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ABSTRACT

In this research, we study the distributional solutions of n-th order differential equation
of the form xy™+ (m—z)y™ () — py™ =2 (z) —my™~3(z) = 0 where p, m € R, n >
3 and z is a real variable. These solutions are obtained in the form of infinite series of the dirac

delta functions and its derivatives. We employ these solutions to observe their interesting
features.
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CHAPTER I
INTRODUCTION

Recently, there has been considerable interest in problems concerning
the existence of solutions to linear ordinary differential equations and functional
differential equations in various spaces of generalized functions. Many impor-
tant areas in theoretical and mathematical physics, theory of partial differen-
tial equations, quantum electrodynamics, operational calculus, and functional
analysis use the methods of the distribution theory. Yet for ordinary differen-
tial equations research in this direction is insufficiently developed and remains
restricted to isolated results for some second-order equations or special higher-
order systems. It is well known that the normal linear homogeneous system
of the ordinary differential equation with infinitely smooth coeflicients have no
distributional solutions other them the classical ones. However, distributional
solutions may appear in the case of the equations whose coefficients have sin-
gularities. A simple example is the first-order ordinary differential equation

ody
¢ =gt B ="() 1.1.1
o 2y =0 ( )

The point z = 0 is an essential singularity of this equation. It is readily verified

that the infinite series
o0 2n.+1(5('n,) (.,L)

n\(n+ 1)1 (1.1.2)

y=
n=0

formally satisfies (1.1.1). Although (1.1.2) does not define a distribution, Kim
and Kwon [7] established that the series defines a hyperfunction concentrated
at {0}. Here d(z) is the Dirac delta function and the superscript & stands for
kth order differentiation.

In 1982, Wiener [14] studied various differential equations with singular
coeflicients and obtained their distributional solutions. Wiener and Shah [16]

surveyed the work in this field and have exhibited a unified approach in the study



of both distributional and entire solutions to some classes of linear ordinary
differential equations.

In 1987, Littlejohn and Kanwal [10] studied the distributional solutions
to the hypergeometric differential equation. These solutions were obtained in
the form of infinite series of the Dirac delta functions and its derivatives. An-
other motivation for studying solutions of the form of infinite series of the Dirac
delta functions and its derivatives to ordinary differential equations comes from
the works of Morton and Krall [11], Krall [8], and Littlejohn [9], Wiener and
Cooke [1, 15, 17], and Hernandez-Estrada [3]. These researchers have collectively
shown that weight distributions for a certain class of orthogonal polynomials
have the form of infinite series of the Dirac delta functions and its derivatives,
and simultaneously satisfy a system of ordinary differential equations.

In [4], Kamke studied the solutions of the differential equation of the
form

zy" (z) + (a+ b)y" (@) — 21/ (z) — ay(z) = 0. (1.1.3)

He found that such equation has a distributional solution, iff @ is a positive

integer and b is a even positive.

In this research, our aim is to present the solutions of the form
Za.ncs(")(a;) (1.1.4)
=0

for nth-order differential equation of the form

xy ™ () + My ) — py T () — my™ () =0, if-1B)

where , m €R, n >3 and x i s a real variable. It is of course interesting to derive

these solutions for their intrinsic value. But we also want to display their uses
and exhibit their interplay with related results in the theory of ordinary
differential equations. For instance, if we let n = 3, the equation (1.1.5) is

reduced to the equation (1.1.3).



CHAPTER II
BASIC CONCEPTS AND PRELIMINARIES

In this chapter, we review some basic knowledges of the test functions,

distributions, ordinary differential operators, which will be used in our work.

2.1 Test Functions

Let R™ be the n-dimensional real space in which we have a Cartesian
system of coordinates such that a point P is denoted by z = (1, %2, .. -y Tn)
and the distance r, of P from the origin, is r = |2| = (27 + 22 + -+ + 22)1/2,
Let £ be an n-tuple of nonnegative integer, k = (ky, ks,...,k,), the so-called

multiindez of order n, then we define

k| =k + kot +hy, of=aiiz.. gk

n

and
K| ky+kg+tkn
N d . ad :Dlezz---Dk“
= — — _ o,
0:{;;1”1 81:22 e QT 32:}1‘181'52 - Ozkn
where D; = 0/0z;,7 = 1,2,...,n. For the one-dimensional case, D* reduces

to d/dz. Furthermore, if any component of % is zero, the differentiation with

respect to the corresponding variable is omitted.

Example 2.1.1 In R?, with k = (3,0,4), we have
D¥ = 8" /92302% = DDA

Definition 2.1.2 A function f(z) is locally integrable in R™ if [, |f(z)|dx exists
for every bounded region R in R™. A function f(z) is locally integrable on a

hypersurface in R™ if [, |f(z)|dS exists for every bounded region S in R*1.

Definition 2.1.3 The support of a function f(x) is the closure of the set of all
points « such that f(z) 7# 0. We shall denote the support of f by supp f.



Example 2.1.4 For f(z) = sinz,z € R, the support of f(z) consists of the

whole real line, even though sin z vanishes at z = nr.

Definition 2.1.5 If supp f is a bounded set, then f is said to have a compact
support.

Example 2.1.6 The support of the function

0, for —co <z < -1,
x+1, for—-1<z<0,

flz) =1
1—z, for0<z<1,

0, forl<z < o0

\

is [-1, 1], which is compact.

Definition 2.1.7 The space & is a linear space consist of all real-valued

functions ¢(z) = ¢(z1, 22, ..., 3y,), such that the following conditions hold:

(1) ¢(z) is an infinitely differentiable function defined at every point of R™.
This means that D¢ exists for all multiindices k. Such a function is also

called a C*™ function.

(2) There exists a number A such that ¢(z) vanishes for > A. This means

that ¢(x) has a compact support.
Then ¢(z) is called a test function.

Example 2.1.8 The prototype of a test function belonging to 2 is

2
exp (—af_r.z) , fotr<a,

¢(z,a) = (2.1.1)

0, for r > a,
for a is a constant and r = |z| = (z¥ + 2% + - - - 4+ 22)Y/2. Its support is clearly
r < a.
In particular, if we consider in R and by taking a = 1, then (2.1.1)

reduces to

ehl_—%’, for z € (—1,1),
P(z) = (5.1.9]
0, for x € (—oo, —1] U [1, 00),

and the support of ¢(z) is [-1, 1].



The following properties of the test functions are evident.

(1) If ¢1 and ¢ are in 2, then so is ¢1¢; + cogha, Where ¢; and ¢, are real

numbers. Thus 2 is a linear space.
(2) If ¢ € 2, then so is D*¢ .
(3) For a C* function f(x) and ¢ € 2, f¢ € 9.

(4) If ¢(x1,2,...,%m) is an m-dimensional test function and YTt Lt
..., Zn) Is an (n—m)-dimensional test function, then ¢ is an n-dimensional

test function in the variables z1,zs,..., T,.

Definition 2.1.9 A sequence {¢,,},m = 1,2,... where ¢, € 2, converges to

¢ if the following two conditions are satisfied:

(1) All ¢, as well as ¢ vanish outside a common region.

(2) D*p,, = D*¢gy uniformly over R as m — oo for all multiindices .

It is not difficult to show that ¢y € 2 and hence that 2 is closed (or is complete)
with respect to this definition of convergence. For the special case ¢ = 0, the

sequence {¢n,} is called a null sequence.

B2 Distributions

Definition 2.2.1 A linear functional f on the space & of test functions is
an operation (or a rule) by which we assign to every test function ¢(z) a real

number denoted (f, ¢}, such that

(fierdr + cata) = 1 (f, d1) + ca (f, ¢2), (2.2.1)
for arbitrary test functions ¢; and ¢, and real numbers ¢; and cs.

Definition 2.2.2 A linear functional f on & is continuous if and only if the

sequence of numbers (f, ¢,,) converges to (f, ¢} when the sequence of test

functions {¢,,} converges to the test function ¢. Thus

(f,6m) = (£, lim 6 ).

lim
m—ro0



We now have all the tools for defining the concept of distributions.

Definition 2.2.3 A continuous linear functional on the space 2 of test

functions is called a distribution. The space of all distributions on 2 is denoted

by 2'.

The set of distributions that are most useful are those generated by
locally integrable functions. Indeed, every locally integrable f(z) generates a

distribution through the formula
(f, ) = = f(@)g(z)dz. (2.2.2)

Linearity of this functional is obvious. To prove its continuity, observe that

I{f,®)| < max |¢(z) |f(z)|dz < 0.

2E supp R supp ¢

Thus, if the sequence {¢,} converges to zero, then so does (f, ¢.,). Hence, it is

continuous.

Definition 2.2.4 Distributions defined by (2.2.2) are called regular. All other
distributions are called singular. However, we may use (2.2.2) symbolically for

a singular distribution also.

Example 2.2.5 The Heaviside distribution in R™ is (Hg, ¢) = [, ¢(z)dz, where

1, forz e R},
Hg(z) = (2.2.3)
0, forz&R}.
For R, (2.2.3) becomes
(H, ) = f b(z)dz. (2.2.4)
0

Since H(z) is a piecewise continuous function, this is a regular distribution.
Definition 2.2.6 The product of a distribution ¢ and an infinitely differentiable

function f is defined by
{(ft.d) =<t fd), (2.2.5)

where ¢ and f¢ are element of 2.



Example 2.2.7 For an infinitely differentiable function f and ¢ € &. Hence

(J9,¢) = (3, /8) = F(0)$(0) = /(0) (6, ¢) = (/(0)d, ¢)

or
f(@)d(z) = F(0)5(a). (2.2.6)

It follows that in this special case it is sufficient for the function f(z) to

be continuous at the origin. More generally,

F(2)8(z — &) = F(0)6(z — &), (2:2.7)

2.8 The Dirac Delta Function

We consider the Dirac delta function in the applied engineering, physics,
and in other fields of sciences. For example, when the tennis ball is hit, when
using hammer hit the objects, when playing drum, or when the large an electric
current through the circuit in a short period. Therefore, these problems occur
when in a short period of time.

1/k for a<tLa+k,
e (2.3.1)
0 for  otherwise,
for @ > 0. If £ = 0, then the height of the rectangle is increased, the width is

decreased but the area of the square equals a unit always remains.

0 a+k1
/0 Je(t)dt = /a zdt=1. (2.3.2)

The function fi(f) can be written in the form of Heaviside function H(t—a),

that is,
Fil) = %[H(t —a)— H{t — (a+ k)], (2.3.3)

where

0 for t<a,
H(t —a) = (2.3.4)

1 for ¢t>a.



Definition 2.3.1 Let f(¢) be a function of ¢, for ¢ > 0. The Laplace transform
of f(t), denoted Z{f(¢)} or Z(s), is defined by

LU} = F(s) = f " et p(t)dt (2.3.5)

0

By using the formula #{H(l —a)} = < for s > 0 and a > 0, we have

8

(2.3.6)

1 —as —(a+k)s —as L=
E{fk(t)}zzg[e —e (+k):|:e I: e :|

Limits of fx(¢) when k¥ — 0 denoted by é(#a) and called Dirac delta function

or unit impulse function. By L’Hospital’s rule, we obtain

N
: —as — ;:_(15- 2. ¢
llcl—rffllc [ ks } ‘ (2:3.7)
Thus, equation (2.3.6) becomes,
Lot —a)} =, (2.3.8)
and if @ — 0, then
LT} =\1. (2.3.9)

Note that d({—a) is not ordinary function as a general introductory calculus.

Since, if k — 0, then we have

o0 Yor—it A4
t—a)= (2.3.10)
0 fqee® t + a.
and
f 5(t — a)dt = 1. (2:3.11)
0

But ordinary function which is zero everywhere except at one point just to the
integral of zero. However, in impulse problems are described by the Dirac delta
function §(¢ — a), which has several significant properties:

L [ ot - @) f0dt = f(a),

)

5. / "6~ a) f(0)dL = (~1)" F(a)



Example 2.3.2 Let f(¢) be a function, ¢t and a > 0

LU - a)} = fo " et 1 (0)6(t — a)dt

=e™*"f(a).
LM (t —a)} = /00 et 6™ (t — a)dt
0
dfﬂ.
= (=1)"==(e™) li=a
= g"e ™%,

2.4  Ordinary Differential Operators

Definition 2.4.1 Consider the differential operator I defined by,

n dnrl d
It = {an(z)w—n -+ an_l(m)d.’ﬂTl- e al(m)a -+ ag($)} t
= dmt
= WLZ_O am(w)%, (241)

where the coefficients a,,,(z) are infinitely differentiable function.

The solution of the ordinary differential equation
e
[t Z Um(Z)=— =T, (2.4.2)

where 7 is an arbitrary known distribution. A distribution ¢ is a solution of

(2.4.2) if for every test function ¢, we have

(Lt, @) = (1, ¢) . (2.4.3)

It is well known that the fundamental solution is the solution for 7 = 6(x).
In searching for a solution ¢ of differential equation (2.4.2) we may have the

following situations:

(1) The solution ¢ is a sufficiently smooth function, so that the operation in
(2.4.2) can be performed in the classical sense and resulting equation is

an identity. Then ¢ is the classical solution.
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(2) The solution # is not sufficiently smooth, so that the operation in (2.4.2)
cannot be performed, but it satisfies (2.4.3) as a distribution. It is then a

weak solution.

(3) The solution ¢ is a singular distribution and satisfies (2.4.3). It is then a

distributional solution.
All these solution are called generalized solutions.

Example 2.4.2 To fined the general solution of the equation

p LTS
=0
dz \

m>1, (2.4.4)

we appeal to the relation dH/dz = §(z) and use the derivatives of §(z). Indeed,

we assuine that
t@) = a1+ coH(2) + c30(2) + cad’(z) + - -+ + 6™ (z), (2.4.5)
so that
t'(z) = cad(x) + c30"(2) + - -+ + 1™ V().

Example 2.4.3

(a"t(), &) = (cz™ (), d(x)) + (c270/(z), ¢(x))
+ e <(;m+1:17m()‘(m—1)(3:), cj)(T)> =0,

and we have 2™t = 0 as required. Hence, (2.4.5) is the general solution of
(2.4.4).

For m = 1 the solution reduces to
t(z) =c1 + 2 H(2). (2.4.6)

The Heaviside function H(z), although an ordinary function, is not differen-
tiable. Therefore (2.4.6) is a weak solution.

For m > 2, (2.4.5) is the distributional solution.
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Example 2.4.4 The distribution y(x) = d(z) is the solution of the following

equations: The confluent hypergeometric equation
zy" +(2-2)y —y=0.
The hypergeometric equation
(1 —z)y" + (2 — 5z)y’ — 3y = 0.

The Bessel equation
2y + oy + (2 — 1)y = 0.

Example 2.4.5 In fact, by applying the formula

=™ (z) for n > m,
Tm()(n)(?_) . (’FL — TTI)I

0 for n < m,

(2.4.7)

(2.4.8)

(2.4.9)

(2.4.10)

it is easy to verify that y(2) = d(z) satisfy the equations mentioned above.



CHAPTER III

ON THE DISTRIBUTIONAL SOLUTIONS OF SOME nTH-ORDER,
DIFFERENTIAL EQUATIONS

3.1 Main Results

o0

Theorem 3.1.1 Suppose that w(z) = Zakd(k)(x) is a formal distributional
k=0

solution to nth-order differential equation of the form

2™ (@) + (m-x)y™ D (z) - pyA(z) — my™I(z) = 0, (3.1.1)

where p.me R,n> 3 and zis a real variable. Then w(z) satisfies the

Jollowing properties:
() if mg {n—2,n—1}, then w(z) = 0;

(%) if m=n—2, then

e ML),
w(x) = ag Z —J—IWJ(”FC)(J;); (3.1.2)
k=0 y

(t43) if m= n—1, then

'LU(SU) =a Z —‘%-(S(Hk+l)($). (313)
k=0 ’

Proof. First we have to appeal to the basic concept of distribution theory,

namely, use the test function ¢(z) € 2(R). Accordingly, we have to examine

the quantity

(™ + (m )y py™=D — myl9), ¢ ) = (23, 8) + (mx)y™D, 6 )

+(-py"?, ¢) + (—my™), ¢ .
(3.1.4)
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Now
(2y™, ) = (¥, 26) = (1) (g, (39)™) = (~1)" (y, 2™ + ng™=D)
(3.1.5)

((m'x)y(n_1)=¢ >=< y(”"l} (m x)(b— )™ 1 (m"x)¢(n_1) >v (3.1.6)
(=Y, ) = (4, ~pg) = (=1 (y, (~pg)")

= (=1)"" (g, pe" 2 + (n — 2)=) (3.1.7)
and
< >~my(”'*3;; o~ <y(n—3),_m¢> . (ﬁl)n-3 <y7 _lnqb(nﬁS) ) (318)

oC
Next, we substitute the series y(z) = Zakd(’“) (z) in the right-hand side of

(3.1.5) to (3.1.8), we have

7™ gb) < i (n'+ k)ago*+n- U(:r) ¢>

=0

( (mx)y"T? ﬁ?) <i (m-x)ard* 7V (z), ¢ >
(—pD, 4 <Z(n = 29 () ¢»>

and
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Substituting these value in (3.1.4), we obtain

n) (n—1) (n—2) (n—23)
2+ (moy Py — :oy>¢

={( — Z(’ﬂ + k)aké(k'l‘ﬂ—l}(;g) + Z( m-x)aké(k-i-n—l)(m) + Z(n +k— 2)ak6(k+n—3) (113)
Lo by k=0
— Z ma‘kd'(k-l—n—-S) (CL), ¢>
k=0
= <Z(m—x -n— k)a;cd(k+n—1)(9;) -+ Z (n+k—m-— 2)ak6(k+n—p—3)(w),
k=0 e
) <Z (mx =1 — 74 2)aro8 " z) + Z (n+r—m— 2)ar6("+n“3)(1‘)’}
= r=0
) <Z (mox = =t Dary + (n+7 = m~2)a,) 8+-0)(a)

| . (3.1.9)
+(n = m = 2)a0™ 3 g) + (1 < m - 1)ar s (2),

From (3.1.9), it follows that, if y(z) isa solution of (3.1.1), then (n—m
—2)ap = 0 and (n—m—1)a; = 0 and for r= 2,3,4,... we have

recurrence relation
(m-x —n—r+2)a,_5 — (m —n—r+2)a, = 0. (3.1.10)

In order to find the coefficients a,, we consider the following cases:
f mg {n—2,n—1}, then m=n—r+2 # 0, and thus

iy (m+g—n+2)
N it St

(3.1.11)

But since ag = 0 and a; = 0, we find that a, = 0 for all » > 2. This therefore
yields w(z) = 0.

If p=n—2, then ap # 0. Using the recurrence relation (3.1.11), we have

ao(2 +x)

ao =

2 b
_ ap(4+x) (2 +x)(4 +x)
“= 4= 2.4
a4(6 +x) ao(2 +x) (4 +x)(6 +x)
= T 2.4.6 ’

(2 +x)(4 +x)(6 +x) - - - (2k +x)
i =40 %kl
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1 1g9¢599

for all & > 1. Therefore, the solution is
00 k 4
S o
w(z) = ag E :HL*_(:'—X)g(%)(w)_ (3.1.12)

And if m= n -1, then a; # 0. Using there currence relation(s.1.11)we

have

_ a2 +x)

az = )

2
o = az(4+x)  a1(2 +x)(4 +x)
T4 T 2:4
. as(6+x)  a1(2+x)(4 +x)(6 +x)
T — 2-4-6
g (2+4%)(4 +x) (6 +x) - - - (2k +x)
a2k+1 T a’l 2kk! H
for all : > 1. Therefore, the solution is
2 T (25 +%)
w(z)=ayy LM!_(S@HU(:U). (3.1.13)
k=0
This completes the proof. O

Corollary 3.1.2 Consider the n-th order differential equation of the form
zy™ () + (2p +n — )Y (z) — 2y (z) = (n = 2)y"(z) = 0, (3.1.14)

where p and m are positive integers with n> 3 for z is a real variable. Then

the disiributional solution of (8.1.14) as

m—1

y(z) = CZ(—l) - k=1 (p ; ; )(5(%)(2?), (3:1.15)

k=0
where C' is any constant.

Corollary 3.1.3 Consider the n-th order differential equation of the form

2y (z) + (2p+n — Dy (z) — 2 (z) — (n — 1)y"3(z) = 0, (3.1.16)
where p and n are positive integers with n> 3 for xis a real variable. Then
the disiributional solution of (8.1.16) as

m—1
Vo) =3 (-0~ (P ) s, (3.1.17)

k=0
where C' is any constant.
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