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ABSTRACT

In this research, we we introduce concept of C_-algebra-valued b-metric space, which is
mixture of concept of b-metric space and idea of C*-algebra—valued metric space, study its

fundamental properties and we give some fixed point theorems for cyclic mapping with contractive

fype.
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Chapter 1

Introduction

Firstly, we begin with the basic concept of C*-algebras. A real or a complex linear space
A is algebra if vector multiplication is defined for every pair of element of A satisfying two
condition such that A is a ring with respect to vector addition and vector multiplication and for
every scalar ¢v and every pair of elements 2,y € A, a(zy) = (az)y = z(ay). A norm || ||
on A is said to be submultiplicative if ||ab|| < ||al|||b|| for all @, b € A. In this case (A, ||- ||)
is called normed algebra. A complete normed algebra is called Banach algebra. An involution
on algebra A is conjugate linear map ¢ 5 o on A such that ¢** = a and (ab)* = b*a* for
alla,b € A, (A, %) is called #-algebra. A Banach %-algebra A is +-algebra A with a complete
submultiplicative norm such that ||a*|| = ||a|| forall @ & A. C*-algebra is Banach *-algebra
such that ||a*a|| = ||a]|?. There are many example of C*-algebra, such as set of complex
numbers, the set of all bounded linear operators on a Hilbert space /7, L(/T) and the set of
n X m-matrices ,M, (C). If a normed algebra A admits a unit I, af = fa = aforalla € A
and ||I]| = 1, we say that A is a unital normed algebra. A complete unital normed algebra A
is called Unital Banach algebra. For properties in C™-algebras, we refer to {12, 10, 31] and the
references therein.
It is well known that contractive mapping principle, appeared in the Ph.D. dissertation of
S. Banach in 1920, let {X, d) be a metric space. A mapping T" : X -+ X is said to be a

contraction if there exists 7 € [0, 1) such that
d(Tz, Ty) < rd{z,y) foraliz,y € X

,which was published in 1922 [3]. The Banach’s contraction principle has become one of the
most important tool used for the existence of solutions of many nonlinear problems in many
branches of science and has been extensively studied in many spaces which are more general
than metric space by serveral mathematictians, see for example, Quasi-metric spaces [41, 11],
Dislocated metric spaces [15], Dislocated quasi metric spaces [43], G-metric spaces [32, 33, 34],
b-metric spaces [2, 8, 9], Metric-type spaces [24, 25], Metric-like spaces [13], b-metric-like
spaces (or Dislocated b-metric spaces) [1, 17], Quasi b-metric spaces [38] and Dislocated quasi-
b-metric spaces [26]. Note that the Banach contraction principle requires that the mapping 1°

satisfies the contractive condition each point of X x X and ranges of 1’ is positive real numbers.



Consider the operator equation

XY IXIn=Q
n=1
where {11, Ls, . . ., L.} is subset of the set of linear bounded operators on Hilbert space H,
X € I{H)and Q € L{H)4 : positive linear bounded operators on Hilbert space /. Then
we convert the operator equation to the mapping F' : L(H) — L(H) is defined by

F(X)=> L XL,+Q.
n=1

Observe that the range of the mapping F' is not real numbers but it is linear bounded operators

-on Hilbert space f7. Therefore the Banach contraction principle can not be applied with this
problem. Afterward, the question is risen that does such mapping have a fixed point which
is equivalent to a solution of operator equation. In 2014, Z. Ma, L. Jiang and H. Sun [29]
introduced a new spaces, called C*-algebra-valued metric spaces which is more general than
metric space, replacing the sef of real numbers by a C*-algebras, and establish a fixed point
theorem for self-maps with contractive or expansive conditions on such spaces, analogous to
the Banach contraction principle. As applications , existence and uniqueness results for a type
of integral cquation and operator equation is given, was able to solve the above problem if
Ly, Ly,..., L, € L(H)satisfy 3 oo | La||* < 1.

Later, many authors extend and improve the result of Ma ef al. For example in [4] S. Batul
and T. Kamran generalized the notation of C™-valued conlraction mappings by weakening the
contractive condition introduced by Ma et al, the mapping is called C*-valued contractive type
mappings, and establish a fixed point theorem for such mapping and which is more generalize
than the result of Ma ef al, in [39] D. Shehwar and T. Kamran extend and improve the result
of Ma et al [29] and Jachymski by proving a fixed point theorem for self-mappings on C*-
valued metric spaces satisfying the contractive condition for those pairs of elements from the
metric space which form edges of a graph in the metric space. In 2015, Z. Ma and L. Jiang [30]
introduced a concept of C*-algebra-valued b-metric spaces which generalize an ordinary C'*-
algebra-valued metric space and give some fixed point theorems for self-map with contractive
condition on such spaces. As applications, existence and uniqueness results for a type of operator
equation and an integral equation are given.

Generally, in order to use the Banach contraction principle, a self-mapping 7" must be Lips-
chitz continuous, with the Lipschitz constant 7 € [0, 1). In particular, T' must be continuous at

all element of its domain. That is one major drawback. Next, many authors could find contrac-



tive conditions which imply the existence of fixed point in complete metric space but not imply

continuity. We refer to [19, 20] (Kannan-type mappings) and [7] (Chatterjea-type mapping).

Theorem 1.1, /{97 If (X, d} is a complete metric space and the mapping I’ : X — X satisfies
d(Tz, Ty} < rld(z, Tz) + d(y, Ty)],
where 0 <71 < % and z,y € X, then T has a unique fixed point.

Theorem 1.2. [7] If (X, d) is a complete metric space and the mapping T" : X — X satisfies
d(T'z, Ty) < rld(z, Ty) + d(y, T)},
where 0 < r < % and x,y € X, then T has a unique fixed point.

In 2003, Kirk et al. [23] introduced the following notation of a cyclic representation and

characterized the Banach contraction principle in context of a cyclic mapping as follow :

Theorem 1.3. Ler Ay, Ay, ..., A, be a nonempty closed subsets of a complete metric space

X, d). Assume that a mapping T -\ JT, Ay — U2, A; satisfies the following conditions
i=1 i=1
(Z) T(Az) Q qu+1f0f all 1 < % < m and Am+1 = Al,'

(i3) there exists k € [0, 1) such that d(Tx, Ty) < kd(z,y) for all z € Ay y € Aiy for
1<i<m.

Then T has a unique fixed point.

In 2011, E. Karapinar and 1. M. Erhan introduced Kannan type cyclic contraction [21] and
Chatterjea type cyclic contraction. Moreover, they derive some fixed point theorems for such

cyclic contractions in complete metric spaces as follow;

Theorem 1.4. (Fixed point theorem for Kannan type cyclic contraction) Let Aand B be a
nonempty subsets of a metric spaces (X, d) and a cyclic mapping T" AUB —» AUB

satisfies
d(Tx, Ty) < kld(z, Tz) +d(y, Ty)], forall z€ A and y€ B

where 0 < I < % Then T" has a unique fixed pointin AN B.



Theorem 1.5. (Fixed point theorem for Chatterjea type cyclic contraction) Let A and B be a
nonemply subsets of a metric spaces (X, d) and a cyclic mappingT : AUB — AUB

satisfies
d(Tz, Ty) < kld(z,Ty) + d(y,Tz)|, forall x€ A and yC B
where 0 < k < % Then T has a unique fixed point in AN B,

The purpose of this paper, we study fundamental properties of C*-algebra-valued b-metric
space which was introduced by Z. Ma and L. Jiang [30] and give some fixed point theorems for
cyclic mapping with contractive and expansive condition on such space analogous to the results

presented in [30].



Chapter 2

Preliminaries

In this section, we recollect some basic notation, defintion and results will be used in main

result. Firstly, we begin with the concept of b-metric spaces.

Definition 2.1. [2, 8] Let X be a nonempty set. A mappingd : X x X — Ris called b-metric

if there exists a real number b > 1 such that for every z, ¥y, 2 € X, we have
@ dlz,y) >0
(i) d(z,y) =0ifandonly ifz =y
i)y d(z,y) = d(y, =)
(iv) d(z,z) < bld(z,y) + d(y, )].
In this case, the pair (X, d) is called a b—metric space.

The class of b-metric spaces is larger than the calass of metric spaces, since a b-metric space
is a metric when & = 1 in the fourth condition in above definition. There exist many example in
some work showing that the class of b-metric is efficiently larger than that metric spaces. (see
also [2, 9, 42, 5])

Example 2.2, [2] Theset,(R) withO < p < 1, where [,(R) := {{zn} CR: 3" |zal? <
oo}, together with the function d : [,(R) x [(R) — R,

5y) = (len—ynlp)p,

where T == {z,},¥ = {Yn} € L,(R), is a b-metric space with coefficient b = 9% > L.
Observe that the result hold for the general case [,{.X ) with 0 < p < 1, where X is a Banach

space.

Example 2.3. [2] The space L,(0 < p < 1) of all real functions z(t), ¢ € [0, 1], such that
fo |z (t |pdt < 00,, together with the function

(/ |x(t) — |pdt) , forall z,y € L,[0,1],

is a b-metric space with b = b,



Example 2.4, [42] Let (X, d1) be a metric space and da(z, y) = (di(z,y))?, wherep > 1

is natural numbers. Then d is a b-metric with b = op—1

The notation convergence, compactness, closedness and completeness in b-metric space are
given in the same way as in metric space.

Next, we give concept of spectrum of element in C*-algebra A.

Definition 2.5. [31] We say that ¢ € A is invertible if there is an element b € A such that

ab = ba = I. In this case b is unique and written ¢ 1. The set
Inv(A) = {a € Ala is invertible }
is a group under multiplication. We define spectrum of an element a to be the set
agla) =oala) ={A € C|AI —a ¢ Inv(d)}.

Theorem 2.6. [31] Let A be a unital Banach algebra and a be an element of A such that
la|l < 1. Then I — a € Inu(A) and

(I gyt Zan.

Theorem 2.7. [31] Let A be a unital C*-algebra with a unit I, then
() I* =1,
(2) Foranya € Inu(A), (a*)7! = (a71)*.
(3) Foranya € A, o(a*) = o(a)* ={A € C: A € o(a)}.

All over this paper, A mean a unital C™-algebra with a unit /. IR is set of real numbers and

R, is the set of nonnegetive real numbers. M, (IR) is n X 1 matrix with entries R.

Definition 2.8. [31] The set of hermitain elements of A is denoted by Ay, thatis A, = {z €
A :x = z*}. Anelement z in A is positive element which is denoted by # < , where ¢
means the zero element in A if and only if z € A, and o(z) is a subset of nonnegative real
numbers. We define a partial ordering A, by using definition of positive element as x =< y if

andonly if y—x > . The set of positive element in A is denotedby A, = {z € A : z > 0}
The following are definition and some properties of positive element of a C*-algebra A.

Lemma 2.9, [31] The sum of two positive elements in a C*-algebra is a positive element.



Theorem 2.10. [31] If a is an arbitrary element of a C*-algebra A, then a*a is positive
We summarise some elementary facts about A . in the following results.

Theorem 2.11. [31] Let A be a C*-algebra.

(1) The set A, is closed cone in A. [4 cone C in a real or complex vector space is a subsel

closed under addition and under scalar multiplication by R, ]
(2) The set Ay is equal to {a*a : a € A},
(3) If8 < a < b, then ||a|| < ||l
(4) If A is unital and a, b are positive invertible elements, thena < b= 8 < bt <a L

Theorem 2.12. [3/] Let A be a C*-algebra. If o, b € Ay and a < b, then for anyx € A

both x*ax and x*bx: are positive elements and x*ax < x*bzx.

Lemma 2.13. [31] Suppose that A is a unital C*-algebra with a unit 1.
() Ifa € Ay with ||a|| < % then I — a is invertible and ||a(I — a)7!|| < L
(2) Suppose that a,b € Awitha,b = 0 and ab = ba, then ab > 0.

(3) Define A =— {a € A : ab=ba,Vb € A} Leta C A, ifb,c € Awithb=cr 0

and [ — a € A, is invertible operator, then
(I—a) b= (I—-a) e

Definition 2.14. [12] Let 7' be an operator on the Hilbert space I7. T' is positive if and only if
(Tz,xz) > Oforallz € H, T is self-adjoint or hermitain if and only i =T

In 2014, Z. Ma, L. Jiang and H. Sun [29] introduced concept of C*-algebra-valued metric

space by using the concept of positive elements in A. The following is definition (*-algebra-

valued metric.

Definition 2.15. [29] Let X be a nonempty set. A mapping d : X x X — A is called

C*-algebra-valued metric on X satisfies following conditions,
(1) d(z,y) = O forallz,y € X;

| @) d(z,y) = difandonly ifz = 1;



(3) d(z,y) =d(y,z) forall z,y € X;

@ d(z,y) 2d(z,z)+ d(z,vy) foraliz, y, z € X.

Then d is called a C*-algebra-valued metric on X and (X, A, d) is called a C*-algebra-valued

metric space.

We know that range of mapping d in metric space is the set of real numbers which is C*-
algebra, then the space generalize metric space. In such paper, Ma ef al. state the notation of
convergence, Cauchy sequence, completeness in C”-algebra-valued metric space. For defail, a
sequence {x,} ina C’*-algcbra-valued metric space (X, A, d) is said to convergesto x € X
with respect to A if for any £ > 0, there is N € N such that ||d(z,, )| < £ foralln > N.
We write it as lim,, . 7, — . Asequence {2, } is called a Cauchy sequence with respect to A
ifforany € > 0, thereis N € Nsuch that ||d(z,, T,)|| < & foralln, m > N. The (X, A, d)
is said to be a complete C*-algebra-valued metric space if every Cauchy sequence with respect
to A is convergent. Moreover, they introduce definition of contractive and expansive mapping
and give some related fixed point theorems for self-maps with C*-algebra-valued contractive
and expansive mapping, analogous to Banach contraction principle. The following is definition

of contractive mapping and the related fixed point theorem.

Definition 2.16. [29 Suppose that (X, A, d) is a C*-algebra-valued metric space. A mapping
T : X — X iscalled C*-algebra-valued contractive mapping on X, if there is an A € A with
1Al < 1 such that

d(Tz, Ty) = Ad(z,y)A forallz,y € X.

Theorem 2.17. /297 If (X, A, d) is a complete C*-algebra-valued metric space and T : X —
X satisfy Defintion 2.16, then I has a unique fixed point in X.

In the same way, the concept of expansive mapping is defined in the following way

Definition 2.18. [29] Let X a nonempty set. A mapping T is a C*-algebra-valued expansive
mapping on X, if 1" : X — X satisfies :

(D) T(X) = X;
(2) d(Tz, Ty) = Nd(z,y)A forallz,y € X,
where A € A is an invertible element and || A7} < 1.

The following is the related fixed point theorem for C™*-algebra-valued expansive mapping.

Theorem 2.19. [29] Let (X, A, d) be a complete C*-algebra-valued metric space. If aT :
X — X satisfies Defintion 2.18, then T" has a unique fixed point in X.



Chapter 3

Fundamental properties of C*-algebra-valued b-metric spaces

In this section, we begin with the concept of C'*-algebra-valued b-metric space which was

introduced by Z. Ma and L. Jiang [30] as follow;

Definition 3.1. [30] Let X be a nonempty set. A mappingd : X x X — A is called
C*-algebra-valued b-metric on X if there exists b € A’ such that b > [ satisfies following

conditions,

(1) d(z,y) = O forall z,y € X;

(2) d{z,y) = @ ifand only if z = ;

(3) d(z,y) = d{y,z) forall 2,y € X;

@) d(z,y) 2 bld(z, z) + d(z,y)] forall z,y, z € X.
Then (X, d, A) is called a C*-algebra-valued b-metric space.

Remark 3.2, 1fb = I, then a C*-algebra-valued b-metric spaces is a (*-algebra-valued metric
spaces. In particular, If A is set of real numbers and b = 1, then the (' -algebra-valued b-metric

spaces is the metric spaces.

Definition 3.3, [30] Let (X, A, d) be a C"*-algebra-valued b-metric space. A sequence {Zn }
in (X, A, d) is said to converges to z if and only if for any € > 0, there exists N € N such
that for all . > IV, ||d(z,, z)|| < e. Then {z, } Is said to be convergent with respect to A
and 7 is called limit point of {z,, }. We denote it by lim,,_, oo Zn = .

A sequence {, } is called a Cauchy seqeunce with respect to A if and only if forany € > 0,
there exists N € N such that for all n,m > N, ||d(zn, zm) || < &.

We say (X, A, d) is a complete C*-algebra-valued b-metric space if every Cauchy sequence

with respect to A is convergent sequence with respect to A.

The following is an example of complete C'*-algebra-valued b-metric space.
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Example 3.4. [30] Let X = R and A = M, (IR). Define

d(z,y) = diag((z — y)?, |z — yP, el — 9y’ ..., n sl — y)
2 — y|P 0 0 0 |
0 arl|z —ylP 0 0
= 0 0 aslz — y|P
| o 0 0 1|z =yl
where 2,y € R, a; > Oforallz = 1,2,...,7 — 1 are constants and p is a natural number
such that p > 2. A norm |- || on A is defined by
1Al = maxfa >

T3

where A = (@;;)nxn € A. The involution is given by A* = (A)", conjugate transpose of

matrix A.
_ - _ ! L .
11 Q12 I1n t11 Q21 Qnl 11 Qo1 Unl
A an QAs2 tan 12 G22 Gn2 12 4oz Qn2
p1 An2 (nn 1n Qan Qnn Laln Aan Ann

It is easy to verify d is a C*-algebra-valued b-metric space and (X, M5(IR), d) is a complete

(*-algebra-valued b-metric space be completeness of R.
Proof. Anclement A € A = M, (R) is positive element, denote it by
A = 8, if and only if A is positive semidefinite.
We define a partial ordering =< on A as follows :
A< Bifandonly if# X B — A,

where § mean the zero matrix in M, (R). Firstly, it clears that = is partially order relation.
Next, we show that d is a (C*-algebra-valued b-metric space. Let 2,9, z € X. It easy to see
that d satifies condition (1) ,(2) and (3) of Definition 3.1. We will only show condition (4) that
d{z,y) = bld(z, z) + d(z,y)] with

_21)71 ) -
0 2rt
b= ]
L 0 0 2p-t
dnxn




1l

Since function f{z) = |z[|? is convex function for all p > 2 and = € R, this implies that

a+cl?

2

la—l-
2

1.7 1 1
el < Zglp 1=
(1 2)0 _2[a|+< 5

1
) Il = (P + )

and hence |a + c[? < 2°7*(|al? + |¢[P) for all ¢, ¢ € R. We substitute @ = z — y and

¢ =1y — z,then

o= 2P = o —y+y— =P <2z - gl +ly - #P)

Hence, setting My = (|z — y[? + |y — 2|F) and My = |z — 2|P, we obtain that

[oP=1 01, - M, 0 0
0 le]_(zp_lf\d[) = Ml) 0
0 0 ag(zp_lﬂ/fo ' ﬂfl)
i 0 0 0 (20 My — My) |
[2p—1 1, 0 0 1 [a, 0 0
0 1 2P My 0 0 oMy 0
= 0 0 ()IzzpflMg — 10 0 oM,
| 0 0 0 ozn_12f’_1M0_ 0 0 0
- - [a 0 0 0 ]
-1 0 0
0 Of]M() 0
0o or!
= 0 0 szMO
0 0 Pl
- L U 0 0 OinﬁlMo_
M, 0 0 }
0 oM 0 0
- 0 0 CIZMl
i 0 0 0 an_lMﬁ_

b(d(ﬂ;,y) + d(y’ Z)) - d(‘T! z)

implies that each eigenvalue of b[d(x, z) + d(z, y)] — d(z,¥y) is nonnegative. Since each

eigenvalue of a positive semidefinite matrix is a nonnegative real number, we have b[d(z, z) +-

O57‘:—1-["/-['1
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d(z,y)] — d{z, ) is positive semidefinite, i.e. bld(z,2) +- d(z,y)] — d(z,y) = 0, that is
d(z,y) < bld(z, 2) + d(2,y)], where b = 2?7'T € Aand b = Tby 227! > 1. But
|z — y|? < |z — 2] + |z — y|P is impossible for all 7,7, z € R. Hence (X, Mn(R), d} is
C'*-algebra-valued b-metric spaces but not C'™*-algebra-valued metric spaces.

Finally, we show that (X, A, d} is a complete C*-algebra-valued b-metric space. Suppose
that {z, } is a Cauchy sequence with respect to A. Then, for any € > 0, there exists N € N
such that ||d(@m, T, )| < € foralln,n > N, thatis

1 1 1 1
max{(|xm — Ta[P)? (1|Tm —~ Za|P)? , (0| Tm — ZnlP)? . (O] Tm — wnlp)p} <

€

forallm,n > N. Therefore

s
|Tm — 20| = (|lzm — zal)?

o=

1 1 - 1
< max{(lmm — x|}, (|Zm — zal)7 (cta|zm, — Tnlf)? .oy (anil|Zm — Ta[F)P}

<E

for all m,n > N. Hence {,} is a Cauchy sequnce in R. By completeness of R, there

exists £ € R such that lim,,_,e0 Z,, = Z, that is [im, o0 |Z, — 2| = 0. Then, we have

l|d (%, @)1l =

¢ 1 1 1
max{(|z, = 2P)7  (1|wn — 2[")7 , (calen —w?)7 .o (@ns |2 — 2P)7 }

converges to 0 as 7. — 00. Therefore, {7, } is convergent with respect to A and {z, } con-

verges to x, so (X, A, d) is a complete C*-algebra-valued b-metric space. O
Next, we disscus some fundamental properties of C*-algebra-valued b-metric spaces.

Theorem 3.5. Let (X, A, d) be C*-algebra-valued b-metric space. If {x,} is a convergent

sequence with respect to A, then {x,, } is Cauchy sequence with respect to A.

Proof. Assume that {x,, } is a convergent sequence with respect to A, thenthereexistsa s € X

such that lim,,. ,ec Ty = . Lete > 0, there is N € N such that foralln > N,

£

d(z,, z)|| < :
)] <

Consider, for m, n € N, we get that

AT, Tn) = 0[5, 2) + d(z, 2,)).
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By Theorem 2.11, for m, n > N we have

(@, )| < [6[d(2m, =) + dlz, z)]l,
< ”b”“d(wma z) + d(z, za )|,
< |Blllid{zm, 2)|| + [1B]l[|d{z, ),

£ €
< bl + bl =&
2o 2[[bll
This implies that {w,,} is Cauchy sequence with respect to A. O

Definition 3.6. A subset S of a C"*-algebra-valued &-metric space (X, A, d) is bounded with

respect to A if there exists T & X and a nonnegetive real numbers M such that
ld(z,2)|| < M, forall we X.

Theorem 3.7. Let (X, A, d) be a C*-algebra-valued b-metric space and let {x,} be a se-
quence in X and x C X Then :

I Z, — z ifand only if d{x,, z) — 0,
2. A convergent sequence in X is bounded with respect to A and its limit is unique,
3. A Cauchy sequence in X is bounded with respect to A.
Proof. (1) Assume that z,, — @. Forany € >> 0 is given. Then, there exists No € N such that
ld(zn, 2} = 0| = [|d(zx, 2)|| <&

This implies that d(%,, ©) — @. Conversely, assume that d(z.,, £) — €. Then, forany & > 0,
there exists Ny € N such that

(@, 2) — O] <& = |ld(zn, 2)]| <e,

that is ©, — Z.
(2) Let {x, } be a convergent sequence with respect to A. Suppose that x,, — . Then taking
€ = 1, wecan find N € N such that

d(z,,z) <1,¥n > N.

Let K = max{||d(z1, z)||, ||[d(z2, )|, ..., ||d{zn, z)||}. Setting M = max{1, K}. This
implies that
|ld(zn, )| < M, forall »€N.
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Next, suppose that , — T and %, — y. Consider, d(z,vy) =< bld(z, ) + d(z,,y)], by

Theorem 2.11, we have

lldz, gl < Nollld(wn, 2 + ld(n, y)II]-

From (1), letting 7 % oo, we obtian that ||d(z, ¥)|| = 0, thatis x = y.
(3) Assume that {:Ln} is a Cauchy sequence with respect to A, In particular, £ = 1, there exists
N; € N such that

|d(%m, 22)]| <1 forall m,n > N

Let I = max{||d(z1, zn,)||, |d{z2, zn )|, - - -, |d(2 Ny =1, T, ) ||} Then,
\ld(zp, za )| < IC forall n < Ny.

Setting M = max{1, I{'}. Then, we get that
lld(zn, zn )| < M forall n € N.

a

Theorem 3.8. Let {z,} be a convergent sequence in a C*-algebra-valued b-metric space
(X, A, d) and lim,_,0, 2, = . Then, every subsequence {x,,, } of {2} is convergent and

has the same limit T,

Proof Let € > 0 be given. Then, there exists N € N such that
lld(xn, z)|| <&, foralln> N.

Since 7127 < 7y < - < My < --- is an increasing sequence of natural numbers, it is easily

proved (by Induction) that 12, = k. Hence, if & > N, we also have ng, > k > N so that
|d(zn,, )| <€, forall ng > N.
Therefore the subsequence {z,, } also converges to . 0

Theorem 3.9. Let (X, A, d) be a C*-algebra-valued b-metric space. Then every subsequence

of a Cauchy sequence is Cauchy sequence.

Proof. Let {x,, } be a subsequence of Cauchy sequence {z,, } in a C*-algebra-valued b-metric
space. Then forevery € > 0, thereis N € Nsuchthat forallr, s > N, we have ||d{z,, z,)|| <
€. Similar facts in proof of previous theorem, we have i, > v > N andng > s > N. Hence,

we obtain that ||d(z,,, Ta, )|| < €. Therefore {x,, } is Cauchy sequence. O
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Theorem 3.10. Let (X, A, d) be a C*-algebra-valued b-metric space and let { £, } be a Cauchy
sequence with respect to A. If {z,} contains its convergent subsequence, then {1, } is conver-

gent Sequence.

Proof Lete > 0. Since {z,} is a Cauchy sequence with respect to A, there exists a Ny € N

such that

1
|d(zm, z) || < me, forall m,p > Np.

Let {zn, } be a convergent subsequence of {2, } and z,,, = & (K = 00). Then, there exists
N, € Nsuch that .
Az, 7)|| < =€, forall my > N.
ld(zny,, 2)|| < 2||b||€ orall my > Ny

Let N = max{ Ny, N1 }. Forn, k > N, we have
d(zn, ) 2 b[d(Tn, Zn,) + ATn,, z)].
By Theorem 2.11, we also have

[[d(@n, )| < 10l d(@n, #a,) + d(2n,, 2]
< Nollld(@n, zr )l -+ lolllld(n,, )

& ()
<MW+ 5
VIS 2]

<E.
Therefore =, -— = as 1. — o0 O

Theorem 3.11. Let (X, A, d) be a C*-algebra-valued b-meiric space. Suppose that {, } and
{yn} are convergent with respect fo A and converge to © and y, respectively. Then d(Zn, Yn)

converges (o b>d(x, ).

Proof Lete > 0. Since x,, — 2z and y,, — ¥, there exist Np, V7 € N such that

[

(Z.’]Cn,m S )
I, 2 < 0

Vn > Ny and ||d(yn, )] < ﬁ Vn > Ni.
Since d{y, Yn) =% bd(zy, ) + b2d(z, y) + b%d(y, ya), By Theorem 2.11, we have

ld(zn, 5a) — Uz, )| < [Blllld(za, 21| + 11BI*ldCy, )l < €.

Therefore d(zy,, yn) — U2d(x, y). O
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Theorem 3,12. Let (X, A, d) be a C*-algebra-valued b-metric space. Suppose that {x, } and
{yn} are convergent with respect to A and converge to x and y, respectively. Then,
1 . .
ez (@, )l < liminf ||d(@n, yo)l| < limsup[|d(za, ga) || < Bl lld(z, )11

16 nhoo n—00
In particular, if & = ¥, then we have limy,_c0 ||d(Zn, ¥n)|| = 0. Moreover for any z € X, we
have

1

Il

Proof By defintion of C*-algebra-valued b-metric space, it easy to see that

lld(z, 2)I| < lim inf ||d(zn, 2)]| < lim sup [|d(za, 2)]| < [Blllld(2, 2)]]
R 00 n—co

d(z,y) = bd(z, 2) + b2d(Zn, Yn) + 0°d(Yn, ¥)
and

A(Tny Yn) = by, ) + Bd(z,y) -+ BPd(y, yn).
Using Theorem 2.11, we have

iz, )l < lIBllld(z, )l + HoN*lld (@, vl + 11 [l )

and
(@, g | < N0l s @) (1011 Az, )1 + By wa) -
Taking the lower limit as 7 — ©0 in the first inequality and the upper limit as n — oo in the

second inequality, this complete the first result. In particular, If T = v, we have

ld(za, ya)ll < NI IdCzn, )]+ I 1dy, go)ll-

Taking the limit as 7 - 0o in this inequality, we obtain that lim,,_,o, ||d(Zn, ¥n)|| = 0.

Since
d{z,z) 2 bld(z,2n) + d(@n, 2)] and d{an,z) 2 0[d(@n, ) + d(z, 2)],
by Theorem 2.11, we have
ld(, )|l < lBlllld(z, za)[IHIBIld(ma, 2)I| and [|d(zn, 2)I| < f0lllld(zn, z)[+ bl [|d(z, 2]

Again taking the lower limit as n — ©0 in the first inequality and the upper limit as 7 — 00

in the second inequality, we obtain that the second desired resull. O

Definition 3.13. Let (X, A, d) be a C*-algebra-valued b-metric space. A subset ' of (X, A, d)

is called a closed set if a sequence {x,, } in X and £, — * with respect to A imply z € F'.



Chapter 4

Fixed point theorems for cyclic contractions

Theorem 4.1. Let A and B be nonemply closed subset of a complete C™*-algebra-valued b-

metric space (X, A, d). Assume that T : AU B — AU B is cyelic mapping that satisfies
d(Tx, Ty) 2 Nd(z,y)\, Yz €A and VyE B

where A € A with ||A|| < ”lT” Then T has a unique fixed point in AN B.

Proof. Let zg be any point in A. Since " is cyclic mapping, we have T'zy € B and T2z, € A.

Using the contractive condition of the mapping T, we get

d(Tzo, T?x0) = d(Tzo, T(Tx)) < Nd(zo, Tzo) N
Forall n € N, we have

d(T xo, T 2g) = (AN)d(zg, Tzp) A" = (A" BN
where 8 = d{xy, T'xo). Consider, for any m, . € N such that . < 7, then

d(T™xq, T"2¢) =< bld(T™xg, T™ M xg) + d(T™ M 20, T"20)]
= bd(T™ 2, T™  2g) + V(T ™ 2o, T™22p) + d(T™ 230, T"%0)]

A

< bd(T™ g, T™ o) + B2A(T™ ay, T 2a) + - - 4+ 0 ™d(T™ 3, T"%0)
j b(,\*)mﬁ/\m + b?()\*)m+lﬁ)\m+l 4.+ bnfm(/\*)nflﬁ)\nfl

From Theorem 2.11, we have

n—1
ld(T™ w0, Trzo)l| < 1| Y 65 (A%)RBA"|

k=m

n—1
< D I BN
k=m
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n—1
<O IO HHBIIN
k=m
n—1
< 18I NI
k=m
n—1
<81 D el AL
k=m
n—1
< 181D el
k=m

<181 Y (eliAn®

bl
=W = et

; 1 J(LITEY )i n,.
Sinee 0 < [[A|| < . we have 18113 iy — O as m — co. Therefore {T™z0} is

Cauchy sequence with respect to A. By the completeness of (X, A, d), there exists an element
2 € X such that 2 = lim,,_,eo 1™ %g.

Since {T2"z} is a sequence in A and {72 'y} is a sequence in /3, we obtain that both
sequence converges to the same limit . Since A and I3 are closed set imply z € AN B.

Next, we will complete the proof by showing that 2 is a unique fixed point of 7', Since

6 2 d(Tz,x)
= bld(Tz, T™x0) + ATz, 3]
< B[N d(z, T Lz A+ d(T™z0, )]

by Theorem 2.11, we obtain that
0 < |d(Tz, 2)|| < BNz, T zo) ] + ([l d(T* 20, 2)I| -+ 0 (n — 00).

We have Tz = z, i.e. x is a fixed point of 7",

Suppose that ¥ is fixed point of 7" and y # 2. Since
8 = d(z,y) = d(Tx,Ty) = Ad(z, y)A,
we have
d@, )| < IXd(z, )M < Il NI = IAEaGE )1 < e,

This is a contradiction. Therefore & = ¥ which implies that the fixed point is unique. 0
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Example 4.2. Let X be a set of real numbers and A = Mayo(R) with ||A|| = max; ; |a;;]
where a;; are entries of the matrix A € Myyo(R). Then (X, A, d) is a C*-algebra-valued

20 _
b-metric space with b = [0 2} , where the involution is given by A* = (A4)7,
d(z,y) = [

ls—y*> 0
0 |z—yP

and partial ordering on A is given as

~

[011 tip

o1 G223

lbn bia

= Qi < bij forall ,5j=12, 3,4.
b21 b22

Define a mapping " : X — X by

oLk
~Zalsin(1) %z € (00, —1]
To=q—3 ; z€(—1,0]
<z ;2 € (0, +00)

It clear that 7" is not continuous at all element of X . Therefore Theorem 2.16 can not imply the
existence of fixed point of the mapping 1.

Suppose that A = [ﬁé, —%] and B = —%, 0}. Firstly, we will show thatT : AUB —
AU B is cyclic mapping. Let z € B, that is —% <z <0 ThenTz = —% € A. Again, let

y € A, thatis —1 < z < —1. Indeed, we consider

_%§$5_%:>—%§$+%SO
SO\ EY
TS 33150
r+ g 1
:>0$—( BS)SE
L 0<— (:E“;%) |sin(%)| < F~|sm(%)| 1_18
i_%g_(er%)|sin(—)|—%§1—18—%S0,
this implies that T'z € [—1,0] = B. Forany ¢ € Aandy € B, since —3 < & < —3 and

—% S 1y, we have %— < —% < % and —% < % Hence, we obtain that

0<-7-5<—5+

WOl =
Wl a8
Lol

w8



Next, we consider

x4 1. 1 1.?
— Tyl = |— 3 inf=) == — (==
=Ty < |- (252 ) 1l -5 - (=)
s+ 1 P
- ("5 1)
2
()
- 3
R 12
1 3 9
T Y2
<l
- 3+3
1
Sgh—ﬂz
Then, we have
T2 — Ty 0
Py | Tz — Ty|?
FEe L B
3 sl — 9l 1 0 2
0 sl — 9l
1, : O [le=9l? 0 3 0
0 L] 0 Je—yP] |0}
=)\*d(m,y))\,

1

0
where A = [8 1] . Then ||Al| = 1 < § = . Thus T satisfies contraction of 5.10 imply

3
that 7" has a unique fixed point in AN B, ie {—3} = F(T).

Corollary 4.3. Suppose that (X, A, d) is a C™-algebra-valued b-meiric space. Assume that
T : X — X is called a C*-algebra-valued b-contractive mapping on X, that is 1" satisfies

d(Tz, Ty) 2 Nd(z,y)A, Vz,ye X

where A € Awith ||A]] < "—;”. Then T has a unique fixed point in X.

Proof Putting A == B = X, by Theorem 5.10, this implies that 7" has a unique fixed point in
ANB=X. N

Theorem 4.4. Suppose that (X, A, d) is a complete C*-algebra-valued b-mefric space. As-
sume that a mappingT' © X — X satisfies
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(1) T(X) =X,

2) d(Tz, Ty) = X*d(z,y)Aforallz,y € X

where X € A is an invertible element and ||\ 7Y|| < ﬁ such that T is a C*-algebra-valued

b-expansive mapping on X. Then T has a unigue fixed point in X.

Proof. We will begin to prove this theorem by showing that 7" is injective. Let z,¥y be an
element in X such that z # y that is d(z,y) # 0. Assume that Tz = T'y. We have

0 = d(Tx, Ty) = Nd(z,y)A = Xd(@, y)2d(@,y)? A — (d(z,3) T\ (d(@,9)2)) = 0.

This implies that A*d(z,y)A = . Since A is invertible, we have d(z,y) = f which leads
to contradiction. Thus 7" is injective. By the first condition of mapping T, we obtain that T' is
bijective which implies that " is invertibe and T~ is bijective.

Next, we will show that 7" has a unique fixed point in X. In fact, since T is C*-algebra-
valued b-expansive and invertible mapping, we substitute z, ¥ with 412, Ty in the second

condition of I",respectively, which implies that
AT 1), T(T ) = Nd(T 'z, T 'y)A, Va,yc X.
That is
d(z,y) = Nd(T 2, T 'Y\, Vz,y e X.
Since d(x, y) and A*d(7' "z, T Ly) A are positive elementin A, A*d(T 'z, T~ 1y) < Ad(z,y)
and A~ € A. By condition (2) of Theorem 2.7 and Theorem 2.12, we have
(T2, T y) = QX DT 2, Ty )
AT AT e, T )M
< (Y, A,

Therefore 7" is b-coniractive mapping. Using Corollary 5.12, there exists a unique & such that
T—1g = z, which means there has a unique fixed point z € X such that Tz = T'(1"'z) =
(TT Yz = Iz = U

Theorem 4.5. (Cyclic Kannan-Type) Let A and B be nonempty closed subset of a complete
C*-algebra-valued b-metric space (X, A, d). Assume that T : AU B — AU B is cyclic
mapping fhat satisfies

d(Tz, Ty) 3 Nd(z, Tz) V- d(y,Ty)l, Yz €A and Vy€ B

where A € A/, with ||A]] < Enlbﬂ Then I has a unigue fixed point in A N B.



22

Proof. Without loss of generality, we can assume that A # 0. Since A € A/ and # =
d(z, Tz) + d(y, Ty), by the second condition of Lemma 2.13, we have § < Md(z, Tz) +
d(y, Ty)}-

Let Zo be any element in A. Since 7' is cyclic mapping, we have Txg € B and T2z € A.

Consider,
d(Txo, T?w0) = d(T'wo, T(T0))
=< Md(zo, Two) + d(Tz0, T%0)]
= Ad(zo, Txo) + Ad(T'%0, T?x0),
that is

(I — Nyd(Tzg, T*z0) = Ad(wo, T'%0)

Since A € A, and ||A| < m < 3, by the first condition of Lemma 2.13, we have I — A is
invertible and ||(7 — A)~'A|] < 1. From the third condition of Lemma 2.13, we have

d(Tzo, T?20) < (I — N)~\d(wo, Tzo).
Similarly, we get that
dT?z0, T3x0) = (I — N Ad(T'zo, T?24).
Since (1 — M)A € A’ and 8 = (I — A) 7' Ad(zo, Tzo) — d(T'%o, T?o), the second

condition of Lemma 2.13, we have
0 =< (I —X)]MI = N tAd(zo, Tzo) — d(Tzo, T?20) }-
that is
(I — N Ihd(Txo, T%x0) < [(F = N) ' A*d(w0, To)
Hence
d(T%xg, T%20) = (I = A)"Ad(T'zg, T?z0) = [(T — A) ' AP d{w0, 1'%0)-
Continue this proces, we have
d(T™zo, T z0) = [(I — X) 7' A]Pd(zo, Tzo) = "B
where v = (I — A) A and 8 = d(zo, T'zo). Next, we will show that {7™x¢} is Cauchy
sequence with respect to A. Consider for any m,nn € N and m < n, we have
d(T™xg, T z0) =< bd(T™zg, T ag) + Vd(T™  xg, T ) + -+ - + b AT L mg, T o)
< ba™B + D™ B BB

n—1
— E :bk—m-l_lakﬁ.
k=m
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From Theorem 2.11, we get that

zo)|l <l Z ]|

< Z ¥ aF g
k=m

fld(T™ 0,7

n—1
<O [pllE el 8
k=m

< 3 el 8]
= i(ubunamk
<18 Z il

bl
= Vol = e aty

Consider,

olllledll = MBAIIAC = A) ]
< BB = X))

= [[BIIAI Z(x\)ill
< [[B{ A1 ZII(A)

1
<G
'”(2nb||1 K]
1 1

<§1u%_1

(elhed)™ _, 0 as mn —r 0o. Therefore {T"xo} is Cauchy sequence with

Therefore [\ A1 e
respect to A. By the completeness of (X, A, d), there exists an element x € X such that

T = limy 00 17 Tg.
Since {T2"x} is a sequence in A and {721z} is a sequence in I3, we obtain that both

sequence converges to the same limit z. Since A and B are closed set imply z € AN DB, Next
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we will show that 2 is a unique fixed point of 7", Consider,

d(Tx,x) < bld(Tx, T x0) + AT 2o, 7))
= bd(Tz, T(T* ‘20)) + bd(T*"zo, %)
= bA[d(x, Tz) + d(TZn*lxg,Tznwo)] + bd(T*" 3, z)
=< bAd(m, Tx) + BAA(T* ag, ) + b2 Ad(w, T mo) + bd(T*" 20, 1),
by Theorem 2.11 and submultiplicative, we obtian that
(T, )| < [BIIMIN(z, T2 +IDIPI AT w0, )+ NOIF I M, T zo) I+ 1Bl lld(T*"
Letting n — 00, we get that

(', =)|| < [bRlIAldCz, Tz)ll,

and so

|47, < |Plgrlde T2l < gl To)l.

This implies that ||d{T'z, )| = 0, that is d(T'z, ) = ¢ and so T’z = . i.e. z is fixed point
of T. Now if y is another fixed point of 7" and ¢ # =, then

6 < d(2,y) = d(Tz, Ty) 2 Ad(z,Tz)+,d(y, Ty)) = Md(z, 2) + d(y,y)) = 0,
which leads to contradiction. Therefore, T = ¥, we complete the proof. |

Example 4.6. Let X = [—1, 1] and A = My,5(R) with ||A|| = max; ; |a;;| where a;; are
entries of the matrix A € Mpyy(R). Then (X, A, d) is a C*-algebra-valued b-metric space

2 0 il
with b = [0 2] , where the involution is given by A* = (A)7,

C]‘[(E’y):[Iw—ylg 0 }

0 l|z-y?
and partial ordering on A is given as
11 @ bii b
ORI TP Goay < by forall 4,5 =1,2,3,4.
Qo1 Aoz bar g2

Suppose that A = [—1,0] and B = [0, 1]. Define a mapping 7" : AU B — AU B by

Tz = —7. Firstly, we will show that 7" is cyclic mapping. Let 2 be an element in A, that is



3‘ QQ‘ e
Wb ¢557$%
Ay §
25 ‘
954 Q

2
.

"\ 5

\:‘

1<z <0 Then0 < —F < limply Tx € B. Similatly, lety € B,s00 <y < 1. "5
Aane Te
Then —% < —% < 0. Hence Ty € A. e e

Forany z € Aand y € B, we consider Be s e
Wm—Tm%:E;H%gF L BAABAL
1 2
= Tﬁ'w Y|
1
< - 2
< s llsl + by
1
< . 2 2 2 2
< <l + 2l P)

_ 2 Ty Y2

4
2
= (o= TP+l — TyP)
Then, we have
Tz — Ty|? 0
d(Tz,Ty) = Tz =Tyl
0 1Tz — Tyl

&0 = T+ g = Typ) 0
o~ 0 wllz =Tz + |y — Tyl*)
J(2A\\ FM—TﬂlHy—TM% 0

07% 0 (lz — Tz|* + ly — Tyl*)

= Ad(z, Tz) + d(y, Ty)]

2

= 0
where A = | % . Then [[A] = 2 < | = 55 Thus 7" satisfies contraction of 5.14
0 2 vl

25
imply that 7" has a unique fixed pointin A N B, i.e {0} = F(T).

Theorem 4.7. (Cyclic Chatterjea-Type} Let A and B be nonempty closed subset of a complete
C*-algebra-valued b-metric space (X, A, d). Assume that T : AU B — AU B is cyclic
mapping that satisfies

d(Tx, Ty) < Ald(y, Tx) +d(z,Ty)], Ve €A and Vy€ B

where A € A with || M| < sieiz. Then T has a unique fixed point in AN B.
+ 2|0l
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Proof. Without loss of generality, we can assume that A\ # 6. Since A € A/ and ¢ =
d(y, T'z) + d(z, T), by the second condition of Lemma 2.13, we have & =< Md(y, T'z) +
d(z, Ty)}.

Let zg be any element in A, Since T is cyclic mapping, we have T'zy € B and Tz € A.

Consider,
d(Txo, T?x0) = d(Txo, T(To))
=< Nd(Tzo, T20) + d(zo, T%x0)]
= b)\[d(lo, T:Bo) + d(T.‘Eo, T21L'0)],
that is

(I = bN)d(Tzo, T20) < bAd(z0, TTo)

Since A € A/, and b € A/, , From the second condition of Lemma 2.13, we get that bA € A,
Since ||bA|| < [|&]] 2”1T“2 < 3 and bA € A/, by the first condition of Lemma 2.13, we have
(I —8X)"" € A and (bA)(] — bA)™r € Al with [|[(bA)(Z — bA) 7| < 1. From the third

condition of Lemma 2.13, we have
d(T'zo, T?xq) = (DAY — b)) d(z0, T'z0).
Similarly, we gef that
d(Tzg, T3%0) = (BA)(I — bA) Yd(Txg, T?0).

Since (BA)(I — DAY L € Al and @ =% (BAY(T — bA) " d(zo, To) — d(T'zo, T?xo), the

second condition of Lemma 2.13, we have
g = (bA){I — b/\)“l{(b/\)(f — b/\)*ld(:cg,Txg) — d(TSEg,TZZEO)}.

that is
(bA{T — b)\)_ld(Ta:o,Tgrcg) = [(b)\)(I — b/\)_l]zd(a’:g,TCBo)

Hence
d(Tx0, T320) = (BN — bN) 1 d(T'zo, T%zq) = [(BA)(I — BA)]2d(zq, T'0).
Continue this proces, we have

d(T" 5o, T ) < [(BA)(I — b)Y d(zo, T0) = w" B
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wherew = (bA)(Z —bA)~!and 8 = d(wo, T'zo)- Next, we will show that {77z} is Cauchy

sequence with respect to A. Consider for any m,n € N and m < n, we have

d(Tm.'I?o, THCE()) = bd(TmiEg, Tm+1$0) + bzd(Tm+1$0, Tm+2$[)) +-- bn_md(Tn_Iiﬂo, Tnﬂjg)
5 bw’"'ﬁ 4 bzwm+1ﬁ NS bn—mwn—lﬂ

n—1
— E :bkferlwkﬁl
k=m

From Theorem 2.11, we get that

n—1
(T ™0, T"z0)]) < || D b5 1|

k=m

n—1
< z ||bk—m+1wkﬂ”
k=m
n—1
<O bl ol F 18|
k=m
n—1
< > Bl 181
k=m
n—1
=181 > (elllw))®
k=m

= 11811 > el l)®

_ an elliwl™
= W= ey

Consider,
B[l llwll = NBlllIpACT — 6A) 1|
< [|BIIIPANIE = 6A) ]

= [[BllloAIl DAYl
=0

< [lbfllioAl Z V1§

B, 1
< b
W) T
il
21—1

=1,
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Therefore || 8 H% — 0 as m — oco. Therefore {T™%y} is Cauchy sequence with

respect to A. By the completeness of (X, A, d), there exists an element & € X such that
T = limp_ye0 1" To-

Since {T2"zy} is a sequence in A and {T°* 1z} is a sequence in B, we obtain that both
sequence converges to the same limit x. Since Aand B are closed set imply z € AN B.

Next, we will complete the proof by showing that z is a unique fixed point of T Since

d(T'z,x) = bld(Tz, T*"xo) + d(T*" w0, )]
= bd(Tz, T(T™ 20)) + bd(T*"zo, x)
< bA[d(z, T?20) + (T 'z, T'x)) + bd(T*" 0, )
= bAd(z, T zo) 4 bAA(T™ ‘3o, T) + bd(T* 20, T)

=< bad(x, T ) + ATz, z) + b Ad(x, Tx) + bd(T*xp, ),
by Theorem 2.11, we have
1d(T, )\ < lBlIAIdz, T2 w0 [l+ B2 w0, @) [IHIBI* IAIdCa, T2 )|+l
Letting 7. — oo, we get that

(T, )| < oll” M, Tz,

and so
L
2[|ol>
This implies that ||d(7"z, )| = 0, that is d(T'x, z) = § and so T — . i.e. z is fixed point

d(T, )| < ol1* s ez, Ta)] < %Ild(waTﬂ:)H-

of T'. Now if  is another fixed point of 7" and ¥ # =, then
6 < d(z,y) = d(Tz, Ty) 2 Md(y, Tz)+,d(z, Ty)) = 22d(z,y),

From Theorem 2.11, we get that

1

ld(z.9)ll < 22, Il < 2Ald, VI < 2y

Mid(z, »ll < Nldz, ),

which leads to a contradiction. Therefore z = y which implies that the fixed point is unique.

il

Example 4.8. Lot X = [0,1] and A = Myyo(R) with ||A|| = max; ; |a;;| where a;; are
entries of the matrix A € Mayo(R). Then (X, A, d} is a C*-algebra-valued b-metric space
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2 0 .
with b = [O 2} , where the involution is given by A* = (A)7,

|z —y* 0 ]

d(m,y) = |: 0 |$ _ y|2

and partial ordering on A is given as

a a byy b
Moz PR < by forall 4,5 =1,2,3,4.
o1 Uon bor  bay

Suppose that A = [0,1] and B = [0, 3]. Define a mappingT : AU B -+ AU B by

T'z = §. Firstly, we will show that T'is cyclic mapping. Let z € A, thatis 0 <z < 1. Then
0<2< LlimplyTz € B. Similatly, lety € B,s00 <y < . Then0 < ¥ < ;. Hence
Tyc A
Now, we will show that T satisfies the contraction of 5.16. Consider,
@—w 16E—9) 1, v,z
5 6 ) 6 5 5
and so

1 Y z 2
5 (- 9+G-v)
1 Yo < 2
<—(26z- Uy yo )
<X (e Wt
1
:E(a:—Ty|2+|ch y|2)
Then, we have
[|T% = Ty? 0
d(Tz,Ty) = L
I 0 [Tz — Tyl
o |35 =Tyl o+ [Tz — o) 0 }
1 0 5 (lz =Tyl + [Tz — y|*)
_ % o](m—Tm%+wx—m% 0 }
10 5 0 (Jz — Tyl* + [Tz — y|?)

= Md(z, Ty) + d(y, Tz)]

1
= 0
where A = [15 ] Then ||A| = Tlg < % = L Thus 7 satisfies contraction of 5.16

1 2(1bl|*-
i8
imply that 7" has a unique fixed point in A N B.
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Conclusion

5.1 Fundamental properties of C*-algebra-valued b-metric spaces

Theorem 5.1, Let (X, A, d) be C*-algebra-valued b-metric space. If {x,} is a convergent

sequence with respect to A, then {zvn} is Cauchy sequence with respect to A.

Definition 5.2. A subset S of a C*-algebra-valued b-metric space (X, A, d) is bounded with

respect to A if there exists T € X and a nonnegetive real numbers M such that
Nd(z, T)|| < M, forall z€X.

Theorem 5.3. Let (X, A, d) be a C*-algebra-valued U-metric space and let {Tn} be a se-
quence in X and x © X Then :

1 x, — zifand only if d(z,,x) — 0,
2. A convergent sequence in X is bounded with respect to A and its limif is unique,
3. A Cauchy sequence in X is bounded with respect fo A.

Theorem 5.4. Let {x,} be a convergent sequence in a C*-algebra-valued b-metric space
(X, A, d) and limp,_,e0 Zn, = T. Then, every subsequence {Zn, } of {n} is convergent and

has the same limit x.

Theorem 5.5. Let (X, A, d} be a C*-algebra-valued b-melric space. Then every subsequence

af a Cauchy sequence is Cauchy sequence.

Theorem 5.6. Let (X, A, d) be a C*-algebra-valued b-metric space and let {} be a Cauchy
sequence with respect to A If {z,,} contains its convergent subsequence, then {x,} is conver-

gent seqiience.

Theorem 5.7. Let (X, A, d) be a C*-algebra-valued b-metric space. Suppose that {z.} and
{yn} are convergent with respect to A and converge to T and y, respectively. Then d(a:n, yn)

converges to b*d(z, ).
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Theorem 5.8. Let (X, A, d) be a C*-algebra-valued b-mefric space. Suppose that {,,} and

{yn} are convergent with respect to A and converge to T and y, respectively. Then,

1 - .
@ Y < tim inf {|d(@n, ya )| < lim sup [|d(zw, yu) | < [1B*]|d(z, )]
2] n—00 n-yc0

In particular, if & = g, then we have liMp,_y00 ||d(Tn, yn)|| = 0. Moreover for any z € X, we

have
1

||b|| ||d(:v,z)|| < lilginf”d(:vmz)” < lim sup ||d(g;m z)|| < ||b||||d(a,-,z)||
" oo n—00

Definition 5.9. Let (X, A, d) be a C*-algebra-valued b-meiric space. A subset £ of (X, A, d)
is called a closed set if a sequence {x,, } in X and z,, — z with respect to A imply z € F.

3.2 Fixed point theorem for cyclic contractions

Theorem 5.10. Ler A and B be nonempty closed subset of a complete C*-algebra-valued b-
metric space (X, A, d). Assume that T : AU B — AU B is cyelic mapping that satisfies

d(Tz,Ty) 2 Nd(z,y)\, V€A and Yy € B
where A ¢ A with [[A|| < "lT". Then T has a unique fixed pointin AN B.

Example 5.11. Let X be a set of real numbers and A = My, o(IR) with [[A]| = max, ; |a;]
where a;; are entries of the matrix A & My, o(R). Then (X, A, d) is a C*-algebra-valued

2.0 —
b-metric space with [ = [0 2] , where the involution is given by A* = (A4)7,

, lz—9> 0
d(w,y)! 0 P

and partial ordering on A is given as

@11 Q12
Q21 Qag

Define a mapping 7" : X — X by

by b
< nme oy < sz forall ¢,7=1,2,3,4
bar bag

o+ .
Ziandi-4 5 we (o
Tp=q -1 ; z€(—3,0]
—% : z € (0,00)
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It clear that 1" is not continuous at all element of X. Therefore Theorem 2.16 can not imply the
existence of fixed point of the mapping 7.

Suppose that A = _%’ —%] and B = [~ %, 0]. Then T" has a unique fixed pointin AN 5,
ie {—%} = F(T).

Corollary 5.12. Suppose that (X, A, d) is a C*-algebra-valued b-metric space. Assume that

T : X — X is called a C*-algebra-valued b-contractive mapping on X, that is T satisfies
d(Tz, Ty) = Xd(z,y)\, Yz,ye X

where A € A with || M| < ﬁ Then T" has a unigue fixed point in X.

Theorem 5.13. Suppose thar (X, A, d) is a complete C*-algebra-valued b-metric space. As-
sume that a mapping T' : X — X satisfies

() T(X) = X;

(2) d{(Tx,Ty) = Nd(z, A forall z,y € X

where A € A is an invertible element and || A7 < ﬁ such that T' is a C*-algebra-valued

b-expansive mapping on X. Then T has a unique fixed point in X.

Theorem 5.14. (Cyclic Kannan-Type) Let A and B be nonemply closed subset of a complete
C*-algebra-valued b-metric space (X, A, d). Assume that T : AU B — AU B is cyclic
mapping that satisfies

d(Tz, Ty) 2 ANd(z,Tz) +d(y,Ty)], Yo € A and Yy € B
where X € A with ||A]| < ﬁ. Then T' has a unique fixed point in AN B.
Example 5.15. Let X = [—1,1] and A = Moo (R) with [|A|| = max; ; |a.;| where a;; are
entries of the matrix A € Moy o(IR). Then (X, A, d) is a C*-algebra-valued b-metric space

2 0 _
with b = [0 2} , where the Involution is given by A* = (A)7,

ie0) [|x—y|2 0 }

0 Je—y?
and partial ordering on A is given as

[bu bia

b21 ‘522

<

[‘111 /50

as1 Qg

] S a5 < b,_j- for all Z,_j‘ = ]_,2, 3,4

Suppose that A = [-1,0] and B = [0, 1]. Definc a mapping T : AU B — AU B by
T = —%. Then T has a unique fixed point in AN B, L.e {0} = F(T).
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Theorem 5.16. (Cyclic Chatterjea-Type) Let A and B be nonempty closed subset of a complete
C*-algebra-valued b-metric space (X, A, d). Assume thatT : AU B — AU B is cyclic
mapping that satisfies

d(T's, Ty) R Nd(y, Tz) + d(2,Ty)], Ve €A and Yy € B
where A € Al with || Al < W. Then 1" has a unique fixed point in AN B.

Example 5.17. Let X = [0, 1] and A = Myyo(R) with || A|| = max; ; |a;;| where a,; are
entries of the matrix A € Myyo(IR). Then (X, A, d) is a C*-algebra-valued b-metric space

20 .
withb = |:0 2:| , where the involution is given by A* = (A)7,

d(w,y)zlmmmz ’ ]

0 |z —g)?

and partial ordering on A is given as

<

[an 12

[bn bia

b21 b22

& ay < by forall ¢,5=1,23,4
g1 QGgz

Suppose that A = [0, 1] and B = [0, &]. Define a mapping 7' : AU B — AU B by
Tz = . Then T has a unique fixed pointin AN B.
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We study fundamental properties of C"-algebra-valued b-metric space which was introduced by Ma and Jiang (2015) and give some
fixed point theorems for cyclic mapping with contractive and expansive condition on such space analogous to the results presented

in Ma and Jiang, 2015.

1. Introduction

Firstly, we begin with the basic concept of C*-algebras. A real -

or a complex linear space A is algebra if vector multiplication
- is defined for every pair of clements of A satisfying two
conditions such that A is a ring with respect to vector addition
and vector multiplication and for every scalar & and every
pair of elements x, y € A, a(xy) = (ax)y = x(ay). A norm
|- |l on A is said to be submultiplicative if ||ab|| < [lall||b] for
alla,b ¢ A. In this case (A, | - ||} is called normed algebra.
A complete normed algebra is called Banach algebra. An
involution on algebra A is conjugate linear map a — a” on A
such that a** = gand (ab)" = b"a” foralla,b € A. (A, %) is
called =-algebra. A Banach =-algebra A is #-algebra A with
a complete submultiplicative norm such that [la*|| = [|a| for
all @ € A. C"-algebra is Banach =-algebra such that |a*a| =
flall®. There are many exarnples of C* -algebra, such as the set
of complex numbers, the set of all bounded linear operators
on a Hilbert space H, L(H), and the set of n x n-matrices,
M, (C). If a normed algebra A admitsa unit I, al = Ia = a
foralla € A, and [|I]| = 1, we say that A is a unital normed
algebra. A complete unital normed algebra A is called unital
Banach algebra. For properties in C* -algebras, we refer to [1-
3] and the references therein.
Let (X, d) be a complete metric space. The well-known
Banach’s contraction principle, which appeared in the Ph.D.
dissertation of 5. Banach in 1920, runs as follows: a mapping

T: X — Xissaidtobeacontraction if there exists r € [0, 1)
such that

d(TxTy)<rd(xy) Vx,yeX L

‘Then, T" has a unique fixed point in X which was published
in 1922 [4]. Banach’s contraction principle has become one of
the most important tools used for the existence of solutions
of many nonlinear problems in many branches of science
and has been extensively studied in many spaces which are
more general than metric space by serveral mathematictians;
sce, for example, quasimetric spaces (5, 6], dislocated metric
spaces [7], dislocated quasimetric spaces [8], G-metric spaces
{9-11], b-metric spaces [12-14], metric-type spaces (15, 16),
metric-like spaces [17], b-metric-like spaces (or dislocated
b-metric spaces) [18, 19), quasi b-metric spaces [20], and
dislocated quasi-b-metric spaces [21]. Note that the Banach
contraction principle requires that mapping T’ satisfies the
contractive condition that each point of X x X and ranges of
'T" are positive real numbers. Consider the operator equation

X- EL;XLH =Q, (2)

H=1

where {L;,L,,...,L,} is subset of the set of linear bounded
operators on Hilbert space H, X € L(H), and Q € L(H), is
positive linear bounded operators on Hilbert space H. Then,



we convert the operator equation to the mapping F : L{H) —
L(H) which is defined by

F(X)=)YLXL,+Q 3)

n=1

Observe that the range of mapping F is not real numbers but
it is linear bounded operators on Hilbert space H. Therefore,
the Banach conlraction principle can not be applied with this
problem. Afterward, does such mapping have a fixed point
which is equivalent to the solution of operator equation? In
2014, Ma et al. [22] introduced new spaces, called C* -algebra-
valued metric spaces, which are more general than metric
space, replacing the set of real numbers by C*-algebras, and
establish a fixed point theorem for self-maps with contractive
or expansive conditions on such spaces, analogous to the
Banach contraction principle. As applications, existence and
uniqueness results for a type of integral equation and operator
equation are given and were able to solve the above problem
if L, Ly,..., Ly, € L(H) satisfy 377 [|L,I* < 1.

Later, many authors extend and improve the result of Ma
et al, For example, in [23], Batul and Kamran genecralized the
notation of C*-valued contraction mappings by weakening
the contractive condition introduced by Ma et al. (the
mapping is called C*-valued contractive lype mappings) and
establish a fixed point theorem for such mapping which is
more generalized than the result of Ma et al.; in [24], Shehwar
and Kamran extend and improve the result of Ma et al.
[22] and Jachymski [25] by proving a fixed point theorem
for self-mappings on C*-valued metric spaces satisfying the
contractive condition for those pairs of elements from the
metric space which form edges of a graph in the metric
space. In 2015, Ma and Jiang [26] introduced a concept of C* -
algebra-valued b-metric spaces which generalize an ordinary
C* -algebra-valued metric space and give some fixed point
theorems for self-map with contractive condition on such
spaces. As applications, existence and uniqueness results for a
type of operator equation and an integral equation are given.

Generally, in order to use the Banach contraction prin-
ciple, a self-mapping T must be Lipschitz continuous, with
the Lipschitz constant r € [0,1). In particular, T must
be continucus at all elements of its domain. That is one
major drawback. Next, many authors could find contractive
conditions which imply the existence of fixed point in
complete metric space but not imply continuity. We refer to
(27, 28] (Kannan-type mappings) and [29] (Chatterjea-type
mapping).

Theorem 1 (see [27]). If (X, d} is a complete metric space and
mapping T : X — X satisfies

d(TxTy)<r[d{xTx}+d(y,Ty)], (4)

where 0 < r < 1/2 and x, y € X, then T has a unique fixed
point.

Theorem 2 (see [29]). If (X, d) is a complete mefric space and
mapping T : X — X satisfies

d{(Tx, Ty) <r[d(x,Ty) +d (., Tx)], (5)
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where 0 < v < 1/2 and x, y € X, then T has a unique fixed
point.

In 2003, Kirk et al. [30] introduced the following notation
of a cyclic representation and characterized the Banach
contraction principle in context of a cyclic mapping as
follows.

Theorem 3. Let A, A,,..., A, be nonempty closed subsets
of a complete metric space (X, d). Assume that a mapping T
S, Ay — UL, A; satisfies the following conditions:

j=
D TA) A, foralll <i<smand A, = A,
(ii) There exists k € [0, 1) such that d(Tx, Ty) < kd(x, y)
Jorallxe Ajandy e A, forl <i<m.
Then, T has a unique fixed point.

In 2011, Karapinar and Erhan [31] introduced Kannan-
type cyclic contraction and Chaiterjea-type cyclic contrac-
tion. Moreover, they derive some fixed point theorems for
stich eyclic contractions in complete metric spaces as follows.

Theorem 4 (fixed point theorem for Kannan-type cyclic
contraction). Lef A and B be nonempty subsefs of metric
spaces (X, d) and a cyclic mapping T : AUB — AU B satisfies

d{(TxTy) <k[d(x,Tx) +d (».Ty)],
(6)
Vxc¢ A, ycB,
where 0 < ke < 1/2. Then, T has a unigue fixed point in AN B.

Theorem 5 (fixed point theorem for Chatterjea-type cyclic
contraction). Let A and B be nonempty subsets of a mefric
spaces (X, d) and a cyclic mappingT : AUB — AUB satisfies

d(Tx, Ty) < k|d(x,Ty) +d (»Tx)],
Vx€A, yeB

7

where b < k < 1/2. Then, T has a unique fixed point in AN B.

The purpose of this paper is to study fundamental
properties of C"-algebra-valued b-metric space which was
introduced by Ma and fiang [26] and give some fixed point
theorems for cyclic mapping with contractive and expansive
condition on such spacc analogous to the results presented in
[26].

2, Preliminaries

In this section, we recollect some basic notations, defintions,
and results that will be used in main result. Firstly, we begin
with the concept of b-metric spaces.

Definition 6 (see [12, 13]). Let X be a nonempty set. A
mappingd : X x X — R is called b-metric if there exists
a real number & > 1 such that, for every x, v,z € X, we have

(i) dlxe, y) 20,
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(ii) dix, ¥) = 0Oifand only if x = y,
(i) d{x, y} = d(y, x},
(iv) d(x,z) < bld(x, y) +d(y, 2)].

In this case, the pair (X, d) is called a b-metric space.

The class of b-metric spaces is larger than the calass of
metric spaces, since ab-metric space is ametric when b = lin
the fourth condition in the above definition. There exist many
examples in some work showing that the class of b-metric is
efficiently larger than those metric spaces (see also [12, 14, 32,
33]).

Example 7 (see [12]). The set lP(IR) with 0 < p < 1, where
LR) = {{x,} € R : ¥ |x,|P < oo}, together with the
t{;nctiond : IP(IR) le(R) - R,

o0 ip

d(x’ )") = ( |x"_y"IP) ’ (8)
n=1

where x = {x,}, ¥ = {y,) € IP(IR), is a b-metric space with

coeflicient b = 217 > 1, Observe that the result holds for the
general case !, (X} with0 < p < 1, where X is a Banach space.

Example 8 (see [12]). The space L, (0 < p < 1) of all real

functions x(£), ¢t € [0,1], such that L)l |x(£)|Pdt < oo, together
with the function

d(xy)= (Ll ) -y dt)up : N

Vx,y € L, {0,1],

is a b-metric space with & = 2!e,

Example 9 (sce [33]). Let (X.d,) be a metric space and
dy{x, ¥) = (d,(x, y))f, where p > 1 is natural numbers. Then,
d, is a b-metric with b = 277"

The notation convergence, compaclness, closedness, and
completeness in b-metric space are given in the same way as
in metric space.

Next, we give concept of spectrum of element in C*-
algebra A.

Definifion 10 (see {3]). We say thata € A is invertible if there

is an element & € A such that ab = ba = I. In this case, b is
unique and written a~'. The set

Tnv (A) = {a € A | a is invertible] {10)

is a group under multiplication. We define spectrum of an
element a to be the set

ocla)=0,4(a)={AeC|AI—a ¢ Inv(A)}. (11)

Theorem 11 (see [3]). Let A be a unital Banach algebra and let
a be an element of A such that |lal| < 1. Then, I — a € Inv(A)
and

(I-a)'= Of:a (12)

n=0

Theorem 12 (see [3]). Let A be a unital C* -algebra with a unit
I, then

=1
(2) For anya € Tnv(A), (a*) ' = (a™')".
(3) Foranya € A, a(a")rz o@* ={AeC:Acola)

All over this paper, A means a unital C*-algebra with
a unit I. R is set of real numbers and R, is the set of

nonnegetive real numbers. M,,(R) is 1% n matrix with entries
R.

Definition 13 (see [3]). The set of hermitain elements of A is
denoted by Ay; that is, &), = {x € A x = x*}. An element
xin A is positive element which is denoted by & < x, where
6 means the zero element in A if and only if x € Ay, and o(x)
is a subset of nonnegative real numbers. We define a partial
ordering Ay, by using definition of positive element as x < y
if and only if y — x = @. The set of positive elements in A is
denotedby A, = {x € A: x = 6}

The following are definitions and some properties of
positive element of a C* -algebra A,

Lemyma 14 (see [3]). The sum of two positive elements ina C* -
algebra is a positive element.

Theorem 15 (sce [3]). If a is an arbitrary element of a C™-
algebra A, then a”a is positive.

We summarise some elementary facts about A, in the
following results.

Theorem 16 (see [3]}. Let A be a C*-algebra:

(1) The set A, is closed cone in A fa cone C in a real or
complex vector space is a subset closed under addition
and under scalar multiplication by R J.

(2) Theset A, isequalto {a*a : a € A}

(3) If0 < a % b, then |la|| < [b]l.

(4) If A is unital and a and b are positive invertible

elemnents, thena <b = 0 < b <a™l.

Theorem 17 (sce [3]). Let A be a C*-algebra. If a,b € A, and
a = b, then for any x € A both x"ax and x"bx are positive
elements and x*ax < x*bx. '

Lemma 18 (see [3]). Suppose that A is a unital C”-algebra
with a unit I:

(1) Ifa € A, with |lall < 1/2, then I — a is invertible and
la(l —a)™"|| < 1.



(2) Suppose that a,b ¢ A with a,b » 6 and ab = ba; then,
ab > 0.

(3) Define A'={acA:ab=ba Ybe A} Letac A';
ifb,ce Awithbzcr@andl—~ace A is invertible
operafor, then

I-a)'be({I-a)c (13)

Definition 19 (see [34]). A matrix A € M, (C) is Hermitian
if A = A*, where A” is a conjugate iranspose matrix of A. A
Hermitian matrix A ¢ M, (C) is positive definite if x* Ax >
0 for all nonzero x € C", and it is positive semidefinite if
x*Ax = 0 for all nonzero x € C".

In 2014, Ma et al. [22] introduced the concept of C*-
algebra-valued metric space by using the concept of positive
elements in A. The following is definition of C*-algebra-
valued metric.

Definition 20 (see [22]). Let X be a nonempty set. A mapping
d:XxX — Aiscalled C"-algebra-valued metric on X if it
satisfies the following conditions:

) d(x, y) =B forallx, y € X

(2) d(x, yy=@ifand only if x = y.

(3 d(x, ¥y =d(y,x) forall x, y € X,

@) d(x, y) 2 d(x,z) +d(z, y)forall x, y,z € X,

Then, d is called a C"-algebra-valued metric on X and
(X, A, d}is called a C” -algebra-valued metric space.

We know that range of mapping d in metric space is the
set of real numbers which is C* -algebra; then, C”-algebra-
valued metric space generalizes the concept of inetric spaces,
replacing the sct of real numbers by A, In such paper, Ma et
al. state the notation of convergence, Cauchy sequence, and
completeness in C*-algebra-valued metric space. For detail, a
sequence {x,} in a C*-algebra-valued meiric space (X, A, d)
is said to converge to x € X with respect to A if for any
g > Othereis N € N such that [|d(x,, x)|| < e for all
n = N. We write it as lim,, , %, = x. A scquence {x,}
is called a Cauchy sequence with respect to A if for any
e > 0there is N € N such that [|d(x,, x,)| < & for all
n,m > N. The (X, A, d) is said to be a complete C” -algebra-
valued metric space if every Cauchy sequence with respect
to A is convergent. Moreover, they introduce definition of
contractive and expansive mapping and give some related
fixed point theorems for self-maps with C”-algebra-valued
contractive and expansive mapping, analogous to Banach
contraction principle. The following is the definition of
contractive mapping and the related fixed point theorem.

Definition 21 (see [22]). Suppose that (X,A,d) is a C*-
algebra-valued metric space. A mapping T : X — X is called
C*-algebra-valued contractive mapping on X, if there is an
A € A with [JA] < 1 such that

d(TxTyy < A'd(x, )4 VxyecX (14)
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'Theorem 22 (see [22)). If (X, A, d) is a complete C* -algebra-
valued metric space and T : X — X satisfies Defintion 21,
then T has a unique fixed point in X.

In the same way, the concept of expansive mapping is
defined in the following way.

Definition 23 (see [22]). Let X be a nonempty set. A mapping
T'isa C* -algebra-valued expansive mappingon X, if T : X' —
X satisfies

W TX) =X,
(2) d(Tx, Ty) = A’d(x, y)A, forall x, y € X,

where A ¢ A is an invertible element and A7 < 1.

The following is the related fixed point theorem for C*-
algebra-valued expansive mapping.

Theorem 24 (see [22]). Let (X, A,d) be a complete C*-
algebra-valued metric space. If a T+ X — X satisfies
Defintion 23, then T has a unique fixed point in X.

3, Fundamental Properties of
C*-Algebra-Valued b-Metric Spaces

In this section, we begin with the concept of C*-algebra-
valued b-metric space which was introduced by Ma and Jiang
126] as follows.

Definition 25 (see [26]). Let X be a nonempty set. A mapping
d: X xX — Aiscalled C"-algebra-valued b-metric on
X if there exists b € A" such that b = I saiisfies following
conditions:

(1} dix, y) =G forall x, y € X,

(2) dix, y) =Fifand onlyifx = y.

(3) d(x, y) =d(y,x) forallx, y € X.

(4) d(x, y) = b[d(x, 2} + d(z, )] forall x, y,z € X,

Then, (X, d, A) is called a C" -algebra-valued &-metric space.

Remark 26. Tf b = I, then a C”-algebra-valued b-metric
spaces are C* -algebra-valued metric spaces. In particular, if A
is set of real numbers and b = 1, then the C*-algebra-valued
b-metric spaces is the metric spaces.

Definition 27 (see [26]). Let (X, A, d) be a C” -algebra-valued
b-metric space. A sequence {x,} in (X,A,d) is said to
converge to x if and only if for any & > 0 there exists N € N
such that, for all # > N, ||d(x,, x)}| < & Then, {x,} is said to
be convergent with respect to A and x is called limit point of
{x,}. We denote it by lim,, , 4%, = X.

A sequence {x,} is called a Cauchy seqeunce with respect
to A if and only if for any & > 0 there exists N € N such that,
forall i,m = N, ld(x,, x,,)I| < &

We say (X,A,d) is a complete C”-algebra-valued b-
metric space if every Cauchy sequence with respect to A is
convergent sequence with respect to A.
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The following is an example of complete C*-algebra-
valued b-metric space.

Example 28 (see [26]). Let X = Randlet A = M, (IR). Define

d(x )

=diag((x—y)P,a] b if o = s |x = ")

[x =" 0 0 0 1
0 y|x-ylf 0 0 (15)

= 0 0 crz|xnylp : )

L o 0 0 -y

where x,y ¢ Randa; > Oforalli = 1,Z,...,n— 1 are
constants and p is a natural number such that p > 2. A norm
|| - | on A is defined by

|1Ip) a6)

Al = maxla,

where A = (a)),x, € A. Theinvolutionis given by A* = (&),
conjugate transpose of matrix A:

@ Gz - Oy an @y v G
gy fhy "'t Oy 3_12 a;z @
A = =
Llf‘lul Qg o Oy a_l; @ '6_1;
(7}
[ @y A3 Ay ]
dpp Gy "t O
-aln o ann-
[ 287 M, — M, 0 0
0 a (2P My - M, ) 0
0 0 oy (207" My - M, )
L 0 0 0

It is easy to verify d is a C*-algebra-valued b-metric space
and (X, M,(R), d) is a complete C”-algebra-valued b-metric
space be completeness of R,

Proof. An clement A € A = M,(R) is positive element;
denote it by

A r 8, iff Ais positive semidefinite. {18)

We define a partial ordering < on A as follows:

A<B iffed<xB-A, (19)
where § mean the zero matrix in M,,(R). Firstly, it clears that
% is partially order relation. Next, we show that disaC"-
algebra-valued b-metric space. Let x, y,z € X. It is casy to
see that d satifies conditions (1), {(2), and (3) of Definition 25.
We will only show condition (4) where d(x, ) < bld(x,z) +
d(z, y)] with

271 g 0
0 2! 0
b=| _ _ ) (20)
0 0 ... 21

nxn

Since function f(x) = |x|? is convex function for all p > 2
and x ¢ [, this implies that

e (1)
—a+|1l-=]c
2 2

1
. (lal” + |cI?)

at+clf
2

1 1
< 21al+ (1= Jiep
2 2
(21)

and hence |a + c|f < 277 (|al? + |c|?) for all a,c € R. We
substitute @ = x — y and ¢ = y - z; then,

|x—z|P=|x—y+y—z|P
(22)
SZP_[(Ix—y|P+|y—z|P).

Hence, setting Mo = (|x - y|' + |y — zIf) and M, = |x - zI?,
we obtain that

c o, (227 My - M) |
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271 M, 0 0 } ‘M, 0 0 0
0« 287'M, 0 0 oM, O 0
= o 0 0,207 M, -1 0o 0 M,
| 0o 0 0 cx,2P'M,] LO O 0 - g, M,
) M, 0 0 0 1 M © 0 1
21 g ... 0 0
oM, O 0 0 aM, O
0 201 ...
= 0 0 oM, -1 0 0 ayM,
o o ...227!
Lo 0 0 Ml Lo o 0 &, M, |

=b(d(x, y)+d(p2))-d(x2)

implies that each eigenvalue of b[d(x, z) +d(z, y}] = d(x, y) is
nonnegative. Since each eigenvalue of a positive semidefinite
matrix is a nonnegative real number, we have that b[d(x, z) +
d(z, y)1 — d{x, y) is positive semidefinite; that is, bld(x,z) +
d(z, y)] - d{x, ¥} = 0, that is, d(x, y) < b[d(x,2) + d(z, y)l,
where b =207 T e Al and b > T by 277" > L. But |z — yI <
|x — z]? + 1z — yI? is impossible for all x, y,z € R. Hence,
(X, M,(R),d) is C” -algebra-valued b-metric spaces but not
C* -algebra-valued metric spaces.

Finally, we show that (X0, A, d) is a complete C”-algebra-
valued b-metric space. Suppose that {x,} is a Cauchy
sequence with respect to A. Then, for any £ > 0, there exists
N € N such that ||d{(x,,, x,)|| < &forallw,nz N, thatis,

max {(|x,,, - xulp)llP , (cxl |xm b xan)llP »

y . (24)
1
(“2 Ixm - xulp) g [ERRE] (“Jr—l lxm ~ xn|P) P} =t
for all m, n = N. Therefore,
f !
|xm - xnl = (lxm - xn|P)l g < max {(lxm - xnlp)1 g 4
/ /
(‘xl |xm - xﬂlp)] ! ! ("‘2 |xm - xnlp)l ‘ ey (25)

f
(aﬂﬁl Ixm - xullp)1 P} =€

for all m,n = N. Hence, {x,} is a Cauchy sequnce in R. By
completeness of R, there exists x ¢ R such thatlim,, _, ,x,, =
x; that is, lim,, _, |x,, — x| = 0. Then, we have that

“d (x5 x)|| = max {(|xu _ x|p)lfp ’ (“1 Ix" _ xlp)l,rp ‘

Oy (%, — X & peea WO | Xy — X .
| l

(23)

converges to 0 as 1 = oo, Therefore, {x,} is convergent
with respect to A and {x,} converging to x, so (X, A,d) is
a complete C* -algebra-valued b-metric space. |

Next, we disscus some fundamental properties of C*-
algebra-valued b-metric spaces.

Theorem 29. Let (X, A,d) be C*-algebra-valued b-metric
space. If {x,} is a convergent sequence with respect to A, then
{x,} is Cauchy sequence with respect o A.

Proof. Assume that {x, } is a convergent sequence with respect
to A; then, there exists a x € X such thatlim, _, ,,%, = x. Let
€ > 0, there is N € N such that, for alln = N,

I G ) < gy @)

For m,n € N, we get that
d (3, x,) < b[d (x,, x)+d (xx,)]. (28)
By Theorem 16, for m, n = N, we have
[ G )| < 6 [ (00 ) + A (o )]
< [[bll |d (%0 %) +d (x, 5.}

29
< W [ Gy )] el Jd G )] 2
£ €
bl 5o Bl S = &
2|bll 2|l
This implies that {x,,} is Cauchy sequence with respect to A.
O

Definition 30. A subset S of a C*-algebra-valued b-metric
space (X, A, d) is bounded with respect to A if there exists
X € X and a nonnegetive real number M such that

ld (e, %) < M, ¥xeX (30)
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Theorem 31. Let (X, A, d) be a C*-algebra-valued b-metric
space and let {x,} be a sequence in X and x € X. Then,
() x, — xifand only ifd(x,, x) — 0,

(2) a convergent sequence in X is bounded with respect to
A and its limif is unique,

(3) a Cauchy sequence in X is bounded with respect to A.

Proof. (1) Assume that x, — x. Lete > 0 is given. Then,
there exists N € N such that

4 () — 8] = A (oo )l < & 3

This implies that d(x,,x) — 0. Conversely, assume that
d(x,,x) — 6. Then, for any € > 0, there exists N; € Nsuch
that

| (%, x) = 6| < &=

(32)
I (%, x)|| = &

that is, x, — x.

{2) Let {x,} be a convergent sequence with respect to A,
Suppose that x, — x. Then, takinge = 1, we canfind N e N
suich that

d{x,x})<1, ¥nxzN. (33)
Let K = max{[ld(x,, x|, ld(x5, 0l ...,
M = max{l, K}. This implies that

ld(xp 2} Setting

Id (xpx)|| € M, Vel (34)

Next, suppose that x,, — xandx, — y. Consider,d(x, y) =
bld(x, x,} + d(x,, ¥)]; by Theorem 16, we have

I Gos D) < 16 11t G )+ el G 2] (35)

From (1), letting n — ©o, we obtian that [[d(x, p)|| = 0; that
isx =y

(3} Assume that {x,} is a Cauchy sequence with respect to
A. In particular, £ = 1; there exists V| € N such that

|d (%o x,)] <1 Vimonz Ny (36)

Let K = max{[[d(x;, xy )l U (g0 3 M - - - 1 oepg 15 20, M1}

Then,
ld (e )| s K ¥ < N, (37)
Set M = max{1, K}. Then, we get that
"d (x,l, le)” <M ¥YneN, (38)
O
Theorem 32. Let {x,} be a convergent sequence in a C*-
algebra-valued b-melric space (X, A, d) and lim,, _, ,x, = x.

Then, every subsequence {x,, } of {x,} is convergent and has the
same limit x.

Proof. Let £ > 0 be given. Then, there exists N € N such that
[d (2, %) <& Vnz=N. (39)

Since ny; < m, < -+ < My < - is an increasing sequence of
natural numbers, it is easily proved (by induction) thatny, > k.
Hence, if k = N, we also have r, = k = N so that

M (. %)} <& V= N (40)
"Therefore, subsequence {x,, } also converges to x. O

Theorem 33. Let (X, A, d) be a C*-algebra-valued b-metric
space. Then, every subseguence of a Cauchy sequence is Cauchy
sequence.

Proof. Let {x,,} be a subsequence of Cauchy sequence {x,)
in a C* -algebra-valued b-metric space. Then, for every e > 0,
thereis N ¢ Nsuch that, forallr, s = N, wehave ||d(x,, x,)|| <
& Similar to the facts in proof of previous theorem, we have
n, = r = Nandn, = s = N. Hence, we obtain that
[dix,, , x, )l < e Therefore, {x,, } is Cauchy sequence. O

Theorem 34. Lef (X, A, d) be a C*-algebra-valued b-metric
space and let {x,} be a Cauchy sequence with respect fo
A If {x,] contains ifs convergent subsequence, then {x,} is
canvergent sequernce.

Proof. Tete > 0. Since {x,} is a Cauchy sequence with respect
to A, there exists an Nj € N such that

”d (xm, xp) e Vm,pz=Ng. =~ (41)

1
||5§m

Let {x,,} be a convergent subsequence of {x,} and x, —
x (k > co), Then, there exists N, € M such that

1
“d (xnk,x)” < ms, Wy, = Ny. (42)
Let N = max{Ny, N, }. For 5, k = N, we have
d(xx) < b[d(x, %, ) +d(x,.%)] (43)

By Theorem 16, we also have

e (o )| < W01 [ (s 2, ) + (0 %)

< 161t (s ) 000 0 (o 2} (4
£
J"L%nzm&“
Therefore, x,, — xasn — ©o, O

Theorem 35. Let (X, A,d) be a C*-algebra-valued b-metric
space. Suppose that {x,} and {y,} are convergent with respect
to A and converge fo x and y, respectively. Then, d(x,, y,)
converges to bzd(x, §22



Proof. Let e > 0. Since x, — xand y, — y, there exist
Np, N, € N such that

[l (o 2)|| < ﬁ Yr = Ny,
(45)

et G P < =

< , Vnz N,
2|lel’

Since d(x,, y,) < bd(x,, x) + b*d(x,y) + b*d(y, y,), by

Theorem 16, we have

"d (xm yn) - bzd (x’ y)"
(46)

< 16l (o 2] + 1607 1 ()l < &
‘Therefore, d(x,, y,) — b d{x, y). ‘ 0
Theorem 36. Let (X, A, d) be a C -algebra-valued b-metric

space. Suppose that {x,} and {y,} are convergent with respect
to A and converge fo x and y, respectively. Then,

1 . 0
ol Gl < i 1 G )|
< lim sup ”d (xn’ yli)" (47)
n—od
< |16l | (. 1) -

In particular, if x = y, then we have lim,, _, o [ld(x,, v, )l = 0.
Moreover, for any z € X, we have
1

14 el < Vim i ()|

(48)
<lim sup [d (x,, 2)] < Wl 14 G 21

Proof. By defintion of C"-algebra-valued b-melric space, it
easy to see that

d(x, y) 2bd (x,x,) +6°d (x5 y,) + b°d (¥, )

d (% ) % bd (%, 2) + 82 (x, y) + 67 (3, 3. >
Using Theorem 16, we have
It G ) < 1B {1 (e, e, 1] + NI e (o )
+ 161 1 (o 2]
(50)

It (o 2] < W81l G )] + MBIl Gy )

+ 11612 1 (s 2l -
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Taking the lower limit as n — ©o in the first inequality and
the upper limit as # — 0o in the second inequality, this
completes the first result. In particular, if x = y, we have

”d (xu! )’,.)" < “b" ”d (xn' x)” + "b"2 "d (}’, yn)” ' (51)

Taking the limit as # — oo in this inequality, we obtain that
limu——)co"d(xm y”)“ = 0 Since

d(x,2) < b[d(x,x,) +d(x,2)],

(52)
d(x,,2) <bld(x,x)+d(x,32)],
by Theorem 16, we have
lld G, 2 < 18] e, )] + 180 (2 2]
(53)

d Geo 2| < 181 (| (26,00 )| + Bl Cx 21

Again taking the lower limit as # — co in the first inequality
and the upper limitas # — co in the second inequality, we
obtain the second desired result. O

Definition 37, Let (X, A, d) be a C* -algebra-valued b-metric
space. A subset F of (X, A,d) is called a closed set if a
sequence {x,} in X and x, — x with respect to A imply
x € F.

4, Fixed Point Theorems for
Cyclic Contractions

"Theorem 38. Let A and B be nonempty closed subsef of a
complete C* -algebra-valued b-metric space (X, A, d). Assume
that T: AUB — AU Bis cyclic mapping that satisfies

d(Ix,Ty)y<A"d(x,y)), Vxe€A VycB, (54)

where b € A with ||A| < 1/||b|. Then, T has a unique fixed
point in AN B.

Proof. Let x; be any pointin A, Since T is cyclic mapping, we
have Tx, € Band T%x, € A. Using the contractive condition
of mapping T, we get

d(Txy, T2xy) = d (Txg, T (1'%0)) < A*d (%0, Txp) A (55)
Tor all n € N, we have
d (T T 55) < (A")" d (0, T} A"

(56)
— (A:i)ﬂ ﬁl”,
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where 8 = d{xg, Tx,). Consider, for any 71,1 € N such that
m < n; then,

d (T %4, T" xq)
< b [d (1", T g) +d (T 0, T )|
< bd (T %0 T )
# b7 [d (T 2, T x0) + d (T 20, T )]
<.
(57)
< bl (T, T xg) + b (T 0, T 2y
o+ BT (T 2, T )
<B(A*)" BAT b (AT) B
BT A = Zl B (At Ak,
k=in
From Theorem 16, we have
ne1

Z bk—-m+[ (A*)k ﬁx’\

k=

i (10, T"xo)] <

< "i |lbk7m+1 ( 2 )k ﬁf-\k“

k=

< 3 ey

=1L

[ 1812

-1
<lgl ¥

k=m

(58)
n-1

< (181 > mels A

k=m

n—1
<181 S 1wl gan

k=

< |8l i QB A

=

_ g A
1= (IBl A

Since 0 < Al < 1/l we have IBICIBIIAI" /(1 ~
UBIIADY — Gasm — oo. Therefore, {T"xy} is Cauchy
sequence with respect to A. By the completeness of (X, A, d),
there exists an element x € X such that x = lim,, _, ., T"xq.

Since {T*"x,} is a sequence in A and [T e} is a
sequence in B, we obtain that both sequences converge to the
same limit x. Since A and B are closed set, this implies that
x<€AnB.

Next, we will complete the proof by showing that x is a
unique fixed point of T, Since

0 % d(Tx, ) < b [d{Tx, T"xg) +d (17", %)
<b[A%d (61T xg) A +d (T x0, %) )
by Theorem 16, we obtain that
0 < |4 (Tx, x)||
< BORIANE [ (e T2 o )| + ol [ (700 )| (60)
— 0

(n — 00).

We have Tx = x; that is, x is a fixed point of T'.
Suppose that y is fixed point of T and y # x. Since

0=<d(xy)=d(TxTy) <A d(x,y)A (61)
we have
e G )| < (1A% Ge, ) Af < Al Ges ) MAN
= A" [l e, )| < llet G 2 -

'This is a contradiction. ‘[herefore, x = y which implies that
the fixed point is unique. O

Example 39. Let X be a set of real numbers and A = My, (R)
with |A] = max,-'jla,-jl, where a;; are entries of the matrix
A € M,,(R). Then, (X, A,d) is a C"-algebra-valued b-
metric space with b = [3 9], where the involution is given
by A* = (&),

lx—y" o
d(x,y) = , (63)
0 |-yl
and partial ordering on A is given as
[ﬂu “12] [bn bu]
% =
Ay 2y by bn (04)
a“) = bi] Vf',j: 1,2,3,4.

Define a mappingT': X — X by

x+1j3‘, (1)| 1 ( 1]
- siny — - =; X ¢lco,——
3 x 3 3
Tx = A Hl; x€ (—l,O] (65)
3 3
L—%; % € (0,4+00) .

It is clear that T is not continuous at all elements of X.
Therefore, Theorem 22 cannot imply the existence of fixed
point of mapping T'.
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Suppose that A = [-1/2,—-1/3] and B = [-~1/3,0]. Firstly,
we will showthat T : AUB — AU Bis cyclic mapping. Let
% € B:thatis, —1/3 < x < 0. Then, Tx = —1/3 € A. Again, let
y € Ajthatis, -1/2 < x < -1/3. Indeed, we consider

(66)

8
0s—(x+1/3)|sin(l)|£—l—
3 X 18
() (L) kLo
3 7351873

this implies that Tx € [-1/3,0] = B.Foranyx € Aand y € B,

since —1/2 < x < —1/3 and —1/3 < y, we have 1/9 < —x/3 <
1/6 and —=1/9 < y/3. Hence, we obtain that

1A

1
3

Os—f—ls—}—c+z. (67)
3 97 3 3
Next, we consider
2z
e = (=5 (-5-(3)
3 x 3 3
(x+1f3) SR
HIRE Sm(?)
{68)
(x+1/3)2 x 1P
<|- =N AN
3 39
x y2 1 2
<l-=+ = <~x—y".
< 3+3 ﬁ9|x Py
Then, we have
Tx-T ’ 0
d(Tx, Ty) = | ,V|
| o [Tx-Ty
—|x—yl2 0
< i ,
0 gl (69)
1 R 1
:g‘i{lx—yl 0]5?
0 - 0 x—y'|]o 2
03 [x =] ;
= Ad (% y) A,
where A = [ ' 8. ]. Then, IA]l = 1/3 < 1/2 = 1/|b]. Thus,

T satisfies contraction of Theorem 38 implying that T has a
unique fixed point in A N B; that is, {~1/3} = F(T).
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Corollary 40. Suppose that (X, A, d) is a C*-algebra-valued
b-metric space. Assume that T : X — X is called a C*-
algebra-valued b-contractive mapping on X; that is, T satisfies

d(I%Ty) < A'd(x.y)A, Vx,yeX, (70)

where A € A with |Al| < L/|bY. Then, T has a unique fixed
point in X.

Proof. Putting A = B = X, by Theorem 38, this implies that
T has a unique fixed pointin AN B = X. O

Theorem 41, Suppose that (X, A, d) is a complete C* -algebra-
valued b-metric space. Assumne that a mappingT : X — X
satisfies

OTX)=X
(2) d(Tx, Ty) = A*d(x, y)A forallx, y € X,

where A € A s an invertible clement and A7 < 1/l
such that T is a C* -algebra-valued b-expansive mapping on X.
Then, T has @ unique fixed point in X,

Proof. We will begin to p1 ove this theorem by showing that T
is injective. Let x, y be an element in X such that x # y; that
is, d(x, y) # 0. Assume that Tx = Ty. We have

B=d(Tx.Ty) =A"d(x y)A
=2 () d(x )" A @1
- (d (x, y)m)t)‘t= (d (x, y)”2 l) > 6.

This implies that A*d(x, y)A = 0. Since A is invertible, we
have d(x, ) = € which leads to contradiction. Thus, T is
injective. By the first condition of mapping T, we obtain that
T is bijective which implies that T is invertibe and T
bijective.

Next, we will show that T has a unique fixed point in X. In
fact, since T is C*-algebra-valued b-expansive and invertible
mapping, we substitute x, y with T'%, T™'y in the second
condition of T, respectively, which implies that

d(T(r%),T(T'y)) = A'd(T'x T y) A,
(72)
Vx,ye X.

"That is
d(x,y) = Ad (T, T_Iy) A, Vx,yeX.  (73)

Since d(x, y) and A d(T ' x, T Y)A are posmve elements in
A, AT %, T y) < Ad(x, ) and A" € A. By condition
{2) of Theorem 12 and Theorem 17, we have

d(T'% 17 y) = () d(T7% Ty} 2 (A7)
=) A (T ) AR (78

<(A") dlapr
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Therefore, T is b-contractive mapping. Using Corollary 40,
there exists a unique x such that T'x = x, which means it
has a unique fixed point x € X such that Tx = T(T'x) =
(TT Y)x = Ix = x. O

Theorem 42 (cyclic Kannan-type). Let A and B be nonempty
closed subset of a complete C* -algebra-valued b-metric space
(X, A, d). Assume that T : AUB — AU B is cyclic mapping
that satisfies
d(Tx, Ty) < A[d (6, Tx) +d (3. Ty)],
75)
Vxec A VyeB,

wiere A € F\:_ with |A| < 1/2b). Then, T has a unique fixed
pointin AN B.

Proof. Without loss of generalily, we can assume that A # 0.
Since A € Ai and 8 < d{x,Tx) + d(y, Ty), by the second
condition of Lemma 18, we have 0 < Ald(x, Tx) + d(y, Ty)}.

Let xo be any element in A. Since 7' is cyclic mapping, we
have Tx, € Band T?x, € A. Consider

d (Txg T xg ) = d (T, T (Txy))
< A[d (xp Tig) + d (T, T'xg )] (76)
= Ad (xg, Txy) +Ad (T Tx0) 3
that is,
(- N d(Txg, T7x,) % Ad (0, Txp) - (77)

Since A ¢ Aﬂr and [J]A]l < 1/2]b]] < 1/2, by the first condition of

Lemma 18, we have that I— A is invertible and [|(1 ~A 7 <1
From the third condition of Lemma 18, we have

d (Tog T xg) 2 (1= A)7 Ad (%, Txq) - (78)
Similarly, we get that
d(T?%0,T'x,) < U - 7' Ad (T, T2xg) . (79)

Since (I — AY'A € AL and @ < (I~ A7 Adlxg, I%) -
d(Txq, szo), the second condition of Lemma 18, we have

g<(I-N"
(80)
A= V7 Ad (0, Txg) ~ d (Txo, T )} 5
that is,
(I - A" Ad (T, T'xg)
, (8)
< [T~ WA d (2, Txg)
Hence,
d (%%, Tx,) < (1~ A7 Ad (Txp, T,
(82)

< [(= 07 A) d (%0, Txp).

11

Continuing this process, we have
d (Tnxu’T"on) & [(1 -7 )‘]” d (%9, Txg) =", (83)

where o = (I - A)* A and f = d(x, Txg). Next, we will show
that {I"x,} is Cauchy sequence with respect to A. Consider
for any rm, n € N and m < n that we have

d{T"xp, T"%y) < bd (T"'xo, T"'“xo)
+ b?.d (Tm+1x0, Tn|+2x0) e

H— —1
+b""d (T" Xo» T"xo) (84)
< ba’"ﬁ T bztx"'”ﬁ I

+ bnﬂuan—lﬁ — "il bkﬂ“i-lakﬁ.

k=
From Theorem 16, we get that

-1

Z bk—mﬂakﬁ

k=m

n-l
< Z "bk——m+lakﬁ"

k=m

ll# ("™ 500, T"x0)|| <

n-1

< 311 e 81
k=m

<3 i I 6l (@)

k=m

= |8l i (1Bl el

k=m

<[8] 3 e ey

fe=tn

oo (b ey
== (ol el

Consider
Wl el = 161 2 @ - A7 < e na - 27

> @y

=0

= [1Bll 1A N

<IBHIMY IO (g6
=0

1 1 1 1
< ”b"(zubu) o 2oz

Therefore, | BI(16llal)* /(1 = (lbllilal) — O asm —
00. Therefore, {T"x,} is Cauchy sequence with respect to A.
By the completieness of (X, A, d), there exists an element x €
X such that x = lim,, _, ., T"x,.

Since {T?"xg} is a sequence in A and (T 'x,) is a
sequence in B, we obtain that both sequences converge to
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the same limit x. Since A and B are closed set, this implies
x € An B. Next, we will show that x is a unique fixed point
of T. Consider

d(Tx, x) 2 b [d (Tx, T"xp) + d (T™xp, x)]

=bd (Tx, T (Tz"(lxo)) +bd (Tz"xo, x)

Journal of Function Spaces

which leads to contradiction. Therefore, x = y; we complete
the proof.

Example 43. Let X = [-1,1] and A = M, (R} with [lAl} =
max; jla,| where a;; are entries of the matrix A € M,,,(R).
Then, (X, A,d) is a C*-algebra-valued b-metric space with
b = [29], where the involution is given by A = AT

< bA [d (6, T) + (T 20, T, )| 2y} k- o0
x,y) = .| (92)
(87) 0 lx - y|
+bd (Tznxo: x) and partial ordering on A is given as
< bAd (x, Tx) + b*Ad (T™ ' xg, x) [au am] [bu bu]
=< —
B Gp by by (93)
+ 62 2d (x, T xp) + bd (T, )5
) a['j Sbu Vi,] = ]., 2,3,4.
by Theorem 16 and submultiplicative, we obtian that
Ild (Tx, x)[| < [|B]) |A]l 1 (o, Tl Supposc that A = [-1,0] and B = [0,1]. Define a
mapping T : AUB — AUBDbyTx = -x/4 Firstly, we
2 3111 will show that T'is cyclic mapping. Let x be an element in A;
+ 181" A1 "d (T *o> x)” thatis, -1 < x < 0. Then, 0 £ —x/4 < 1 implies Tx € B.
(89)  Similarly, let y € B,so 0 < y < 1. Then, -1/4 < -y/4 £ 0.
+|[b 2 ANl (x, b Hence, Ty € A.
gy ” ( D)” Tor any x € A and y € B, we consider
+ 6l “d (Tznxo'x)"' 2 |-x —yP 1 5
| [rx-1yf = |7 - 2| = e e
Letting n — ©o, we get that
I (Tx, ) < Bl IA] fid (e, T (89) 1 21 2 2
< o2 (el ) = 3 (1l +2Df)
and so
2 125 25
1 1 (U, 2 2)
14 (T, 00 < Wbl 5 W G 0] < 5 G T 90) AT o8
‘This implies that ||d(Tx, x)|| = 0; that is, d(1%, x) = & and so =/ 2 x|? \ N Y 2
Tx = x. That is, x is fixed point of T. Now if y is another fixed ~Ad |x TP
point of T'and y # x, then
2 .
@<d(x,y)=d(TxTy) <A(d e Tx)+d(yTy)) =5 (I - Tx| + |y—5[y|2) :
(91)
=Ad(xx)+d(p. ) =0, Then, we have
- 2
ITx-1yf 0 = (lx - T’ +y-1") 0
d(Tx,Ty) = % 5
2
0 |-y 0 5o (=Tl + ly—T")
(95)
2
= 0 (Ix - TP + |y - 1o") 0
= 5 =Ald (x, Tx) +d (3. Ty)],
0 = 0 (1x = T + |y - T9[")
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where 1 = [ ,05 ] Then, AN = 2/25 < 1/4 = 1/2]}.
Thus, T satisfies contraction of Theorem 42 implying that T
has a unique fixed point in A N B; that is, {0} = F (1.

Theorem 44 {cyclic Chatterjea-type). Let A and B be
nonempty closed subset of a complete C*-algebra-valued b-
metric space (X, A,d). Assume that T : AUB — AUBIs
cyclic mapping that satisfies

d(Tx,Ty) < Ad (3. Tx) +d (x. Ty}],
(96)
Vx €A, Vyeb

where A € A with Al < 1/20bl1%. Then, T has a unique fixed
pointin AN B,

Proof. Without loss of generality, we can assume that A # 6.
Since A ¢ A and 8 < d(y,Tx) + d{(x,Ty), by the second
condition of Lemma 18, we have 6 < AM{d{y, Tx) + d(x, Ty)}.

Let x; be any element in A, Since T is cyclic mapping, we
have Tx, € B and T?x, € A. Consider

d (Tx, T %0) = d (T%0, T (Tx;))
< A{d(Txo Tog) + d (20, TPx0)]  (97)
< bA [d (%5, 1%0) + d (T, T )|
that is,

(I - bA)Yd{Txg, Ty ) < bAd (20, Tx,) - (98)

Since A € Al and b € A, from the second condition of
Lemma 18, we get that bA € A’ Since |[bA]) < 1B/ 2607y <
1/2 and bA € NL, by the first condition of Lemma 18, we
have (I — bA)" € AL and @M - bA)™ € Al with
WBAXI - bl)ﬁlll < 1. From the third condition of Lemma 18,
we have

(T, T xp) < (bA) (1 = bA) ™ d (35, Txg) (99)
Similarly, we get that
d(Tx,, T2xy) < (bA) (I - bAY " d (Txp, T'%5) . (100)

Since (PAY(I - bA)Y" € Al and 6 < (BAT —bAY " d(xg, Txp) —
d(Txy, szo), the second condition of Lemma 18, we have

8 < (bA) (I -bAY™
(101}
(1) (1= bAY d (xg, Txg) — (T Tx)}s

that is,
A (I - bAY " d (T, T xo)

, (102)
< [@2) (1 - 62)™ | d (x4 Txo) -

13
Hence,
d(T2xy T2x,) % (B2 (1 - bAY ™ d (T, T x,)
(103)
< [ (T~ b0)™) d (%0 Tx,)
Continuing this process, we have
d (T T x0) < [(B3) (L~ 62) '] d (0. Txy)
(104)

— wll \
where @ = (BA(I — bA)™" and B = d(x Tx). Next, we

will show that {T"x,} is Cauchy sequence with respect to A,
Consider for any m, 1 € Nand m < m; we have

d (T x4, T"x0) = bd (T x,, T x4y}
+ b (T %, T xg )+

+ b”_md (Tnflxo’ Tnxo)

(105)
< bwmﬁ +b2wm+1[3+ .
+ bn—rriwwlﬁ = E bk—m+1wkﬁ_
k=m
From Theorem 16, we get that
n-1
"d (me()! T"xo)" < Z bk—uulwkﬁ
k=t
#-1
< Z ||bk—m+lwkﬁ”
k=m
f—-1 i "
< D HEIF el 1Y
k=m
n-1 ) )
< 3 1ol el 1B (106)
0=l ‘
=18l Y. (e lieol)
k==ite
= k
=18l 2 ol il
k=m
m

1= (|16l ol
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Consider

Wbl Lol = 1161 oA €7 -~ 2)|

< Tl IbM (2 - b2

P28
i=0

ol ) 1 1 1
< b < = =1.
I "(2||b||2 1-|BAl 21-1/2

Therefore, || Bl(16Mllwl)*” /(1 = (lBllll)) — Oasm -
oo, Therefore, {T"x,} is Cauchy sequence with respect to A.
By the completeness of (X, A, d), there exists an element x €
X such that x = lim,, _, o 1" x,.

Since (T?"x,] is a sequence in A and (T 'x,} is a
sequence in B, we obtain that both sequences converge to
the same limit x. Since A and B are closed set, this implies
x€AnB

Next, we will complete the proof by showing that x is a
unigue fixed point of T. Since

= (1Bl b (107}

< [l6ll §6AN ) 1@
=0

d (Tx,x) < b|d (T, T} +d (1754, %) |
=bd (T, T (T x,) ) v bd (T, x)
< bA[d (2, T"x,) +d (T ' x, Tx)]
+bd (T g, %)
= bAd (x, 17" %,) + bAd (T 0, Tx) Ni
+bd (1% x5, )
< bAd (26, T 50 ) + b*Ad (17" g, %)
+ 6*Ad (0, Tx) + bd (1%, ),
by Theorem 16, we have
I (T, 0 < bl A (7770 )|
1617 AL (T2 0, )| 109)
+ bl A1 1 G, 7))
+ 160 [ (T 20, )| -
Lettingn — 00, we get that
ld (T, )| < 116”11 G T (110)

and so

1
2o

Il (Tx, x)|| < 1] Id (x, Tx)
(111)

1 .
<3 [ied (2, T}
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This implies that ld(Tx, x)|| = 0; that is, d(Tx, x} = 0 and so
T = x. That s, x is fixed point of T'. Now if y is another fixed
point of T and y # x, then

0<d(x,y)=d(Tx,Ty)

(112)
<A(d(p,Tx) +d(x,Ty)) =2 (x, ).
From Theorem 16, we get that
e e, 2] < 22 (s )] < 2 A0 | (e )
1
<2 === | |[d 2| < |d ()
(s W <l
which leads to a contradiction. Therefore, x = y which
implies that the fixed point is unique. O

Example 45. Let X = [0,1] and A = M,,(R) with [[Af} =
max; jla;|, where a;; arc entries of the matrix A € M,,,(R).
Then, (X, A, d) is a C*-algebra-vatued b-metric space with
b = [29], where the involution is given by A" = A"

x| 0
d(x,y):[l OJ’| lx_ylz], (114)

and partial ordering on A is given as

[“u “12] [bu blz]
ot —
fn 9y by by (115)
a;<b; Vij=1234
Suppose that A = [0,1] and B = [0,1/2). Define a
mapping T : AUB — AU B by Tx = x/5. Firstly, we will
show that T is cyclic mapping. Let x € A;thatis, 0 < x < 1.
Then, 0 < x/5 < 1/5 implies T« € B. Similarly, let y € B, so
0 < y<1/2.Then, 0 < /5 < 1/10. Hence, Ty € A.
Now, we will show that T satisfies the contraction of
‘Theorem 44. Consider

(6(x-y)) :%(x_ZJr%_y) (116)

(x-y) 1
5 6 5 5

and so

(
=§%((x—%)+(§“}’))z 17)
(=2 ()
L :
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Then, we have
. 1 2 2
Tx — Tyl? 0 —(|x=Ty|" +|Tx-y 0
d(Tan}') = | gy yl 2|~ 18 (| | | | ) 1 2 2
0 |Tx - Ty 0 T (]~ Ty* + |Tx— 51°)
(118)

1

s 0 [ U=zl +me- 1)
0 i 0
L 18

where A = [ Y% 1o ] Then, Al = 1/18 < 1/8 = 172161
Thus, T satisfies contraction of Theorem 44 implying that T

has a unique fixed point in A N B.
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