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ABSTRACT 

  
Two topics of two-dimensional electron systems on a curved surface with a 

constant radius are studied in this dissertation: the binding energies and impurity states 
of a single donor and the oscillator strength property in the system in the presence of an 
electric field. For both, we solve the Schrödinger equation for energy levels and 
eigenfunctions by using a finite difference approach within the scope of the effective-
mass approximation. Then those results are brought to calculate the binding energies 
and the oscillator strength. The impacts of donor positions, curvature, and system size 
on the binding energies are discussed. We observe that when the radius of such a 
system is less than the effective Bohr radius, the binding energy increase considerably. 
Additionally, by changing the direction of an external electric field, it is possible to 
efficiently manipulate the values of a donor's binding energies at certain places. The 
effect of tilt angles can enhance the oscillator strength along the x-direction, and the 
electric field on the -x-direction considerably upgrades the oscillator strength along the 
y-direction, especially when the curvature is numerous. 
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CHAPTER 1 INTRODUCTION 

Electronic devices related to dopants are getting much attention nowadays [1]. 
Donor impurities generate coulomb potential energy that significantly affects device 
features and increases capability. For instance, either random or normal distribution of 
the dopants in the channel can establish the threshold voltage in the field-effect 
transistor (FET) [1, 2]. In addition, the Coulomb potential energy from a dopant can also 
produce source and drain current extremums below the conduction band in the Fin 
field-effect transistor (FinFET) [3, 4]. Another exciting application is quantum bits that 
store information and perform calculations in quantum computers. Particles trapped in 
double potential donor wells can be used as qubits in quantum computing [5-7]. 
Furthermore, the effect of donor dopants is related to phenomena in optical devices 
such as microdisks where donor-bound excitons experimentally reduce the threshold 
lasing [8]. The multiple advantages of adding donor impurities have resulted in many 
studies of binding energy in diverse kinds of such low-dimensional systems [9-13]. 

Spatial confinement, impurity location, and external field influence the donor 
binding energy in nanostructures. When a donor is placed in the center of both finite 
and core-shell spherical quantum dots, the binding energy gradually declines while 
expanding the confinement area [14-17]. Nevertheless, it fluctuates in multilayered 
quantum dots [18] because an electron can tunnel through a barrier potential. External 
influences such as a magnetic field and an electric field also control the binding energy. 
A magnetic field can produce an additional potential that attracts an electron 
wavefunction into the sphere's center. In contrast, an electric field pushes an electron 
probability density away from a donor, decreasing the binding energy. 

In addition, there is a similar investigation on the quantum wires as well [19-22]. 
A magnetic field can enhance the binding energy in a coaxial quantum well wire when a 
donor impurity is localized in the inner wire, as previously described by Aktas et al. [19]. 
However, the binding energy is reduced when the impurity is doped to the outer wire. 
Moreover, the donor location can affect the electric field’s impact on the binding energy, 
and this result became more apparent when the dopant was positioned in the outer wire. 
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Another research from Tangarife and Duque investigated the binding energy on 
hydrostatic pressure in a double quantum-well wire [20]. They controlled the electron 
coupling on both left and right wires by adjusting the pressure. As a result, an electric 
field with hydrostatic pressure handle electron distribution and binding energy value 
more efficiently. 

For the quantum potential well, there are recently published works. Hu et al. 
studied the effects of different potential wells, including rectangular, V-shaped, and 
parabolic potential wells, on the binding energy [23]. The results showed that the 
location of a dopant has the most apparent impact on the binding energy in the V-
shaped potential. However, in the rectangular potential, the width of the well has the 
most significant effect on the binding energy. The electric field and magnetic field are 
comparable effects on the binding energy of three quantum wells. Kalpana et al. 
investigated the binding energy in double wells system with a donor impurity created 
from a dilute magnetic semiconductor [24]. The research revealed that the binding 
energy is still high even though a dopant is localized in the magnetic material wall, 
whose height can be adjusted by an external magnetic field. Lastly, Vartanian et al. 
considered the binding energy in a near-surface quantum well [25]. They found that the 
image charge and a dopant can influence the binding energy effectively, giving them 
positive energy. The binding energy drastically decreases if a dopant is near a vacuum. 

The famous structure in the present is a curved two-dimensional electron system 
(2DES) which confines electrons to only move on the surface. A spherical surface [26, 
27] and a rolled-up multilayer [28-33] are examples of structural surfaces studied for 
many years. Mainly, roll-up multilayer, in which we are interested, is generally produced 
by removing a substance layer. As a result, semiconducting layers roll by their strain 
effect. Applications of a curved 2DES are optical resonators [34, 35], microtube 
refractometers [36], and fluidic devices [37, 38]. Although the system has been studied 
until it can be applied in the real world, research about a donor in a curved 2DES is 
obscure. Since modern technology can precisely introduce an impurity to the system, 
studying the influences of a donor is necessary. 
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The light absorption of structures has been one of the optical properties that 
have been studied for many decades. There are many physical quantities that can be 
linked to absorbance. One popular quantity is the oscillator strength, which is a quantity 
that represents the probability of an electron being stimulated to higher energy levels 
[39, 40]. For example, Wu et al. studied the effect of an external electric field on the 
absorbance of a shallow InAs/InP quantum wire structure [41]. They discovered that an 
angle of an external electric field can control the sensitivity and the wavelength of 
incident light that the structure will be responsive to. Özmen et al. studied the oscillator 
strength and absorption coefficient of spherical quantum dot structures with a donor at 
the center of the dot [42]. They discovered that the donor greatly affected the optical 
properties. It will greatly reduce the oscillator strength, especially for a large dot. 
Moreover, the donor also results in the quantum dot absorbing incident light at higher 
energy levels. 

This dissertation studies various consequences of doping a donor in a curved 
surface electron system in a rolled-up form [43, 44]. The system is a model of GaAs and 
Al0.33Ga0.67As layers with a fixed curvature. The positivity due to a dopant atom creates 
the Coulomb force that attracts free electrons on the surface. We examine the system's 
energies in the case of a flat and large area to the two-dimensional electron system to 
confirm our calculation results [45, 46]. The researcher begins to study the effect of the 
curvature on the first two energy levels of the system. Then the donor is repositioned to 
observe the unpredictable binding energies of the system. Moreover, after applying an 
external electric field, it has several unforeseen impacts on the binding energies. The 
electron distribution in the absence of a dopant can help explain the various effects. In 
another section of this dissertation, the researcher investigates the effect of structure 
and electric field on the oscillator strength of the curved surface system without an 
impurity. This research is only interested in the transition between the ground state and 
the first excited state.  
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CHAPTER 2 BACKGROUND KNOWLEDGE 

Two-dimensional electron system 
The term "two-dimensional electron system" refers to two-dimensional electron 

gas systems in general. It is a solid-state physics scientific model, an electron gas that 
distributes in two dimensions but is firmly restricted in the third. Because of the tight 
confinement, energy levels are quantized in the third direction, which most studies can 
ignore. As a result, the electrons appear to be a two-dimensional sheet embedded in a 
three-dimension, such as an interface between thin silicon and insulating silicon dioxide 
layer or the interface between GaAs and AlGaAs. This action can produce a system of 
electrons on the surface that would be further confined in other directions, such as by 
magnetic or electric fields. This research focuses on the electrons in GaAs/GaAlAs; 
therefore, a brief overview of fabrication will be provided. 
 A 2DEG can be created, with the additional benefit of being generated at a 
crystalline GaAs/AlGaAs heterointerface. Its energy band gap allows the carriers to be 
constrained to a 2D plane. While GaAs (5.653 Å) and AlAs (5.660 Å) have identical 
lattice spacing, the band gap is vastly different. We can amplify a wide range of band 
gaps at ambient temperature if we adjust a concentration of Ga that would be doped in 
AlGaAs. It is feasible to design the band gap by generating a sequence of layers with 
varied characteristics in heterojunction devices using techniques such as molecular 
beam epitaxy (MBE) [47, 48]. 
 Discontinuities in the conduction and valence bands occur when a layer of 
AlGaAs is formed on top of a layer of GaAs. It is acceptable to place donors in an 
AlGaAs layer some distance apart from the interface where the 2DEG is produced using 
a process known as modulation doping [49-51]. Dopant ions are left behind when 
electrons from these donors diffuse into the GaAs region with a narrow band gap. Once 
an n-type doped layer is used, the Fermi energy in that layer is pushed toward the 
conduction band. Since the AlGaAs layer expresses the positive charge, the bands in 
the interface bend upward to balance the internal electric field. Therefore, carriers can 
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be trapped and formed into a surface with a triangle quantum-well in the conduction 
band occurred, as shown in Figure 1.  

 
Figure 1. A band diagram is formed by a GaAs/AlGaAs heterostructure with an n-type 
doping layer and an inherent AlGaAs gap layer [52] 

 The development of such a system can lead to the research of electron 
processes in two dimensions, as well as applications in the manufacture of various 
electronic devices. In this research, we will investigate the electron system which is 
curved in two dimensions and explore the traits that result from those systems. 

Doped semiconductors 
Doping impurities into crystals is essential today because intrinsic 

semiconductors typically have low electrical conductivity. However, when the impurities 
were doped, it was able to stimulate the conductivity of the semiconductor. For example, 
silicon and germanium crystals are group four elements on the periodic table. It is found 
that the bonds of each atom share valence electrons with all four surrounding atoms, 
and there are no electrons that have mobility within the crystal. As a result, the electrical 
conductivity is unpleasant. Nevertheless, suppose the atoms of group three and group 
five elements are doped into the crystal. In that case, free electrons or holes are formed 
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in the atomic dopant region, which results in better conductivity. The addition of atoms 
can be divided into two types: [53] 

The first type involves doping an element with more valence electrons than one 
of the original atoms in some places in the original crystal. In Figure 2, when doped to 
silicon crystals, phosphorus or arsenic is found to have an unpaired electron, which is 
excited in the conduction band of silicon and can move to different positions of the 
crystal, causing electricity to occur. Atoms doped to a semiconductor to form free 
electrons are called “donors,” and the addition of atoms in such a way is known as “n-
doped.” 

 

Figure 2. An example of doping phosphorus into a silicon crystal and leaving one 
unpaired electron 

 Another type of silicon dopants in crystals are atoms of an element with fewer 
valence electrons than one of the atoms in the original crystal, such as aluminum or 
gallium. In Figure 3, an example of doping aluminum, a group of three elements to 
silicon crystals, shows that aluminum can only share three electrons with silicon. Thus, 
electron holes occur around aluminum, and the movement of these positive holes can 
cause an electric current similar to the flow of electrons. These atoms added to a crystal 
are called “acceptors.” This process is called “p-doped.” 
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Figure 3. An example of doping aluminium into a silicon crystal and leaving hole 

The concentration of the impurity atom can be determined to change the 
properties of the original crystal. In this dissertation, GaAlAs/GaAs crystals were to be 
doped in the process of n-doped by using silicon atoms to induce electrons in the 
conduction band and move them to the junction between GaAlAs and GaAs. It creates a 
two-dimensional electron system following the guidelines of the previous section. 
Furthermore, the donor is doped near the junction, causing the Coulomb potential in the 
vicinity of a donor atom. 

Analytic solution of two-dimensional Hydrogen atom 
 A two-dimensional hydrogen atomic system is analogous to placing donor 
dopants into a two-dimensional surface. If a two-dimensional surface is sufficiently large, 
the resulting energy level approaches the two-dimensional energy level of the hydrogen 
atom. The results of this system can be compared to the numerical calculations 
employed in this study to determine whether the results are valid and consistent. The 
two-dimensional hydrogen atomic system begins with the interaction of protons and 
electrons, as well as the three-dimensional system. The electron's potential energy ( )V r  
is defined as 

 
2

( ) .
Ze

V r
r

=  (2.1) 
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0

1

4
Z


= , where 0  is the vacuum permittivity. r  indicates the distance between the 

proton and the electron. The time independent Schrödinger equation of the system in 
polar coordinate is 

 
2 2 2 2

2 2 2

1 1
( , ) ( , ),

2

Ze
r E r

r r r r r
 

 

    
− + + −  =   

    
 (2.2) 

 where  ,   and E  denote the electron’s effective mass, the wavefunction and the 
energy respectively. The wavefunction can be separated to ( )R r  and ( )  as 
 ( , ) ( ) ( ).r R r  =   (2.3) 
By substituting equation (2.3) to equation (2.2), 

 
2 2 2 2

2 2 2

1 1
( ) ( ) ( ) ( ).

2

Ze
R r ER r

r r r r r
 

 

    
− + + −  =   

    
 (2.4) 

Equation (2.4) can be rewritten as 

 
2

2 2

2

( ) ( ) 2 ( )
.

( ) ( ) ( )

R r R r Ze
r r r E

R r R r r

 



    
+ + + = − 

 
 (2.5) 

By defining 2( )

( )






− 


,  where  is a constant value, the solution of ( )  is 

 ( ) ,
i

C e


 =  (2.6) 
where C  is a normalized constant. From equation (2.6), equation (2.5) can be rewritten 
as 

 
2

2 2 2

2

( ) ( ) 2
.

( ) ( )

R r R r Ze
r r r E

R r R r r

   
+ + + = 

 
 (2.7) 

Equation (2.7) can be simplified as 

 
2 2

2 2

1 2
( ) ( ) ( ) 0.

Ze
R r R r E R r

r r r

  
 + + + − =  

  
 (2.8) 

Then redefine r  as a function of x , that is, 
2

22

N
r x

Ze
 , and define 

2

2

2
N

Ze

N


  , 

where N  is a constant value. The result of equation (2.8) is 

 
2 2 2

2 2

2 2

2
( ) ( ) ( ) 0.N

N N N

Ze
R x R x E R x

x x x

 
  

  
 + + + − =  

  
 (2.9) 

Equation (2.9) can be simplified by dividing both sides of equation (2.9) by 2

N , 
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2 2 2

2 4 2

1
( ) ( ) ( ) 0.

2

N N E
R x R x R x

x x Z e x

 
 + + + − = 

 
 (2.10) 

By defining 
2 4

2 22

Z e
E

N

 
 −  

 
, equation (2.10) becomes 

 
2

2

1 1
( ) ( ) ( ) 0.

4

N
R x R x R x

x x x

 
 + + − − = 

 
 (2.11) 

Then equation (2.11) is considered that x  converges to zero, meaning r  also 
approaches zero. Equation (2.11) in the following specific case is 

 
2

2

1
( ) ( ) ( ) 0.R x R x R x

x x
 + − =  (2.12) 

The solution of equation (2.12) is solved by distributing ( )R x  into power series. 
Consequently, the result which is acquired is 
 1( ) ,RR x C x=  (2.13) 
where 1

RC  is normalized constant. Another extreme case is x  diverge, meaning r  is 
enormous. Equation (2.11) can be simplified as 

 1
( ) ( ) 0,

4
R x R x − =  (2.14) 

The solution of equation (2.14) is simply solved analytically which is 
 2 2( ) .x

RR x C e−=  (2.15) 
 2

RC  is normalized constant. Eventually, equation (2.13) and (2.15) are combined to yield 
the appropriate solution as follow 
 | | 2( ) ( ),xR x x e G x−=  (2.16) 
where ( )G x  is an arbitrary function which is corresponding to the expression. By 
substituting equation (2.16) to (2.11), we obtain 

 ( )
1

( ) 2 1 ( ) ( ) 0.
2

xG x x G x N G x
 

 + − + − − + + = 
 

 (2.17) 

Equation (2.17) is a form of Kummer's equation, whose the solution is a confluent 
hypergeometric function F [54, 55], 

 1 1

1
( ) ,2 1, .

2
G x F N x

 
= − + + + 

 
 (2.18) 
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This answer is valid when 1
0

2
N− + +  , so 1 3 5

, , ,
2 2 2

N = . n  is defined for 

indicating energy levels, which are integers, therefore the energy levels E  are rewritten 
as 

 
4

2 2
1

2
2

Z e
E

n


= −

 
− 

 

 (2.19) 

with 1
1,2,3,...

2
n N= + = . From equation (2.18), the general solution of ( )R x  is 

 ( )| | 2

1 1( ) 1,2 1, ,xR x Px e F n x−= − + + +  (2.20) 
where P  is a normalized constant. If ( )R x  is converted to the function of distance r , it 
becomes 

 ( ) ( )
| | 2

1 1( ) 1,2 1, .N r

N NR r P r e F n r −= − + + +  (2.21) 
The part of confluent hypergeometric function can be expanded in terms of Laguerre 
polynomials as follow 

 ( )
( ) ( )

( )
2

1 1 1

2 ! 1 !
1,2 1, ( ),

1 !
N Nn

n
F n r L r

n
 

− −

− −
− + + + =

+ −
 (2.22) 

where 2

1
( )Nn

L r
− −

 denotes Laguerre polynomials. By substituting equation ( 2.22)  to 
equation (2.21), ( )R r  can be rewritten in terms of Laguerre polynomials as follow 

 ( )
( ) ( )

( )
| | 22

1

2 ! 1 !
( ) ( )

1 !
N r

N Nn

n
R r P r e L r

n

 −

− −

− −
=

+ −
 (2.23) 

From equation (2.23), if ( )R r is normalized, we acquire 

 
( )

( )
( )( )

1 2

1 !

2 ! 2 1 1 !

N
n

P
n n

  + −
=  

− − −  

 (2.24) 

Finally, the analytic solution of ( )R r  part is 

 
( )

( )
( )( )

( )

1 2

| | 2

1 1

1 ! 1
( ) ,2 1, ,

22 ! 2 1 1 !
N rN

N N

n
R r r e F N r

n n


 −

 + −  
= − + + +   

− − −    

 (2.25) 
corresponding to the previous research about two-dimensional hydrogen atom [45]. 



 11 

Oscillator strength in a flat surface system 
 Oscillator strength is a dimensionless quantity that indicates the probability of 
electron transition between two arbitrary states from the incident light [39, 40]. If we 
consider a curved surface system, the oscillator strength nmf  along the  -direction 
between the state n  and state m  are defined as 

 ( )
2

2

2
,nm m nf E E m r n


= −  (2.26) 

where   is an electron’s effective mass and  is the reduced Planck constant. nE  and 

mE  are energy levels of the state n  and state m , respectively. The operator r  is the 
coordinate corresponding to the polarization of the incident light. For example, if a given 
polarization of the light is in the x-direction, r  becomes a position operator x  in the 
Cartesian coordinate. m r n  , called the transition dipole moment, determines the 
coupling between two states and how strong the system will interact with the incident 
light. Since the quantity of oscillator strength is proportional to the intersubband 
transition rate from Fermi’s golden rule, [41] the oscillator strength can also be used as 
another measurement for absorption intensity in an optical system. 

The Thomas-Reiche-Kuhn (TRK) sum rule helps us confirm that the oscillator 
strength is implemented correctly. For instance, the derivation of the sum rule along the 
x-direction begins with two commutation relations, 

  ˆ ˆ,x x xe p e x
i

=  (2.27) 

and 

  ˆ ˆ, .x x xH e x e p
i

=  (2.28) 

ˆ
xe  is the unit vector of the Cartesian coordinate along the x-axis. The operator xp  is the 

momentum along the x-direction. In a two-dimensional flat surface, the Hamiltonian can 

be written as ( )
2 2 2

2 2
( )

2
H V x V y

x y

  
= − + + + 

  
 where   are the electron’s 

effective mass. ( )V x  and ( )V y  are the arbitrary potentials of the system. For a 
simplification, ( )V x  and ( )V y  are zero values on the surface region and infinite on the 
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otherwise because of the geometric confinement. If a commutator  ˆ ˆ ˆ,x x xe p e x  in 
equation (2.27) is calculated and inserted a complete set of states, we will obtain 
 ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ .x x x x x x x x x x x x

m

n e p e x e x e p n n e p m m e x n n e x m m e p n −  =  − 

 (2.29) 
 n  and m  are two arbitrary quantum states which are orthogonal. After the 
calculation, the relation in equation (2.28) can be written as 

 ( )ˆ ˆ
x x n m x

i
n e p m E E n e x m


= −  (2.30) 

and 

 ( )ˆ ˆ .x x m n x

i
m e p n E E m e x n


= −  (2.31) 

By substituting equation (2.30) and (2.31) into equation (2.29), the desired result is 

 ( )
2

2
ˆ

2
m n x

m

E E m e x n

= −  (2.32) 

Equation (2.32) leads to the important condition of the oscillator strength along the x-
direction,  

 ( )
2

2

2
ˆ1 .m n x

m

E E m e x n


= −  (2.33) 

Furthermore, If the derivation of the y-direction uses the similar implementation, the sum 
rule of the oscillator strength along the y-direction becomes 

 ( )
2

2

2
ˆ1 .m n y

m

E E m e y n


= −  (2.34) 

y  and ˆye  are the position operator in the y-direction and the unit vector of the Cartesian 
coordinate along the y-axis, respectively.  
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CHAPTER 3 METHODOLOGY AND CALCULATION 

A curved surface electron system 
 Firstly, a curved surface electron system in the absence of impurity. As a result, 
we consider a rectangular two-dimensional plane with length L  and width W  that is 
rolled and has a constant radius R , as shown in Figure 4. The angle   and the depth 
z  are utilized to identify the positions on the cylindrical surface. The relation between 
radius R  and width W  is ( )max minW R  = −  where  min  and max  indicate the edge of 
a curved surface in the  -axis. s  is a coordinate, relating with R  as s R= , along the 
curve of a surface. Within the effective mass approximation, we can derive the energy 
levels and wavefunctions of the system's electrons from the Schrödinger equation 

 
Figure 4. A schematic representation of a curved surface with a constant radius R  [56] 

 0 0 0 0
ˆ ,H E =   (3.1) 

where 0 0
ˆ ,H E  and 0 are Hamiltonian, the energy, and the wavefunction respectively. 

In the cylindrical coordinate, we can write the Hamiltonian of such a system as follows 
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22 2 2

0 2 2 2 2

1ˆ ( , ),
2 8

R
CH V z

R z R




  

  
= − + − + 

  
 (3.2) 

which the derivation is in Appendix A. The initial term is the kinetic energy operator, 
where   denotes an electron's effective mass. The second term is the geometric 
potential, where R  denotes a constant that accounts for the effects of strain and 
curvature in the system. These two terms are corresponding to the Hamiltonian of a 
particle bound on a curved surface. The system's confinement potential CV  is 

 min max0, 0
( , ) .

, otherwise
C

z L
V z

  


    
= 


 (3.3) 

Therefore, the Hamiltonian in equation (3.2) is substituted into equation (3.1), we obtain 

 
22 2 2

0 0 0 0 02 2 2 2

1
.

2 8
R

CV E
R z R



  

  
− +  −  +  =  

  
 (3.4) 

Equation (3.4) is second order differential equation which can be solved analytically as 
shown in Appendix B. Finally, we acquire the system's energy level and normalized 
wavefunction as 

 
2 2 2 2 2 2 2

0 2 2 22 2 8
z R

n n
E

W L R

  

  
= + −  (3.5) 

and 

 ( ) ( )0 min min

2
sin sin ,z

n R n
z z

W LWL

 
 

   
 = − −   

  
 (3.6) 

where n  and zn  are a positive integer from 1 to infinity.  

A curved surface electron system with a donor impurity and an external electric field 
 As demonstrated, the energy level and wavefunction of a system can be 
calculated analytically in the absence of a donor impurity and an external electric field. 
The Hamiltonian system becomes more complicated when disturbances are added to 
the system. Let us consider the Hamiltonian ˆ

DH  of the following system as 

 
22 2 2

2 2 2 2

1ˆ ( , ) ( , ) ( ).
2 8

R
D C D FH V z V z V

R z R


  

  

  
= − + − + + + 

  
 (3.7) 

DV  and FV , which are subtracted from the original Hamiltonian 0Ĥ , are the potential 
due to a donor impurity and an electric field respectively. This type of doping generates 
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a coulomb force in the vicinity of the dopant. The Coulomb effect DV  between an 
electron and a donor position is represented by 

 
2

0

,
4

D

e
V

r 

−
=


 (3.8) 

where e−  indicates the electron charge.   is relative permittivity of GaAs relating to the 
vacuum permittivity 0 . r  is the range between a donor and a carrier particle, is 

expressed by   ( )
22 2 2cos( )D Dr R z z  = − − + − . D  and Dz  are the coordinates 

of a donor in the  -axis and the z -axis, respectively. Consequently, the position of a 
donor in s  coordinate is D Ds R= . The electric field F  which perturbs the system is 
perpendicular to the plane of surface. F  and the x-axis are at an angle F  where 

ˆ ˆcos sinF FF F i F j = + . FV  is obtained from the relation between FV  and F  

( )FeF V= − , given by 

 ( )( ) cos .F FV eFR  = −  (3.9) 
Due to the addition of parameters, the Schrödinger equation with this Hamiltonian 
cannot be easily solved analytically. As a result, this problem is solved numerically using 
the finite difference approach. We convert these parameters to dimensionless quantities 
by measuring the length and the energy in the unit of  the effective Bohr radius 

2

0

2

4
a

e

 


 =  and the effective Rydberg energy 

( )

4

2

08

e
R

h



 

 = ; therefore,  The 

dimensionless Schrödinger equation is D D D DH E =   where 

 
2 2

2 2 2 2

1
( , ) ( , ) ( ).

4
R

D C D FH V z V z V
R z R


  



  
= − + − + + + 

  
 (3.10) 

D  and D
D

E
E

R
=  are wavefunctions and energy levels of the following system 

respectively. The length parameters R  and z  in equation (3.7) become R
R

a
=  and 

z
z

a
= . Three potentials CV , DV  and FV  in equation (3.10) are measured in the same 

unit which C
C

V
V

R
= ,  

 
( ) ( )

22

2
,

2 2cos

D
D

D D

V
V

R R z z 


−
= =

 − − + −
 

 (3.11) 
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and   

 ( )cos ,F
F F

V
V FR

R
 


= = −  (3.12) 

 

where the dimensionless strength of an electric field is F
F

F
=  and 

( )

2

3

2
F

e a




= . 

Following that, the variables have been already converted to dimensionless form. We 
use the dimensionless Schrödinger equation to compute the energy levels DE  and 
wavefunctions D  by finite difference method. Finally, the binding energy BE  is 
calculated from the difference between the energy without and with a donor impurity,  

 0 .B DE E E= −  (3.13) 
 The dimensionless form of 0E  in equation (3.5) is 

 
( ) ( ) ( )

2 2 2 2

0 2 2 2
,

/ / 4 /

z R
n n

E
W a L a R a

  
  

= + −  (3.14) 

Finite difference method for a two-dimensional curved surface 
 The finite difference method is a numerical approach used to solve differential 
equations. It may be used to solve the Schrödinger equation in a variety of two-
dimensional electron systems. Therefore, such method is chosen to solve the problem of 
curved surface with a donor impurity as well. In the beginning, we create the uniform 
grid on the s z−  plane, which has the zN N   intersections, and s  denotes the 
coordinates along the arc of circle. Following that, we use the central difference 
approximation to derive the derivative between the grid points. The Schrödinger 
equation D D D DH E =   becomes 

 

( )

( )

1, , 1,

2 2

, 1 , , 1

2

, , , , ,

2

1
2

( )

1
2

( )

4

i j i j i j

D D D

i j i j i j

D D D

i j i j i j i j i jR
C D F D D D

R

z

V V V E
R





− +

− +

−  −  +


−  −  +


 
+ + + −  =  
 

 (3.15) 
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where i  and j  are indices specifying the positions of the grid intersections along , z -
axis. ,i j

D  denotes the wavefunction at the position ,i j . ,i j

CV , ,i j

DV , and ,i j

FV  are 
dimensionless potentials at the point ,i j  as well. Since this divided grid contains 

zN N   points, we can formulate ( )
2

zN N   differential equations. This can be 
represented as the following equation matrix: 
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(3.16) 
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by defining 0ij  , 1iju  , and 2ijv  . Eventually, we acquire dimensionless energy 
levels DE  and wavefunctions ,i j

D  by solving equation (3.16). 
Our numerical results for the system without a donor and an electric field 

approach the solution in equation (3.14). This result demonstrates the validity of our 
numerical technique. The next chapter will provide another method for verifying our 
numerical results. 

Oscillator strength in a curved surface system 
In a curved surface system, The Thomas-Reiche-Kuhn (TRK) sum rule is also 

useful for the system. For derivation, we begin with two commutation relations, 

 ˆ ˆ,e p e R
i

  
  =   (3.17) 

and 

 ˆ ˆ ˆ, .
2

i
H e R e p e

i R
   



 
  = +  

 
 (3.18) 

  and  are an electron’s effective mass and the reduced Planck constant, 
respectively. R  is the radius of the curved surface. ê  and ê  are the unit vectors of the 
cylindrical coordinate along the  - and  - axis, respectively. The operator p  is the 
momentum along the  -axis. In two-dimensional curved surface, the Hamiltonian can 

be written as 
2 2 2 2

2 2 2 2

1

2 8
H

R z R  

  
= − + − 

  
. If a commutator ˆ ˆ ˆ,e p e R  

    in 

equation (3.17) is calculated and inserted a complete set of states, we will obtain 
 ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

m

n e p e R e R e p n n e p m m e R n n e R m m e p n            −  =  − 

 (3.19) 
n  and m  are two arbitrary quantum states which are orthogonal. After the 

calculation, the relation in equation (3.18) can be written as 

 ( )ˆ ˆ ˆ
2

n m

i i
n e p m E E n e R m n e m

R
   


= − −  (3.20) 

and 

 ( )ˆ ˆ ˆ .
2

m n

i i
m e p n E E m e R n m e n

R
   


= − −  (3.21) 
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nE  and mE  are the eigenstates of states n  and m , respectively. By substituting 
equation (3.20) and (3.21) into equation (3.19), the desired result is 

 ( )
2

2
ˆ .

2
m n

m

E E m e R n

= −  (3.22) 

Equation (3.22) leads to the important condition of the oscillator strength in a two-
dimensional curved surface system, 

 ( )
2

2

2
ˆ1 ,m n

m

E E m e R n


= −  (3.23) 

or 

 ( )
2

2

2
ˆ ˆ1 cos cos .m n x y

m

E E m e R e R n


 = − +  (3.24) 

ê R  is equal to ˆ ˆcos sinx ye R e R +  in a Cartesian coordinate system. ˆxe  and ˆye  are 
the unit vectors of the coordinate. Since this dissertation focuses on the incident light 
polarized along the x- and y-direction ( -axis), equation (3.24) confirms that the 
summation of the oscillator strength from state n  to all states m  along both 
directions is exactly one. By comparing equation (3.24) with equations (2.33) and (2.34), 
it is found that the sum rule of the curved surface system is different from that of the flat 
surface system.  
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CHAPTER 4 RESULTS AND DISCUSSION 

Effects of a donor impurity on a curved surface at various locations  
In this computation, the physical parameters are 00.067m = , L  = 300 nm, R  

= 6 [31] and   = 12.4, correlating with a  = 9.79 nm, R  = 5.929 meV, and F   = 
6.054 × 105 V/m. This work focuses on the binding energy values with different donor 
locations by adjusting the radius R , width W and electric field F . A top view of the 
curved surface and marks of impurity location are displayed in Figure 5. Both sides of 
the surface are positioned at 0.5s W= −  and 0.5s W= , respectively. We investigate 
eight impurity locations consisting of ( ) ( ), 0,0.5D Ds z L= , ( )0.25 ,0.5W L , 

( )0.5 ,0.5W L , ( )0.5 ,0.75W L , ( )0.5 ,W L , ( )0.25 ,W L , ( )0, L , and ( )0,0.75L , marked 
by 1-8 numbers. 

 
Figure 5. On the s-z plane, a curved surface with length L  and width W . Numbers 1–8 
are assigned to eight impurity locations denoted by cross signs. [56] 

The effect of curvature on the system’s energy levels DE  in Figure 6 shows that 
the energy levels of both the ground state and the first excited state converge to specific 
values in the case of an increasing surface radius. With W = 150 nm, the system's 
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energy levels converge to the exact dimensionless energy of a two-dimensional 
hydrogen atom [45, 46] equal to 

 
2

,
1

2

D

R
E

n



= −
 

− 
 

 (4.1) 

where n  is a positive integer. Figure 6 illustrates that the energies of the ground and first 
excited states are close to 4R−  and 4 9R− , respectively. This result also confirms 
the computational results discussed in the previous chapter. However, while the surface 
radius decreases until reaching the Bohr radius a , the energy levels drop rapidly. They 
go to a minimum when the surface nearly completes the full circle at 2R W = . Since 
the negative potentials (Coulomb and geometric potentials) dominate when the surface 
radius R  is small. 

 
Figure 6. The energies DE  of the ground and first excited states of a curved surface 
with an on-center donor ( )0, 0.5D Dz L = =  impurity are plotted as a function of the 
radius R  for widths W  of 10, 15, and 150 nm. [56] 
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Figure 7 displays the binding energies in eight donor locations, with each sub-
graph comprising red (W = 10 nm), blue (W = 50 nm), and black (W = 150 nm) lines. 
Overall, the binding energies are more heightened when the width of the curved surface 
is narrow (W = 10 nm). Those binding energies are relatively high in locations 1, 2, and 
8 because a donor has a more critical effect on DE  than in other locations. In contrast, 
the binding energies at locations 5, 6, and 7 are weak in all sample widths W  since the 
confinement at the top region reduces the impact of Coulomb potential from a donor. 
Additionally, the change of width W  slightly affects such binding energies. The binding 
energies of the ground state and the first excited state at each location are similar 
compared to the case of R = 30 nm (Figure 7(a) and (b)) and R = 23.87 nm (Figure 7(c) 
and (d)). Nonetheless, there is a noticeable difference in first excited state binding 
energies in Figure 7(d) when a donor is positioned on locations 3 and 4. The binding 
energies of W = 150 nm are more significant than those of W = 50 nm at those 
locations. 
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Figure 7. Binding energies n

BE  of the ground ( 1)n =  and first excited states ( 2)n =  in 
a curved surface with R  = 30 nm ((a) and (b)) and R  = 23.87 nm ((c) and (d)), 
respectively. The numbers on the x-axis correspond to the eight donor locations 
illustrated in Figure 5. [56] 
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The impressive result in Figure 7(d) leads the researcher to further study a 
curved surface with a donor in location 3 by comparing the binding energies of each 
width at various radius values. Figure 8 shows that in the case of widths W = 10, 20, and 
50 nm, the binding energies of both the ground state (a) and the first excited state (b) 
are stable at the specific values when the curvature radius R  is large. Nevertheless, 
those binding energies peak if the curved surface is almost circular since two negative 
potentials (geometric and Coulomb potentials) are outstanding when R  is sufficiently 
small. On the other hand, the results of widths W = 150 and 200 nm are slightly 
different, and the ground state binding energies are unvarying for all reasonable radius 
values. Conversely, the first excited state binding energies surprisingly rocket higher 
than that of W = 50 nm. 
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Figure 8. Binding energies n

BE  of the ground ( 1)n =  and first excited states ( 2)n =  in a 
curved surface with a donor impurity in location 3 as a function of the radius R  for 
widths W (10, 20, 50, 150, and 200 nm). [56] 

Electron distributions can clarify unusual characteristics of those binding 
energies. Figure 9 shows the probability densities on the s-z plane relating to the 
binding energies in Figure 8. Figure 9(a-f) illustrates that the electron distributions of the 
ground state and first excited state with tiny width W  slightly shift to the left side when 
the radius R  decreases. Those distributions in Figure 9(a) and (d) nearly become 
symmetric because a donor at location 3 produces almost equivalent Coulomb potential 
wells, which enhance the confinement on each side of a surface. Consequently, the 
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binding energies of the first two states with narrow widths W  tend to be high when a 
curved surface approaches a full circle. However, peaks of the binding energies with a 
wide surface (W = 150 and 200 nm) arise differently. In Figure 9(i), the electron 
distribution has a peak oriented vertically (z-axis) at the top and bottom, localized 
around a donor at location 3. The distribution form gradually changes as the radius R  
decreases, as seen in Figure 9(g) and (h). Finally, that distribution completely transforms 
to arrange along the s-axis, in which electron probability distributes both left and right 
sides equally. Not only the remarkable effect of the Coulomb potential DV  with small R  
affects the first excited state binding energies, but also the transformation of distribution 
has a massive effect on those binding energies since the average distance from an 
electron to a donor in Figure 9(g) is shorter than in Figure 9(i). 

 
Figure 9. (a-c) Electron distributions of the ground states 1

D  for a curved surface with 
W = 10 nm and R = 1.6, 2.8, and 14.6 nm, respectively. (d-f) Electron distributions of 
the first excited states 2

D  for a curved surface with W = 20 nm and R = 3.3, 4.2, and 
14.6 nm, respectively. (g-i) Electron distributions of the first excited states 2

D  for a 
curved surface with W = 150 nm and R = 24.4, 31.2, and 109.7 nm, respectively. Note 
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that R  values in (a), (d), and (g) are the lowest for each system, and a donor is at 
location 3 in all figures. [56] 

Effects of an electric field on donor states 
 This section will explore the impacts of an electric field on the binding energies. 
In Figure 10 to Figure 13, we are interested in a curved surface with R = 23.87 nm for 
W = 35, 75, and 115 nm relating to m = 0.73, 1.57, and 2.41 rad. A given electric field 

is along the x- and y-axis, matching F = 0, 0.5π, π, and 1.5π rad. 
 The results in Figure 10 demonstrate that an electric field in the ±x-direction and 
various widths W  have unpredictable effects on the binding energies at each donor 
location. In Figure 11, electron distributions of ground and first excited states without a 
donor impurity for widths W = 35 and 115 nm can describe those results. The 
confinement due to such a donor are high when a donor is positioned near a peak of 
probability distribution. As a result, the binding energies are incredible in those 
situations. For instance, the binding energies at donor locations 1, 2 and 8 for W = 35 
nm relatively high in Figure 10(a) and (b) because an electron probability is significantly 
high around those regions, as shown in Figure 11(a) and (b). Conversely, the binding 
energies at donor locations 3 and 4 for W = 115 nm are dominant instead of locations 1, 
2, and 8 in Figure 10(a) and (b) since an electric field in the positive x-direction 
separates electron distributions into both left and right sides of a surface. Therefore, 
donor locations 3 and 4 are nearer points from the peak of electron probability, as 
displayed in Figure 11(c) and (d). 
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Figure 10. Binding energies n

BE  of the ground state (a) and first excited state (b) for W
= 35, 75, and 115 nm with an electric field ˆ3F F i= , and the ground state (c) and first 
excited state (d) binding energies for the same values of W  with an electric field 

ˆ3F F i= − . The x-axis numbers correspond to eight donor locations. [56] 
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Figure 11. Electron distributions of the ground state (a) and first excited state (b) at W = 
35 nm as well as the ground state (c) and first excited state (d) at W =  115 nm in the 
presence of an electric field ˆ3F F i= . (e), (f), (g), and (h) illustrate those probability 
distributions with an electric field ˆ3F F i= − . [56] 
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Figure 11(e-f) shows that if an electric field turns to negative x-direction, the 
electron distributions move to the central line at s = 0 for W = 35 and 115 nm. Hence, 
the electric field supports the attractive force from a donor impurity on locations 1 and 8, 
but it reduces the capability to confine an electron when a donor is doped at locations 3 
and 4. As a result of such distribution, the binding energies at donor locations 1 and 8 
are similarly high in all three widths W = 35, 75, and 115 nm. Furthermore, the binding 
energies at locations 3 and 4 are relatively lower than the results in Figure 10(a) and (b). 
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Figure 12. Binding energies n

BE  of the ground state (a) and first excited state (b) for W
= 35, 75, and 115 nm with an electric field ˆ3F F j= , and the ground state (c) and first 
excited state (d) binding energies for the same values of W  with an electric field 

ˆ3F F j= − . The x-axis numbers correspond to eight donor locations. [56] 
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Figure 13. Electron distributions of the ground state (a) and first excited state (b) at W = 
35 nm as well as the ground state (c) and first excited state (d) at W =  115 nm in the 
presence of an electric field ˆ3F F j= . (e), (f), (g), and (h) illustrate those probability 
distributions with an electric field ˆ3F F j= − . [56] 
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Figure 12 illustrates the effect of an electric field in the y-direction on the binding 
energies. When the electric field is directed along the y-axis, the binding energies of W
= 75 and 115 nm are relatively low at all locations since the field drives the electron 
distributions to the left side of a surface, as illustrated in Figure 11(c) and (d). 
Nevertheless, the binding energies of W = 35 nm at donor locations 1 and 8 are 
stronger than those at other locations because the tight confinement from CV  causes 
the average distance between a donor and an electron to slightly locomote from the 
original. In contrast, a negative y-direction electric field causes the electron distributions 
to shift to the right, as displayed in Figure 13(e–h). It results in the highest binding 
energies at location 2 for all widths W . Additionally, higher binding energies occur at 
locations 3 and 4. A shift of electron distributions to both left and right sides due to an 
electric field does not influence differently on the binding energies at locations 1, 7, and 
8 because of the system's symmetry. Since an electric field in both the x- and y-
directions cannot affects donor states at locations 5, 6, and 7, the binding energies at 
such locations in Figure 10 and Figure 12 are always low and little responsive to the 
width W . 
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Oscillator strength in a two-dimensional curved surface 
 This section will show the effects of curvature and an electric field on the 
oscillator strength of a curved surface. We study the oscillator strength of the electron 
transition between the ground state and the first excited state. An electric field at an 
angle F  is as displayed in Figure 14. 

 
Figure 14. On x-y plane, the cross section of a curved surface with an electric field F  at 
an angle F . 

 
Figure 15. The oscillator strength along the y-direction of the ground and first excited 
states as a function of R  with W = 20, 50, 150 and 200 nm, respectively. 
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 Figure 15 shows the effect of a radius on the oscillator strength between the 
ground and first excited states with various widths W . We only report when the incident 
light is polarized in the y-direction because the curved surface is not sensitive to the x-
polarized light for all radius values. Overall, decreasing R  reduces the oscillator 
strength values of whole widths, but there is a difference between the tiny (W = 20 and 
50 nm) and large (W = 150 and 200 nm) widths. The oscillator strength of wide W  
gradually declines while R  decreases. For the narrow W , the curvature slightly 
influences the oscillator strength when R  is significant, and then the oscillator strength 
drastically decreases when R  reaches specific values. The oscillator strength declines 
because adding curvature causes the coupling between the ground and first excited 
states drops. 

 
Figure 16. The energy levels of the ground and first excited states as a function of F  
with R = 15.9, 23.9 and 47.7 nm, respectively. 

 Figure 16 illustrates the energy levels of the ground and first excited states as a 
function of F  for a given electric field 1F F = . We provide several calculations 
keeping the radius of the curved surface constant to R = 15.9, 23.9 and 47.7 nm, 
respectively, with varying F  from 0° to 180°. The width is fixed to W = 75 nm. 
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Increasing F  causes the energy levels gradually decrease for all radius values, and it 
impacts significantly when the surface is less curved ( R = 47.7 nm). For the first excited 
state, F  less than 45° can push the energy levels to the peak values before slowly 
declining to the lowest points. 

 
Figure 17. The oscillator strength along the x-direction between the ground and first 
excited states as a function of F  with R = 15.9, 23.9 and 47.7 nm, respectively. 
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Figure 18. The transition dipole moment (t.d.m.) squared of the oscillator strength 
corresponds to Figure 17 as a function of F  with R = 15.9, 23.9 and 47.7 nm, 
respectively. 

 We previously knew that the oscillator strength between the ground and first 
excited states was almost zero when polarized light in the x-direction interacted with a 
curved surface. However, the electric field with varying F  can enhance the oscillator 
strength in that case. Figure 17 illustrates the oscillator strength along the x-direction 
between the ground and first excited states as a function of F  for a given electric field 

1F F =  and various radius values. Figure 18 demonstrates the transition dipole 
moment squared of the oscillator strength in Figure 17 as a function of F . For all radius 
values, increasing F  drives the oscillator strength to the maximum points, which are 
higher when curvature is greater, then the oscillator strength declines to zero at F  = 
180°. This result is because proper angle F  and curvature enhance the coupling 
between the ground and first excited states along the x-direction. 
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Figure 19. The oscillator strength along the y-direction between the ground and first 
excited states as a function of F  with R = 15.9, 23.9 and 47.7 nm, respectively. 

 
Figure 20. The transition dipole moment (t.d.m.) squared of the oscillator strength 
corresponds to Figure 19 as a function of F  with R = 15.9, 23.9 and 47.7 nm, 
respectively. 
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 Figure 19 shows the oscillator strength along the y-direction between the ground 
and first excited states as a function of F  for a given electric field 1F F =  and various 
radius. Figure 20 demonstrates the transition dipole moment squared of the oscillator 
strength in Figure 19 as a function of F . Overall, the curvature, increasing R , can shift 
the oscillator strength line lower. This result is different from the prior case since the 
curvature reduces the coupling between the ground and first excited states along the y-
direction. In detail, increasing F  at the beginning lowers the oscillator strength to be 
minimum, then inclines monotonously to reach the maximum at F  = 180°. Those peaks 
are also higher than the value at F  = 0°. The reason for weak oscillator strength is that 

F  less than 15° is critical in eliminating the coupling between those states along the y-
direction. The electric field along the -x-direction can considerably upgrade the 
sensitivity of y-polarized light. 

 
Figure 21. The intersubband transition energy between the ground and first excited 
states as a function of F  with F = 0°, 45°, 90°, 135° and 180°, respectively. 
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Figure 22. The oscillator strength along the x-direction between the ground and first 
excited states as a function of F  with F = 0°, 45°, 90°, 135° and 180°, respectively. 

 
Figure 23. The transition dipole moment (t.d.m.) squared of the oscillator strength 
corresponds to Figure 22 as a function of F  with F  = 0°, 45°, 90°, 135° and 180°, 
respectively. 
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After we comprehend the curvature effect, the impact of the electric field 
magnitude is studied by choosing the curved surface with W  = 75 nm and R  = 23.9 
nm. Figure 21 exhibits the intersubband transition energy between the ground and first 
excited states as a function of F  with various F . For F  = 0°, increasing F  gradually 
shrinks the intersubband transition energy, while others rapidly rise, precisely F  = 45° 
and 90°. Therefore, F  = 0° tends to diminish the oscillator strength, while tilt angles can 
strengthen the oscillator strength. 
 Figure 22 demonstrates the oscillator strength along the x-direction between the 
ground and first excited states as a function of F  with various F . Figure 23 
demonstrates the transition dipole moment squared of the oscillator strength in Figure 
22 as a function of F . The oscillator strength has zero value for all F  when F  aligns 
on the x-axis ( F  = 0° and 180°). Although the intersubband transition energy at F  = 
180° supports the oscillator strength, F  with F  = 180° annihilates the coupling 
between the two states along the x-direction. However, increasing F  with tilt angles F  
still continuously improves the oscillator strength along the x-direction. 

 
Figure 24. The oscillator strength along the y-direction between the ground and first 
excited states as a function of F  with F = 0°, 45°, 90°, 135° and 180°, respectively. 
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Figure 25. The transition dipole moment (t.d.m.) squared of the oscillator strength 
corresponds to Figure 24 as a function of F  with F  = 0°, 45°, 90°, 135° and 180°, 
respectively. 

 Figure 24 shows the oscillator strength along the y-direction between the ground 
and first excited states as a function of F  with various F . Figure 25 demonstrates the 
transition dipole moment squared of the oscillator strength in Figure 24 as a function of 
F . Increasing F  with various F  values reduces the oscillator strength. Interestingly, 
the decreasing pattern at F  = 0° is different from the others because the coupling 
between the ground and first excited states is great when the magnitude of an electric 
field is large. The result is a contrast to the intersubband transition energy; therefore, the 
oscillator strength plummets. Except for F  = 180°, the oscillator strength consistently 
enhances over F  because those factors go in the same direction. 
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CHAPTER 5 CONCLUSIONS 

In conclusion, we used a two-dimensional finite difference method to investigate 
rolled-up GaAs/AlGaAs layers with a constant radius in the presence of an electric field. 
On the binding energies, we present the coincidental effects of the radius of the curved 
surface, the donor position, the system's size, and the direction of an electric field. 
Without an electric field, the results indicate that the binding energies generated by an 
interior donor are more than those produced by an edge donor. When the radius value 
is smaller than the effective Bohr radius a , the displacement between a donor and an 
electron declines, resulting in a rapidly increase in the binding energies. Interestingly, 
the transition of electron distributions results in a substantial increase in the first excited 
state binding energy when a donor is on the right side of the wide surface. After adding 
an electric field, a complicated variation of the binding energies at each donor location 
happens. It can be comprehended and evaluated by observing the electron 
distributions without a donor. High binding energies occur when a donor is doped near 
the peak of electron distributions. Similarly, we believe that the binding energies in other 
structures can be anticipated using the location of the peak of probability and a donor 
impurity. On the oscillator strength, we report the impacts of the curved surface's radius, 
the surface's width, and the direction of an electric field. The study found that the lower 
radius value causes the weak oscillator strength along the y-direction because of the 
lower coupling between the ground and first excited states. An angle of an electric field 
can tune the oscillator strength. The tilt angle enhances the oscillator strength along the 
x-direction; however, that is eliminated when the electric field aligns on the x-axis. In the 
y-direction, the oscillator strength reduces at the beginning of increasing the angle 
value. Then, it increases monotonously to the maximum. The magnitude of an electric 
field improves the oscillator strength along the x-direction, but not when the angle is at 
0° and 180°. The result is the opposite for each angle in the y-direction. Except for the 
angle of 0°, the oscillator strength is still weak over electric field strength because of the 
lower intersubband transition energy. From both studies, we expect them to be relevant 
for future research and can be applied to curved 2DES-based electrical products.  



 45 

APPENDIX 

A. The Hamiltonian for a particle constrained on a cylindrical surface 
 The Hamiltonian for a particle bound on a cylindrical surface is deduced in this 
section using the straightforward method described by Shikakhwa and Chair [57]. To 
begin, consider the case of a free particle in three-dimensional space. the system’s 
Hamiltonian in cylindrical coordinates ( , , )z   is 
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 is defined. The Hamiltonian 

can be expressed as 
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 (6.2) 

If a strong radial potential ( )V   is provided into the system, it can be assumed that a 
particle is confined on a cylindrical surface. Consequently, the radial momentum can be 
ignored, and R , the radius of the surface, can be substituted for the coordinate  . At 
this point, the system is two-dimensional, and Hamiltonian is 
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Normally, the second term is referred to as the geometric potential [31, 32], which is 
obtained from the curvature of a cylindrical surface. Additionally, Ortix et al. enhanced 
the Hamiltonian for a curved multilayer nanostructure [58]. Strain in curved layers 
creates another geometric potential for conduction electrons due to the model-solid 
theory [59]. The authors demonstrate that the formula of the geometric potential due to 
strain, derived from the adiabatic separation approach, is identical to that of the 
geometric potential. As a result, the Hamiltonian becomes 
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where R  is the parameter that indicates the geometric potential strength affected by 
both the curvature and strain. 
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B. Two-dimensional electron system on a curved surface with a constant radius 
 In this section, we will show how to solve equation (3.4). That equation is 
separable differential equation; therefore, the eigenstate is assumed as 
 ( , ) ( ) ( )z Z z  =  (6.5) 
Substituting equation (6.5) into equation (3.4), it becomes 
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 (6.6) 

Equation (6.6) is divided by ( ) ( )Z z , it will be obtained 
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Equation (6.7) can be separated into two independent expressions as 
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and 
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  and z  are the energies which depend on the  -axis and z-axis, respectively. Form 
equations (6.7), (6.8) and (6.9), total energy E  of the system is 
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The general solutions of equations (6.8) and (6.9) are 
 ( ) sin( ) cos( )A k B k      = +  (6.11) 
and 
 ( ) sin( ) cos( )z z z zZ z A k z B k z= +  (6.12) 
which A , B , zA  and zB  are constants from a normalization. k  and zk  are defined 

as 
2

2

2 R
k




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=  and 

2

2 z
zk


= , respectively. The boundary conditions of the 

curved surface are min max( ) ( ) 0  = =  and min max( ) ( ) 0Z z Z z= = , then equations 
(6.11) and (6.12) can be rewritten with such conditions as 
 min min0 sin( ) cos( ),A k B k    = +  (6.13) 
 max max0 sin( ) cos( ),A k B k    = +  (6.14) 
 min min0 sin( ) cos( ),z z z zA k z B k z= +  (6.15) 
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and 
 max max0 sin( ) cos( ).z z z zA k z B k z= +  (6.16) 
From equation (6.13), it will be obtained 
 mintan( )B A k  = −  (6.17) 
Substituting equation (6.17) into equation (6.14), the relation between mink  and maxk  
is max mintan( ) tan( )k k  = . Therefore, it is found that ( )max mink n   − =  which n  is 
a positive integer. Form the definition of k , the energy   along the  -axis is 
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which the width W  of the curved surface is equal to ( )max minR  − . When the same 
method is used in equation (6.15) and (6.16), this gives the result, 
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zn  is a positive integer, and the length L  of the curved surface is equal to max minz z− . 
Eventually, the energy level of the curved surface with a constant radius is 
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For the exact solution of a wavefunction, the identity of trigonometry can be used: 
 sin( ) cos sin( ) sin cos( ).N k N k N k             + = +  (6.21) 
N  and   are the arbitrary constant and the phase angle, respectively. When 
equation (6.11) is compared to equation (6.21), it is found that cosA N  =  and 

sinB N  = . From both expressions, the relation of N ,  , A  and B  is obtained: 

 2 2N A B  = +  (6.22) 
and 
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Therefore, equation (6.11) and (6.12), used the following implementation, can be 
rewritten as 
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and 
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zN  and z  are the arbitrary constant and the phase angle, respectively. Then,   and 

z  have to be solved by using the boundary condition of the curved surface 

max( ) 0 =  and max( ) 0Z z = : 
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From equation (6.26) and (6.27), the solution of   and z are minn R
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exact solution of a wavefunction in equation (6.5) becomes  
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N  and zN  can be combined to a constant N . Lastly, the value of N  is obtained from 
the normalized condition: 
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Substituting N  into equation (6.28), the complete exact solution of a wavefunction is  
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