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The Scalar Field Cosmology
and Schridinger Equation Formulation
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Nop-linear schrédinger-formulation of cosmology is expr.essed here to be a useful
method in cosmology. We applied the method to power-law expansion, a ~ {7 with
g = 2 in standard cosmology for a universe in which canonical phantom or non-phantom
scatar Beld and barotropic fluid under arbitrary potential are presented. In the setup with
power-law expansion, we obtain scalar field potential as function of time. The potential
agrees well with result from standard cosmology method when scalar field is dominant.

The method could provide an alternative procedure of solving this type of systems.
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Non-linear schridinger-formulation of cosmology is expressed here to be a useful
method in cosmology. We applied the method to power-law expansion, o ~ €9 with
g = 2 in standard cosmology for a universe in which canonical phantom or non-phantom
scalar field and barotropic fluid under arbitrary potential are presenied, In the setup with
power-law expansion, we obtain scalar fieid potential as function of time. The potential
agrees well with result from standard cosmology method when scalar field is dominant,

The method could provide an alternative procedure of solving this type of systems.
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where C is integration constant. The inverse function of 9{z) exists if P(x) # 0 and
n # 0. It is important for 9~ {z) to exist as function since the existence of the relation

z = o(t) (Bq. {3.5)) needs a condition,
=9t og(t) = olt). 39

In case that P(z) = 0 and n # 0, the function 1 = ¢, then inverse of ¢ can exist
but not as a function, i.e. one vale of  corresponds to more than one value of ¥~ %
Indead here one value of @ corresponds to infinite value of 1, hence the relation (3.9)
does not valid.

1 the inverse function, =1 exists (ie. P(z) # 0 and n 3 0), then the scatar field

potential as function of time, V' o o~ () can be expressed as

12 2 2 1 2 Y )
(du> W oy 12 g B (3.10)

) = win? \ dz 2n? K2

3.2 Remarks on the method

Although the potential obtained is not expressed as a function of ¢, however if one can
find ¢ in Eq. (2.10) and can integrate to obtain ¢(2), the solution can be substituted
to the known function V(¢) motivated from fundamental physics in order to get V{t).
Then one cap compare it 0 the V{t) obtained from non-linear Schrodinger method.
The advantage of the non-linear Schrbdinger method is that it does not require us
the knowledge of V(@) which represems fundamental physics. Instead, it requires
the knowledge of a{t), I’ and k which can be directly obtained and constrained by

observation. The method couid be an alternative way to congirain fundamental physics.
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it 1
Introduction

1.1 Scalar field in cosmology

Scalar field plays important role in explaining inflationary phase in the early universe.
The universe is observed to be in accelerating expansion at present i1, 3, 2] and scalar
feld is considered by scientific community to cause of observed present acceleration
[4]. Alernative mathematical approaches to standard cosmology have been attempted
yecently. One of these is non-linear Ermakov-Pinney equation for a canonical scalar field
gosmology in presence of barotropic perfect fluid {5].

There has also been a propose recently that cosmological equations for a universe
with mixture of scalar field and barotropic fluid can be expressed with non-Ermakov-
Milne-Pinney equation. The equations, instead, are expressed in form of non-linear
Schrodinger-ike equation. To obtain a successful link between these two types of
equations, one needs Lo impose relation between functions in the Schrddinger form to
major variables in cosmology. The propose and proof of the link was performed in
Ref. [6]. This fact suggests that the methods could help solving problems in scalar field
cosmology in alternative to standard procedure and to procedure in Ermakov-Pinney form.
The method might open new way of tackling calcutation in cosmology especially those
to deal with scalar field in other types of Friedmann background such as braneworlds or
loop quantum cosmology.

Here we investigate the method applied to the situation of power-law expansion when
the scalar field and barotropic fluid are in presence and show the link between variables in
the non-linear Schrodinger form and the standard cosmology. We obtain the scalar field
potential as function of time. The method to obtain the scalar field potential depends only

on the scalar factor, density and spatial curvature which can be from observational data.



Therefore it is advantageous thai it can bring observational cosmological parameters 10
predict a form of scalar field potential. This could give an alternative way 1o constrain
fundamental physics. In Sec. 2, the cosmological system is introduced. Next, in Sec. 3,
we discuss how Non-linear Schrodinger formulation quantities are related to quantities
in standard scalar field cosmology. We consider power-law expansion in Sec. 4 in which
we show relation between Schrodinger formulation and cosmology in this case before
deriving scalar field potential, Schrddinger potential and wave function. Then we give

conclusions and comments to the method.

1.2 Objectives

» To obtain scalar field potential as function of time for a power-law expansion

« To investigate an alternative way (o constrain fundamental physics via Schrbdinger

formulation

« To investigate possibility to apply the Schrodinger method to cosmology when

scalar field and barotropic fluid are presented.

1.3 Scope of research
- Cosmology of scalar field and barotropic fluid
» Schrodinger formulation of standard cosmology

« Friedmann-Robertson-Walker universe

Open, closed and flat universes

1.4 Expectation

» Obtaining scalar field potential as function of time

« Knowing advantage and disadvantage of the Schridinger formulation in compari-

son to the standard cosmological method

« Agreement of the results to standard cosmological method



undt 2
Cosmological equations

Considering a Friedmann-Lemaitre-Robertson-Walker universe. The Binstein field equa-

tion are
2 k
v T i e 21
3 For 2.1
& dnd
2 LWL SEEciel o WY 0%
- 5 (ot + 3ps) 2.2)

where x? = 8w (¢ = 1/ME, k is spatial curvature, p and py are total density and total
pressure 1.e., gy, = Py + pg and Py = Py o+ Py Fhe barotropic component is denoted by
~, while for scalar field, by ¢. Equations of state for barotropic fluid and scalar field are
Py = Wa Py 804 Py = We 4. We consider minimally couple scalar field with Lagrangian
deasity

L= %«bﬂ’ +V(g), (2.3)

where ¢ = 1 for non-phantom case and ~1 for phantom case. Density and pressure of

the field are givgﬁ as

py = 5ed+ VI8, (2.4)
po = e - Vi), @5)

therefore o
_&p’ - 2V(9) (2.6)

We = i o
eg? + 2V (¢)
The field obeys conservation equation

dav

a6

For the barotropic fluid, we set w, = (n -~ 3)/3 so that n = 3(1 + w.), then for

¢ {cjf'» + 3}1 q?:] n 0. 2.7)

cosmological constant n = 0, for fluid at acceleration bound {1, = -1 /3y o= 2, for



dust n = 3, for radiation n = 4, and for suff fluid n = 8. Solution of conservation

eguation for the barotropic fluid is

D D

Py = Tl = 28
then
D (n-3D
py =y = e 2.9)

where a proportional constant D > 0. Using Egs. (2.1), (2.4), (2.5), (2.7) and {2.8), it
is straightforward to show that

. 2 k D

()’ = ] [ az] - ;"‘an» (2.10)
3 H 2% 28N D

Vi) = 5 [HE +og ~3a2} +- (n . )?n . (2.1
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Non-linear Schrodinger form

3.1 Correspondence between Schrodinger form and cos-
mology

Following the proof in [6], the corresponding non-linear Schrodinger-like equation for a
standard scalar field cosmology with barotropic fluid is
12

& ste) + 1B~ P le) = (@0 @

The wave function u(x), the total energy E and the Schrodinger potential P(x}, all are

on the left-hand side, are related to the standard cosmology guantities on the right-hand

side a8
wiz) = a(‘t)””/g, 3.2
K*n?
E = T D, (3.3)
2 -
Plz) = fzﬁa(t)“ecﬁ(t)?. (3.4)
The mapping from t to z is via
z = alt), (3.5)
such that
sty = ulg), (3.6)
p(t) = wlz) 3.7

The function (x) is related to the Schrodinger potential P{x) via

() = ——= \/._ VP@)ds + O, (3.8
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Power-law expansion

Here in this section, we apply the method above to the power-law expansion in scalar
field cosmology when with or without presence of barotropic fluid.  The power-law

expansion of the universe during inflation era,
a(t) =17, 4.1}
with g > 1 was proposed by Lucchin and Matarrese [7] to give exponential potential

(o) = [H0=0) e Loy 2 0t < gt} @2

in the situation that the scalar field is the dominant component and the baroiropic
radiation fuid is negligible. The slow-roil parameters of the madel are £ = 1/g and

n = 2/q. The power spectrum index is
npg = 1 — 6 + 217, 4.3

For scale invariant spectrum npg = 0 hence g = 9 tor scale invariant spectrum [8].

4.1 Relating Schrodinger quantities to scalar field cos-
mology

The wave function in Schrédinger form is therefore related to cosmology as
wlz) = o{t) = 72, (4.4)

We can integrate the equation above so that the Schrédinger scale x is related to the

time scale as s
-
q;ng’(t}:‘»-—":é*‘““i"r, ) {4-5}



where g = (gn ~ 2}/2 > 0 and 7 is an integrating constant The parameter = and t have
the same dimension since 3 is a number. Using Eq. (4.1), we can find eh(t)? from Eg.

(2.10)
2g 2k nlD

. 2 2% =D
D) = 55+ mm g (4.6)

We use Eqgs. (4.1) and (4.6) in Eq. (3.4), therefore the Schrodinger potential is found o
be

GTsames . kN gaemy KP0ED
Pip) = 249 L2l )| At
(z) > t + 5 A 12 4.7
4.2 Scalar field potential V(1)
In order to obtain V/(¢) in Bq. (4.9), we need to know derivative of u(z):
d d
= U N Sl LY £
dzx ule) d[-(t=#/8)+ 7] ¢ ’
~ g8 pirys
b=y
= Sy (4.8)

where we set a variable R = ¢~8 for helping in integration. At this step, using Egs.
(3.2), (3.3), (3.4) and (4.8) in Eq. (4.9), we finally obtain

V{t}:q(i%q——l)+ 2k _E_(an)_{)m_ 4.9)

K22 RALH 6 J i
in Figs. 4.1 and 4.2, we assume flat universe (k = 0) and ¢ = 2. When there is no
barotropic fluid, the potential V (¢) obtained from the new method (the red line) matches
the one solved from standard cosmology (the points). The green line is the case when
the dust is presented with scalar field. The same for the blue line but radiation instead
of dust. The result is regardless of the value of ¢ :

In phantom case € = —1, the solutions ¢ are imaginary. In the non—phanmn.x case,
although ¢ = 1, when D) # 0, it is not always possible to integrate to obtain real-valued
solution ¢(¢). The numerical integration results shown in Fig. 4.2 are of the case
D =0,k = 0 which is ¢(t) = (~/2¢/x}In(t) and of the case D # O,k = { with dust
component (n = 3). The solution ¢{t) = (v2q/x)In(¢) of the case D=0k=01
used in Bq. (4.9) so that V(¢) is found to be the same as Fa. (4.2) when tp = 1 and
$(to) = O confirming the result found in [7].

Fig. 4.3 presents a comparative illustration of V(i) obtained from pon-linear
Schrodinger method for closed, flat and open universe when the fluid components are
dust and scalar field. Tf without dust, i.e. the scalar field is the only dosninant compo-

nent, the results look similar to the case D = 0 in Fig. 4.1. When the components are




radiation and scalar field, it is not always possible to get the result since ¢{t} could be

imaginary as mentioned before.
4.3 Schrodinger potential P(z)
We can get Schrodinger potential P(x) from Egs. (4.5) and (4.7) where time is expressed

as a function of x as
i

B~ (4.10)
[~8(z ~ 7}}1/ﬁ
Therefore
2qn 1
.IJ =
) (gn — 22 (z —7)°
N kn { . }2q(nm2)/(qn~«2}
2 [{gn—2){z~T1)
2D
a2 — (@.11)

A disadvantage of Eq. {4.11) is that when we can not use it in the case of scalar field
domination as applied to inflationary expansion, Dropping D) term in Egq. (4.11) by
setting ) == 0 can not be considered as scalar field domination case since coefficient n
of the barotropic fluid equation of state still appears in the other terms. The Schrodinger
potentials P(x) plotted with x for power-law expansion with ¢ = 2 in closed, flat and
open universe are shown in Fig. 4.4. In the figure, the dust cases are shows on the right

and radiation cases are on the left. We set )5 = 1,0 = 1.0 and 7 = 0.

4.4 Schrodinger wave function u(z)

The wave function can be directly found from Eqs. (4.4) and (4.10) as

1 gnflgn—2}
u(z) = [(—iqn + 1) {z — 'r)} p (4.12)

which is indepenrdent of the spatial curvature k or the initial density D). However,
" coefficient n of the barotropic fluid equation of state and g must be expressed. The
Schrodinger method is therefore efficient in case that there are both scalar field and a
barotropic fluid in presence together. Wave functions for a range of barotropic fluid are

. presented in Fig. 4.5. The result is confirmed by substituting Eq. (4.12) into Eq. (3.1).

10



304 +e o0 V{{) from standard cosmology
V(‘[:)* X —— V({} from Sehr. Eq., D =
E wenemes V(#) fromn Schr. Bqg., D s 0, n = 3
0-
2§ A= V(i) from Schr. Ea., D+ 8,n =4
P
101
M%w >
Q T T R TR o T -]
7 9, 2 3 4
] 7
~ 3.0
~20-

gﬂﬁ 4.1: Potential V(t) plots from the standard cosmoiogy method and non-linear
Schridinger method for power-law expansion a ~ t7, ¢ = 2 in fat aniverse (k = 0).
The point-plot i of the potential (4.2) which is solved directly in standard cosmology in
Ref. {7] when the barotropic fluid density is negligible. The red line is of V{t) obtained
from the non-linear Schrodinger method when the barotropic fluid density is set Lo 2810
D = 0. The green line is of V (¢} obtained from the non-linear Schrodinger method
when theré is also dust fluid together with scalar field, ie. D # 0 and n = 3. The blue
line obtained from the noa-linear Schrodinger method when the umiverse hag scalar field
with radiation fluid, i.c. D # 0and n = 4. Here we set # = 1 and in the last two plots,

D=1

11




81 Results from standard cosmology:
ﬁ}b(t) i B(f) when D=0
] o (t) when D # 0, 1= 3
Fe
0 T T Tt T b T S A N SR S B S S R | 1
- 2 4 6 8 10
i t
_'4~
-8

gﬂﬁ 4.2 ¢(t) plots from the standard cosmology method for power-law expansion
a~ 19, g = 2 in flat universe (b = 0). The red line is of the when the barotropic fluid
density is negligible. The green line is in the presence of scalar field with dust (D # 0
and = 3). In the figure, x =1 and D = 1.

12



301 h Results from Schr. method
V( 0 (dust with scalar field)
A e oz 1
207 e
7 e S
10:
0" W 1
1 1 2 3 4
g t
~ 1.0
-2 07

gﬂ‘ff'% 43 V(t} obtained from non-linear Schrddinger method for closed, flat and open

universe in presence of dust and scalar field.

13



Scalar field with

Scalar field with

radiation (n=4) dust (n=3)
Pz) P(a) ‘
k] : ")
: |
.
il 4 |
TRy ] 3 LT L S T
Pix) f' Pl ]
ko= ) } \
| "
] : \\
" _/} ; e / \M—y'——a
o) j P '
k=1 \
!ﬁ\
| 1\

'
=

K = 1,0 = 1.0 apd v = 0. The scalar field dominant case can not be plotted
since even we set a condition D = 0, coefficient n of the barotropic fiuid equation of
state is still in the first and second terms of Eq. (4.11). There is only a real-value P{z)

for the cases k = 1 with n = 4 because, when ¢ > 0, P(z) becomes imaginary in

these cases,

14

JU% 4.4: P(z) plotted versus z for powarllaw' expansion. Here ¢ = 2. We set



n=3 n=4 n=0

u(z)

ni== 2

>
T |\'0 o e S e M B e B
-4 -2 2 T 4

11}?71 4.5: ufx) plotted versus = for power-law expansion with ¢ = 2. We set 7 = (. The
wave function is plotted for n =0 (cosmological constant), n = 2, o= 3 (dust), n =4
(radiation} and n = 6 (stiff fluid). There is no real-value wave function forn =3, n = 4

and n = 6 unless z < 0.



uni 5
Conclusions and Commentis

We have applied the Schrodinger-type formulation to power-law expansion scalar field
cosmology in presence of barotropic fluid. We show the link between costological guan-
tities and Schrodinger quantities and then obtain scalar field potential V-(t), Schrodinger
potential P(z) and wave function u(x). In the case of a scalar field dominant in flat
universe, our analytical result agrees well with the result in [7]. A range of plots is
presented in various cases including when the universe is closed, flat ‘or open. In Sec.
4 we begin with the Schrbdinger method by assuming how scale factor o relates 0 time
¢ and evaluate other following quantities to finally obtain V{t). One might wonder if
we start from quantum mechanics by solving the non-Hpear Schrodinger equation (3.1).
The equation can be simplified to linear type if we consider the flat univerge case k = 0
or the case n = 2 or m = 4 [6]. However, in performing the caiculation, Pz} (Eq.
{3.4)) must be known and it depends explicitly on aft) and QS (Eq. (2.10)) which as well
depends on a{t) through H. Therefore this method also depends on how we assume law
of expansion a(t} and knowing a{t) enables us to know u(z) directly (seé¢ Eq. (4.4)).
Then we do not need to solve the Schrodinger equation. .

The method is suitable for studying a system of scelar field dark energy and dark
matter since it requires a presence of both scalar fleld and a barctropic fluid. At late
time the scalar field dark energy and cold dark matter are [Wo major components of the
universe while the others are negligible. The method needs to assume the knowledge
of a(t), k and D which are observable in order to find V{(t). Although it is better
to know V(#) so that it can directly relate to fundamental physics, Howéver if ones
start from fundamental physics with 2 particular potential V(#) and if they know how ¢
evolves with ¢ then V can be expressed as function of £. As a result, V{z) results from

observation and another from fundamental physics can be compared to each other. This

16



could be an interesting forther work.
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