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We give a brief review of the non-minimal derivative coupling (NMDC) scalar field theory
in which there is non-minimal coupling between the scalar field derivative term and the Einstein
tensor. We assume that the expansion is of power-law type or super-acceleration type for
small redshift. The Lagrangian includes the NMDC term, a free kinetic term, a cosmological
constant term and a barotropic matter term. For a value of the coupling constant that is
compatible with inflation, we use the combined WMAP9 (WMAP9+eCMB+BAO+ Hy) dataset,
the PLANCK+WP daltaset, and the PLANCK TT,TE, EE+lowP+Lensing+ext datase‘ls to find
the value of the cosmological constant in the model. Modeling the expansion with power-
law gives a negative cosmological constants while the phantom power-law (super-acceleration)
expansion gives positive cosmological constant with large error bar. The value obtained is of
the same order as in the ACDM model, since at late times the NMDC effect is tiny due to small

curvature.
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We give a brief review of the non-minimal derivative coupling (NMDC) scalar field theory
in’ which there is non-minimal coupling between the scalar field defivative term and the Einstein
tensor. We assume that the expansion is of power-law type or super-acceleration type for
small redshift. The Lagrangian includes the NMDC term, a free kinetic term, a cosmological
constant term and a barotropic matter term. For a value of the coupling constant that is
compatible with inflation, we use the combined WMAP9 (WMAP9+eCMB+BAO+ Hy) dataset,
the PLANCK+WP dataset, and the PLANCK TT, TE, E E+lowP+Lensing+ext datasets to find
the value of the cosmological constant in the model. Modeling the expansion with power-
law gives a negative cosmological constants while the phantom power-law (super-acceleration)
expansion gives positive cosmological constant with large error bar. The value obtained is of
the same order as in the ACDM model, since at late times the NMDC effect is tiny due to small

curvature.
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We give a brief review of the non-minimal derivative coupling (NMDC) scalar field theory
in which there is non-minimal coupling between the scalar field derivative term and the Einstein
tensor. We assume that the expansion is of power-law type or super-acceleration type for
small redshift. The Lagrangian includes the NMDC term, a free kinetic term, a cosmological
constant term and a barotropic matter term. For a value of the coupling constant that is

compatible with inflation, we use the combined WMAP9 (WMAP9+eCMB+BAO+ H) dataset,

" the PLANCK+WP dataset, and the PLANCK 17T, TE, EE+lowP+Lensing+ext datasets to find

the value of the cosmological constant in the model. Modeling the expansion with power-
law gives a negative cosmological constants while the phantom power-law (super-acceleration)
expansion gives positive cosmological constant with large error bar. The value obtained is of
the same order as in the ACDM model, since at late times the NMDC effect is tiny due to small

curvature.
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Introduction

Recently, cosmic accelerating expansion has been confirmed by astrophysical observations. A-
mongst these are supernova type Ia (SNIa) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], large-scale structure
surveys [11, 12], cosmic microwave background (CMB) anisotropies [13, 14, 15, 16] and X-ray
luminosity from galaxy clusters [15, 17, 18]. The acceleration is responsible by an unknown
energy form called dark energy [19, 20, 21] which is typically in form of either cosmological
constant or scalar field [19, 20, 21, 22]. There are many scalar field models proposed to ex-
plain the accelerating expansion of the universe, for example, quintessence [23] and classes of
k-essence type models [24, 25, 26]. Modifications of gravity, for instance, braneworlds, f(R)
and others are as well possible answers of present acceleration (see e.g. [27, 28]). Acquiring the
acceleration needs the eftective equation of state of matter species, especially a dynamical scalar
field evolving under its potential, to be p < —pc?/3.

It is possible to have a non-minimal coupling (NMC) between scalar field to Ricci scalar
in GR in form of /=g f(¢)R. The NMC is motivated by scalar-tensor theories in the Jordan-
Brans-Dicke models {29, 30], re-normalizing term of quantum field in curved space [31] or
supersymmetries, superstring and induced gravity theories [32, 33, 34, 35, 36]. It was applied to
extended inflations with first-order phase transition and other inflationary models [39, 40, 41, 42,
37, 38, 43]. In context of quintessence field diiving present acceleration, non-minimal coupling
to curvature has been studied as in [44, 45, 46, 47]. In strong coupling regime, power-law and

de-Sitter expansions are found as late time attractor [48] and moreover the NMC term could also



R

e e . I e e

behave as effective cosmological constant [49].

First cosmological consideration of the non-minimal curvature coupling to the derivative term
of scalar field was proposed by Amendola in 1993 [50]. Therein the coupling function is in
form of f(&, ¢, @ pw,...). This type of derivative coupling is required in scalar quantum
electrodynamics to satisfy U(l) invariance of the theory and is required in models of which
the gravitational constant is function of the mass density of the gravitational source. The non-
minimal derivative coupling-NMDC terms are commonly found as lower energy limits of higher
dimensional theories which makes quantum gravity possible to be studied perturbatively. They
are also found in Weyl anomaly in A" = 4 conformal supergravity [51, 52]. With simplest
NMDC term, R¢ ,@*, class of inflationary attractors is enlarged from the previous NMC model
of [43] and the NMDC renders non-scale invariant spectrum without requirement of multiple
scalar fields. Moreover it is possible to realize double inflation without adding more fields to the
theory [50]. However conformation transtormation can not transform the NMDC theory into the
standard field equation in Einstein frame. The conformal (metric) re-scaling transformation needs
to be generalized to Legendre transformation in order to recover the Einstein frame equations
[50, 53]. There are various versions of the NMDC proposed in order to match plausible theory
and to predict observation results as will be seen in the next section.

We give a brief review of the NMDC gravity models in this paper and we consider a model
in which the Einstein tensor couples to the kinetic scalar field term with a free kinetic term
and a constant potential (considered as a cosmological constant). In setups of power-law or
phantom power-law (super) acceleration expansions and using inflation-estimated value of the
coupling constant, we evaluate value of the cosmological constant and show a parametric plots
of the cosmological constant versus the power-law exponents. Cosmological parameters given
by WMAP9 (combined WMAP9+eCVB+BAO+H,) dataset [54] and PLANCK satellite dataset
[55, 56] are used here.

1~
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Non-minimal derivative coupling

theory

2.1 Capozziello, Lambiase and Schmidt’s result

Capozziello, Lambiase and Schmidt [57] found in 2000 that all other possible coupling I.agrangian
terms are not necessary in scalar-curvature coupling theory, leaving only It¢ ,¢'* and R*¢ ¢ ,,
terms in the Lagrangian without losing its generality, hence motivating cosmological study in
the case of having both terms. One character of the two new terms is to modulate gravitational
strength with a free canonical kinetic term without either scalar field potential V' (#) or A. This
results in an effective cosmological constant and hence effectively giving de-Sitter expansion
[58]. The conditions for which de-Sitter expansion is a late time attractor are given in [57].
When considering only Ré¢ ,¢* with free Ricci scalar, free kinetic term, potential and matter
terms, the equation of state, in absence of V(¢), goes to —1 at late time. When assuming
slowly-rolling field and power-law expansion, V(@) is found directly [59]. Another case is to
consider only the R*¥¢ &, term as extra term to standard scalar field cosmology, i.e. a free
Ricei scalar with a free kinetic scalar term and a potential, the field equation contains third-order
derivatives of ¢ and the continuity equation of the scalar field contains third-order derivative of

Guw- This model is tightly constrained in weakly coupling regime, i.e. solar system constraint
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puts limit of the pressure, psy < 107%p.c?, where p, is critical density hence it can not play a
role of quintessence. If the coupling is strong with negative sign, the coupling term can fattens

the slope of the inflationary potential [60].

2.2 Granda’s two coupling constant model

Another modification of the NMDC model is proposed by Granda in 2010 [61]. The model
contains the usual Einstein-Hilbert term, a scalar field kinetic term, a potential term and two
separated dimensionless couplings, #, 77 re-scaled by 1/¢% in form of —(1/2)kR¢™2g,, "o
and —(1/2)n¢~>R,ud"¢”. In this model when there is no free kinetic scalar term (i.e. strictly
NMDC) and no potential term, NMDC term takes a role of dark matter at early stage giving
the power-law dust solution, @ ~ /3 for n = —2x and accelerating solution for n = —x — 1
where 0 < k& < 1/3. Acceleration at present time is assured if including the potential into the
Lagrangian. Motivation of such two separated couplings comes from an attempt to approach
quantum gravity perturbatively [62]. This gives ideas of the other versions of two coupling
models without the 1/¢? re-scaling factor [63, 64, 65] such as inclusion of Gauss-Bonnet

invariance [66] or in context of Chaplygin gas [67].

2.3  Sushkov’s model

2.3.1 Constant or zero potential

Sushkov, in 2009, [68] considered a special case x R¢ % and ko R*¥¢ b, with k = ky =
—2#k;. This results in combination of the two NMDC terms into one Einstein tensor coupling to
kinetic scalar field part, &G, *¢". The chosen coupling constant x renders good dynamical
theory, that is to say, the field equations contain terms with second-order derivative of g, and
¢ at most so that the Lagrangian contains only divergence free tensors. Hence it consists of the
R term, free kinetic scalar g,,@*@" and &G ,,¢* ¢ in absence of V' (¢). Cosmological study
of the model for flat FLRW universe yields, for & > 0, quasi-de-Sitter at very early stage but,

for x < 0, initial singularity at very early stage. For any sign of the coupling, a o ¢!/ at very

late time [68]. A direct modification of this model is to have a constant potential with possibility



of phantom behavior of the free kinetic term [69]. In a range of coupling constant values, this
modification enables the model to transit from de-Sitter phase to other types of expansions giving

various fates and various origins of the universe [69].

2.3.2 With potential but without free kinetic term

Inspired by Sushkov’s model, in case of without free kinetic term, (1/2)g""@ ;... but having
Einstein tensor coupling kinetic term alone (strictly NMDC), Gao in 2010 [70], found that for
V(p) = 0, the scalar field behaves like dust in absence of other matters or in presence of
pressureless matter. Its value of the equation of state parameter suggests that it could be a
candidate of dark energy and dark matter. However the model is not viable due to superluminal
sound speed. Wher; adding more than one Einstein tensor coupling to the kinetic térm [70], it

was claimed not to be likely by [71]. Strictly NMDC term in curvaton model can also be seen

in the work by [72].

2.3.3 Purely kinetic coupling term and a matter term

The Sushkov’s model, in absence of potential and absence.of matter Lagrangians, is not able
to explain phantom acceleration, i.e. no phantom crossing. In order to fix the purely kinetic
Lagrangian to allow phantom crossing, in 2011, Gubitosi and Linder proposed most general
Lagragians with purely kinetic term obeying shift symmetry. These are the (a1¢ ¢ +asV2¢)R
term, ¢ 0, R* term and R“B‘f‘sfngm;(qﬁ'ﬂ) term where f,g-s is a function of ¢ , and a matter
term [73]. Absence of potential helps avoiding high energy quantum correction. Their model is
at lowest possible order of Planck mass and it verifies Sushkov’s action [68]. The model achieve
wide range of w values from stiff (w = 1) to phantom crossing and is possible to result in
loitering cosmological constant-like phase before entering matter domination phase. Sushkov’s
purely kinetic model with matter Lagrangian is found to be a special case of the Fab Four theory.
Only positive coupling constant of the theory could result in phantom crossing however it also
gives non-causal scalar and tensor perturbation, hence making the purely-kinetic model discarded
tor inflation [74]. Investigations of this model for V(¢) = 0 in blackhole spacetime are presented

in [75, 76, 77, 78).



C A S S

e ™ A U R

™ I i N S

2.3.4 Adding potential term with matter term

As another way out of problem in purely kinetic model, potential is added into the theory
(without matter term). In order to have inflation, it is found that the potential needs to be less
steep than quadratic potential [79]. With constant potential and matter term in the model, it is
able to describe transition from inflation to matter domination epoch without reheating and later
it describes the transit to late de-Sitter epoch. The derivative coupling to curvature is strong at
carly time to drive inflation since the coupling constant acts as another cosmological constant
Axmpc. At late time the scalar field behaves like dark matter and the cosmological constant
(or the constant potential) together with the NMDC term (with little effect) drives the present
acceleration [80]. Dynamical analysis shows that for positive potentia{, the positive coupling
i
gives unbound ¢ value with restricted Hubble parameter [79]. Indeed when considering constant
potential and positive coupling, inflationary phase is always possible and the inflation depends
solely on the value of coupling constant. During inflation, gravitational heavy particles are
less produced, if having stronger NMDC couplings to the inflaton field or to the particles [81].
Perturbations analysis and inflationary analysis of the model with a constant potential considered

as a cosmological constant was performed in [82] to confront observational data.

2.4 Model with negative-sign NMDC

The model is related (by Germani and Kehagias in 2011 [71]) to natural inflation of which
pseudo-Nambu-Goldstone boson slowly rolling to create inflation as well as related to three-form
inflation [83]. The model is related to Higgs inflation with V(@) ~ A¢* which is a NMDC
coupling to gravity modification at tree-level of Higgs field [84]. The Lagrangian looks similar
to Sushkov’s action but the free kinetic term and the NMDC term have opposite sign to each
other, ie. g"” — G*”/M?. The model gives a UV-protected inflation and enhances friction
of the field dynamics gravitationally [85]. Inflationary scenario of the model with quadratic
potential and modifications of standard reheating by the NMDC term is found by Sadjadi and
Goodarzi in 2013 [86]. Tsujikawa in 2012 showed that, due to gravitational friction produced
by the NMDC, even with steep potentials, a class of inflationary potentials is compatible with

observation [87]. Particle production of this action after inflation is reported in [88] and one
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slow roll parameter is necessary for describing inflation [89]. The NMDC coupling contributes
to high-field friction making the energy scale reduce to sub-Planckian therefore more consistent
to observation [90]. The model is also investigated without free kinetic term for inflation [91].
As dark energy, this model with matter term and a power-law potential is possible to give
phantom crossing [92]. Power-law quintessence potential Vpo™ gives rise to oscillatory dark
energy. The oscillatory NMDC quintessence satisfies EoS observational value for n < 2 [93, 94]
however inconsistencies are also reported in [95]. Applying exponential and power-law potentials,
perturbation analysis with combined SN Ia, BAO and CMB shows that NMDC coupling term
has very small effect on late acceleration if it is needed to satisfy instability avoidance. This
suggests that the coupling needs to be small, making 9xH? term in the Friedmann equation
small. Hence it behaves liké quintessence at late time as it is driven by the potential. However
at early time the NMDC coupling plays major role in driving the acceleration due to large H
value at inflation [96]. Phase space analysis for the case of exponential potential was performed

in [97].
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Equations of motion

In this work, we consider the Sushkov’s model which takes the action [68, 80],

ke S

S:/d‘ifc\/—g {S?TG (EGuw +£Gu) o " — 2V (8)| + Sy (3.1)

where R is the Ricci scalar, g is the determinant of metric tensor g,,, G is the universal
gravitational constant, G, is the Eintein tensor, ¢ is the scalar field, V(&) is the scalar field
potential, Sy, is ordinary matter action, ¢ is a constant with values +1(—1) for canonical (and
phantom) scalar field, £ > 0 is the coupling constant as in [68, 80]. Our universe is assumed to

be a spatially flat FLRW, with the metric
ds? = —c2dt® + o®(t)dz?, (3.2)

where a(t) is the scale factor and dz? is Euclidian metric. Varying the action in Eq.(3.1) with
q

respect to metric tensor g, using line element in Eq. (3.2) we obtain
3H? = dnGd*(e — 95 H?) + 8nGV (¢) 4 871G pum, (3.3)

where H is the Hubble parameter and p,, is the energy density of matter. The Hubble parameter
is a function of time ¢ and defined in a form H = H(t) = a(t)/a(t). The acceleration equation

takes the form,

9H + 3H? = —4nG le 4+ & (2}1 +3H? 4 :in'ng's-l)] + 817GV (¢) — 87Gpm, (3.4)
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where py, is the pressure of matter. The scalar field equation is
2(+ 3Ho) — 3x(H?$ + 2HHG + 3H?)) = V4 (3.5)

where V, = dV/d¢. The Egs. (3.3), (3.4) and (3.5) are the dynamical system of the field

equations. We can write

s Vi 3 ; 3
e e sH — HH - 3xH) 6, 3.6
® e—3kH? &—3kH? ( R 45 2 :0)
or .
. : Ve 6sHH
= JHgi . . 37
9 N3 7=—3%¢ G0
Subtracting Eq. (??) with (??), we obtain
H= “4nG [¢2 (E +kH —3xH? + 2.‘:Hr,;')'r,§71) + P+ pm} | (3.8)
From above equations, energy density and pressure of the scalar field is found to be
1..
po = 507(c = 9H?) +V(9), (3.9
and
1, 5 2kH (e + 9xH?) 2kHOV 4 ‘
= —@ (& — Yl "~ 1 = : = 2 4
e 2¢ S { jL(E—Sf-;,H?)(e—9};H2) £ — JxH? () 4B
Therefore we find the equation of state parameter as follow
; KH (=495 H? 2HGV
e <ot (1 + i) - 5 Ve
Wy = = .
? 182(c — 9H2) + V(9)
Using the Friedmann equation, the potential is found as
3¢ |1 -
Vv e (T QoY 3.12
(#) = 7= 5(e = 9H")0" = pm, (3.12)

One can check if this is correct by substituting the scalar field potential in to Eq.(3.9) to obtain

the usual Friedmann equation, pg + pry = 3H®/8nG. From Eq.(3.8), we sce that
P+ pg = &2 (e + kH —35H? + 2xHo™ ). (3.13)
Using Friedmann equation and Eq. (3.13), hence Eq. (3.8) recovers its general kinematical form,

H = —47G [(3H?/87G) + pim + ps] (3.14)



and the equation of state parameter also recovers general kinematical form,

. 3H? + 2H + 87Gpm
W¢(H,H, Pm) = 3H?2 -‘SWGP . J (315)

Taking time derivative to the Friecdmann equation (??), hence

. ArG .- L. .
0= —;—H [—éd(c — 9rH?) + IHEG? — Vs — pm] . (3.16)
Using the continuity equation of matter, p = —3Hp, with dust matter (w,, = 0) to Eq.(3.7),

Eq.(3.16) becomes

: [ - (e —9xH?) 2 et 2kHVigd
H = —4xG e —JORHY - 2cHNRE — L H b pATRE R s | = 3.17
m {(c. kH®) — 2K (E—SKH2)+3h }@ 5—3};H'-’+p1 (3.17)
Rearrange to obtain the kinetic term,
20kHV 4 I
2 =—3xH® _Pm T 5@

0" = (3.18)

(e — 95H?) = 2 H (=358 ) + 3rH
Considering the case with constant potential, or equivalently a cosmological constant term,

V(¢) = A/(8nG) in the system, with dust and scalar field term (both free kinetic term and the

NMDC term), the Friedmann equation can be written as

(3.19)

H2 = (g2 [Q\ o Qmo, Qp0(e - B&Hg)]
] 0 A0

a? ad¥(&— IxH?)?
where ) are density parameters of each component of cosmic fluids. The system (3.3), (3.4)
and (3.5) with ¢ = #(¢) in absence of potential and barotropic fluid is a closed autonomous
dynamical system. An interesting particular solution of this system is when l,ivp =0 = ¢ where

) = & hence Vp = & = constant. As found in [58], that the solution is a de-Sitter type. For the

case of K = ko = —2k1, as of Sushkov’s model, the solution gives,
A ;
e NMDC (3.20)
3
The effective cosmological constant is defined as
Axmpe = — (3.21)
K
The solution is found as ¢, = ¢ = 1/,/k which is
bp = : + b (3.22)
p = ﬁ 0 <
10



suggesting that the coupling constant should take a positive value and the effective cosmological
constant, Axayipe should be positive. However general consideration in [68, 80, 69] the NMDC
term is strong at early time hence gives new inflation mechanism that transition from a quasi-
de-Sitter phase to power-law phase happens naturally. Having constant V' = A/(87G), at late
time, the transition from quasi-de-Sitter to de-Sitter phase is also possible. The particular solution
suggests that Ayyipe > 0. Therefore, in presence of the usual cosmological constant (or constant
V), both A and Ayape contribute both at late time. In order to have enough inflation, & is
estimated to 10~ sec?. Although Axyvipe & 107 sec™? seems to be large, the NMDC term is

suppressed by its multiplication with curvature which is very small at late time.

L1



We estimate that the present universe in very recent range of z evolves as power-law a =
ag (t/to)™ for € = +1. Here ap is scale factor at a present time, o is age of the universe and
o is constant exponent, The power-law expansion has been considered widely in astrophysical
observations, see e.g. [98, 99, 100, 101] (see also [102] for constraints). It is realized as
an attractor solution of a canonical scalar field evolving under exponential potential [103] and
solution of a barotropic fluid-dominant universe. Space is under acceleration if @ > 1. We
consider constant o in a range 0 < o < oco. Hence, @ = aa/t, and the acceleration is
i = a(a—1)a/t*. The Hubble parameter and its time derivative are H = a/a = o/t, and
H = —a/t?. The value of o can be evaluated with data from gravitational lensing statistics
[104], compact radio source [105], X-ray gas mass fraction measurements of galaxy cluster
[106]. Values of e from various observational data are listed in [101]. To calculate @ at the
present we use o = Hloty and dust density is pm = pm.o (fo/£)® , where Pm,o 15 the dust density
at present.

In the scenario of super-acceleration, i.e. the phantom power-law function for which £ = —1,
a = ag[(ts — t)/(ts — to)]®, where £ is the future singularity-the Big-Rip time defined as in

[107] ts = to + |B|/H(to), and [ is a constant. In this case @ = —ag3(ts — )31 /(ts — ty)? =

—Ba/(ts — t), and cosmic acceleration is, & = agB(8—1)(ts — t)°2/(ts — to)® = B(B — L)a/(ts — t)2.

Acceleration requires 3 < 0. The Hubble parameter is H = —3/(t,—t), and H = —3/(t; — t)2.

At present, 3 = Hy(to—{s). Dust density in the phantom power-law case iS pm = pm,o [(ts — to)/(fs — t.)]3‘8 .

12
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At present, t = tg, the Big-Rip time ¢, can be estimated from

2 1
3(1 4+ wpE) Ho\/1 - Qo

Here, wpg must be less than —1. To derive the above expression the flat geometry and constant

(.1

ts =tp —

dark energy equation of state are assumed [108, 109]. This type of expansion function with
phantom scalar field was considered in [110]. We use cosmological parameters are from WMAP9
(combined WMAP9+eCMB+BAO+H,) dataset [54], PLANCK+WP dataset [55] and PLANCK
including polarization and other external parameters (171, T'E, FE+lowP+Lensing+ext.) [56].
The value of wpg is of the wCDM model obtained from observational data. The barotropic
density contributes to power-law expansion shape while the NMDC and A contributes to de-
Sitter expansion, in combination, the expansion function is a mixing between these two. For the’
phantom case, the free kinetic part of the Lagrangian has negative kinetic energy, therefore the
combined eftect to the expansion should be the phantom-power law (super acceleration) mixing
with the de-Sitter expansion. We will calculate the cosmological constant, A of the model using
observed value of wpg and using suggested value of x =~ 10~ sec® as required by inflation
[80]. The coupling constant is regarded as a constant in data analysis. The derived parameters
from OBservatinlls are shown in Table 4.1 while Table 4.2 shows valuesl of variables calculated
from observations. Values of cosmological constant in this model using three datasets are shown
in Table 4.3. We show plots of A versus varying value of the exponents e and 3 in Figs. 4.1

and 4.2,

4.1 Equation of state parameter for power-law case

In this part, we apply the power-law expansion a@ = ag (£/t9)” to the NMDC cosmology. The

equation of state parameter in Eq. (3.11) takes the form

i Do 2 2ra(t?+9xa?) dxadV 42 9
s ¢ {tg = 9'&'09) []‘ 5 (tgf‘S:cx'z)(tgfaQr{a'z)] - tﬂaj?imﬂ - 21/(('&{) 4.2)
Wy = - .
g $2(12 — 3na?) + 2V(H)E2
Eq.(3.18) takes the form, )
- I(t, ¢, )
2 18t @
o= (t* — 9ra?)’ (4:3)
13



WMAP9 [54]

PLANCK+WP [55]

TT,TE,EE+other. [56]

(4.346(4) + 0.018(6)) - 1017 sec

(4.360(6) £ 0.015(1)) - 10'7 sec

(4.354(9) + 0.006(6)) - 10'7 sec

@ 13.772 4 0.059 Gyr 13.817 + 0.048 Gyr 13.799 + 0.021 Gyr
(2.245(9) £ 0.025(9)) - 10718 - | (2.18(1) £ 0.03(8)) - 10718 L | (2.195(1) +0.014(9)) - 1018 L
- 69.32 £ 0.80 km/s/Mpc 67.3 + 1.2 km/s/Mpc 67.74 + 0.46 km/s/Mpc
Dm0 0.28651 0 000 0.315+0-018 0.3089 + 0.0062
peo | (9-019(6) +0.208(8)) - 107275 | (8.50(6) +£0.14(8)) 102" X5 | (8.618(6)  0.117(0)) - 10-27 X5
pmp | (258410100 . 10-27 ke (2:67(9) 1ot - 10727XE | (2.662(3) + 0.089(6)) - 1027 g
WoE ~ 107315580 ~1.49%5,5 ~1.019%5088

AT 4.1

PLANCK+WP and TT,TE, EE+lowP+Lensing+external data.

Derived parameters from the combined WMAP9 (WMAP9+eCMB+BAO+H)),

WMAP9 PLANCK+WP 1T, TE, EE+other.
a 0.9761(6) + 0.0154(3) 0.951(0) + 0.019(9) 0.9559(4) + 0.0079(4)
Gpower—law | 0.0244(2) + 0.0161(9) 0.0515(2) +0.0220(0) | 0.04613(4) == 0.00868(9)
> (5.248(1) 5 gooc)) - 10 sec | (1.19(0)"5036D) - 1018 sec | (1.96(6)F Tac) 10" sec
/ 166.2(9) 1 50/8.0) O¥r 37.7(1) a5} Gyr 622.9(4) 12555 Gyr
8 =10.81(1) 53 550 —1.64(4) 7500t —~42.1(9) [ Sroco)
| Lo | s 13558 Loy 0800

M3 4.2: Expansion derived parameters from the three datasets

WMAP9 PLANCK+WP TT,TE,EE+other.
" =y +13.5168(3 _35 +4.5685(7 _35 afm +3.9590(8 =
Aeepilgla) | =8.5194(5) %0000y 10733 | —1.3997(8) Toatioll) - 107° | —2.9833(7) 75 o0 - 1034
Aemm1 (i) [ TAT92(3) 130 Soroiy FRO=35{= 2B TT4(3) 15 2 oS ~ 10235 4| 2.4939(1) 5 5ecel) - 10~
M99 4.3: Value of the cosmological constant with power-law expansion (using = = +1) and
phantom power-law expansion (using £ = —1) for each of observational data.
Substituting Eq.(4.3) into the equation of state parameter, Eq.(4.2), we obtain
3 2ka(t?+9ra’ 4, V,“:-ﬂa 2
Fi(t. 0,9) [1 - (eLam(é)(tLg.zaz)] - ({;‘igxiz) —2V(g)t?
Wy = (4.4)

Fl(t: {p‘l (b} + 2‘/'(05){3

14




— v | v v N N v N N e e S e e’ e Nt N e N N e

(%)

CA(x107%sec™)

1 1995249

. WMAP9+eCMB+BAO+H,
PLANCK+WP
TT, TE, EE+lowP+Lensingt+ext.

a=0.951 o
L 1 2 A

3]

..3?,

-
g 2

3 IR
V1 =0.976

- ; : :
3l 4.1: Parametric plots of A versus e in a power-law expansion

A(x107 sec™ )

4 F
WMAP9+eCMB-+BAO+H, L
PLANCK+WP
TT,TE,EE+lowP+Lensingt+ext. 1
: 51

3 U 4.2: Parametric plots of A versus 3 in a phantom power-law expansion
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where g P
2naV st " a
. @9wal) ~ Pmo@ey T e
Fl(t’qb’ (b) = ( = ﬁa(t""(ﬁ*g.‘:az)} : ) @.3)

T tT=3ra?) (17— 9xa?)
4.2 [Equation of state parameter for phantom power-law case

Apply the phantom power-law expansion (super-acceleration), a = ag [(ts —t)/(ts — to)]'s , The

kinetic term can be written as

5 Fo(t, ¢, ¢)
T ((ts — £)2 + 9n32) (4.6)

The equation of state parameter of a phantom power-law expansion is

; 2u8[(t.—t)* —9r 57 483V o d(ts—1t)° ) 2
Bt ¢’¢) 1+ [(fs—f)2+gfi.32][(fg—f)gjgh‘ﬁgi o [(ts—t)?7+3rBI] 2v {¢)(t5 L t)q
W = - - 4.7
Fy(t, 0, ¢) + 2V (8)(ts —1)?

where y . -
268V s(ts—t) (ts—to) 3
PPN S (= o ) P i

2(69,6) = = i nro]
(=0 +m07] [(ta— )7+ 9757

(4.8)

With constant potential in form of V(¢) = A/87G hence V, = 0 for both cases.
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Conclusions

In this work we give a brief review of the canonical scalar field model with non-minimum
derivative coupling to curvature in cosmology. Of our interest in Sushkov’s model [68, 80],
we consider the case when the potential is constant, i.e. V = A/(87G) and the coupling
constant is positive. The NMDC coupling term behaves like an effective cosmological constant,
Anyvpe = ¢/k. Hence the NMDC term together with the free kinetic term contributes to
de-Sitter like acceleration to the dynamics in the slow-roll regime at early time, i.e. inflation.
At late time the NMDC contribution is very little due to small curvature. At late time, in
presence of barotropic matter term and cosmological constant, we use observational data from
WMAP9+eCMB+BAO+Hy, PLANCK+WP and TT,TE EE+lowP+Lensing+external data to find
cosmological constant of the theory, modeled with power-law and super-acceleration (phantom
power-law) expansion functions. We estimate that the universe kinematically expands with
power-law or super acceleration only from very recent redshifts. For power-law expansion, the
results are A = —8.52x 10735 sec™2 (combined WMAP9), —1.40x 1033 sec—2 (PLANCK+WP)
and A = —2.98 x 1073* sec™2 (IT,TE,EE+lowP+Lensing+external data). These are of the same
order as of ACDM model but negative. Hence in this model, to have power-law expansion,
the cosmological constant must be negative. Hence the power-law expansion is not suitable for
modeling NMDC cosmology. For the super-acceleration (phantom) expansion, the results are
A = 7.48 x 1073% sec™? (combined WMAP9), A = 2.61 x 1073% sec™? (PLANCK+WP) and

A = 249 x 10734 sec™? (TT,TE,EE+lowP+Lensing+external data). The value is very sensitive

17
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