also maps the input and output. In other words, an 

activation function acts as a gate, ensuring that an incoming value is greater than a 

threshold value or not. It allows the network to learn powerful operations by 

providing non-linearities to the network and should be able to distinguish, which is a 

crucial characteristic because it allows the network to be trained using error back-

propagation. On the other hand, if there is no activations function then the network 

becomes a linear operation and can no longer perform a complex task such as image 

segmentation. Some of the extensively adopted activation functions are explained in 

the  succeeding paragraphs:  

 

A. Sigmoid:  Its non-linearity is its major benefit over other steps and linear 

functions. The function has an 𝑆 (Figure 14) form and ranges from 0 to 1. In 

certain publications, it is also known as the logistic or squashing function. The 

sigmoid function is utilized for probability-based output in the DNN's output 

layers. Sharp damp gradients during backpropagation, gradient saturation, 

sluggish convergence, and non-zero-centered output are some of its key 

shortcomings, allowing gradient updates to propagate in multiple directions 

and its function is given by Equation (2.27).  

 

1
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Figure  14 Sigmoid Activation Function 
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B. Tanh Function: Unlike the sigmoid function, it is a zero-centered function, 

and its value lies between -1 to 1 (Figure 15). Because this function is zero-

centered, it is easier to simulate inputs with significantly negative, neutral, or 

positive values. They are predominantly used in RNN for speech recognition 

and natural language processing and their function is given by Equation 

(2.28). 

 

( )
x x

x x

e e
f x

e e

−

−

−
=

+
                                                      (2.28) 

 

Figure  15 Tanh Function 

 

C. Rectifier Liner Function (ReLu): It is the most extensively used activation 

function. When compared to the Sigmoid and Tanh, it outperforms them in 

terms of performance and generalization. ReLU (Figure 16) provides faster 

calculation because it does not contain exponentials or divisions terms, thus 

reducing the computation time. However, it also easily gets overfit sometimes 

referred to as ‘drying ReLu’ which is one of the key drawbacks. These 

overfitting issues are reduced by using techniques such as dropouts. Its 

function is given by Equation (2.29): Some of the variances of ReLu are: 

• Leaky ReLU 

• Parametric ReLu 

• Randomized ReLU  

 



 30 

( ) ( )max 0,f x x=                                                          (2.29) 

 

 
 

Figure  16 Rectifier Linear Function 

 

• Leaky ReLu: to solve the problem of the drying ReLu, leaky ReLU 

introduces (as shown in Figure 17) the extra term “𝑚”, is which is called a 

leaky factor, and its value is very small such as 0.01. This function is  

mathematically given by Equation (2.30):  
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Figure  17 Leaky ReLu Function 

 

 

Fully Connected Layer: It is the last layer of CNN that connects the 

preceding layers of neurons with the current layer. The last convolutional layer served 

as an input to the FC layer and takes a shape form of a vector, which is created by 

flattening the feature maps. 
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Loss Function / Cost Function: The lost function calculates and predicts the 

error between the predicted output and the labeled or ground truth value. The disparity 

between the actual and expected output is revealed by this inaccuracy. The CNN 

learning procedure will then be used to optimize it. Some of the commonly used loss 

functions are discussed as follows:  

• Euclidean Loss Function: It is sometimes also referred to as mean square 

error and is widely used in regression problems. The estimated Euclidean loss 

is expressed mathematically as in Equation (2.31). where 𝑦,  𝑦 ̂, 𝑁 are ground 

truth, predicted value, and numbers of sample data respectively. 
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• Hinge Loss Function: This function is frequently used to solve problems 

involving binary categorization. This issue is related to maximum-margin 

classification; it is particularly relevant for SVMs. Hinge Loss function can be 

calculated by given Equation (2.32) where 𝑚 is generally set to 1. 
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• Softmax or Cross-Entropy Loss: It is also referred to as a log loss function 

and is used frequently to evaluate the performance of CNN. Furthermore, it is 

frequently used to replace the square error loss function in multi-class 

classification tasks. The probability of the output class is given by Equation 

(2.33): where  𝑁 denotes the total number of neurons in the output layer and 

𝑒𝑎𝑖 is the non-normalized output from the preceding layers. 
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  Equation (2.34), calculates the final cross-entropy loss of the model. 

 

2.6.2 Regularization to CNN  

CNN performs well on the training data but when the network is fed in with 

unseen or test data the model is unable to predict the expected output, hence this 

phenomenon is referred to as an overfitting problem. Some of the techniques that are 

used to mitigate such issues are discussed below:  

a) Batch Normalization: The primary notion behind batch normalizing is 

motivated by the conventional normalization for input training data. It solves 

the internal covariate shift problem by normalizing the activations of CNN in 

each intermediate layer. Particularly, during learning, a Z-score normalization 

is performed on the output of the preceding layer by subtracting the batch 

mean and dividing it by the batch standard deviation. As a result of its 

blocking, etc. on anomalous activations, it permits every layer of a network to 

train a little more autonomously than other levels and allows for significantly 

greater learning rates. Batch normalization is also considered a type of 

regularization since it introduces some noise in each layer. When used in 

conjunction with dropout, extra care should be taken to prevent losing 

excessively relevant information during training. 

b) Dropouts: This strategy was pioneered by (Srivastava et al., 2014). This is a 

common method of generalization. During each training session, neurons are 

dropped at random. As a consequence, the feature selection resources are 

distributed equally across the entire network of neurons, the system is made to 

study many unique properties throughout backpropagation and forward 

propagation, and the discarded neuron is left unused. Some of the applications 

of dropouts in segmentation and classification may be found in (Huang et al., 

2017) and (Jégou et al., 2017). 
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2.7 Related Work on Medical Image Segmentation  

For decades, technological innovation has aided mankind, and it continues to 

improve daily. Machine learning algorithms are capable of learning from data without 

the need for direct human intervention. The learning increases naturally as a result of 

the encounters and leads to improved decisions. Emulation of bodily sensory reactions 

such as hearing, speech, and vision leads to the development of various algorithms 

(Khan et al., 2019). The computer vision field is one of the most important 

applications of machine learning. Image segmentation, image categorization, object 

identification, and object detection are only a few of its applications.  

Image segmentation is a well-known subject in computer vision research and 

has recently become a hot topic in the field of image comprehension. Image 

segmentation is the process of dividing an image into numerous disconnected regions 

based on characteristics such as grayscale, color, spatial texture, and geometric forms. 

As a result, these characteristic exhibits consistency or resemblance in the same 

region, but a distinct contrast between locations. Medical image segmentation is 

considered a semantic segmentation. At the moment, there are increasing numbers of 

image segmentation research disciplines, such as satellite image segmentation, 

medical image segmentation, and autonomous driving (Ess et al., 2009; Geiger et al., 

2012). The image segmentation research is developing at a faster rate resulting in 

better and more accurate results. However, there is no universal segmentation 

algorithm that is applicable for all images for diverse segmentation scenarios. Hence, 

in this section, some of the recent work on medical image segmentation using a 

convolutional neural network will be reviewed.  

 

2.7.1 CNN Based Segmentation of Median Nerve in CTS 

Large image datasets like ImageNet, and high-performance computing 

platforms, such as GPUs, have made it possible to train incredibly deep CNNs in 

recent years. CNN-based methods have recently become more popular, and their 

effectiveness in segmenting the median nerve has been proven. The majority of the 

techniques developed thus far are based on CNNs, with a few minor deviations. The 

techniques might differ in terms of dimensions of the input, the kernel size, model 

depth, and connection between the layers. Although other CNN network designs have 
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been used for image segmentation, such as FCN-8s (Long et al., 2015), SegNet 

(Badrinarayanan et al., 2017), Mask R-CNN (He et al., 2017), DeepLab (Chen et al., 

2017), DeepLb1 (Chen et al., 2014), and GAN (Luc et al., 2016) and DeepMedic 

(Kamnitsas et al., 2017), most medical image segmentation algorithms, including 

median nerve segmentation, use a U-Net (Ronneberger et al., 2015) architecture. U-

Net transfers contextual information to upsampling layers by concatenating lower 

layer output to higher layers, resulting in more feature channels. 

 Kakade and Dumbali (2018) studied the identification of brachial plexus 

nerve in ultrasound imaging using the U-Net design. They preprocessed all images in 

their article using linear Gabor binary patterns, which were then fed into the U-Net for 

segmentation. Thus, they obtained an average Dice measure of 0.669, indicating that 

using U-Net to directly segment the median nerve is ineffective.  

According to Hafiane et al. (2017), Conventional CNNs were not robust 

enough to recognize nerve regions, therefore the researchers used a CNN with spatial 

and temporal consistency to enhance localization. The CNN model consists of a 

pooling layer, convolutional layer, and fully connected layers which identify the area 

of interest in the nerve and utilize the PGVF technique to designate the median 

nerve’s areas. They obtained a Dice and Hausdorff metrics average of 0.85 and 10.72, 

respectively. MaskTrack (Chen et al., 2017; Perazzi et al., 2017) is a recursive neural 

network architecture that can successfully segment items in a sequence image and 

appropriately find areas of the median nerve. MaskTrack coarsens prior predictions in 

each step to maintain approximate position and shape information before combining 

the current picture with former predictions as an input image for segmenting targets.  

Horng et al. (2020) proposed a CNN model for the localization and 

segmentation of median nerve called DeepNerve. Four deep learning models were 

evaluated based on the original U-Net: lightweight U-Net, U-Net + MaskTrack, 

ConvLSTM + U-Net + Mask- Track, and DeepNerve.To effectively locate and 

segment the median nerve, the design is based on the U-Net model and incorporates 

MaskTrack and convolutional long-term short-term memory (ConvLSTM) and it was 

discovered that it produced the best median nerve segmentation among the four 

models. The proposed model performed well in the experiments, with Dice 
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measurement, accuracy, recall, and F-score values of 0.8975, 0.8912, 0.9119, and 

0.9015, respectively.  

Festen et al. (2021) deployed a U-Net model for fully automated segmentation 

of median nerve in CT. This method achieved a dice coefficient of 0.88 for finger 

flexion. Yang et al. (2021) utilized the MaskTrack technique to improve the 

segmented findings after using a modified DeepLab3+ CNN method to segment the 

three major components of the carpal tunnel from MRI images and obtained a 0.805 

ADSC for the median nerve. 



CHAPTER III 

 

METHODOLOGY 

 

3.1 Introduction  

In Chapter III, the detailed structure of the study approach adopted in this 

research study is presented. The chapter is divided into five sections. The second and 

third sections of the chapter go through the data acquisition and pre-processing 

strategy in detail. It describes how datasets are gathered for research purposes and 

how they are processed for analysis. The data pre-processing technique includes 

image resizing/ROI selection, image denoising, and image enhancement. Sections 

four and five of the chapter cover the two methods used to segment the median nerve 

in ultrasound scans. Both methods use the same data acquisition and pre-processing 

stages. In this work, the signal processing method, and the artificial intelligence (AI) 

method were used to conduct median nerve segmentation in ultrasonography. 

 

3.2 Data Acquisition (Datasets) 

All ultrasound scans were obtained as a secondary image from Fort Somdej 

Phra Naresuan Maharaj Hospital Phitsanulok, Thailand. The data gathering procedure 

did not include any patient or individual physical trials. All the ultrasound images of 

hand wrists collected for this study have been tested in past years and kept in the 

ultrasound machine’s database. The images of the hand wrist were obtained from the 

ultrasound machine’s database between the years 2020 and mid of 2021.  

Furthermore, because the study is limited to segmenting the distal median 

nerve type in the hand and wrist, only ultrasound images of this kind are obtained. 

The secondary data (stored ultrasound images) does not contain any of the patient’s 

personal or medical information, and those that did were kept protected, confidential, 

and secret. A total of 70 ultrasound images of the distal type of the hand wrist 

ultrasound were collected. Each image slice is 864 × 648 pixels in size in JPEG (Joint 

Photographic Experts Group) format.  
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The ground truth is obtained by manually annotating the median nerve's 

boundary on ultrasound images with GIMPS 2.10.28 (GNU Image Manipulation 

Program), a free and open-source raster graphic program, which is marked or 

annotated by an expert sonographer. 

All the examination was examined using SONIMAGE HS1, Konica Minolta, a 

portable ultrasound machine. The experiments were carried out by a qualified expert 

(doctor) with 11 years of experience in medicine and a specialization in rehabilitation 

medicine who works in the rehabilitation clinic/department at Fort Somdej Phra 

Naresuan Maharaj Hospital in Phitsanulok, Thailand.  

Before collecting data, authorization was obtained from the hospital’s higher 

management authorities for access to data for research purposes and was informed of 

the study’s objectives by completing a consent form by the researcher. The study was 

reviewed and approved by the institutional review board (IRB) of the Naresuan 

University, Phitsanulok, Thailand (IRB No. P3-0192/2564 and COA No. 007/2022). 

3.3 Data Pre-processing  

The acquisition of medical images differs from the acquisition of natural 

images. The technical characteristics utilized to create a medical image in each 

modality [ultrasound, CT, MRI] are directly associated with distinct technical 

parameters in each modality (Masoudi et al., 2021). The information gathered 

(datasets) is frequently disorganized and comes from a variety of sources. There are 

generally small differences in image quality, resolution, and field of view when data 

are collected from the various patients. They must be cleaned before being further 

processed. Pre-processing is a commonly used step to minimize the complexity and 

clean the input data. It not only cleans the data but also improves the accuracy of the 

applied algorithm (Masoudi et al., 2021). Table 1 presents the effect of pre-processing 

in increasing the accuracy of the deep learning model in image classification and 

segmentation problems. It is evident from the table, that the accuracy of the model 

trained with pre-processed data outperformed the model trained without pre-

processing for medical image classification and segmentation. 

 Pre-processing plays a critical role when dealing with noisy, inconsistent, or 

incomplete data. The purpose of this phase is to prepare input data for further analysis 
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i.e., transform the raw data into machine-understandable formats, making it easier to 

interpret and process computationally.  

Figure 18 shows the overall data pre-processing steps that are adopted in this 

study. The pre-processing steps include image resizing or region of interest selection 

(ROI), image contrast enhancement, and image denoising. The details of each of these 

techniques are discussed in the following sub-section. All of these techniques are 

implemented using Python 3.8 on OpenCV 4.5.5 (Open-Source Computer Vision 

Library) as the main library function. The ground truth is achieved by conducting 

manual area tracing on the median nerve using GIMPS 2.10.28 (GNU Image 

Manipulation Program) a free and open-source raster graphic tool on the manually 

marked ultrasound image by the expert sonographer. When the tracing is completed, 

the selected region is highlighted and changed to a binary image (foreground as white 

and background as black). The annotation of data (ground truth) is only applicable to 

the AI method. 

 

 

Figure  18 Data Pre-processing Steps 
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Table  1 Effects of Pre-processing Technique on Medical Image Segmentation 

and Classification Task in Terms of Accuracy 

 

 

Source: Table from (Masoudi et al., 2021) 

3.3.1 ROI Selection and Resizing  

This process rescales the input data before feeding it into the learning system. 

It also includes the selection of ROI to reduce the complexity and unrequired area. A 

Region of Interest (ROI) in medical imaging is a segment of an image that provides 

critical diagnostic information. Since ROI is utilized as a representative of the image, 

all subsequent calculations and diagnoses are dependent on it, hence choosing a 

suitable image region as ROI is critical. Furthermore, using an ROI to extract features 

from a subset of an image rather than the entire image will minimize the computing 

time required. 

A square ROI size of 432 ×432 pixels from the center of the 864 × 648 pixels 

original image was chosen as the center of the image is the most credible and provides 

an optimal spot and also avoids any distorting effects in ultrasound wave patterns as 

shown in Figure 19. The information on the sides of ultrasound images is not very 

dependable due to the scattering of ultrasound echoes and associated 

constructive/destructive interference. From Figure 19, it is seen that from the original 

input image with a size of 864 × 648 pixels, there is an area where most of the pixels 

are in black (lower portion of the image) while in some area the values of the pixels 

Task 
Image 

Type 
Criteria  

With pre-

processing (%) 

No pre-

processing  

Classification MRI Accuracy  73.3 68.74 

 CT Accuracy  82.28 77.72 

Segmentation MRI 
Mean Abs. 

Err. 
2.73 47.64 

  Dice 98.64 81.74 

 CT 
Mean Abs. 

Err. 
3.68 19.99 

    Dice 98.25 95.25 
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seems to be randomly combined pixels ranging between black and white (upper 

portion of the image). From Information Theory point of view, the upper portion of 

the image contains more information than the lower portion. Thus, in the ROI 

selection process, the upper part of the image should be selected, and this is shown in 

Figure 19 (b). Thus, using an ROI to extract features from a subset of an image rather 

than the entire image will minimize the computing time and power required. 

 

 

Figure  19 Image Resizing and Selection of ROI  

 

3.3.2 Denoising of Ultrasound Image  

Noise is an undesirable signal that occurs during the transmission process or 

the data acquisition process. During the data acquisitions from the patient due to the 

patient movements, scanner failure, technical expert of the sonographer, inadequate 

resolution, and no proper contact or air gap between the scanner prob and patient 

leads to disruption in the quality of collected data and potentially the data are 

associated with noise which makes the data interpretation difficult. Some of the 

common types of noise are Gaussian noise, salt and paper noise, Poisson noise, and 

speckle noise (Bharati et al., 2021). In the medical image in particular ultrasound 

images, speckle noise is the predominant noise that deteriorates the quality of the 

image (Michailovich & Tannenbaum, 2006). Speckle noise is a granular noise that 

affects and degrades the image quality resulting in the degradation of fine details of 

edges and other important textures hence adding complication and harder for the 

physician to distinguish between the fault and normal conditions.  

432

432
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Some of the traditional filtering methods that are widely used for the removal 

of speckle-noise are discussed in (Gu et al., 2014; Gupta et al., 2018; Michailovich & 

Tannenbaum, 2006; Nadeem et al., 2019). Lately, some deep learning techniques are 

also studied for denoising the speckle noise (Ilesanmi & Ilesanmi, 2021; Karaoğlu et 

al., 2021; Kaur et al., 2018; Shen et al., 2017; Tian et al., 2018). In this work, a 

bilateral filter is adopted for filtering and smoothing the ultrasound image. 

A bilateral filter is a non-linear, edge-preserving filter that smooths the noise. 

It replaces the intensity of each pixel with a weighted average of intensity values from 

nearby pixels. This weight can be based on a Gaussian distribution. Crucially, the 

weights depend not only on the Euclidean distance of pixels but also on the 

radiometric differences (e.g., range differences, such as color intensity, depth 

distance, etc.). A bilateral filter not only removes the noise but also preserves sharp 

edges. For medical images, edges play an important role in the identification of 

diseases from other associate structures.  

The bilateral filter is firstly presented by Tomasi and Manduchi (1998). The 

concept of the bilateral filter was also presented in Smith and Brady (1997) as the 

SUSAN filter and (Yaroslavsky, 1985) as the neighborhood filter. Mathematically the 

bilateral filter is defined by  

  ( ) ( ) ( )
1

|| ( ) ( ) ||
i

i r i s iP
x SP

BF I I x G I x I x G x x
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= − −                               (3.1) 

Where 𝑊𝑝 is a normalization factor 
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Where  
P

BF I is the filtered image, ( )iI x  is the original ultrasound input 

image, x  is the current pixel coordinate of the image to be filtered, s defines the 

window cantered for x , sG  and rG  are the kernel range for smoothing images in 

intensities and spatial kernel for smoothing different coordinates.   

The input median nerve ultrasound image was filtered using kernels value 

( ) ( ), , 9,18,85s rS G G → as the optimal values. The value of  sG  and rG lower than 18 

https://en.wikipedia.org/wiki/Non-linear
https://en.wikipedia.org/wiki/Edge-preserving_smoothing
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have a fewer effect and greater than 85 make the image smoother and more blurred in 

some edges of the median nerve structure. Furthermore, the kernel value or window S

less than 9 makes less impact on noise removal. 

Figure 20 shows the comparison of different filters in removing the spackle 

noise from the ultrasound image. Figures 20 (a) and (b) represent the original image 

and the corresponding threshold image. The threshold image (Figure 20 (b)) shows 

that along with the major median nerve structure, there are tiny segments of noise 

speckle that surround them, making the analysis difficult. To minimize noise, 

Gaussian (Figure 20 (c)) and Median (Figure 20 (d)) filters are used. Although this 

filter reduces noise by a certain proportion, it also fades the median nerve's edges, 

which is crucial for analysis. In comparison to other filters such as the Gaussian filter 

(Figure 20 (c)) and the Median filter (Figure 20 (d)), the bilateral filter not only 

reduces noise but also keeps and preserves the fine borders of the median nerve 

structure (Figure 20 (e)). This demonstrates the advantage of bilateral in reducing 

speckle-noise while preserving fine edges as compared to other filters (Gaussian & 

median). 

 

 

Figure  20 Image Filtering (a) Original image (b) Threshold Input Image (c) 

Gaussian Filter (d) Median Filter (e) Bilateral Filter 
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3.3.3 Image Enhancement 

Contrast enhancement is a crucial part of image processing for both human 

and machine vision. It is commonly used in medical image processing, as well as 

speech recognition, texture synthesis, and a variety of video processing applications 

as a pre-processing step. Due to the intrinsic properties of medical images, such as 

poor contrast, speckle noise, signal dropouts, and complicated anatomical structures, 

medical image analysis is a particularly tough challenge to solve. If the input image to 

the learning system is of low quality and contrast, further processing operations such 

as image segmentation, feature extraction, and image classification will fail.  As a 

result, before further processing and analysis, it is critical to improve the contrast of 

such images.  

The performance of pre-processing procedures such as image enhancement 

will have a direct influence on any subsequent processing. As a result, high-

performance image-enhancing algorithms can improve total system performance 

dramatically. Histogram equalization (HE) is a frequently used technique for 

increasing visual contrast. Its core concept is to map gray levels using the probability 

distribution of the input gray levels. Suppose an input image ( ),g x y  composed of 

discrete gray levels in the dynamic range of  0, 1L − , the transformation mapping 

( )kC r  of HE is given by Equation (3.3): 

( ) ( )
0 0

k k
i

k k i

i i

n
s C r P r

n= =

= = =                                               (3.3) 

where 0 1ks   and 0,1,2,..., 1k L= − . in represents the number of pixels 

having a gray level ir , n  is the total number of pixels in the input image, and ( )iP r  

represents the Probability Density Function (PDF) of the input gray level ir . Based on 

the PDF, the Cumulative Density Function (CDF) is defined as ( )kC r .  

The mapping in (Equation (3.3)) is called Global Histogram Equalization 

(GHE) or Histogram Linearization. This approach uses the image histogram to spread 

out the gray levels in an image and reassigns the brightness value of pixels. The GHE 

approach works best when the original image has little contrast. GHE remaps the gray 

levels in this situation so that contrast stretching is limited in some dominating grey 
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levels with larger image histogram components, while significant contrast loss occurs 

in others (i.e., it gives to either too dark or too bright regions in the image). If the 

image has certain gray levels with high frequencies, it will dominate the low-

frequency gray levels. 

In this work, we have adopted the contrast limited adaptive histogram 

(CLAHE) to perform the contrast enhancement of ultrasound images.  The contrast 

limited adaptive histogram (CLAHE) method is another technique to enhance the 

contrast of the image which overcomes the disadvantage of GHE. It is a hybrid of HE 

and adaptive histogram equalization, in which the histogram is adaptively equalized in 

blocks with a predetermined clip limit. CLAHE does not function on the entire image; 

instead, it operates on tiny areas of the image known as tiles. It works the same way 

on each tile as regular Histogram Equalization (HE) (Ahmed & Nordin, 2011; Faten 

A. Dawood, December-2018). The ultrasound input image is clipped with a clip limit 

of 8 and a tile gride size of (9×9). The tile grides size greater than (9×9) produces 

more imbalance contrast in an image i.e., it makes the image either too white or dark.  

Figure 21 shows the effects of GHE and CLAHE on image enhancement. 

From Figure 21 (b) it is observed that the GHE equalization stretches the contrast of 

an image to either too dark or too bright region. Figure 21 (c) depicts the effects of 

CLACHE equalization in which the contrast of the image is stretched adaptively. 

Figure 22 shows the histogram of the original and the CLAHE equalized images. As 

shown in the diagram the histogram of the original image (Figure 22(a)) is more 

skewed towards 0 to 155 compared to the CLAHE equalized image (Figure 22(b)) 

whose histogram intensity is almost uniformly distributed across 0 to 255. 

 

 

Figure  21 (a) Original Image (b) Global Histogram Equalization (c) CLAHE 

Equalization 
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Figure  22 (a) Histogram of Original Image (b) Histogram of CLAHE Equalized 

Image 

 

3.4 Method 1: Signal Processing Method  

This section discusses the segmentation framework to detect the median nerve 

from the ultrasound images using the signal processing techniques framework. 

 

 

 

Figure  23 System Block Diagram of Signal Processing Method 
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Figure 23 shows the overall methodology adopted for the signal processing 

method. Overall, there are two stages involved in the segmentation of median nerve 

on ultrasound images namely the pre-processing and the feature extraction part. The 

pre-processing stage includes the ROI selection, image denoising, image contrast 

enhancement, and thresholding. The details of these techniques are discussed in 

section 3.3. The feature extraction stage includes edge detection, morphology 

operation, and contouring.  

After the pre-processing stage, the canny operator is utilized as the edge 

detection method to determine the structure of the median nerve in an ultrasound 

image to divide the region. This edge identification approach helps to simplify image 

analysis by dramatically lowering the quantity of data that must be processed while 

keeping important structural information about median nerve borders.  

Once the edge has been detected, a mathematical morphological method called 

dilation is used to extend the edge such that it encompasses the anatomical region of 

interest. To ensure that the growth process does not extend beyond the interest region, 

an appropriate dilation value is computed by repetitive iteration. Any undesired 

growth regions are removed as a precautionary approach. As a result, dilation will 

reunite the disjointed dotted edge lines, particularly those that make up the median 

area shape. The erosion will then eliminate the unnecessary edge line that connects 

the specified region.  

After the median nerve region's edge has been produced as a closed rounded 

line, the close operation is performed to close the rounded boundary. The region area 

is filled to create a region of interest (ROI). The ROI is significant since it will be 

used as the image mask for the other detection task shortly after. The removal 

operation is performed to separate each ROI from its adjacent region, which may 

contain other undesirable areas, particularly those tiny portions next to the median 

nerve area, resulting in a single object (shown in Figure 24). The convex hull is used 

to define the contour to join some small disjoints in the segmented median nerve 

boundaries.  
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Figure  24 ROI Mask after Morphology Operation 

 

Finally, a Jaccard similarity measurement test is performed to see the 

similarity between the segmented median nerve and the ground truth. Furthermore, 

the cross-sectional area (CSA) of the segmented median nerve is calculated to check 

the presence of CTS or not and compared with the value calculated by the expert 

sonographer.  

 

3.5 Method 2: Artificial Intelligence (AI) Method  

Figure 25 portrays the median nerve segmentation framework adopted in this 

study. The framework is divided into two phases: the training phase and the median 

nerve segmentation phase.  Three distinct U-Net implementations were trained during 

the training phase. All three implementations are based on the original four-layer U-

Net. The original input image from the median nerve datasets is fed to the base U-Net, 

which is responsible for the extraction of median nerve features and performing 

segmentation. 
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(a) 

 

(b) 

Figure  25 Block Diagram for AI Method 

 

In approach I, the input image is fed directly to the segmentation model 

(represented by the green arrow in Figure 25 (a)). No data modification was made to 

the input image. The image is resized into 432×432 pixels. However, in approaches II 

and III the input image is not fed directly into the segmentation model. To make the 

segmentation work easier, it is transmitted via the brown box (Figure 25 (a)).  

In approach II the input image is pre-processed before feeding into the 

segmentation model (Figure 25 (b)). Pre-processing is applied to remove the noise 

associated with the input image and enhance the contrast of the image thus 
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minimizing the complexity of the segmentation process. The detail of data pre-

processing is explained in section 3.3.  

In approach III, in addition to pre-processing the input test data is augmented 

(the detail of the data augmentation will be discussed in the sub-section 3.5.1) before 

being fed into the segmentation model to generate enough training data as shown in 

Figure 25 (b). Furthermore, as a slight change to the base U-Net, a batch 

normalization layer (BN) was introduced at the end of each convolutional layer for 

quicker convergence and to increase the training accuracy. 

In the median nerve segmentation phase, the test data are experimented on in 

the trained model and the performance of each model is evaluated. It outputs the 

binary image (0&1) as the segmented image. The white (1) pixel represents the 

median nerve structure and the black (0) pixel denotes the surrounding structure.  

 

3.5.1 Data Augmentation  

Data augmentation is the process of adding diversification and variance to the 

existing data by scaling or rotation or applying other transformations. This allows the 

CNN to expose to a wide variation of data so that network will be able to recognize 

data of any shape and form during the testing phase. Hence, letting the network learn 

invariance to such deformations without having to look at the annotated image corpus 

for these modifications.  

This technique also increases the size of datasets, particularly for medical 

images. It is exceedingly difficult to develop large medical image databases because 

of the rarity of diseases, patient privacy, the requirement for medical personnel to 

label images, and the expense and human labor necessary to undertake medical 

imaging procedures. Hence, augmentation assists in artificially incorporating the 

realistic deformations caused by the variation in tissue, thus enhancing medical data. 

In this study, we adopted geometric transformations such as rotation, shearing, 

flipping, zooming, and translation to perform the data augmentation.  

Figure 26 depicts one sample of the augmented image after different 

geometrical transformations have been applied. While executing the augmentation, 

careful observation was made to ensure that the augmented image resembled the true 
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realistic deformations. The first row represents the input image, and the second row 

represents the corresponding mask in the input image. 

Figure 26 (a) denotes one of the inputs of original sample images. Figure 26 

(b) is the horizontally filliped image. We applied horizontal flipping since vertical 

flipping does not give a practical representation. 

 Figure 26 (c) represents the zoomed augmented image. The input image is 

zoomed in with the zooming factor of 0.04. When the zooming factor is larger than 

0.04, in some input datasets, a piece of the median nerve structure is destroyed or 

truncated. Hence, an optimum value of 0.04 is chosen as the zooming factor.  

 Figure 26 (d) is the rotated clockwise and anticlockwise image. The rotation 

augmentation is performed by rotating the ultrasound image clockwise or 

anticlockwise by restricting the angle   between 20 20−   degrees. The input 

image was rotated every one-degree angle clockwise and anticlockwise. The 

boundary of space generated on the image's boundaries because of the rotation is 

filled with mode "constant," i.e., with binary pixel value 0. When the image is rotated 

beyond 20 20−    degrees, it no longer resembles the particle nature of the image.  

Figure 26 (e) represents the sheared augmented image. The image is sheared 

left and right by shearing factors 0.2,0.09, 0.25,and 0.20− − . The empty area created 

on the image's edges because of sharing is filled with mode "constant," i.e., the binary 

pixel value 0.  

Figure 26 (f) represents the horizontal flipped-translated image. The image is 

first horizontal flipped and then the combination of left and up translation is applied. 

Lastly, Figure 26 (h) portrays the translated image. The translation 

augmentation shifts the image up, down, left, or right. The image is translated left, 

right up, and down by applying translation matrix    1,0, 25 , 0,1, 50 − −  ,

   1,0,5 , 0,1,150   ,    1,0,10 , 0,1,80   , and    1,0, 50 , 0,1, 20 − −   respectively. The 

translation matrix value is carefully chosen so that it does not over-translate the 

image. Similarly, the empty area created on the image's edges because of translation is 

filled with mode "constant," i.e., binary pixel value 0. Similarly, the mask of each 

corresponding image is also augmented with the same augmentation technique and 

augmentation factor. 
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Thus, by employing these transformations, the datasets are multiplied by 56, 

resulting in 4200 number images. It not only enhances the data but also artificially 

added a wide range of different variations of images in datasets.  

 

 

 

Figure  26 Augmented Ultrasound Images 

  

3.5.2 Model Selection for Segmentation 

In this study, we adopted the U-Net (Ronneberger et al., 2015) model, a 

convolutional neural network (CNN) architecture to perform the median nerve 

segmentation. The U-Net network is made up of the encoding path, decoding path, 

and bottleneck connection which connect the encoding and decoding path. Each path 

offers four levels of resolution. 

 

 

Figure  27 Network Work Architecture of U-Net 

 

Source: Image adapted from Ronneberger et al. (2015). 
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Figure  28 Input Image to Model and Expected Output Image 

 

Architecture  

Figure 27 shows the U-Net architecture implemented to perform the median 

nerve segmentation. The model is fed with an RGB image of size 3×432×432 pixels 

and outputs a black and white image of size 1×432×432 pixels (Figure 28). The white 

pixel represents the segmented median nerve, and the black pixel denotes the non-

median nerve structure.   

The 11 layers at the left part of the U-Net represent the encoding path. The 

path is divided into four blocks. Each block consists of two repeated convolution 

layers followed by a max-pooling layer. Each repeated convolution layer uses a 3×3 

kernel filter followed by a ReLu activation layer. The ReLu activation was used as it 

can train the model significantly quicker while also optimizing the weights compared 

to other activation functions (details of different activation functions in section 2.6.1 

of Chapter II). To reduce dimensionally and the risk of information loss during the 

downsampling process, we employed a maximum pooling layer with a 2×2 kernel and 

stride of 2. In the encoding path, the spatial information is reduced from 432×432 to 

27×27, while the feature information increased from 64 to 1024. 

The bottom 3 layer is called a skips connection and connects the encoding and 

decoding path. The 13 layers at the right part of the U-Net depict the decoding path. 

Similar to the encoding path, there are two successive convolution layers, copy and 

cropping (concatenating) from each block of encoding and the up-convolution layer. 

Each layer in the decoding path starts with a 2×2 up-convolution layer with a stride of 

2, then two 3×3 convolution layers. After each convolution, a ReLu layer is added. 

Due to the loss of boundary pixels in every convolution, cropping is applied. The crop 
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and copying restore each spatial information lost during the down convolution by 

concatenating the output of the up-convolution layer with the high-resolution feature 

information from the encoding blocks at the same level. The output layer of the U-Net 

is modeled with 1 × 1 FC convolution to connect the preceding layers and convert the 

64-feature vector into 1 class. The network comprises a total of 27 convolutional 

layers. 

 

3.5.3 Training and Evaluation of Network  

All the experiments were performed on a Google Colab Pro cloud service 

using TensorFlow 2.7.0. and Keras 2.3.1 framework in python3. Google Colab Pro 

provides a 24-hour cloud service to perform machine learning training. The model is 

trained for 200 epochs with batch size 16. Dice loss is used as a cost function, Adam 

as an optimizer, and the learning rate of 0.000001(10-6). The details of each term i.e., 

learning rate, cost function, and Adam optimizer are discussed in Chapter II. The 

model has a total parameter of 31,055,279 of which 31,043,521 are the trainable 

parameters.  

We trained three different U-Net models namely, the base U-Net, U-Net with 

pre-processed data, and U-Net with pre-processed & augmented data, and batch norm 

layer, and their accuracy and other evaluation indices are compared. After performing 

the training for all sets the best model with high evaluation indices results is saved for 

the testing purpose for unseen data to perform the final median nerve segmentation. 

All experiments have been performed with 10-fold cross-validation to validate 

the proposed method for automatic segmentation of the median nerve in ultrasound 

images. It is allocated that in each experiment, 90% of the data is utilized for training 

and the remaining 10% is used for testing. The model performance result is the 

average result after a 10-fold cross-validation. 

3.5.3.1 Evaluation Metrics 

To evaluate the model, we used the confusion matrix (shown in Figure 29) to 

describe the performance of the model on the test data in which the true values are 

known. The confusion matrix includes accuracy, precision, and F1-score which will 

be discussed in detail in the following sub-section. Some of the terminologies used in 

defining the confusion matrix are 𝑇𝑁 (True Negative): Correctly rejected prediction 
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for a certain class, 𝐹𝑃 (False Positive): Incorrectly identified prediction for a certain 

class, and 𝐹𝑁 (False Negative): Incorrectly rejected prediction for a certain class. 

  

 

 

Figure  29 Confusion Matrix 

 

1. Accuracy  

Accuracy is a matrix that indicates how well the network executes across all 

the classes in general. It is effective when all classes are of similar significance. It is 

calculated as the ratio between the number of correct predictions ( ( ))TP TN+  to 

the total number of predictions ( )( )TP FP TN FN+ + +  and is mathematically 

represented by Equation (3.4). 

 

( )

( )
Accuracy ( )

TP TN
A

TP FP TN FN

+
=

+ + +




                                      (3.4) 

2. Jaccard similarity coefficient  

The Jaccard similarity index (also known as the Jaccard similarity coefficient) 

compares members of two sets to determine which are identical and which are 

distinctive. It is a metric that compares the similarity of two sets of data on a scale of 

0 to 1. The closer the number is near one, the more closely connected the two objects 
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are, and vice versa. Despite its ease of use, it is prone to small sample sizes and may 

produce inaccurate results, particularly with extremely small samples or data sets with 

missing observations.  

Mathematically the Jaccard similarity is deduced using Equation (3.5), where 

( ),J A B , are the Jaccard similarity between  and A B , the predicted (segmented) and 

ground truth image respectively. Figure 30 is the pectoral representation of 𝐽ሺ𝐴, 𝐵ሻ. 

 

( ),
A B

J A B
A B

=                                                         (3.5) 

 

 

Figure  30 Jaccard Coefficient 

 

3. Recall  

The recall is calculated as the ratio between the number of positive samples 

correctly classified as positive ( )TP  to the total number of positive samples 

( )( ),TP FN+  and its mathematical representation is given by Equation (3.6). The 

recall score evaluates the model's potential to recognize positive samples. The greater 

the recall, the increasing the percentage of positive samples identified. It only 

concerns how positive samples are labeled. It is unaffected by how the negative 

samples are labeled. 
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( )
( )

Recall
TP

R
TP FN

=
+


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                                          (3.6) 

 

4. Precision 

Precision is the ratio of true positives ( )TP  to the total of the true positives 

and false positives ( )( )TP FP+  (Equation (3.7)). Precision examines how many 

false positives were introduced into the mix. When there are no false positives (FPs), 

the model has an accuracy of 100 percent. The more FPs that are added to the mix, the 

worse the precision will appear. The purpose of precision is to correctly categorize all 

positive samples as positive while avoiding incorrectly classifying a negative sample 

as positive. 

( )
( )

Precision
TP

P
TP FP

=
+




                                                 (3.7) 

5. F1 score  

The F1 score is calculated as the harmonic mean of precision and recall 

(Equation (3.8)). This is used to rate performance statistically. The F1 score ranges 

from 0 to 9, with 0 being the lowest and 9 being the highest.  Since we will be using 

an unbalanced number of data, finding simple accuracy may not completely ascertain 

the model performance. Hence, the F1-Score will be used to find the model accuracy 

which takes care of unbalanced data. 

Recall ( ) Precision ( )
1 2

Precision ( ) Recall )(

R P
F

P R


= 

+
                                    (3.8) 

 

In this chapter, the detailed methodology for the median nerve segmentation in 

ultrasound images is outlined. It includes the signal processing method and AI 

method. In the AI method, three approaches are presented based on U-Net. The results 

of each method in segmentation of median nerve in ultrasound images are presented 

in Chapter IV.  
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6. Dice Similarity Coefficient (DSC) 

The DSC is evaluated by comparing the ground truths to the automated 

segmentation outputs using the spatial overlap percentage between two binary images 

as a metric. The score might range from 0 to 1, with 0 indicating no overlap and 1 

indicating a perfect match. 

 

2 a b

a b

X X
DSC

X X


=

+
                                                         (3.9) 

 

 𝑋𝑎 represents the ground truth manually annotated by the expert and 𝑋𝑏 

denote the predicted or automatically segmented region by the segmentation model.  

 

 

 

 

 

 

 

 

 

 



CHAPTER IV  

 

RESULT AND DISCUSSION 

 

4.1 Introduction 

The overall results of the adopted strategy for segmenting the median nerve in 

ultrasound images are discussed in this chapter. The outcomes include training and 

validation findings based on the measurement matrices discussed in Chapter II. 

Examples of the segmentation outputs image are also presented for viewing along 

with the numerical findings. 

The results of signal processing techniques are discussed in the second section 

of the chapter. The outcomes of deep learning with various approaches are shown in 

section three of the chapter. In the sub-section 4.3.4 of section three, the findings of 

the suggested approach are compared with the results described in Chapter II of the 

literature. 

 

4.2 Signal Processing Method 

4.2.1 Experimental Setup 

The experimental setup is presented in Table 2 with values. The test images 

are obtained from the hospital as a secondary image. The segmentation of the median 

nerve was implemented on the OpenCV image processing library using open-source 

python language. Each of the 35 test images has a varied image quality, and contrast, 

and has a different structure or form of the median nerve. 
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Table  2 Experimental Setup Environment 

 

System Name Specs/version 

 

Hardware 
Personal Laptop 

Lenovo, 16GB RAM, Intel 

Core i7-9750H CPU @ 

2.60GHz - 5.00GHz, GPU 

@ NVIDIA Quadro T2000 

Programming 

Language 
Python 3.7  

Editor VS Code 1.58 

Test Image Ultrasound image  
35 test images with a size of 

864 × 648 pixels 

Library Open CV 4.5.4 

 

4.2.2 Experiment Result 

A qualitative evaluation was carried out by visually assessing how well the 

segmented findings fit the genuine median nerve border. Figure 31 shows a 

comparison of expert-segmented median nerves with the proposed study's median 

nerve segmentation. 

 Figure 31(a) depicts the initial wrist ultrasound scan, which reveals structural 

information about the median nerve. Figure 31(b) depicts an image segmented 

manually by an expert sonographer, whereas Figure 31(c) depicts an image segmented 

using the proposed signal processing technique. In contrast to the manually segmented 

image (Figure 31(b)), the proposed method's segmented output (Figure 31(c)) displays 

the contour outline placed onto the true median nerve boundary. Figure 31(b) shows 

that a piece of the true median nerve boundary has been left unsegmented, as 

indicated by the little red rectangle. As can be observed, the proposed segmented 

image has a higher level of precision and accuracy in median nerve segmentation. 
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Figure  31 Median Nerve Segmented (a) Original Image, (b) Median Nerve 

Segmented by A Sonographer, and (c) Median Nerve Segmented by the Proposed 

Algorithm 

 

    In addition to the qualitative evaluation, the accuracy of the model was 

further confirmed by comparing the automatic findings to the ground truth which was 

manually segmented by the sonographer. Equations (3.5) to (3.8) indices were used to 

measure the performance of the proposed method.  

The algorithm is tested on 35 ultrasound images and obtained a precision, 

recall, F1-score, and Jaccard similarity of 0.87,0.93, 0.76, and 0.93 respectively, 

which shows that there is a higher degree of overlap between the segmented and 

ground truth image. The ground truth is achieved by conducting manual area tracing 

on the median nerve using GIMPS 2.10.28 (GNU Image Manipulation Program) a 

free and open-source raster graphic tool on the manually marked ultrasound image by 

the expert sonographer. When the tracing is completed, the selected region is 

highlighted and changed to a binary image (foreground as white and background as 

black). 

Figures 32 (a) to (h) illustrate some of the median nerve segmentation findings 

utilizing the suggested technique. The image without a contour is the test image or 

input image, while the image marked with a red contour is the corresponding 

segmented image from the proposed method. The real boundary of the median nerve 

is precisely segmented, as can be seen in the result images. Figure 32 (a) and (b) 

represent the segmentation result when the input image is highly clean, with a defined 

border between the actual median nerve structure and the surrounding. Figures 32 (c) 
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to (f) show the segmentation result from the second situation when the contrast of an 

input image is not equally distributed and the true border between the genuine median 

nerve is noisy. It also depicts the situation when the structure of the median is of 

different forms. Figures 32 (g) and (h) show the segmentation result from the 

proposed system in the worst-case situation when the input ultrasound image cannot 

discriminate between the median nerve structure and its surroundings, and there is no 

discernible border between the structure of the median nerve and its surroundings. 

The resilience and the robustness of the suggested model in segmenting the median 

nerve efficiently in ultrasound images despite higher variability in the input image are 

demonstrated by these different case outcomes. 

 

 

Figure  32 Segmentation Result of Median Nerve Ultrasound Images Using 

Signal Processing 
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(b) 

(c) (d) 
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4.2.3 Discussion  

To further validate the method, the cross-sectional area (CSA) of the 

segmented median nerve was determined and compared to the CSA of ground truth 

(GT). The median nerve's cross-sectional area (CSA) is the most often utilized metric 

to assess and quantify the CTS, with diagnostic cut-off values ranging from 9 mm2 to 

14 mm2 in various analytical settings (Ana Torres-Costoso et al., 2018). According to 

nerve conduction studies (NCS) research, the value of 9 mm2 for MNA is the most 

reliable cut-off value for MN pathology during CTS. 

 

 

Figure  33 Comparison of MN Cross-Sectional Area (CSA) Between the Original 

Image (Ground Truth) & Segmented Image (Algorithm) 

 

Figure 33 compares the cross-sectional area (CSA) of the median nerve 

between the original image or ground truth (GT) and the segmented median nerve 

from the proposed algorithm. The blue solid line represents the CSA value calculated 

by the expert and the brown dash line illustrates the CSA value of the median nerve 

calculated using the proposed algorithm. It is evident from the figure that there is a 

significant correlation of CSA between the original image and the segmented image 

with a close resemblance of over 90%. This promising result justifies that, the 

proposed algorithm could be used in clinical practice to aid in diagnosing the CTS in 
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ultrasound images. The average and standard deviation from these two cases are 

determined and shown in Table 3. 

Table 3 shows the average CSA value of ground truth and the mean value 

determined using the proposed method. The ground truth and proposed methods 

yielded average CSA values of 12.8 mm2 ± 4.384 mm2 and 11.95 mm2 ± 3.909 mm2, 

respectively. The table shows that the average CSA value acquired using the proposed 

method is nearly identical to the value determined by the professional sonographer. 

Furthermore, the standard deviation determined from the proposed method is also 

equivalent to the ground truth. This demonstrates that the model performs in the same 

way as the ground truth. It indicates that the proposed approach is more uniform and 

resilient in the segmentation of the median nerve. It also concludes that the proposed 

model is more stable and effective. As a result, it can be concluded that suitable data 

pre-processing introduced before the feature extraction model produces a more 

accurate result in the segmentation of median nerve in ultrasound images. 

Additionally, it does not demand the sonographer to manually detect and identify the 

median nerve to diagnose carpal tunnel syndrome (CTS), which would require a lot of 

experience and time. As a result, the proposed approach could be employed to 

segment the median nerve in an ultrasound machine to diagnose CTS. 

However, the model has estimated the CSA of the median nerve as false 

positive (represented by the green circle marked in Figure 33) in some situations, even 

when the expert or sonographer evaluated it as true positive. Image numbers 6 and 17 

in Figure 33 are classed as normal (i.e., the 13.9 mm2 and 13.8 mm2 are CSA of the 

segmented image, and 17.32 mm2 and 16 mm2 are the CSA calculated by the expert 

sonographer, respectively). Additionally, for image number 29, from the proposed 

algorithm, it has been determined as abnormal with the CSA value of 9.2 mm2 while 

this has been assigned as a normal case by the expert. This may be the outcome of 

excessive erosion and dilatation during the morphological procedure. These issues 

could be further analyzed and could be solved by using a more precise techniques like 

artificial intelligence and deep learning.  
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Table  3 The Mean and Standard Deviation of Cross-Sectional Area (CSA) Value 

from Original Image (or Ground Truth) and Proposed Algorithm 

 

Model CSA (Mean ± SD) in mm2 

Original Image (Ground Truth) 12.8 ± 4.384 

Proposed Algorithm 11.95 ±  3.909 

 

To show the degree of similarities in greater detail, statistical analysis is 

performed using Microsoft Excel (Microsoft 365). The correlation coefficient (also 

known as Pearson's product-moment "r") is used to determine the strength of the 

CSA's linear relationship with the ground truth and segmented image. In the 

examination of 35 test data, the CSA values from ground truth and the segmented 

image had a correlation coefficient of 0.962. These results suggest that the two CSAs 

(calculated and ground truth) have a stronger association and again confirm that the 

proposed algorithm is a promising method for segmenting the median nerve. 

To further present the usefulness of the proposed algorithm, some key 

performance indicators obtained from the proposed algorithm and work done 

previously are compared as shown in Table 4.  

 

Table  4 Comparison of Proposed Algorithm with other Method based on Signal 

Processing Algorithm 

 

Model Precision (%) Recall (%) 
F-1 Score 

(%) 

Jaccard 

Similarity (%) 

Wang’s 

Method 
85 91 75 - 

Proposed 

Algorithm 
87 93 76 93 
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Table 4 shows the comparison of the proposed algorithm with the work done 

by Wang based on the signal processing techniques to detect the median nerve in 

ultrasound images. In Wang’s work, a greedy active contour-based detection 

framework was used to detect the median nerve in ultrasound images. When tested on 

the test image, it is obtained a mean precision, recall, and F-1 score values of 85%, 

91%, and 75%, respectively. The reference contour remains a factor in contour 

computation and contour segmentation may produce an incorrect result due to a 

defective contour in the reference image. The proposed algorithm obtained a mean 

precision, recall, and F-1 score value of 87%, 93%, and 76%, respectively; which are 

2%, 2%, and 1% higher compared to Wang’s method. Note that there is no 

information about Jaccard Similarity provided by Wang’s method. The obtained 

improvement is from the pre-processing and additional signal processing techniques 

used in the proposed algorithm. This demonstrates that the proposed method is more 

dependable and consistent in median nerve segmentation. 

This signal processing approach has been proven to be effective in segmenting 

the median nerve in ultrasound images to compute its properties. In practice, the 

methodology can aid in the development of a viable tool for detecting CTS in 

ultrasound pictures. This method may also be used to predict the outcome of CTS 

therapy. The process of feature extraction, however, is where this technique's 

shortcoming lies. It took more time and processing to manually modify the kernel's 

weight and iterate numerous times in the morphological operation to segment the 

median nerve. Furthermore, the approach was not reliable and favored certain feature 

images over others. There is a considerable risk the model may not partition or 

segment the median nerve correctly. It was also discovered that only 35 of the 70 

ultrasound images could be segmented using this method. As a result, further 

segmentation of median nerve in ultrasound images is done using the AI method to 

make it more robust, biased-free, and quicker.   
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4.3 Artificial Intelligence Method  

4.3.1 Effect of Different Learning Rates on Training Model  

Learning rate is a hyper-parameter that governs how much to update the 

network or model weights concerning the loss gradient. It also determines how faster 

to update the weights during the training process to learn the features. Choosing a 

correct learning rate is difficult, the lower the value, the slower the descent. While 

adopting a low learning rate may be a good idea for ensuring that the model does not 

miss any local minima, it may also mean that it will take a long time to converge 

particularly if it gets trapped on a plateau region, while a value that is too high may 

result in learning a sub-optimal set of weights too quickly or an unstable training 

process. We exercised the hyper parametrization of the learning rate from 0.001 (10-3) 

to 0.000001(10-6) to see the effect on the training model. The result of each learning 

rate based on the loss curve is discussed in Figure 34.  

Figures 34 (a) to (d) show the loss curve of different learning rates during the 

training process. Figure 34 (a) shows the loss curve for the learning rate of 0.001 (10-

3). The loss started to decrease (loss = 0.03) till the 9 epochs, however, instead of 

decreasing further the training and validation loss suddenly started to rise high (loss 

=1) after the 9th epoch which indicates that the model is suffering from underfitting. 

Figure 34 (b) and (c) show the loss curve of the 0.0001 (10-4) and 0.00001 (10-5) 

learning rate respectively. Compared to 0.001 (10-3), it converges the loss more 

toward an optimal point (i.e., 0.102864 & 0.3528 of training and validation loss 

respectively for 0.0001 (10-4) and 0.10405 & 0.20505 of training and validation loss 

respectively for 0.00001 (10-5)), however, there is a large gap between the validation 

and training loss which depicts that model is still experiencing the overfitting 

problem.  

Figure 34 (d) shows the loss curve of the 0.000001 (10-6) learning rate. 

Compared to 0.001 (10-3), 0.0001 (10-4), and 0.00001 (10-5), it regularizes the training 

more smoothly with a negligible discrepancy between the validation and training cost 

function and learns more features from the image hence, solving the problem of the 

model overfitting. However, it took a long time compared to other learning rates to 

complete the training. The training time increases as the learning rate decreases. Table 

5 shows the different times taken to train the model with different learning rates.  
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Table  5 Training Time for Different Learning Rates 

 

Learning 

Rate 

Training Time 

(hrs.) 
Training Loss Validation Loss 

10-3 1 1 1 

10-4 10 0.102864 0.3528 

10-5 14 0.10405 0.20505 

10-6 20 0.015379 0.022968 

 

From Table 5 it is observed that the training time increased as the learning rate 

of the model used is smaller and vice versa. The model took around 1 hour to train 

with a 10-3 learning rate and 10 hours for 10-4. The model required 14, and 20 hours to 

train with learning rates of, 10-5, and 10-6, respectively. It can be deduced that the 

smaller learning rate takes a long time to train the model and learns more features 

during the training process.  

 

 

Figure  34 Loss Curve and Training Curve with Different Learning Rates for 

Model Training: (a) Loss curve for 10-3, (b) Loss curve for 10-4, (c) Loss curve for 

10-5, and (d) Loss curve for 10-6 

 
 

(a) 

 
 

(b) 

 

 
 

(c) 

 
 

(d) 
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4.3.2 Training and Test Result of Three Different Approaches  

In this study, we used three distinct sets of approaches to training the model 

i.e., the base U-Net, U-Net with pre-processed data, and U-Net with pre-processed, 

augmented data, and batch norm layer, and their accuracy and other evaluation indices 

are compared. The findings of each of the distinct sets are discussed in depth in the 

following paragraphs. 

4.3.2.1 Base U-Net  

In the first approach, the basic U-Net, or the original model constructed by 

(Ronneberger et al., 2015), was trained on the median nerve datasets. Adam is used as 

the optimizer with loss function as dice loss.  The model was trained for 200 epochs 

with a batch size of 16 and a learning rate of 10-6. The datasets are split into training 

and test data in a 90:10 ratio. 

Training Result  

 Figures 35 (a) and (b) show the training loss curve and accuracy curve of the 

training process. The training loss represents how well the model fits the training data, 

whereas the validation loss represents how well the model fits new data. The training 

stopped to learn after the 91st epoch because of the early stopping. Early stopping is a 

technique that allows programmers to define an arbitrary number of training epochs 

and then stop training whenever the model's performance on the validation dataset 

stops learning. Figure 35 (a) shows that the model converges quickly over the first 10 

epochs, with a very negligible difference between the validation and training losses. 

However, after the tenth epoch, the training loss decreases adequately, but the 

validation loss decreases slowly, resulting in a wide difference between them which 

shows the model is overfitting the data. This might be due to the fewer training data to 

learn the feature. The validation and training loss both dropped from 0.75884 to 

0.20505 and 0.75357 to 0.104053, respectively. 

Figure 35 (b) represents the accuracy curve during the training process. It 

depicts how well the model can categorize two images during training on the training 

and validation datasets. (A validation dataset is a sample of data held back from 

model training that is used to measure model competence while the model is being 

trained.) It is evident from the figure, that the model can classify the training data with 
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an average validation and training accuracy of 90.2% and 88.8%, respectively, with a 

minor difference between them. 

  

                     (a)                        (b) 

Figure  35 The Loss Curve and Accuracy Curve (a) Training and Validation 

Loss Curve (b) Training and Validation Accuracy Curve 

 

Experiment Result (Test Result) 

To evaluate localization, accuracy Jaccard Similarity, recall, precision, and F1 

score were used as performance indicators, while segmentation was assessed using the 

Dice coefficient measurement metric (the details are discussed in subsection 3.6.3 of 

Chapter III). Table 6 tabulates the model performance indices of the test results on the 

test datasets for base U-Net. The U-Net achieved an average accuracy, Jaccard 

Similarity, recall, precision, F1, and Dice similarity coefficient (DSC) of 0.857 ±

 0.0961, 0.541 ±  0.20622, 0.765 ±  0.21889, 0.622 ±  0.2064, 0.662 ±

 0.2026, and 0.540 ±  0.21738  respectively. Although the Jaccard similarity result 

is lower than that of the signal processing approach (Jaccard similarity = 0.93), the U-

Net can exercise the biased problem of the signal processing method. It was able to 

locate the median nerve of different structures; however, the segmentation of the 

median is not very perfect as the ground truth. 
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Table  6 Test result of Base U-Net Model 

 

Model  Accuracy  
Jaccard 

Similarity 
Recall Precision 

F1 

Score 
DSC 

U-Net 
0.857 ± 

0.0961 

0.541 ± 

0.2062 

0.765 ± 

0.2188 

0.622 ± 

0.2064 

0.662 ± 

0.2026 

0.540 ± 

0.21783 

 

 

Figure  36 Segmentation Result of Median Nerve in Ultrasound Images from 

base U-Net Model 

 

 The segmentation results from the base U-Net architecture are enumerated in 

Figures 36 (a) to (f). It is evident from the segmented result; that the model is not able 

to perform the segmentation of the median nerve perfectly. Figures 36 (a) to (c) depict 

that the model has segmented the median nerve very differently when compared to the 

ground truth. Figures 36 (d) and (e) portray the second case scenario, in which the 
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The first column represents the input image, the second column represents the ground truth 

(GT), and the last column represents the segmented image from the model 
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model segmented various minor structures in addition to the genuine median nerve 

structure, and the segmented output does not match the ground truth image perfectly. 

Figure 36 (f) illustrates the worst-case scenario, in which the model fails to locate the 

median nerve structure and the segmented image becomes utterly deformed. From this 

result, it is observed that the U-Net struggles to predict the perfect structure and edges 

of the median nerve well since the input datasets contain the noise. In addition, as 

compared to the training accuracy, the model accuracy for segmenting the median 

nerve on test datasets is relatively poor. 

4.3.2.2 U-Net with Data Pre-processing  

 To improve the accuracy and raise the concerns in approach one, data pre-

processing is adapted to clean or filter the noise in approach two. When dealing with 

noisy, inconsistent, or missing data, pre-processing is essential, and it is typically 

employed to conduct procedures that reduce the data's complexity. It not only cleans 

the data but also improves the algorithm's accuracy (Masoudi et al., 2021). Image 

Enhancement (intensity modification), ROI selection, and image denoising are some 

of the data pre-processing techniques used in this study (the details of each of these 

techniques are discussed in sub-section 3.3 of Chapter III). The model was trained for 

200 epochs with a batch size of 16 and a learning rate of 10-6. Adam is used as the 

optimizer with loss function as dice loss and the train-test split ratio of  90:10.  

 

Training Result   

Figures 37 (a) and (b) show the training loss curve and accuracy curve of the 

training process. The training stopped to learn after the 109th epoch because of the 

early stopping. The model converges swiftly throughout the first 17th epochs, with just 

a small discrepancy between the validation and training losses (Figure 37 (a)). The 

training loss drops sufficiently after the 17th epoch, however, the validation loss 

updates weights in tiny stages, thus it declines slowly with some oscillation in 

between. As a result, after the 40th epoch, there is a slight difference between training 

and validation loss. However, when compared to approach one, the difference is 

small. This might result in an adequate balance of train and validation data and data 

continues to be overfitted by the model. Both the validation and training losses 

decreased from 0.7581 to 0.1480 and 0.7502 to 0.1002, respectively. When compared 
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to approach one, the cost functions for validation and training dice loss dropped by 

0.057 and 0.0038, respectively. 

The training accuracy curve during the training procedure is depicted in Figure 

37 (b). The model can classify the training data with an average validation and 

training accuracy of 94.1% and 90.1%, respectively. When compared to approach 

one, the disparity between train and validation accuracy is greater. However, there is a 

1.3% and 3.9% improvement in training and validation accuracy, respectively. It 

shows how the data pre-processing approach evaluated the model's ability to classify 

and segment images during training on both the training and validation datasets. 

 

                              (a)                          (b) 

 

Figure  37 The Loss Curve and Accuracy Curve for the U-Net Model with Pre-

processed Data (a) Training and Validation Loss Curve (b) Training and 

Validation Accuracy Curve. 

 

Experiment Result (Test Result) 

The model performance indices of the test results on the test datasets for 

approach two are presented in Table 7. The accuracy, Jaccard similarity, recall, 

precision, F1, and Dice similarity coefficients (DSC) of 0.954 ±  0.0242, 0.718 ±

 0.1009, 0.888 ±  0.1079, 0.762 ±  0.1216, 0.814 ±  0.1063, and 0.820 ±

 0.1078 are obtained, respectively. Overall, there is a 9.7% gain in model accuracy 

when compared to approach one. 
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Table  7 Test Result of U-Net with Data Pre-processing 

 

Model  Accuracy  
Jaccard 

Similarity 
Recall Precision 

F1 

Score 
DSC 

U-Net + 

Preprocessed 

data 

0.954 ± 

0.0242 

0.718 ± 

0.1009 

0.888 

± 

0.1079 

0.762 ± 

0.1216 

0.814 ± 

0.1063 

0.820 

± 

0.1078 

 

 

Figure  38 Segmentation Test Result of Median Nerve in Ultrasound Images 

using U-Net model and data pre-processing 

 

 Figures 38 (a) to (f) show the segmented test results from U-Net with a data 

pre-processing approach. The model can conduct the median nerve segmentation 

more accurately than approach one, as seen by the segmented outcome. Figures 38 (a) 

to (d) show the model has segmented the median nerve in a way that is remarkably 

similar to the ground truth. However, the segmented image is still far from flawless, 

and in some cases, the model has over-segmented beyond the nerve border (Figure 38 
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The first column represents the input image, the second column represents the ground truth 

(GT), and the last column represents the segmented image from the model 
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(a)) and left other areas unsegmented (Figure 38 (b)). Figures 38 (e) and (f) show that, 

in addition to the true median nerve structure, the model still segmented certain small 

structures. It is clear from this finding, the small number of input datasets, that the U-

Net struggles to anticipate the ideal structure and edges of the median nerve. 

4.3.2.3 U-Net with Data Augmentation and Data Pre-processing  

One of the most prevalent issues with approaches one and two is that the 

model is unable to generalize, resulting in overfitting the training data. 

Generalizability is the performance difference of a model when evaluated on 

previously observed data (training data) vs data it has never seen before (test data). It 

is evident from Figure 35 (a) and Figure 37 (a), that approaches one and two are 

experiencing overfitting issues i.e., the large gap between the training and validation 

cost function. Models with poor generalizability overfit the training data. The 

validation error must continue to decrease in conjunction with the training error to 

develop usable deep learning models with zero gaps between them. Transfer learning, 

pre-training the model, dropouts, batch normalization, and data augmentation are 

some of the techniques used to solve this problem (Shorten & Khoshgoftaar, 2019). A 

comprehensive list of deep learning regularization algorithms has been published by 

Kukačka et al. (2017). Data augmentation and batch normalization are two 

approaches used in this method to address the concerns of approaches one and two. 

Data augmentation is the practice of enhancing variety and variation in 

existing data by applying various geometrical transformations to it. This is done to 

extend the datasets and expose the CNN to a diverse variety of data during the testing 

or classic discriminative phase, allowing the network to detect data in any shape or 

form. The augmented data will reflect a broader range of potential data points.  Data 

Augmentation is comparable to dreaming or imagining. Based on their previous 

experiences, humans create various situations. Imagination aids us in gaining a deeper 

knowledge of the world around us. Due to the rarity of illnesses, patient privacy, the 

need for medical professionals to label patients, and the cost and manual labor 

required to perform medical imaging operations, it is extremely difficult to build large 

medical image databases. As a result, augmentation aids in including a wider variety 

artificially and improving the medical data for deep learning training. Geometrical 
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transformations such as rotation, horizontal flipping, sheering, zooming, and 

translation are used in this study (the details of each are discussed in sub-section 3.5.1 

of Chapter III). Thus, by employing these transformations, the datasets are multiplied 

by 56, resulting in 4200 number images. It not only enhances the data but also 

artificially added a wide range of different variations of images in datasets. 

The inclusion of the batch normalization (BN) (Ioffe & Szegedy, 2015) layer 

in the network was one improvement made to the original U-Net in this study to 

regularize, speed up, and boost the accuracy of the training. Batch normalization (BN) 

is a method for normalizing activations in deep neural networks' intermediary layers. 

BN has been a popular deep learning approach due to its ability to enhance accuracy 

and speed up training. When training deep networks, BN enhances convergence and 

generalization by allowing for a high learning rate and avoiding overfitting.  It 

coordinates the updates of various layers in a model by standardizing the activations 

of each input variable in every mini-batch, such as the activations of a node from a 

previous layer. The benefit of adopting batch normalization, data augmentation, and 

data pre-processing are discussed in the following result.  

Training Result  

Figures 39 (a) and (b) show the training loss curve and accuracy curve of the 

training process. Adam is used as the optimizer with loss function as dice loss.  The 

model was trained for 200 epochs with a batch size of 16 and a learning rate of 10-6. 

The datasets are split into training and test data in a 90:10 ratio.  

It is apparent from Figure 39 (a), that the model converges swiftly throughout 

the training process with a negligible discrepancy between the validation and training 

cost function. In comparison to approaches one and two, the model generalizes and 

converges faster. This undercuts the effectiveness of the adopted methodology in 

resolving the issue in approaches one and two. The validation and training losses, 

respectively, fell from 0.8163 to 0.047 and 0.8006 to 0.039. 

The accuracy curve during the training procedure is depicted in Figure 39 (b). 

The model can classify the training data with an average validation and training 

accuracy of 97.5% and 92.5%, respectively. When compared to approach two, the 

disparity between train and validation accuracy is greater. However, there is a 2.4% 

and 3.4% improvement in training and validation accuracy, respectively. It 
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demonstrates the influence of the combined approaches such as data augmentation, 

data pre-processing, and batch normalization to identify and segment images in the 

training and validation dataset.  

 

                        (a)                           (b) 

 
 

Figure  39 The Loss Curve and Accuracy Curve for Modified U-Net Model 

(Batch Normalization Layer) with Pre-processed Data and Data Augmentation 

(a) Training and Validation Loss Curve (b) Training and Validation Accuracy 

Curve 

 

Experiment Result (Test Result) 

Table 8 shows the model performance indices for the test results on the test 

datasets for the third approach. The accuracy, Jaccard similarity, recall, precision, F1, 

and Dice similarity coefficients (DSC) are correspondingly 0.998 ±  0.0032, 

0.891 ±  0.0990, 0.989 ±  0.0591, 0.898 ±  0.0893, 0.941 ±  0.0632, and 

0.899 ±  0.0990. When compared to approach two the combined procedures (data 

pre-processing, data augmentation, and batch normalization) resulted in a 4.4% 

increase in model accuracy and 14.1% when compared to approach one. Concurrently 

there is also an increase in the other measuring indices. It can be also observed that 

the standard deviation (SD) of each index is much smaller than approaches one and 

two. This ascertains that approach three is more consistent in segmenting the median 

nerve in ultrasound images.  
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Table  8 Test Result of Modified U-Net with Data Pre-processing and Data 

Augmentation 

 

Model  Accuracy  
Jaccard 

Similarity 
Recall Precision F1 Score DSC 

U-Net + 

Preprocessed 

data +Data 

Augmentation 

+ Batch Norm 

0.998 ± 

0.0032 

0.89 ± 

0.0990 

0.989 ± 

0.0591 

0.898 ± 

0.0893 

0.94 ± 

0.0632 

0.89 ± 

0.0990 

 

 

Figure  40 Segmentation Result of Median Nerve in Ultrasound Images using U-

Net Model with Pre-processing, Augmentation, and Batch Norm Layer 

  

Figures 40 (a) to (f) show the segmentation results from U-Net trained with 

data pre-processing and data augmentation with batch norm layer. It is evident from 

Figure 40, that the segmented median nerve overlaps the ground truth. Figure 40 (a) 

shows the model has segmented the median nerve in a way that is remarkably like the 
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The first column represents the input image, the second column represents the ground truth 

(GT) and the last column represents the segmented image from the model 
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ground truth when the input image has a clear boundary between the edges of the 

median nerve and its surrounding. Figure 40 (b) and (c) illustrate the segmentation 

result when there is no distinct boundary between the border of the median and its 

surrounding. For example, in Figure 40 (b), there is no clear line separating the 

median nerve from its surroundings at the bottom half of the image. Figures 40 (d), 

(e), and (f) show the segmentation result of the proposed system in the worst-case 

scenario, where the input ultrasound image is unable to distinguish between the 

median nerve structure and its surroundings, and there is no discernible border 

between the median nerve structure and its surroundings. Furthermore, all kinds of the 

median nerve are unique from one another and have varying degrees of intensity. In 

all these scenarios, the model was still able to segment the median nerve. 

From these results, it is apparent, that the resilience and the robustness of the 

suggested model in segmenting the median nerve efficiently in ultrasound images 

despite higher variability in the input image are demonstrated by these different case 

outcomes.  The combined method of data pre-processing, data augmentation, and 

inclusion of batch normalization layer in the U-Net has addressed the problems 

expressed by the signal processing method, as well as those raised by approaches one 

and two. 

 

4.3.3 Comparison of Experimental Results of 3 Approaches   

Table 9 and Figure 41 provide the overall summary findings of the 

measurement indices and cost function curve of the three approaches presented in the 

previous part, as well as a comparison between them. It is evident from Table 9, that 

the U-Net model trained with pre-processed data, augmented data, and the inclusion 

of a batch norm layer outperforms the two previous models and produces remarkable 

median nerve segmentation. When tested on test datasets, the accuracy was 99.8 % ±

 0.0032, which is 14.1% and 4.4% greater than approach one and approach two, 

respectively. A Jaccard similarity coefficient of 0.891 was obtained, which is 0.039 

lower than the signal processing approach but 0.173 and 0.35 higher than approaches 

two and one respectively. The approach was also extremely effective in locating the 

median nerve, with a DSC of 0.899 ±  0.0990, which was significantly higher than 

the other two methods. This demonstrates that when deep learning is given more 
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training data and input data is cleansed, it gives more accurate results. Moreover, the 

standard deviation of all the performance indexes of approach three is comparatively 

lower than approaches one and two which signifies that the model is more reliable.   

The highest Dice measuring parameter consistently showed that approach 

three segmentation worked best of all approaches. The suggested approach provides 

an end-to-end mechanism for segmenting the median nerve that requires no user 

involvement and successfully locates and segments portions of the median nerve 

without the requirement for an initial localization operation. 

  

Table  9 Comparison of Different Measuring Indices of the Three Different 

Methods 

 

Model  Accuracy  
Jaccard 

Similarity 
Recall Precision 

F1 

Score 
DSC 

U-Net 
0.857 ± 

0.0961 

0.541 ± 

0.2062 

0.765 ± 

0.2188 

0.622 ± 

0.2064 

0.662 ± 

0.2026 

0.540 ± 

0.21783 

U-Net + Pre-

processed data 

0.954 ± 

0.0242 

0.718 ± 

0.1009 

0.888 ± 

0.1079 

0.762 ± 

0.1216 

0.814 ± 

0.1063 

0.820 ± 

0.1078 

U-Net + Pre-

processed data 

+Data 

Augmentation 

+ Batch Norm 

0.998 ± 

0.0032 

0.89 ± 

0.0990 

0.989 ± 

0.0591 

0.898 ± 

0.0893 

0.94 ± 

0.0632 

0.89 ± 

0.0990 

 

The cost functions of the three methods are compared in Figure 41. The U-Net 

model trained with pre-processed data augmented data, and the addition of a batch 

norm layer model converges quickly during the training process, with a small 

disagreement between the validation and training cost functions which is denoted by 

the red curve and continues to learn the feature throughout the training process. The 

model generalizes and converges quicker than approaches I and II thus, solving the 

problem of overfitting that was experienced in approaches one and two.  
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 The training and validation loss of the base U-Net approach (I) and the U-Net 

with data pre-processing (approach II) decreases smoothly with a small difference 

until the 20th epochs, which are represented by orange and green curves, respectively. 

The training loss, on the other hand, lowers significantly after the 20th epoch, and the 

validation loss updates weights in modest steps, so it declines slowly for both 

approaches. As a result, the discrepancy between training and validation loss widened, 

resulting in an overfitting issue.  

 

 

Figure  41 Comparison of the Loss Curve of Three Methods 

  

4.3.4 Comparison of the Proposed Method with Methods in the Literature 

 

i. Comparison of Proposed Method with Convectional Active Contour Method 

 

Table  10 illustrates the comparison of DSC achieved by some convectional 

active contour methods such Chan-Vese (CV) method (Chan & Vese, 2001), Distance 

regularized level set method (DRLS) (Hadjerci et al., 2016; Li et al., 2010), 

Probabilistic gradient vector flow method (PGVF) (Hafiane et al., 2014), Localization 

+ CV (Hadjerci et al., 2016), Localization + DRSL (Hadjerci et al., 2016), and  

Localization + PGVA (Hadjerci et al., 2016) to the proposed method. Traditional 
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image analysis algorithms for segmenting the median nerve frequently use the active 

contour model as a foundation. Segmentation issues have arisen as a result of the 

reliance on the reference or starting contour. It is evident from the table, the DSE 

attained by deep learning (proposed technique) surpassed the best standard contour 

approach, Localization + PGVA (Hadjerci et al., 2016), which produced satisfactory 

segmentation results with an average DSE of 0.81 ± 0.10, which is 0.089 fewer than 

deep learning. This indicates that when compared to the conventional technique 

(active contour), deep learning solutions are more accurate, resilient, bias-free, and 

more effective in locating regions of the median nerve and directly segmenting them 

without the need for an initial localization procedure. Furthermore, unlike the active 

contour approach, it is more robust in that it can segment the median nerve with 

varying morphology. 

 

Table  10 Comparison of DSC for Convectional Active Contour Techniques and 

the Proposed Approach for Segmenting the Median Nerve 

 

Model  DSC 

Chan-Vese (CV) method (Chan & Vese, 2001) 0.09 ± 0.13 

Distance regularized level set method (DRLS) 

(Hadjerci et al., 2016; Li et al., 2010) 
0.13 ± 0.03 

Probabilistic gradient vector flow method 

(PGVF) (Hafiane et al., 2014) 
0.75 ± 0.15 

Localization + CV (Hadjerci et al., 2016) 0.69 ± 0.11 

Localization + DRSL (Hadjerci et al., 2016) 0.71 ± 0.18 

Localization + PGVA (Hadjerci et al., 2016) 0.81 ± 0.10 

U-Net + Pre-processed data +Data 

Augmentation + Batch Norm 
0.899 ± 0.099 
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ii. Comparison of Proposed Method with other Deep Learning Methods 

 

Table 11 lists the performance indices of the various methods used to segment 

the median nerve, which is compared to the proposed approach. The method includes 

Lightweight U-Net (Horng et al., 2020), U-Net + Mask Track (Horng et al., 2020), 

ConvLSTM + U-Net + Mask Track (Horng et al., 2020), and  DeepNerve (Horng et 

al., 2020) which integrates the characteristics of Mask- Track, and ConvLSTM based 

on the lightweight version of U-Net. The ConvLSTM layer is placed at the bottom of 

the U-Net +Mask Track to reduce the computation time.  

 

Table  11 Comparison of the Performance Indices of Proposed Method with 

other Deep Learning Models 

 

Model  Accuracy  Recall Precision F1 Score 

Lightweight U-Net 

(Horng et al., 2020) 

0.993 ± 

0.003 

0.702 ± 

0.2618 

0.772 ± 

0.2441 

0.735 ± 

0.2387 

U-Net + Mask Track 

(Horng et al., 2020) 

0.993 ± 

0.0048 

0.897 ± 

0.1345 

0.7668 ± 

0.1520 

0.810 ± 

0.1391 

ConvLSTM + U-Net + 

Mask Track (Horng et al., 

2020) 

0.995 ± 

0.0037 

0.789 ± 

0.2053 

0.792 ± 

0.2324 

0.790 ± 

0.2214 

DeepNerve (Horng et al., 

2020) 

0.997 ± 

0.0007 

0.912 ± 

0.0438 

0.891 ± 

0.047 

0.901 ± 

0.2214 

U-Net + Pre-processed 

data +Data 

Augmentation + Batch 

Norm 

0.998 ± 

0.0032 

0.989 ± 

0.0591 
0.898 ± 

0.0893 

0.94 ± 

0.0632 

 

It is evident from the table, the proposed method (U-Net with data pre-

processing, data augmentation, and batch norm) outperformed the best deep learning 

approach, DeepNerve (Horng et al., 2020) which combines the features of MaskTrack 

and convolutional long short term memory (MaskTrack + ConvLSTM) and produced 

agreeable segmentation results with average accuracy, recall, precision, and F1 scores 
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of 0.997 ±  0.0007, 0.912 ±  0.0438, 0.891 ±  0.047, and 0.901 ±  0.2214 which 

were fewer than proposed method.  

The proposed obtained higher performance indices such as accuracy, recall, 

precision, F1score by 0.001, 0.077, 0.003, and 0.04 respectively compared to 

DeepNerve. Moreover, the standard deviation (SD) of the proposed method is 

comparable to the SD values of DeepNerve and some SD values are less compared to 

DeepnNerve. It demonstrates that the suggested technique is equally consistent and 

robust in median nerve segmentation and that the model is more reliable. This also 

implies that data pre-processing and data augmentation are important not just for 

cleaning data and expanding the number of datasets, but also for improving accuracy. 

One of the most common challenges with the aforementioned methodology is 

that the algorithms underperform when subjected to noisy, inconsistent, low contrast 

input images and when the images are of diverse morphological variations. In 

addition, incorporating numerous deep feature extraction techniques into a single 

algorithm to perform segmentation necessitates a large amount of computing power 

and a longer calculation time. This bottleneck caused the major roadblock for the deep 

learning-based algorithm to rapidly deploy in clinical care. Thus, the proposed 

method which adopts the data pre-processing and data augmentation before 

classifying, or feature processing along with the addition of a batch normalization 

layer after every convolutional layer alleviates the problems and improves the 

accuracy of targets identification.  

In Table 12, DSC results generated by the deep learning method such as Four-

layer U-Net (Horng et al., 2020), Lightweight U-Net (Horng et al., 2020), Original U-

Net with PCA (Principal component analysis) transformation (Kakade & Dumbali, 

2018), Spatiotemporal consistency-based U-Net localization + PGVF (Probabilistic 

gradient vector flow method) (Hafiane et al., 2017), and DeepNerve (Horng et al., 

2020) which are originally discussed in the paper (Horng et al., 2020) are compared 

with the results generated by the proposed method. The method obtained average 

DSC value of 0.6497 ±  0.19509, 0.7183 ±  0.2462, 0.68828, 0.85 ±  0.15 and  

0.897 ±  0.025 respectively. 
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Table  12 Comparison of DSC of Proposed Method with other Deep Learning 

Models 

 

Model  DSC 

Four-layer U-Net (Horng et al., 2020) 0.6497 ± 0.19509 

Lightweight U-Net (Horng et al., 2020) 0.7183 ± 0.2462 

Original U-Net with PCA (Principal component 

analysis) transformation (Kakade & Dumbali, 

2018) 

0.68828 

Spatiotemporal consistency-based U-Net 

localization + PGVF (Probabilistic gradient 

vector flow method) (Hafiane et al., 2017) 

0.85 ± 0.15 

U-Net (Festen et al., 2021) 0.88 

DeepNerve (Horng et al., 2020) 0.897 ± 0.025 

U-Net + Pre-processed data +Data 

Augmentation + Batch Norm 
0.899 ± 0.0990 

 

When performing automated segmentation of the median nerve in the carpal 

tunnel, U-Net (Festen et al., 2021) obtained a DSC value of 0.88. Except for 

DeepNerve, it outperformed all of the methods provided in Horng et al. (2020)  by a 

significant margin. The table shows that the proposed approach outperformed 

DeepNerve and U-Net (Festen et al., 2021) by 0.002 and 0.019, respectively, in terms 

of DSC value. Furthermore, the suggested method's standard deviation (SD) is smaller 

than all the method-presented SD values except for DeepNerve. It demonstrates that 

the suggested method is more consistent and robust in median nerve segmentation. It 

also concludes that the proposed model is more stable and reliable. The greatest Dice 

similarity coefficient value indicated that the proposed method could detect and 

segment the median nerve in ultrasound images. Therefore, the suggested approach 

may be beneficial in the diagnosis of ultrasonic carpal tunnel syndrome (CTS). 

It is evident from all of these compressions; that the proposed method 

outperformed all the presented methods with a higher performances index and lower 
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SD. As a result, it can be concluded that suitable data pre-processing and data 

augmentation, introduced before the feature extraction model produces a more 

accurate result in the segmentation of median nerve in ultrasound images. 

Furthermore, it does not demand combining many deep feature extraction approaches 

into a single algorithm to accomplish segmentation, which would require a lot of 

processing power and time. As a result, the proposed approach could be employed to 

segment the median nerve in an ultrasound machine to diagnose CTS. 

  In this chapter, the results of the proposed method adopted to perform the 

median nerve segmentation in ultrasound scans are discussed. Furthermore, the result 

of the proposed method is compared with other methods presented in the literature 

and found that the proposed method was more accurate and consistent in the 

segmentation of median nerve in ultrasound images.  

 

 

 

 

 

 

 

 

 

 

 



CHAPTER V 

 

 CONCLUSION 

 

Image segmentation, a subset of computer vision, is a widely adopted tool in a 

range of applications, including medical imaging, object identification, and self-

driving. In this study, a signal processing and deep learning technique are employed 

to perform the segmentation of the median nerve in ultrasound images to diagnose 

Carpal tunnel syndrome (CTS). CTS is a kind of peripheral neuropathy, a frequently 

occurring disease in the wrist that affects many people.  

The first part of the thesis presented a method that employed a signal 

processing model to segment the median nerve from ultrasound images to permit 

automated segmentation of structural features of the median nerve. Pre-processing is 

applied to reduce the associated noise to boost the sensitivity and increase the 

accuracy of the model in segmenting the median nerve in ultrasound images. The 

signal processing methods such as mathematical morphology, edge detection, and 

contouring employed to segment and identify the median nerve in ultrasound images 

produced a Jaccard similarity of 0.93. Furthermore, a remarkable 0.962 correlation of 

Cross-Sectional Area (CSA) between the ground truth and the segmented image is 

observed. However, manually modifying the kernel's weight and iterating several 

times in the morphological operation to segment the median nerve took more 

processing time. In addition, the method proved unreliable, favoring certain feature 

images over others. It was also observed that only 35 of the 70 ultrasound images 

could be segmented using this procedure. As a solution, an alternate approach 

utilizing a deep learning approach was implemented to make it more resilient and 

faster. 

The second approach presented in this thesis is the segmentation of the median 

nerve using the U-Net (Ronneberger et al., 2015) model, which is a deep learning 

algorithm that addresses the issues that are faced in the signal processing method. We 

initially hyper-parametrized the learning rate from 10-3 to 10-6 and discovered that 10-6 

produces the best training results when compared to other learning rates, however, it 
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was observed that 10-6 takes maximum time to train the model. The U-Net model was 

trained in three approaches: base U-Net, U-Net with pre-processed data, and U-Net 

with batch normalization layer, pre-processed and data augmented data. The U-Net 

model trained with pre-processed data, and enhanced data with batch norm layer 

surpassed the two other models and achieves amazing results in median nerve 

segmentation. When evaluated on test datasets, an accuracy of 99.8% was achieved, 

which is 14.1 % higher than approach one (U-Net with original data) and 4.4% higher 

than approach two (U-Net with pre-processed data). The Jaccard similarity coefficient 

was found to be 0.8901, which is 0.039 lower than the signal processing method but 

0.172 and 0.349 higher than approaches two and one. Approach three was also quite 

successful in finding the median nerve, with a DSC of 0.899, which was much higher 

than the other two approaches. This shows that when deep learning is given additional 

training data and the input data is cleaned, the outcomes are more accurate. The 

proposed method (U-Net with data pre-processing, data augmentation, and batch 

norm) outperformed the best deep learning approach, DeepNerve (Horng et al., 2020) 

which combines the features of MaskTrack and convolutional long short term 

memory (MaskTrack + ConvLSTM). This implies that data pre-processing and data 

augmentation are important not just for cleaning data and expanding the number of 

datasets, but also for improving accuracy. This demonstrates that this model could be 

used as an initial screening tool in clinical practice to expedite the identification, 

diagnosis, and assessment of CTS. 

 

Limitation of Study 

 Some of the limitations of the study are listed below: 

1. This study solely considers the segmentation of the distal median type of the 

human hand wrist and ignores the prox median type. 

2. The datasets utilized in this study were only obtained from one hospital and 

evaluated by one expert. 

3.  Because the datasets published in the literature are not openly accessible, the 

model could only be evaluated on the test datasets created in-house. 
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Challenges  

1. Limited Data size: The amount of data accessible is the most significant 

constraint in attaining study objectives. Ideally, this study would result in a 

network that is spatially invariant and capable of detecting and segmenting the 

median nerve in ultrasound pictures. However, there is currently insufficient 

data available at various spatial resolutions. 

2. Limited Annotated Data: Obtaining annotated medical data is very difficult 

due to the confidentiality of medical data.  

3. Limited Data Source: No freely available data cannot accessed the data easily. 

 

Future Work 

1. Increase the datasets to make the model more spatial invariant.  

2. Incorporate more median nerve types by collecting the ultrasound images from 

different hospitals performed with different experts and ultrasound machines.  

3. Perform the post-processing to further increase the accuracy of the model. 

4. Experiment with several models and compare the results to the U-Net model. 

5. Another way is to pre-train the network using large datasets such as ImageNet 

and then use the transfer learning approach to enhance segmentation accuracy 

and processing performance. 
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