

ผลของการเติมไอออนร่วมที่มีต่อโครงสร้างเฟส โครงสร้างจุลภาคและสมบัติไฟฟ้าของเซรา

มิก Bi_{0.47}Na_{0.47}Ba_{0.06}TiO₃

วิทยานิพนธ์เสนอบัณฑิตวิทยาลัย มหาวิทยาลัยนเรศวร เพื่อเป็นส่วนหนึ่งของการศึกษา หลักสูตรวิทยาศาสตรมหาบัณฑิต สาขาวิชาฟิสิกส์ประยุกต์ ปีการศึกษา 2565 ลิขสิทธิ์เป็นของมหาวิทยาลัยนเรศวร

ผลของการเติมไอออนร่วมที่มีต่อโครงสร้างเฟส โครงสร้างจุลภาคและสมบัติไฟฟ้าของเซรา

มิก Bi_{0.47}Na_{0.47}Ba_{0.06}TiO₃

วิทยานิพนธ์เสนอบัณฑิตวิทยาลัย มหาวิทยาลัยนเรศวร เพื่อเป็นส่วนหนึ่งของการศึกษา หลักสูตรวิทยาศาสตรมหาบัณฑิต สาขาวิชาฟิสิกส์ประยุกต์ ปีการศึกษา 2565 ลิขสิทธิ์เป็นของมหาวิทยาลัยนเรศวร วิทยานิพนธ์ เรื่อง "ผลของการเติมไอออนร่วมที่มีต่อโครงสร้างเฟส โครงสร้างจุลภาคและสมบัติไฟฟ้า ของเซรามิก Bi_{0.47}Na_{0.47}Ba_{0.06}TiO₃" ของ อนุพงศ์ หลวงปางอ้าย ได้รับการพิจารณาให้นับเป็นส่วนหนึ่งของการศึกษาตามหลักสูตร ปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาฟิสิกส์ประยุกต์

คณะกรรมการสอบวิทยานิพนธ์

(ดร.จักรพันธ์ วัฒนวิกย์กรรม์)	ประ ธานกรรมการสอบวิทยานิพนธ์
(รองศาสตราจาร <mark>ย์ ด</mark> ร.ธีระชัย บงการณ์)	ประธานที่ปรึกษาวิทยานิพนธ์
(ผู้ช่วยศา <mark>ส</mark> ตราจารย์ ดร.ศศิพร ประเสริฐปาลิฉัตร)	กรรมการที่ <mark>ปรึ</mark> กษาว <mark>ิ</mark> ทยานิพนธ์
(ผู้ช่วยศาสตราจารย์ ดร <mark>.จารุ จุติมูสิก)</mark>	กรรมการผู้ทรงคุณวุฒิภายใน
	อนุมัติ

(รองศาสตราจารย์ ดร.กรองกาญจน์ ชูทิพย์) คณบดีบัณฑิตวิทยาลัย

ชื่อเรื่อง	ผลของการเติมไอออนร่วมที่มีต่อโครงสร้างเฟส โครงสร้างจุลภาคและ
	สมบัติไฟฟ้าของเซรามิก Bi _{0.47} Na _{0.47} Ba _{0.06} TiO ₃
ผู้วิจัย	อนุพงศ์ หลวงปางอ้าย
ประธานที่ปรึกษา	รองศาสตราจารย์ ดร.ธีระชัย บงการณ์
กรรมการที่ปรึกษา	ผู้ช่วยศาสตราจารย์ ดร.ศศิพร ประเสริฐปาลิฉัตร
ประเภทสารนิพนธ์	วิทยานิพนธ์ วท.ม. ฟิสิกส์ประยุกต์, มหาวิทยาลัยนเรศวร, 2565
คำสำคัญ	BNT-based, โครงสร้างเฟส, โครงสร้างจุลภาค, ไดอิเล็กทริก, เฟร์โรอิ
	เล็กทริก

<mark>บทคัดย่อ</mark>

เซรามิกปราศจากตะกั่ว Bi_{0.47}Na_{0.47}Ba_{0.06}TiO₃ (BNBT) เจือแบบแทนที่ด้วย (LiNb)⁴⁺ (NiNb)⁴⁺ และ (AINb)⁴⁺ ในปริมาณ 0.00 ถึง 0.05 mol% ลงในบริเวณ B ที่เตรียมด้วยวิธีการเผา ไหม้แบบสถานะของแข็ง โดยแคลไซน์ และซินเตอร์ที่อุณหภูมิ 750 และ 1150 °C เป็นเวลา 2 ชั่วโมง ตามลำดับ ศึกษาผลของ (LiNb)⁴⁺ (NiNb)⁴⁺ และ (AINb)⁴⁺ ที่มีต่อโครงสร้างเฟส โครงสร้างจุลภาค และสมบัติไฟฟ้าของเซรามิก BNBT พบว่าเซรามิกแสดงโครงสร้างผลึกเพอรอฟสไกต์บริสุทธิ์แบบผสม ระหว่างรอมโบฮีดรัล และเททระโกนัลในทุกตัวอย่าง ซึ่งปริมาณโครงสร้างเททระโกนอลเพิ่มขึ้นเมื่อ ปริมาณ (LiNb)⁴⁺ (NiNb)⁴⁺ และ (AINb)⁴⁺ เพิ่มขึ้น โดยพบโครงสร้างที่ปริมาณเฟสใกล้เคียงกันที่เซรา มิก BNBT บริสุทธิ์ในอัตราส่วน 53:47 ซึ่งยืนยันด้วยการปรับแต่งเรียทเวลด์ ขนาดเกรนเฉลี่ย ความ หนาแน่น และการกระจายตัวของเกรนของเซรามิกลดลงเมือปริมาณ (LiNb)⁴⁺ (NiNb)⁴⁺ และ (AINb)⁴⁺ เพิ่มขึ้น ค่าคงที่ไดอิเล็กทริกลดลง เนื่องจากอัตราส่วนโครงสร้างเลื่อนจากบริเวณรอยต่อ (morphotropic phase boundary, MPB) โครงสร้างจุลภาคที่ด้อยกว่า และความหนาแน่นต่ำที่เกิด จากการแทนที่ (LiNb)⁴⁺ (NiNb)⁴⁺ และ (AINb)⁴⁺ เซรามิกแสดงพฤติกรรมรีแลกเซอร์-เฟร์โรอิเล็กทริก ในทุกตัวอย่าง โดยเปลี่ยนจาก non-ergodic รีแลกเซอร์-เฟร์โรอิเล็กทริก เป็น ergodic รีแลกเซอร์-เฟร์โรอิเล็กทริกมากขึ้น เมื่อปริมาณ (LiNb)⁴⁺ (NiNb)⁴⁺ และ (AINb)⁴⁺ และ (AINb)⁴⁺ เพิ่มขึ้น

Title	EFFECT OF CO-DOPING ON PHASE STRUCTURE,
	MICROSTRUCTURE AND ELECTRICAL PROPERTIES OF
	BI _{0.47} NA _{0.47} BA _{0.06} TIO ₃ CERAMICS
Author	Anupong Luangpangai
Advisor	Associate Professor Dr. Theerachai Bongkarn
Co-Advisor	Assistant Professor Dr. Sasipohn Prasertpalichat
Academic Paper	M.S. Thesis in Applied Physics, Naresuan University, 2022
Keywords	BNT-based, phase structure, microstructure, dielectric,
	ferroelectric

ABSTRACT

Lead-free Bi_{0.47}Na_{0.47}Ba_{0.06}TiO₃ (BNBT) ceramics substituted for the amount of (LiNb)⁴⁺, (NiNb)⁴⁺ and (AlNb)⁴⁺ from 0.00 to 0.05 mol% into B-site were fabricated by the solid-state combustion method with calcined and sintered at 750 and 1150 °C for 2 h, respectively. The effects of (LiNb)⁴⁺, (NiNb)⁴⁺ and (AlNb)⁴⁺ content on phase structure, microstructure and electrical properties were investigated. All ceramics exhibited a pure perovskite structure with coexisting rhombohedral and tetragonal phases, which the tetragonal phase increased with increased (LiNb)⁴⁺, (NiNb)⁴⁺ and (AlNb)⁴⁺ content. A nearly equal R:T phases ratio of 53:47 was obtained from pure BNBT ceramic, confirmed by Rietveld refinement method. The average grain size, density and grain size distribution decreased with increased (LiNb)⁴⁺, (NiNb)⁴⁺ and (AlNb)⁴⁺ content. A reduction in dielectric constant was observed, due to the phase ratio changing away from a morphotropic phase boundary (MPB), an inferior microstructure and low density caused by (LiNb)⁴⁺ (NiNb)⁴⁺ and (AlNb)⁴⁺ substitution. All ceramics showed a relaxor-ferroelectric behavior, which changed from a nonergodic relaxor-ferroelectric to an ergodic relaxor-ferroelectric state with increased (LiNb)⁴⁺, (NiNb)⁴⁺ and (AlNb)⁴⁺ content.

ประกาศคุณูปการ

ผู้วิจัยขอกราบขอบพระคุณเป็นอย่างสูงในความกรุณาของ รองศาสตราจารย์ ดร.ธีระชัย บง การณ์ ประธานที่ปรึกษาวิทยานิพนธ์ ที่ได้สละเวลาอันมีค่าเพื่อให้คำแนะนำตลอดเวลาในการทำ วิทยานิพนธ์ฉบับนี้ และขอกราบขอบพระคุณคณะกรรมการวิทยานิพนธิ์อันประกอบไปด้วย ผู้ช่วย ศาสตราจารย์ ดร.ศศิพร ประเสริฐปาลิฉัตร และผู้ช่วยศาสตราจารย์ ดร.จารุ จูติมูสิก กรรมการ ผู้ทรงคุณวุฒิ และดร.จักรพันธ์ วัฒนวิกย์กรรม์ ประธานกรรมการ ที่กรุณาให้คำแนะนำตลอดจนแก้ไข ข้อบกพร่องของวิทยานิพนธ์ จนทำให้วิทยานิพนธ์ฉบับนี้สำเร็จลุล่วงได้อย่างสมบูรณ์

ขอขอบคุณเจ้าหน้าที่ และบุคลากรของคณะวิทยาศาสตร์ทุกท่านที่ให้ความช่วยเหลือ และ อำนวยความสะดวกในการดำเนิน<mark>งานวิ</mark>จัย

เหนือสิ่งอื่นใดขอกราบขอบพระคุณ บิดา มารดา และครอบครัวของผู้วิจัยที่ให้กำลังใจ และ การสนับสนุนในทุก ๆ ด้านเป็นอย่างดีเสมอมา

คุณปร<mark>ะโยช</mark>น์อันพึงมีจากวิทยานิพนธ์ฉบับนี้ ผู้วิจัยขอมอบ แ<mark>ละอุ</mark>ทิศแด่ผู้มีพระคุณทุก ๆ ท่าน ตลอดจนครูอาจารย์ที่เคารพ และได้ประสิทธ์ประสาทวิชาความรู้

ท้ายสุด หากมีสิ่งที่ขาดตกบกพร่องหรือผิดพลาดประการใด ข้าพเจ้าขออภัยเป็นอย่างสูงใน ข้อบกพร่อง และผิดพลาดนั้น ข้าพเจ้าหวังว่างานวิจัยนี้คงมีประโยชน์ไม่มากก็น้อยต่อผู้ต้องการศึกษา ต่อไป

อนุพงศ์ หลวงปางอ้าย

สารบัญ

หน้	า
บทคัดย่อภาษาไทยค	
บทคัดย่อภาษาอังกฤษง	
ประกาศคุณูปการจ	
สารบัญ	
สารบัญตาราง	
สารบัญภาพญ	
บทที่ 11	
บทนำ1	
ความเป็นม <mark>าแ</mark> ละความสำคัญของปัญหา1	
วัตถุประสงค์ของงานวิจัย2	
ขอบเขตของงานวิจัย	
สมมติฐานของการวิจัย	
บทที่ 24	
ทฤษฎีและงานวิจัยที่เกี่ยวข้อง4	
โครงสร้างเพอรอฟไกต์ (perovskite structure)4	
โพลาไรเซชัน (polarization)4	
เฟร์โรอิเล็กทริก (Ferroelectric)5	
สมบัติไดอิเล็กทริก (Dielectric property)8	
ค่าสภาพยอมสัมพัทธ์ (Relative permittivity: ε_r)8	

การซินเตอร์	10
การซินเตอร์แบบมีเฟสของเหลว	13
เทคนิคการเผาไหม้	14
เครื่องวิเคราะห์การเลี้ยวเบนของรังสีเอกซ์ (X-Ray Diffractometer)	15
กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (Scanning Electron Microscope)	21
หลักการเกิดภาพของกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด	22
การหาความหนาแน่น (Density)	23
เอกสารและงานวิจัยที่เกี่ยวข้อง	25
บทที่ 3	35
วิธีดำเนินงานวิจัย	35
สารเคมีที่ใช้ในการทดลอง	35
วิธีการทดลอง	35
การสังเคร <mark>าะห์เซรามิก</mark> BNBT เจือแบบแทนที่ด้ <mark>วย (LiN</mark> b) ⁴⁺ ในบริเวณ B ด้	วยวิธีการ
เ <mark>ผาไหม้แ<mark>บบปฏิกิริยายาสถานะของแข็ง</mark></mark>	35
การสังเคราะห์เซรามิก BNBT เจือแบบแทนที่ด้วย (NiNb) ⁴⁺ ในบริเวณ B ด้	, วยวิธีการ
เผาไหม้แบบปฏิกิริยายาสถานะของแข็ง	36
การสังเคราะห์เซรามิก BNBT เจือแบบแทนที่ด้วย (AlNb) ⁴⁺ ในบริเวณ B ด้	, วยวิธีการ
เผาไหม้แบบปฏิกิริยายาสถานะของแข็ง	37
	41
บทที่ 4	42
วิเคราะห์ผลการทดลอง	42

สารบัญตาราง

ษ
หนา

ตาราง 1 ความหนาแน่น สมบัติไดอิเล็กทริก เฟร์โรอิเล็กทริก และไพอิโซอิเล็กทริกของ	
เซรามิก 0.94BNT-0.06BT ที่อุณหภูมิซินเตอร์ระหว่าง 1100 ถึง 1200°C (26)	29
ตาราง 2 ผลการวิเคราะห์โครงสร้างผลึกและพารามิเตอร์เบื้องต้นด้วยการปรับแต่งเรียท	
เวลด์ของเซรามิก BNBT ที่ปริมาณ (LiNb)⁴+ ระหว่าง 0.00 ถึง 0.04 mol%	45
ตาราง 3 ขนาดเกรน ความหนาแน่น สมบัติไดอิเล็กทริกและเฟร์โรอิเล็กทริกของเซรามิก	
BNBT ที่ปริมาณ (LiNb) ⁴⁺ ต่างๆ	52
ตาราง 4 ผลการวิ <mark>เคราะ</mark> ห์โครงสร้างผลึกและพารามิเตอร์เบื้องต้นด้วยการปรับแต่งเรียท	
เวลด์ของเซรามิ <mark>ก B</mark> NBT ปริมาณ (NiNb) ⁴⁺ ตั้งแต่ 0.00 ถึง 0.05 <mark>mo</mark> l%	57
ตาราง 5 <mark>ขนาดเก</mark> รน ความหนาแน่น ส <mark>มบัติไดอิเ</mark> ล็กทริกและเฟร์โ <mark>รอิเ</mark> ล็กท <mark>ริ</mark> กของเซรามิก	
BNBT ที่ปริมาณ (NiNb) ⁴⁺ ต่างๆ	54
ตาราง 6 ผลกา <mark>รวิเคราะห์โค</mark> รงสร้างผลึก และพารามิเตอ <mark>ร์เบื้องต้น</mark> ด้วยการปรับแต่งเรียท	l
เวลด์ของเซรามิก BNBT เติมด้วย (AINb) ⁴⁺ ตั้งแต่ 0.00 ถึง 0.05 mol%	59
ตาราง 7 ขนาดเกรน ความหนาแน่น สมบัติไดอิเล็กทริกและเฟร์โรอิเล็กทริกของเซรามิก	
BNBT ที่ปริมาณ (AlNb) ⁴⁺ ตั้งแต่ 0.00 ถึง 0.05 mol%	76

สารบัญภาพ

หน้า
ภาพ 1 แสดงโครงสร้างแบบเพอรอฟสไกด์ (ABO3)4
ภาพ 2 แสดงไดโพลภายในเนื้อสาร (ก) ก่อนทำการ poling และ (ข) หลังทำการ poling5
ภาพ 3 ความต่างเฟสระหว่างกระแสสลับ (I) และศักย์ไฟฟ้า (V) ของวัสดุไดอิเล็กทริก (ก) กรณีไม่มีการสูญเสียพลังงา <mark>น (ข) กรณีมีการสูญเสียพลังง</mark> าน
ภาพ 4 วงรอบฮิสเทอรีซิสระหว่างโพลาไรเซชันกั <mark>บสน</mark> ามไฟฟ้าในสารเฟร์โรอิเล็กทริก8
ภาพ 5 แสดงตัวเก็บประจุแผ่นขนาน
ภาพ 6 แสดงพฤ <mark>ติก</mark> รรมการซินเตอร์แบบสถานะของแข็งทั่วๆ ไปในรูปของความสัมพันธ์ ระหว่างความหนาแน่นกับอุณหภูมิและเวลาที่ใช้ในการเผา
ภาพ 7 แสดงพัฒ <mark>น</mark> าการของโครงสร้างจุลภาคที่เกิดจากการซินเต <mark>อร์แบบส</mark> ถานะของแข็ง (ก) อนุภาคผงยึดกันอ <mark>ยู่แบ</mark> บหลวมๆ หลังการอัดขึ้นรูป (ข <mark>) การ</mark> ซินเตอร์ช่วงเริ่มต้น (ค) การ ซินเตอร์ช่วงกลางและ (ง) การซินเตอร์ช่วงสุดท้าย12
ภาพ 8 แสดงการเปลี่ยนแปลงของกระบวนการการเผาไหม้
ภาพ 9 แบบจำลองสำหรับการพิสูจน์กฎของแบรกก์
ภาพ 10 โปรแกรม full prof
ภาพ 11 หลักการทำงานของโปรแกรม full prof20
ภาพ 12 แผนภาพแสดงสถานะเฟสของเซรามิก 1-xBNT-xBT ที่ x=0-30 mol% (24)25
ภาพ 13 แบบรูปการณ์เลี้ยวเบนรังสีเอกซ์ของเซรามิก (1-x)Bi _{0.5} Na _{0.5} TiO ₃ -xBaTiO ₃ ที่ x=0- 0.12 (25)
ภาพ 14 สมบัติเฟร์โรอิเล็กทริกของเซรามิก (1-x)Bi _{0.5} Na _{0.5} TiO ₃ -xBaTiO ₃ ที่ x=0-0.12 (25)27

ภาพ 15 สมบัติไพอิโซอิเล็กทริกของเซรามิก (1-x)Bi _{0.5} Na _{0.5} TiO ₃ -xBaTiO ₃ ที่ x=0-0.12 (25)
ภาพ 16 แบบรูปการณ์เลี้ยวเบนรังสีเอกซ์ของผงผลึก 0.94BNT-0.06BT ที่อุณหภูมิแคลไซน์
ระหวาง 600 ถง 800°C (26)28
ภาพ 17 แบบรูปการเลี้ยวเบนรังสีเอกซ์ของเซรามิก 0.94BNT-0.06BT ที่อุณหภูมิซินเตอร์
ระหว่าง 1100 ถึง 1200°⊂ ที่มุม (ก) 2θ=10-70° และ (ข) 2θ=36-50° (26)29
ภาพ 18 แบบรูปการเลี้ยวเบนรังสีเอกซ์ของเซรามิก (Bi _{1/2} Na _{1/2}) _{0.93} Ba _{0.07} TiO ₃ ถูกแทนที่ด้วย
5000 k 3 3 x (211 1/3 100 2/3) 11 x = 0-0.025 (12)
ภาพ 19 เส้นโค้งความ <mark>เครี</mark> ยดของเซรามิก (Bi _{1/2} Na _{1/2}) _{0.93} Ba _{0.07} TiO ₃ ถูกแทนที่ด้วยไอออน
ร่วม $(Zn^{2+}_{1/3} Nb^{5+}_{2/3})^{4+}$ ที่ x=0-0.025 (12)
ภาพ 20 สมบัติไพอิโซอิเล็กทร <mark>ิกของเซรามิก (Bi_{1/2}Na_{1/2})_{0.93}Ba_{0.07}TiO₃ ถูกแทนที่ด้วยไอออน</mark>
ร่วม (Zn ²⁺ _{1/3} Nb ⁵⁺ _{2/3}) ⁴⁺ ที่ x=0-0.025 (12)32
ภาพ 21 สมบัติเฟร์โรอิเล็กทริกของเซรามิก (Bi _{1/2} Na _{1/2}) _{0.93} Ba _{0.07} TiO ₃ ถูกแทนที่ด้วยไอออน
ร่วม (Zn ²⁺ _{1/3} Nb ⁵⁺ _{2/3}) ⁴⁺ ที่ x=0-0.025 (12)32
ภาพ 22 แบบรูปการ <mark>เลี้ยวเบนรังสีเอกซ์ของเซรามิก (Bi_{0.5}Na_{0.5})_{0.935}Ba_{0.065}Ti_{1-x}(Al_{0.5}Sb_{0.5})_xO₃</mark>
ที่ x=0-0.020 (27)
ภาพ 23 เส้นโค้งไดอิเล็กทริกของเซรามิก (Bi _{0.5} Na _{0.5}) _{0.935} Ba _{0.065} Ti _{1-x} (Al _{0.5} Sb _{0.5}) _x O ₃ ที่ x=0-
0.020 (27)
ภาพ 24 สมบัติเฟร์โรอิเล็กทริก และไพอิโซอิเล็กทริกของเซรามิก (Bi _{0.5} Na _{0.5}) _{0.935} Ba _{0.065} Ti ₁₋
_x (Al _{0.5} Sb _{0.5}) _x O ₃ ที่ x=0-0.020 (27)34
ภาพ 25 แผนผังขั้นตอนการเตรียมเซรามิก BNBT เจือแบบแทนที่ด้วย (LiNb) ⁴⁺
ภาพ 26 แผนผังขั้นตอนการเตรียมเซรามิก BNBT เจือแบบแทนที่ด้วย (NiNb) ⁴⁺ 40
ภาพ 27 แผนผังขั้นตอนการเตรียมเซรามิก BNBT เจือแบบแทนที่ด้วย (AINb) ⁴⁺ 41

ภาพ 28 แบบรูปการเลี้ยวเบนรังสีเอกซ์ของเซรามิก BNBT ที่ปริมาณ (LiNb) ⁴⁺ ในช่วง 0.0)()
ถึง 0.04 mol% ที่มุม (ก) 2 $ heta$ =10-70° และ (ข) 2 $ heta$ =36-50°	13
ภาพ 29 ผลการปรับแต่งเรียทเวลด์เซรามิก BNBT ที่เติมด้วย (LiNb) ⁴⁺ ปริมาณ (ก) 0.00	
(ข) 0.01 (ค) 0.02 (ง) 0.03 และ (จ) 0.04 mol% ตามลำดับ	14
ภาพ 30 โครงสร้างจุลภาคของเซรามิก BNBT ที่ปริมาณ (LiNb) ⁴⁺ เป็น (ก) 0.00 (ข) 0.01	
(ค) 0.02 (ง) 0.03 และ (ง) 0.04 mol% ตามลำดับ	18
ภาพ 31 การกระจายตัวของเกรนของเซรามิก BNBT ที่ปริมาณ (LiNb) ⁴⁺ เป็น (ก) 0.00 (ข	I)
0.01 (ค) 0.02 (ง) 0.03 และ (จ) 0.04 mol% ตามลำดับ	19
ภาพ 32 สมบัติไดอิเล็ <mark>กทร</mark> ิกของเซรามิก BNBT ที่ปริมาณ (LiNb) ⁴⁺ เป็น (ก) 0.00 (ข) 0.01	1
(ค) 0.02 (ง) 0.03 และ (จ) 0.04 mol% ตามลำดับ	51
ภาพ 33 <mark>ส</mark> มบัติ <mark>เฟร์โรอิเล็กทริกของเซรามิก BNB</mark> T ที่ปริมาณ (Li <mark>Nb)⁴⁺ เป็น</mark> (ก) 0.00 (ข)	
0.01 (ค) 0.02 (ง) 0.03 และ (จ) 0.04 mol% ตามลำดับ	53
ภาพ 34 <mark>แบบรูปการเลี้ยว</mark> เบนรังสีเอกซ์ของเซรามิก BNB <mark>T ที่ปริมาณ</mark> (NiNb) ⁴⁺ ในช่วง 0.0)0
ถึง 0.05 mol% ที่มุม (ก) 2 θ =10-70° และ (ข) 2 θ =36-50°	55
ภาพ 35 ผลก <mark>ารปรับแต่งเรียทเวลด์เซรามิก BNBT ที่ปริมาณ (</mark> NiNb)⁴+ เป็น (ก) 0.00 (ข)	
0.01 (ค) 0.02 (ง) 0.03 (ง) 0.04 และ (ฉ) 0.05 mol% ตามลำดับ	56
ภาพ 36 โครงสร้างจุลภาคของเซรามิก BNBT ที่ปริมาณ (NiNb)⁴+ เป็น (ก) 0.00 (ข) 0.01	
(ค) 0.02 (ง) 0.03 (จ) 0.04 และ (ฉ) 0.05 mol% ตามลำดับ	50
ภาพ 37 การกระจายตัวของเกรนของเซรามิก BNBT ที่ปริมาณ (NiNb) ⁴⁺ เป็น (ก) 0.00 (ข	נ')
0.01 (ค) 0.02 (ง) 0.03 (จ) 0.04 และ (ฉ) 0.05 mol% ตามลำดับ	51
ภาพ 38 เส้นโค้งไดอิเล็กทริกของเซรามิก BNBT ที่ปริมาณ (NiNb) ⁴⁺ เป็น (ก) 0.00 (ข)	
0.01 (ค) 0.02 (ง) 0.03 (จ) 0.04 และ (ฉ) 0.05 mol% ตามลำดับ	53
ภาพ 39 สมบัติเฟร์โรอิเล็กทริกของเซรามิก BNBT ที่ปริมาณ (NiNb)4+ เป็น (ก) 0.00 (ข)	
0.01 (ค) 0.02 (ง) 0.03 (จ) 0.04 และ (ฉ) 0.05 mol% ตามลำดับ	55

บทนำ

ความเป็นมาและความสำคัญของปัญหา

ในปัจจุบัน เซรามิกถูกนำมาใช้เป็นอุปกรณ์อิเล็กทรอนิกส์อย่างแพร่หลาย และมีการพัฒนา ้อย่างต่อเนื่อง วัสดุที่นำมาผลิตเป็นอุปกรณ์อิเล็กทรอนิกส์จึงเป็นสิ่งสำคัญอย่างมาก โดยเฉพาะวัสดุที่มี ้สมบัติไพอิโซอิเล็กทริกที่ดีเยี่ยม เช่น เซรามิก PZT ที่ได้รับความนิยมเป็นอย่างมาก อย่างไรก็ตามใน ้ขั้นตอนการผลิตเซร<mark>าม</mark>ิกเหล่านี<mark>้จะเกิด</mark>การระเหยขอ<mark>งตะกั่วออ</mark>กไซ<mark>ด์</mark> ซึ่งเป็นพิษร้ายแรงต่อร่างกาย ้มนุษย์และสิ่งแว<mark>ด</mark>ล้อม <mark>อีกทั้ง</mark>ยังทำให้เกิดความไม่แน่นอนของ<mark>องค์ป</mark>ระกอ<mark>บทางเคมี ทำให้สมบัติทาง</mark> ้ไฟฟ้าของเซรามิกม<mark>ีค่า</mark>ต่ำลง จึงทำให้เกิดการพัฒ<mark>นาแล</mark>ะปรับปรุงเซร<mark>า</mark>มิกที่ปราศจากตะกั่วขึ้นมา ทดแทนเซรามิกที่<mark>มีต</mark>ะกั่วเป็นองค์ประกอ<mark>บหลัก เช่น</mark> บิสมัสโซเดียมไทท<mark>าเน</mark>ต (Bi_{0.5}Na_{0.5}TiO₃ ; BNT) ซึ่งเป็นวัสดุไพอิโซอิเล็กทริกที่ปรา<mark>ศจ</mark>ากต<mark>ะกั่วที่ได้รับค</mark>วามสนใจเป็นอย่างม<mark>าก</mark> เนื่<mark>อ</mark>งจากเซรามิก BNT มีโครงสร้างเฟสเ<mark>พอ</mark>รอฟสไกต์ (ABO₃) แบบรอมโบฮีดรัล แสดงสมบัติทางไ<mark>ฟฟ้</mark>าที่ด<mark>ี</mark> เช่น อุณหภูมิคูรีสูง ์ (T_c=540°C) สภาพขั้วคงค้างสูง (P_r=38 µC/cm²) แต่ข้อจำกัดใ<mark>นการใช้งาน</mark>ของเซรามิกชนิดนี้เกิดขึ้น เนื่องจากเซรามิก<mark> BNT มีค่าส</mark>นามไฟฟ้าลบล้างที่สูงมาก (E_c=73 kV/cm) จึงทำให้ยากต่อการโพล เป็นสาเหตุให้ค่าสัมประ<mark>สิทธิ์ไพอ</mark>ิโซอิเล็กทริก (d₃₃) <mark>ต่ำ (1-3</mark>) เมื่อไม่นานมานี้ พบว่าการเติม สารละลายของแข็ง เช่<mark>น แบเรียมไททาเนต (BaTiO₃) แบเรียมสต</mark>รอนเทียมไททาเนต (BaSrTiO₃) และอื่นๆ ลงในเซรามิก BNT <mark>สามารถปรับปรุงสมบัติท</mark>างไฟฟ้าให้ดียิ่งขึ้น (4-7) โดยเซรามิก Bi_{0.47}Na_{0.47}Ba_{0.06}TiO₃ (BNBT) เป็นเซรามิกที่น่าสนใจ เนื่องจากแสดงบริเวณเฟสร่วม (morphotropic phase boundary ; MBP) ทำให้เซรามิกแสดงค่าคงที่ไดอิเล็กทริกสูงสุดที่ 7200 และค่า d₃₃ เป็น 130 pC/N (8)

โครงสร้างเฟสเป็นปัจจัยสำคัญที่มีผลต่อสมบัติทางไฟฟ้าของวัสดุไพอิโซอิเล็กทริก โดยหนึ่งใน สาเหตุที่เกิดการเปลี่ยนแปลงโครงสร้างเฟสเกิดจากการแทนไอออนที่ตำแหน่ง B ซึ่งส่งผลทำให้ โครงสร้างแลตทิซเกิดการบิดเบี้ยวหากแทนที่ด้วยไอออนที่มีรัศมีต่างกัน ซึ่งสามารถปรับปรุงสมบัติ ทางไฟฟ้าได้ (9) ในทำนองเดียวกัน การแทนที่ด้วยไอออนร่วม (complex ions) ทำให้แลตทิซและ โครงสร้างเฉพาะที่ (local structure) ของเซรามิกบิดเบี้ยว ดังนั้นการทำลายความเป็นระเบียบของ เฟร์โรอิเล็กทริก (ferroelectric order) ซึ่งอาจส่งผลต่อสมบัติทางไฟฟ้าของเซรามิก (10, 11) Q. Wei และคณะ (12) ศึกษาการแทนที่แบบไอออนร่วม (Zn²⁺1/3 Nb⁵⁺2/3) ที่ตำแหน่ง B ลงในเซรามิก $(Bi_{0.5}Na_{0.5})_{0.93}Ba_{0.07}TiO_3$ พบว่า ที่ x=0.015 เซรามิกมีค่าคงที่ไดอิเล็กทริกสูงสุดเป็น 4300 สมบัติเฟร์ โรอิเล็กทริกที่ดี (P_r~10 µC/cm² และ E_c~1.5 kV/cm) ความเครียดสูงสุดเป็น 0.65% C. C. Jin และ คณะ (13) เดิมไอออนร่วม (Al³⁺_{0.5} Nb⁵⁺_{0.5})⁴⁺ ปริมาณ 1 mol% ลงในตำแหน่ง B ของเซรามิก Bi_{0.465}Na_{0.465}Ba_{0.07}TiO₃ พบว่าค่าคงที่ไดอิเล็กทริกสูงสุดเป็น 6000 สมบัติเฟร์โรอิเล็กทริกที่สูง (P_r~28.2 µC/cm² และ E_c~1.1 kV/cm) และค่าความเครียดสูงสุดเป็น 0.35 % จากผลที่ได้แสดงให้ เห็นว่าการแทนที่ตำแหน่ง B ด้วยไอออนร่วมที่ประจุไอออนแตกต่างกันมีความน่าสนใจเป็นอย่างยิ่ง เนื่องจากเซรามิกแสดงสมบัติทางไฟฟ้าที่ดีขึ้น ดังนั้นการแทนที่ Ti⁴⁺ ที่ตำแหน่ง B ด้วยไอออนร่วมโดย ที่ประจุของไอออนเป็น (A⁺_{1/4} D⁵⁺_{3/4}) (B²⁺_{1/3} D⁵⁺_{2/3}) และ (C³⁺_{1/2} D⁵⁺_{1/2}) โดยที่ A, B, C และ D แทนไอออนชนิดต่างๆ คาดว่าจะสามารถปรับปรุงสมบัติทางไฟฟ้าให้ดียิ่งขึ้น จึงเป็นเรื่องที่น่าสนใจใน การศึกษา

อีกปัจจัยสำคัญที่มีผลต่อสมบัติทางไฟฟ้าของเซรามิก คือ เทคนิคในการสังเคราะห์เซรามิก โดยพบว่าเทคนิคการเผาไหม้แบบสถานะของแข็ง (Solid-state combustion technique) เป็นวิธีที่ น่าสนใจในการสังเคราะห์เซรามิก เนื่องจากเป็นวิธีที่สะดวก สามารถเตรียมสารได้ในปริมาณมากๆ ได้ ผงผลึกที่มีความบริสุทธิ์สูง ผงผลึกมีขนาดเล็ก เซรามิกมีความหนาแน่นสูงและมีสมบัติทางไฟฟ้าที่ดี ทั้งนี้เทคนิคการเผาไหม้แบบสถานะของแข็งเป็นเทคนิคที่อาศัยการปลดปล่อยพลังงานที่ได้จากการจุด ระเบิดซึ่งเกิดจากปฏิกิริยาเคมีของเชื้อเพลิง ซึ่งพลังงานที่ได้จากการจุดระเบิดนี้ สามารถช่วยลด อุณหภูมิในการเผา จึงช่วยประหยัดพลังงานอย่างมาก (14)

ดังนั้นงานวิจัยนี้จึงมุ่งไปที่การสังเคราะห์และศึกษาผลของการเติมไอออนร่วม (Li⁺_{1/4} Nb⁵⁺_{3/4}), (Ni²⁺_{1/3} Nb⁵⁺_{2/3}) และ (Al³⁺_{1/2} Nb⁵⁺_{1/2}) ที่ปริมาณ 0.00 ถึง 0.05 mol% แทนที่ Ti⁴⁺ ใน ตำแหน่ง B ของเซรามิก Bi_{0.47}Na_{0.47}Ba_{0.06}TiO₃ ที่สังเคราะห์ด้วยเทคนิคการเผาไหม้สถานะของแข็ง แล้วศึกษาผลของปริมาณ (Li⁺_{1/4} Nb⁵⁺_{3/4}), (Ni²⁺_{1/3} Nb⁵⁺_{2/3}) และ (Al³⁺_{1/2} Nb⁵⁺_{1/2}) ที่มีต่อโครงสร้าง ผลึก โครงสร้างจุลภาคและสมบัติทางไฟฟ้า

วัตถุประสงค์ของงานวิจัย

- สังเคราะห์ผงผลึกและเซรามิก Bi_{0.47}Na_{0.47}Ba_{0.06}TiO₃ ที่เติมด้วยไอออนร่วม (LiNb), (NiNb) และ (AlNb) ที่ปริมาณ 0.00 ถึง 0.05 mol% ด้วยเทคนิคการเผาไหม้แบบสถานะของแข็ง
- เพื่อศึกษาผลของปริมาณไอออนร่วม (Li⁺_{1/4} Nb⁵⁺_{3/4})⁴⁺, (Ni²⁺_{1/3} Nb⁵⁺_{2/3})⁴⁺ และ (Al³⁺_{1/2} Nb⁵⁺_{1/2})⁴⁺ ในระบบเซรามิก Bi_{0.47}Na_{0.47}Ba_{0.06}TiO₃ ที่มีต่อโครงสร้างเฟส โครงสร้างจุลภาค และสมบัติไฟฟ้า

ขอบเขตของงานวิจัย

- เตรียมผงผลึกและเซรามิก Bi_{0.47}Na_{0.47}Ba_{0.06}TiO₃ ที่เติมด้วยไอออนร่วม (LiNb), (NiNb) และ (AlNb) ที่ปริมาณ 0.00 ถึง 0.05 mol% โดยใช้อุณหภูมิแคลไซน์และอุณหภูมิซินเตอร์เป็น 750°C และ 1150°C เป็นเวลา 2 ชั่วโมง ตามลำดับ
- ศึกษาสมบัติทางกายภาพ เช่น ความหนาแน่น ศึกษาโครงสร้างผลึกด้วยเครื่องเลี้ยวเบนของ รังสีเอกซ์ (XRD) ศึกษาโครงสร้างจุลภาคด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (SEM) ศึกษาสมบัติไดอิเล็กทริกด้วยเครื่อง LCR และสมบัติเฟร์โรอิเล็กทริกด้วยเครื่อง computer controller modified Sawyer-Tower circuit
- 3. วิเคราะห์และสรุปผล

สมมติฐานของการวิจัย

การแทนที่ตำแหน่ง B (Ti⁴⁺) ด้วยไอออนร่วมที่ประกอบด้วย (Li⁺_{1/4} Nb⁵⁺_{3/4})⁴⁺, (Ni²⁺_{1/3} Nb⁵⁺_{2/3})⁴⁺ และ (Al³⁺_{1/2} Nb⁵⁺_{1/2})⁴⁺ ในระบบเซรามิก Bi_{0.47}Na_{0.47}Ba_{0.06}TiO₃ สามารถปรับปรุงสมบัติ ทางกายภาพและสมบัติทางไฟฟ้าของเซรามิกได้ดียิ่งขึ้น

บทที่ 2

ทฤษฎีและงานวิจัยที่เกี่ยวข้อง

โครงสร้างเพอรอฟไกต์ (perovskite structure)

โครงสร้างเพอรอฟสไกต์มีสูตรทางเคมีคือ ABO₃ ประกอบด้วยอะตอมของไอออนบวกที่มีรัศมี อะตอมขนาดใหญ่วางตัวอยู่ที่ตำแหน่ง A (A-site) ซึ่งอยู่ที่มุมทุกมุมของหน่วยเซลล์ (unit cell) และมี ค่าความเป็นประจุไฟฟ้าต่ำกว่า อาทิเช่น K⁺, Na⁺, Ca²⁺, Sr²⁺, Ba²⁺ และ Pb²⁺ ส่วนที่ตำแหน่ง B (Bsite) ซึ่งอยู่ตรงกลางของหน่วยเซลล์จะมีอะตอมของไอออนบวกที่มีรัศมีอะตอมขนาดเล็กและมีค่า ความเป็นประจุไฟฟ้าสูงกว่าวางตัวอยู่ อาทิเช่น Ta⁵⁺ Ti⁴⁺ Zr⁴⁺ และ Sn⁴⁺ โดยไอออนบวกนี้จะถูก ล้อมรอบด้วยไอออนลบของออกซิเจน 6 ตัวจับตัวกันเป็นรูปออกตระฮีดรอล (octahedral) (15) ดัง แสดงในรูปที่ 1

ภาพ 1 แสดงโครงสร้างแบบเพอรอฟสไกด์ (ABO3)

โพลาไรเซชัน (polarization)

เมื่อเราพิจารณาสารเซรามิกที่ประกอบด้วยผลึกก้อนเล็กๆ ที่มีทิศทางของไดโพลต่างกัน การ ที่ไดโพลไม่เรียงตัวเป็นระเบียบนี้ทำให้เซรามิกไม่สามารถวัดค่าไพอิโซอิเล็กทริกได้แต่เมื่อมีการให้ สนามไฟฟ้าเข้าไปในสารตัวอย่างหรือการสร้างขั้วให้แก่สาร (poling) นี้จะทำให้เกิดโพลาไรเซชันหรือ ไดโพลภายในเนื้อสารอยู่ในทิศทางใกล้เคียงกันหรือทิศทางเดียวกันกับทิศทางของสนามไฟฟ้าที่เข้าไป ดังรูปที่ 2 เพื่อเพิ่มสมบัติการเป็นไพอิโซอิเล็กทริก และสมบัติทางไฟฟ้าด้วย

ภาพ 2 แสดงไดโพลภายในเนื้อสาร (ก) ก่อนทำการ poling และ (ข) หลังทำการ poling

เฟร์โรอิเล็กทริก (Ferroelectric)

สารเฟร์โรอิเล็กทริกเป็นสารที่ไม่มีความสมมาตรกับจุดศูนย์กลางของหน่วยเซลล์ จึงทำให้ สามารถสร้างไดโพลขึ้นมาได้โดยไม่ต้องได้รับแรงกล ซึ่งสามารถแยกสารเฟร์โรอิเล็กทริกออกจากวัสดุ ไดอิเล็กทริก ด้วยการตกค้างหรือรีมาเนนท์ โพลาไรเซชัน (remanent polarization: P_r) เมื่อ สนามไฟฟ้าที่ใส่เข้าไปมีค่าเป็นศูนย์ โดยปกตินั้นโพลาไรเซชัน (P) เป็นผลมาจากสนามไฟฟ้าซึ่งจัดเรียง ขั้วคู่อะตอม (atomic dipole) หรือขั้วโมเลกุล (molecular dipole) อย่างเป็นระเบียบในสารหลาย ชนิดโพลาไรเซชันเป็นสัดส่วนโดยตรงกับสนามไฟฟ้า เมื่อสนามไฟฟ้า มีความเข้มน้อย (16)

$$\overline{P} = \varepsilon_0 \chi_e \overline{E} \tag{1}$$

เมื่อ χ_e เป็นค่าคงที่เรียกว่าสภาพรับได้ทางไฟฟ้า (electric susceptibility) ของตัวกลาง ค่าของ χ_e ขึ้นกับโครงสร้างทางจุลภาค (microscopic structure) ของสารที่พิจารณาและ ε_0 เป็นสภา พยอมของสุญญากาศ (permittivity of a vacuum) มีค่าคงที่ประมาณ 8.854x10⁻¹² F/m โปรด สังเกตว่าสนามไฟฟ้า \overline{E} ในสมการ (1) นี้เป็นสนามไฟฟ้าทั้งหมด ซึ่งอาจเกิดจากส่วนของประจุอิสระ และส่วนของโพลาไรเซชันที่สนาม \overline{E} ผลิตขึ้นเอง

$$\overline{D} = \varepsilon_0 \overline{E} + P \tag{2}$$

จากสมการ (1) และ (2) จะได้ความสัมพันธ์เป็น

$$\overline{D} = \varepsilon_0 \overline{E} + \varepsilon_0 \chi_e \overline{E} = \varepsilon_0 (1 + \chi_e) \overline{E}$$
(3)

ดังนั้นไม่เพียงแต่ P เท่านั้นที่ขึ้นกับ \overline{E} แต่ \overline{D} ก็ขึ้นกับ \overline{E} ด้วยเช่นกัน

$$\overline{D} = \varepsilon \overline{E} \tag{4}$$

$$\varepsilon = \varepsilon_0 \left(1 + \chi_e \right) \tag{5}$$

เรียก ɛ ว่าสภาพยอม (Permittivity) ของวัสดุในสุญญากาศ ไม่มีสารใดก่อให้เกิดโพลาไรซ์ ดังนั้นสภาพรับไว้ได้ทางไฟฟ้าจึงเป็นศูนย์และสภาพยอม ɛ จะมีค่าเท่ากับ ɛ_o และจากสมการ (5) จะได้

$$\varepsilon_r = 1 + \chi_e = \frac{\varepsilon}{\varepsilon_0} \tag{6}$$

เมื่อ ε , คือ สภาพยอมสัมพัทธ์ (relative permittivity) หรือ ค่าคงที่ไดอิเล็กทริกในวัสดุ เฟร์โรอิเล็กทริก ส่วนใหญ่ค่าคงที่ไดอิเล็กทริก ε , จะมีค่าสูง ดังนั้น $\overline{P} >> \varepsilon_0 \overline{E}$ และ $D \approx P$ เมื่อ ป้อนไฟฟ้ากระแสสลับให้กับวัสดุไดอิเล็กทริก สนามไฟฟ้าจากแหล่งกำเนิดเป็นเหตุให้เกิดไดโพล ภายในวัสดุไดอิเล็กทริก ในกรณีอุดมคติ ไดโพลภายในวัสดุไดอิเล็กทริกสามารถสลับทิศทางได้ตาม ความถี่ของแหล่งกำเนิด กรณีกระแสสลับ (I) และศักย์ไฟฟ้า (V) มีความต่างเฟสกันอยู่ 90 องศา ดัง รูปที่ 3 (ก) ทำให้ผลคูณสเกลาร์ (scalar product) ของ I และ V เท่ากับศูนย์ ดังนั้นจึงไม่มีการ สูญเสียพลังงานของวัสดุไดอิเล็กทริก (dielectric loss: tan δ) เกิดขึ้น แต่ในความเป็นจริงการสลับ ทิศทางของไดโพลจะก่อให้เกิดความต้านทานภายในเนื้อวัสดุเอง ทำให้เกิดการสูญเสียพลังงานขึ้น ซึ่ง กรณีนี้กระแสไฟฟ้ากับศักย์ไฟฟ้ามีความต่างเฟสกันน้อยกว่า 90 องศา ดังรูปที่ 3 (ข) โดยการสูญเสีย พลังงานที่เกิดขึ้นนั้น สามารถวัดได้จากการทดลองและเป็นอัตราส่วนโดยตรงกับสภาพยอม

ภาพ 3 ความต่างเฟสระหว่างกระแสสลับ (I) และศักย์ไฟฟ้า (∨) ของวัสดุไดอิเล็กทริก (ก) กรณี ไม่มีการสูญเสียพลังงาน (ข) กรณีมีการสูญเสียพลังงาน

ในวัสดุเฟร์โรอิเล็กทริกการสลับทิศทางของไดโพลตามความถึ่ของแหล่งกำเนิดได้ ความสัมพันธ์ระหว่างการโพลาไรเซชันและสนามไฟฟ้า (Polarization versus field) ซึ่ง ความสัมพันธ์ระพบในภาพของวงรอบฮิสเทอรีซีส (hysteresis loop) ดังรูปที่ 4 เมื่อให้สนามไฟฟ้า เข้าไปครั้งแรกการเกิดโพลาไรเซชันเพิ่มมากขึ้นอย่างรวดเร็ว จนกระทั่งถึงจุดอิ่มตัว (saturation polarization) คือ จุด b ซึ่งการเกิดโพลาไรเซชันมีค่ามากที่สุด ไดโพลทั้งหมดจะเรียงตัวขนานกัน และหากเพิ่มสนามไฟฟ้าไปมากกว่านั้น ก็ไม่มีผลต่อการเกิดโพลาไรเซชัน เมื่อสนามไฟฟ้ามีค่าลดลง แทนที่การโพลาไรเซชันจะถอยกลับไปตามเส้นทางเดิมเหมือนตอนเริ่มต้น (P = 0) แต่กลับไปสู่ทิศทาง ที่แตกต่างกัน แม้ว่าไม่มีการให้สนามไฟฟ้า (E = 0) แก่วัสดุเฟร์โรอิเล็กทริกก็ตาม แต่ยังคงมีโพลาไรซ์ หลงเหลืออยู่ หรือรีมาเนนท์ โพลาไรเซชัน (remanent value: P_R) ที่จุด C ถ้าเราต้องการกำจัดโพลา ไรเซชันที่ยังหลงเหลืออยู่ เราต้องให้สนามไฟฟ้าย้อนกลับทิศทางเดิม (นั่นคือ –E) โพลาไรเซชันจะ ลดลงสู่ศูนย์ที่จุด d ซึ่งเรียกจุดนี้ว่าสนามโคเออร์ซีฟ (coercive field: E_c) ถ้าเราพยายามให้ สนามไฟฟ้าในทิศทางลบนี้สูงขึ้นอีก ในที่สุดก็จะถึงจุดอิ่มตัว ที่จุด C ขั้วไดโพลทั้งหมดชี้ไปทางขวา เมื่อถึงขั้นตอนนี้ ถ้าไม่ป้อนกระแสไฟฟ้าให้กับวัสดุเฟร์โรอิเล็กทริก แล้วปล่อยให้วัสดุที่มีโพลาไร เซชัน เพิ่มขึ้นไปทางขวา ยังจุด f เพื่อให้ครบวงจร ต้องป้อนกระแสไฟฟ้าอีกครั้งในทิศทางบวก โพลาไรเซชัน จะกลับสู่ศูนย์ที่จุด g และในที่สุดก็จะมุ่งไปสู่จุดอิ่มตัวที่จุด b

ภาพ 4 วงรอ<mark>บฮิ</mark>สเทอรีซิสระหว่างโพลาไรเซชันกับสนามไฟฟ้าในสารเฟร์โรอิเล็กทริก

สมบัติไดอิเล็กทริก (Dielectric property)

วัสดุไดอิเล็กทริกเป็นชนิดหนึ่งของฉนวนซึ่งไม่นำไฟฟ้า และยังสามารถเก็บประจุไฟฟ้าได้อีก ด้วย ซึ่งค่าความสามารถในการกักเก็บประจุไฟฟ้าของสารไดอิเล็กทริก เรียกว่า ค่าความจุไฟฟ้า (capacitance) เมื่อใส่สนามไฟฟ้าแก่สารไดอิเล็กทริก สารไดอิเล็กทริกจะเกิด polarization ขึ้นซึ่ง เท่ากับ ค่าผลรวมของโพลาไรเซชันต่อหน่วยปริมาตร (netpolarization/unit volume) ซึ่งถ้าค่า polarization สูงก็จะส่งผลให้สารไดอิเล็กทริกมีค่า capacitance สูงตามไปด้วย โดยสมบัติทางไดอิ เล็กทริกมีพารามิเตอร์ที่เกี่ยวข้องทั้งหมด 3 ตัว คือค่าสภาพยอมสัมพัทธ์ (relative permittivity: *δ*) ความคงทนไดอิเล็กทริก (dielectric strength) และค่าสูญเสียไดอิเล็กทริก (dielectric loss) (17)

ค่าสภาพยอมสัมพัทธ์ (Relative permittivity: ε_r)

พิจารณาตัวเก็บประจุอย่างง่ายคือ แผ่นขนานที่ทำด้วยโลหะโดยวางห่างกันด้วยระยะ d พื้นที่ ของแผ่นเท่ากับ A ดังแสดงในรูปที่ 5 ระหว่างแผ่น ขนานเป็นสุญญากาศ เมื่อมีศักย์ไฟฟ้า V คร่อม แผ่นขนานโดยที่แผ่นโลหะแผ่นประจุ +Q และอีกแผ่นหนึ่งจะเป็นประจุ –Q ค่าประจุนี้จะเป็นสัดส่วน กับ V ดังสมการ 7

$$Q = CV \tag{7}$$

เมื่อ C คือ (capacitance) มีหน่วยเป็น คูลอมบ์ต่อโวลต์ $\left(C/V
ight)$ หรือ ฟารัด

ความจุไฟฟ้าบอกถึงความสามารถในการกักเก็บประจุ ยิ่งมีความจุไฟฟ้ามากเท่าใดยิ่งเก็บ ประจุได้มากเท่านั้น ถ้าหากตัวเก็บประจุมีขนาดพื้นที่ขนานมากกว่าระยะห่างระหว่างแผ่นขนานมากๆ จะได้ว่าความจุไฟฟ้ามีค่าดังสมการ (8)

$$C = \frac{\varepsilon_0 A}{d} \tag{8}$$

A คือ พื้นที่ของไดอิเล็กทริก มีหน่วยเป็นตารางเมตร (m²)

C คือ ค่าความจุไฟฟ้า มีหน่วยเป็นฟารัด $\left(F
ight)$

D คือ ความหนาของสารไดอิเล็กทริก มีหน่วยเป็นเมตร (m)

ในกรณีที่มีสารไดอิเล็กทริกวางอยู่ระหว่างแผ่นขนาน ความจุไฟฟ้าจะมีค่าเพิ่มขึ้นเป็นจำนวน เท่าซึ่งเท่ากับค่าสภาพยอมสัมพัทธ์ (relative permittivity) หรือที่เรียกว่าค่าคงที่ไดอิเล็กทริก (dielectric constant) ของเซรามิกดังสมการ

$$C = \frac{\varepsilon_r \varepsilon_0 A}{d} \tag{9}$$

เมื่อ ε_0 คือ ค่าสภาพยอมสัมพัทธ์ (permittivity) ในสุญญากาศมีค่า 8.854 x 10⁻¹² ฟารัดต่อเมตร

การมีสารไดอิเล็กทริกอยู่ในตัวเก็บประจุจะช่วยเพิ่มพลังงานสะสมในตัวเก็บประจุให้สามารถ สร้างตัวเก็บประจุขนาดเล็กแต่ความจุไฟฟ้าสูงได้ ความคงทนไดอิเล็กทริก (Dielectric strength) ความคงทนไดอิเล็กทริก เป็นสมบัติสำคัญอย่างหนึ่งในการประเมินคุณภาพของไดอิเล็กทริกเป็น ปริมาณที่บ่งบอกถึงความทนทานต่อความต่างศักย์ของได อิเล็กทริก ความคงทนไดอิเล็กทริกมีค่า เท่ากับศักย์ไฟฟ้าสูงสุดที่ไดอิเล็กทริกยังคงใช้งานได้ โดยปราศจากความเสียหายต่อความยาวหนึ่ง หน่วย ถ้าวัสดุไดอิเล็กทริกถูกป้อนด้วยค่าความค่างศักย์ที่สูงมากๆ อาจจะทำให้แฟกเตอร์สูญเสีย พลังงาน (Energy loss factor) ถ้าป้อนศักย์ไฟฟ้าให้แก้ไดอิเล็กทริกที่ไม่มีการสูญเสียพลังงานเลย ศักย์ไฟฟ้าซึ่งมีรูปคลื่นแบบซายน์ แบบเดียวกับไฟฟ้ากระแสสลับ กระแสไฟฟ้าจะนำหน้าศักย์ไฟฟ้าอยู่ 90 องศา แต่ ในความเป็นจริงนั้น สำหรับไดอิเล็กทริกทั่วไป มุมต่างเฟสจะน้อยกว่า 90 องศา เสมอ ถ้าให้ δ คือค่า มุมที่นำไปลบออกจาก 90 องศา ปริมาณ tan δ จะหมายถึง แฟกเตอร์สูญเสียพลังงานในไดอิเล็กทริก ของตัวเก็บประจุเมื่อใช้งานกับวงจรไฟฟ้ากระแสสลับ

การซินเตอร์

การซินเตอร์ (sintering) คือกระบวนการทางความร้อนที่ทำให้อนุภาคเกิดการสร้างพันธะกัน อย่างสมดุล โดยมีโครงสร้างหลักเป็นของแข็งที่พัฒนามาจากการเคลื่อนย้ายมวลลักษณะต่างๆ ที่ มักจะเกิดขึ้นในระดับของอะตอม การเกิดพันธะเชื่อมต่อกันดังกล่าวทำให้ระบบมีความแข็งแรงสูงขึ้น และมีพลังงานลดลง นอกจากนี้ยังอาจจะกล่าวได้ว่าการซินเตอร์นั้นหมายถึงการกำจักรูพรุนที่อยู่ ระหว่างอนุภาคผงเริ่มต้น โดยอาศัยการหดตัวขององค์ประกอบที่เชื่อมอยู่ติดกันแล้วเกิดการเติบโตไป ด้วยกัน โดยมีการสร้างพันธะที่แข็งแรงระหว่างอนุภาคที่อยู่ติดกันขึ้นมาทุกขั้นตอนที่อยู่ระหว่างการ เปลี่ยนสภาพชิ้นงานที่ผ่านการอัดขึ้นรูป ไปเป็นโครงสร้างจุลภาคที่ประกอบด้วยการยึดเกาะกันของ เกรนต่างๆ ล้วนแต่เป็นส่วนหนึ่งของขั้นตอนการซินเตอร์ทั้งสิ้น แรงขับดันสำหรับการซินเตอร์นั้นได้มา จากการลดพื้นที่ผิวและพลังงานของพื้นผิวด้วยการใช้ของ แข็งที่เชื่อมยึดกันโดยมีพลังงานขอบเกรน แบบของแข็ง-ของแข็ง $\gamma_{,,}$ ที่ค่อนข้างต่ำเข้าไปแทนที่กลุ่มอนุภาคผงที่ยืดกันอยู่อย่างหลวมๆ ซึ่งจะมี พลังงานพื้นผิวแบบของแข็ง-ไอ $\gamma_{,,}$ ที่สูงมากด้วยเหตุนี้เองการผลิตเซรามิกส่วนใหญ่จึงนิยมเลือกใช้ อนุภาคผงตั้งต้นที่มีขนาดอนุภาคเล็ก เนื่องจากอนุภาคผงที่มีขนาดยิ่งเล็กเท่าไรก็จะยิ่งมีพื้นที่ผิวมาก ขึ้นเท่านั้น จึงทำให้ระบบมีแรงขับดันสำหรับการซินเตอร์ที่สูงขึ้นตามไปด้วย ทำให้ชิ้นงานสามารถเกิด การแน่นตัวได้ดี จึงมีความหนาแน่นสูง หรือทำให้สามารถใช้อุณหภูมิในการเผาที่ต่ำลงได้ การหดตัวของชิ้นงานเซรามิกขณะที่ทำการซินเตอร์สามารถตรวจสอบได้จากการวัดขนาด หรือหาค่าความหนาแน่นของชิ้นงานขณะที่มีการเปลี่ยนแปลงของอุณหภูมิ และเวลาในการเผา ดังเช่น ตัวอย่างของพฤติกรรมการซินเตอร์แบบสถานะของแข็ง (solid-state sintering) ทั่วๆไป ที่ แสดงดังรูปที่ 6 ซึ่งประกอบไปด้วย ขั้นตอนหลักที่มีความคาบเกี่ยวต่อเนื่องกันอยู่คือ

- การซินเตอร์ช่วงเริ่มต้น (initial sintering) จะเกี่ยวข้องกับการจัดเรียงตัวกันใหม่อีกครั้งหนึ่ง ของอนุภาคผงภายในชิ้นงานและการเกิดพันธะที่แข็งแรง หรือคอ (neck) ขึ้นมาที่บริเวณจุด สัมผัสระหว่างอนุภาคผง ความหนาแน่นสัมพัทธ์ของชิ้นงานในช่วงนี้อาจจะเพิ่มขึ้นจาก 0.5 ไปถึง 0.6 ได้ส่วนใหญ่ก็เนื่องมาจากการที่อนุภาคผงมีการแพคตัวกันมากยิ่งขึ้นนั่นเอง รูปที่ 7 (ข)
- 2. การซินเตอร์ช่วงกลาง (intermediate sintering) เป็นช่วงที่ขนาดของคอเริ่มโตขึ้นและ ปริมาณของความพรุนในชิ้นงานจะเริ่มลดลงอย่างรวดเร็ว เนื่องจากอนุภาคเริ่มเข้ามาใกล้ชิด ติดกันมากยิ่งขึ้น ทำให้ชิ้นงานเกิดมีการหดตัวลงอย่างชัดเจน เริ่มมีเกรนและขอบเกรนเกิดขึ้น พร้อมกับมีการเคลื่อนที่ของสิ่งเหล่านี้ ทำให้เกิดมีการเติบโตของเกรนบางเกรนขึ้น ขั้นตอนนี้ จะดำเนินไปเรื่อยๆ อย่างต่อเนื่องในขณะที่ช่องว่างของรูพรุนจะเริ่มเกิดการเชื่อมต่อกัน (พวก รูพรุนเปิด) และจะสิ้นสุดพฤติกรรมนี้ในทันทีเมื่อรูพรุนเกิดมีการแยกตัวหลุดออกไปอยู่ ต่างหาก (พวกรูพรุนปิด) การหดตัวของชิ้นงานจะเกิดขึ้นมากที่สุดในการซินเตอร์ช่วงกลางนี้ และอาจจะทำให้ความหนาแน่นสัมพัทธ์ของชิ้นงานมีค่าสูงถึงประมาณ
- การซินเตอร์ช่วงสุดท้าย (final stage sintering) เป็นช่วงที่รูพรุนในชิ้นงานเริ่มปิดตัวเองลง และค่อยๆ ถูกกำจัดให้หมดไปจากชิ้นงานอย่างช้าๆ โดยอาศัยกลไกการแพร่ของอากาศจากรู พรุนออกมาตามแนวของขอบเกรน แล้วหลุดออกไปจากผิวของชิ้นงาน ซึ่งจะทำให้ชิ้นงาน เกิดการแน่นตัวเพิ่มขึ้นจากเดิมอีกเพียงเล็กน้อย ขนาดของเกรนจะเพิ่มขึ้นในการซินเตอร์ช่วง สุดท้ายนี้ รูปที่ 7 (ง)

ภาพ 6 แสดงพฤติกรรมการซินเตอร์แบบสถานะของแข็งทั่วๆ ไปในรูปของความสัมพันธ์ระหว่าง ความหนาแน่นกับอุณหภูมิและเวลาที่ใช้ในการเผา

ภาพ 7 แสดงพัฒนาการของโครงสร้างจุลภาคที่เกิดจากการซินเตอร์แบบสถานะของแข็ง (ก) อนุภาคผงยึดกันอยู่แบบหลวมๆ หลังการอัดขึ้นรูป (ข) การซินเตอร์ช่วงเริ่มต้น (ค) การซินเตอร์ ช่วงกลางและ (ง) การซินเตอร์ช่วงสุดท้าย

การซินเตอร์แบบมีเฟสของเหลว

การซินเตอร์แบบมีเฟสของเหลว (liquid phase sintering) เป็นกระบวนการเผาซินเตอร์ที่มี องค์ประกอบหนึ่งของวัสดุเกิดการหลอมเหลวขึ้นจนกลายสภาพไปเป็นของเหลวในระหว่างที่มีการซิน เตอร์ ซึ่งเป็นกระบวนการอันหนึ่งที่นิยมใช้ในการผลิตเซรามิกด้วยการใช้อุณหภูมิเผาซินเตอร์ที่ต่ำลง เนื่องจากโดยปกติแล้ววัสดุพวกเซรามิกส่วนใหญ่จะมีจุดหลอมเหลวที่สูงมากบางชนิดอาจสูงถึง ประมาณ 300 องศาเซลเซียส ทำให้ต้องมีการใช้พลังงานที่สูงมากในการเผาซินเตอร์ผลิตภัณฑ์เหล่านี้ และมีเตาไฟอยู่ไม่กี่ประเภทที่สามารถใช้งานภายใต้เงื่อนไขนี้ได้ นอกจาก นี้ยังเป็นการเสี่ยงต่อการเกิด ปัญหาเรื่องปฏิกิริยาระหว่างสารในภาชนะที่หลอมตัวกับภาชนะเองได้ง่ายอีกด้วย ดังนั้นจึงมีการ พัฒนาเทคนิคการผลิตเซรามิกเหล่านี้ที่อุณหภูมิต่ำลงด้วยการใช้สารช่วยหลอมหรือฟลักซ์ (fluxes) ซึ่ง เป็นอนุภาคผงที่เติมลงไปเพื่อทำหน้าที่ช่วยให้ชิ้นงานเกิดการหลอมเหลวที่ต่ำกว่าสารองค์ประกอบ หลักของผลิตภัณฑ์มาก จึงเกิดเป็นเฟสที่เป็นของเหลวให้เคลื่อนย้ายที่ในระหว่างการซินเตอร์ได้ รวดเร็วยิ่งขึ้น

กระบวนก<mark>า</mark>รซินเ<mark>ตอ</mark>ร์แบบมีเฟสของเหลวมีอยู่สองระบบคือ

- ระบบที่ไม่เป็นเนื้อเดียวกัน เมื่อขึ้นงานได้รับความร้อนจนกระทั่งถึงอุณหภูมิของการซินเตอร์ จะมีเฟสที่เป็นของเหลวเกิดขึ้นและคงสภาพอยู่ตลอดช่วงของการซินเตอร์และเมื่อขึ้นงานเริ่ม เย็นตัวลงเฟสที่เป็นของเหลวนี้จะเกิดการแข็ง ตัวแยกเฟสอยู่ในชิ้นงาน
- ระบบที่มีความเป็นเนื้อเดียวกันเมื่อขึ้นงานได้รับความร้อนจนกระทั่งถึงอุณหภูมิของการซิน เตอร์จะมีเฟสที่เป็นของเหลวเกิดขึ้นแล้วค่อยๆ หายไปซ้าๆ ด้วยการละลายลงไปอยู่ในเมท ริกซ์ของชิ้นงาน

กระบวนการซินเตอร์ที่มีเฟสของเหลวประกอบด้วย 4 ระยะหลักดังนี้

- ระยะที่อนุภาคมีการจัดเรียงตัวกันใหม่ (particle rearrangement stage) หลังจากที่มีการ หลอมเหลวเกิดขึ้นอนุภาคของแข็งจะถูกแรงดันรูเล็กจากของเหลวดึงเข้าการกัน ทำให้ ชิ้นงานเกิดมีการหดตัวอย่างรวดเร็ว และมีการกำจัดรูพรุนออกไปจากชิ้นงาน
- ระยะที่อนุภาคมีการแยกออกจากกันแล้วเกิดการตกตะกอนซ้ำ (dissolution reprecipitation stage) มีหลายกรณีที่อนุภาคของแข็งสามารถละลายในเฟสที่เป็นของเหลว ได้ในระดับหนึ่ง ซึ่งความโค้งของอนุภาคของแข็งและความดัน ณ จุดสัมผัสระหว่างอนุภาค ของแข็งจะช่วยทำให้เกิดมีการแยกออกจากกันของอนุภาคได้ เมื่อเกิดมีการละลายขึ้น ตัวถูก ละลายจะแพร่เข้าสู่จุดที่มีความโค้งตรงกันข้ามภายในโครงสร้างจุลภาค และเกิดการ

ตกตะกอนจนทำให้เกรนบริเวณดังกล่าวมีขนาดโตขึ้นซึ่งตัวที่ตกตะกอนอาจจะไม่ได้เป็นตัว เดียวกันกับอนุภาคของแข็งเริ่มต้นก็ได้แต่อาจจะเป็นตัวใหม่ที่มีองค์ประกอบของทั้งที่ได้จาก เฟสที่เป็นของแข็งและที่เป็นของเหลวอยู่รวมกัน ซึ่งการตกตะกอนในลักษณะดังกล่าวนี้จะทำ ให้ปริมาณเฟสของเหลวที่เกิดขึ้นในระบบลดลงขณะที่มีการตกตะกอน

- ระยะที่ของเหลวมีการสมานลักษณ์ (liquid assimilation) ในบางกรณีของเหลวจะเข้าไป ปะปนอยู่ร่วมกับเฟสที่เป็นของแข็งได้โดยตรงด้วยการเกิดปฏิกิริยาทางเคมีหรืออาจจะเข้าไป แทรกอยู่ด้วยแรงกล จนทำให้เกิดการเป็นของแข็งที่อยู่ในรูปของสารละลายของแข็งที่เกิด จากการดูดซับของเหลวหรือเกิดเฟสใหม่ที่ตกผลึกมาจากสารที่เกิดการหลอม
- ระยะที่มีการเติบโตของเกรนในสถานะของแข็ง (solid state grain growth stage) เมื่อ ของเหลวถูกรีดออกมาจากอนุภาคที่อัดกันแน่น หรือมีการแพร่ซึมเข้าไปอยู่ภายในของแข็งจะ ทำให้เกิดมีขอบเกรนปรากฏขึ้นมา ซึ่งถ้าหากระบบยังมีการซินเตอร์อยู่ก็จะมีพฤติกรรมการ เติบโตของเกรนเป็นขั้นตอนหลักที่คอยควบคุมพฤติกรรมของการซินเตอร์ต่อไป

เทคนิคการ<mark>เ</mark>ผาไหม้

การเตรียมผงด้วยวิธีการการเผาไหม้ (18) เป็นการใช้ประโยชน์จากการปลดปล่อยพลังงาน ความร้อนที่ได้จากปฏิกิริยาเคมีในขั้นตอนการผลิต มีการใช้กันมานานแล้วตั้งแต่ศตวรรษที่ผ่านมา เมื่อ Beketov และ Goldshmidt ได้ค้นพบ self-sustaining thermite reaction ซึ่งต่อมาได้ใช้หลักการ จุดระเบิดของปฏิกิริยาเคมีในกระบวนการผลิตอย่างมากมาย เช่น ในกระบวนการผลิตเตาหลอมเหล็ก การผลิตเฟอร์โรอัลลอย ฯลฯ อย่างไรก็ตามการพัฒนาทฤษฎีการเผาไหม้ (combustion) ยุคใหม่ไม่ได้ มีรูปแบบอย่างที่เคยปฏิบัติมา (ในปี ค.ศ. 1930-1940 สำหรับแก๊ส และปี ค.ศ. 1950-1960 สำหรับ ของเหลว) ในปี ค.ศ. 1967 ได้มีการค้นพบปรากฏการณ์จุดระเบิดของของแข็ง ซึ่งปฏิกิริยาที่เกิดขึ้นจะ ได้ผลผลิตในสถานะของแข็ง และการพัฒนาวิธีการเผาไหม้บนพื้นฐานของ self-prorogation hightemperature (SHS) ได้กระตุ้นให้เกิดการทดลองและการศึกษาทฤษฎีที่เกี่ยวข้องกับกระบวนการเผา ไหม้ของสารประกอบอนินทรีย์และวัสดุอย่างกว้างขวาง ซึ่งผลของข้อมูลที่ได้จากการทดลองได้ กลายเป็นพื้นฐานของเทคโนโลยีการเผาไหม้และการประยุกต์ใช้ในอุตสาหกรรมกระบวนการเผาไหม้มี การใช้งานกันอย่างกว้างขวาง สำหรับวัสดุชั้นสูงและกระบวนการผลิตเพื่อการประหยัดพลังงาน ใน ปัจจุบันการควบคุมความเร็วของการจุดระเบิด อุณหภูมิ สัตส่วน และโครงสร้างของผลผลิตทำได้โดย การประยุกต์แนวคิดแผนใหม่ของทฤษฎีการเผาไหม้และโครงสร้างจลนพลศาสตร์หันภาคของปฏิกิริยา เคมี ซึ่งสามารถอธิบายกระบวนการทั่วไปของการเผาไหม้ ได้ดังรูปที่ 8

ภาพ 8 แสดงการเปลี่ยนแปลงของกระบวนการการเผาไหม้

ช่วงที่หนึ่ง เป็นช่วงเริ่มต้นของปฏิกิริยา ช่วงที่สอง เป็นช่วงก่อนที่จะเกิดปฏิกิริยา ซึ่งช่วงนี้จะ ยังไม่มีปฏิกิริยาเกิดขึ้น แต่จะมีการถ่ายเทความร้อนเพิ่มมากขึ้น ช่วงที่สาม เป็นช่วงที่มีความสำคัญต่อ โครงสร้างของวัสดุ โดยจะมีการปลดปล่อยพลังงานความร้อนออกมาเมื่อเกิดการจุดระเบิด และความ ร้อนที่ปลดปล่อยออกมานี้จะแพร่ไปสู่ช่วงต้นของช่วงที่สี่ คือ ช่วงการเปลี่ยนแปลงทางเคมี (chemical conversion) ส่วนที่กว้างที่สุดของข่วงนี้คือส่วนที่มีการเปลี่ยนแปลงเฟสและโครงสร้างของวัสดุ ซึ่งขั้น ตอนนี้จะเป็นตัวกำหนดโครงสร้างสุดท้ายและมีบทบาทสำคัญต่อสมบัติของวัสดุ ในช่วงที่ห้าของ กระบวนการ เป็นช่วงที่วัสดุเกิดการเย็นตัว และในช่วงนี้อาจมีผลกระทบต่อโครงสร้างของวัสดุ ถ้าการ เย็นตัวเกิดขึ้นอย่างช้าๆจะทำให้ได้โครงสร้างของวัสดุที่สมดุล ดังนั้นในกระบวนการเผาไหม้ อัตราการ ให้ความร้อนจะเป็นตัวกำหนดรูปแบบของการปลดปล่อยความร้อนและถ่ายเทความร้อนไปสู่ช่วงการ เปลี่ยนแปลงทางเคมีส่วนคุณลักษณะของวัสดุที่ได้จะขึ้นอยู่กับเฟส โครงสร้าง เงื่อนไข และอัตราการ เย็นตัวของวัสดุ

เครื่องวิเคราะห์การเลี้ยวเบนของรังสีเอกซ์ (X-Ray Diffractometer)

เป็นเครื่องมือวิเคราะห์วัสดุพื้นฐานแบบไม่ทำลาย (Non-destructive analysis) เพื่อศึกษา เกี่ยวกับโครงสร้างผลึก การจัดเรียงตัวของอะตอมในโมเลกุลของสารประกอบต่างๆ ทั้งในเชิงคุณภาพ และปริมาณ โดยอาศัยหลักการเลี้ยวเบนและการกระเจิงของรังสีเอกซ์และความรู้เกี่ยวกับวิชาระบบ โครงสร้างผลึก (19)

รังสีเอกซ์เป็นคลื่นแม่เหล็กแม่เหล็กไฟฟ้าซึ่งมีอำนาจการทะลุทะลวงสูง มีความยาวคลื่นสั้น อยู่ในช่วงระหว่าง 0.1 – 100 อังสตรอม การเกิดอันตรกิริยาของรังสีเอกซ์กับสสารนั้นก่อให้เกิด ปรากฏการณ์ต่างๆ โดยปรากฏการณ์ดังกล่าวล้วนเป็นลักษณะเฉพาะของสารแต่ละชนิด ซึ่งหลักการดังกล่าวเหล่านี้เราจึงสามารถนำมาใช้วิเคราะห์สารได้ดังนี้

- 1. ใช้วิเคราะห์หาองค์ประกอบของธาตุต่างๆ ในสารทั้งในเชิงปริมาณและคุณภาพ
- 2. ใช้ศึกษาหาโครงสร้างอิเล็กทรอนิกส์ ซึ่งสามารถให้ข้อมูลเกี่ยวกับการเกิดพันธะเคมี
- ใช้ศึกษาเกี่ยวกับโครงสร้างผลึก หรือโมเลกุลของสารด้วยการใช้เทคนิคการเลี้ยวเบนรังสี เอกซ์

รังสีเอกซ์มีทั้งที่เกิดเองตามธรรมชาติจากการสลายตัวของนิวเคลียสธาตุกัมมันตรังสีและที่ มนุษย์ผลิตขึ้นจากกลไกทางอิเล็กทรอนิกส์ กล่าวคือ เมื่ออะตอมได้รับการกระตุ้นด้วยอิเล็กตรอนที่มี พลังงานสูงวิ่งชนอะตอม ทำให้เกิดอันตรกิริยา ระดับพลังงานของอิเล็กตรอนชั้นวงโคจรต่างๆ ของ อะตอมมีค่าสูงขึ้นเกิดภาวะเข้าสู่ปกติ โดยมวลของอะตอมไม่เปลี่ยนแปลงปรากฏการณ์ดังกล่าวเป็น กระบวนการปลดปล่อยพลังงานส่วนเกิน ในรูปคลื่นแม่เหล็กไฟฟ้าหรือโฟตอนออกมาในลักษณะพัลส์ (pulse) จากอะตอมทุกครั้งที่ได้รับการกระตุ้น คลื่นแม่เหล็กไฟฟ้าที่ปลดปล่อยออกมานี้เรียกว่า "รังสี เอกซ์" ซึ่งแบ่งได้ 2 ชนิด ตามกระบวนการของการปลดปล่อยพลังงานส่วนเกินจากอะตอมบริเวณชั้น โคจรอิเล็กตรอน คือ

- 1. รังสีเอกซ์เฉพาะตัว มีลักษณะเป็นรังสีเอกซ์ที่มีพลังงานเดี่ยว (monochromatic X-ray) เพราะเกิดจากการลดระดับพลังงานที่แน่นอน ปรากฏการณ์ของการเกิดรังสีเอกซ์ชนิดนี้ เกิดขึ้นเมื่ออิเล็กตรอนหรืออนุภาคที่มีประจุชนิดอื่นๆ หรือโฟตอนพลังงานสูงเคลื่อนที่เข้าชน อิเล็กตรอนในวงโคจรชั้นในของอะตอม แล้วถ่ายโอนพลังงานให้อิเล็กตรอน อิเล็กตรอนชั้นใน วงโคจรได้รับพลังงานเพิ่มสูงขึ้นกว่าพลังงานยึดเหนี่ยวของชั้นวงโคจร ทำให้หลุดจากวงโคจร เกิดที่ว่างของอิเล็กตรอนในชั้นวงโคจรขึ้นทำให้อะตอมอยู่ในภาวะที่ถูกกระตุ้นและจะลด ระดับพลังงานลงสู่ภาวะปกติในช่วงระยะเวลาอันสั้น โดยอิเล็กตรอนของวงโคจรในชั้นถัดไป จะลดระดับพลังงานลงมาให้เท่ากับพลังงานยึดเหนี่ยวของวงโคจรชั้นในด้วยการปลดปล่อย พลังงานส่วนเกินออกมาในรูปรังสีเอกซ์แล้วเข้ามาแทนที่ช่องว่างของวงโคจรชั้นใน พลังงาน ส่วนเกินนี้จะมีค่าเท่ากับความต่างระดับพลังงานยึดเหนี่ยวเฉพาะวงโคจรชั้นใน พลังงาน ส่วนเกินนี้จะมีค่าเท่ากับความต่างระดับพลังงานยึดเหนี่ยวเฉพาะวงโคจรข้นใน พลังงาน ส่วนเกินนี้จะมีค่าเท่ากับความต่างระคับพลังงานยึดเหนี่ยวเฉพาะวงโคจรชั้นใน ด้วยการปลดปล่อย พลังงานส่วนเกินออกมาในรูปรังสีเอกซ์แล้วเข้ามาแทนที่ช่องว่างของวงโคจรชั้นใน พลังงาน ส่วนเกินนี้จะมีค่าเท่ากับความต่างระดับพลังงานยึดเหนี่ยวเฉพาะวงโคจรของอิเล็กตรอน และ ชนิดชองธาตุนั้นๆ จึงมีพลังงานเฉพาะค่า
- รังสีแบบต่อเนื่อง มีลักษณะเป็นรังสีเอกซ์ที่มีพลังงานต่อเนื่องกระจายจากค่าต่ำสุดถึงสูงสุด ปรากฏการณ์ของการเกิดรังสีเอกซ์ต่อเนื่องเกิดจากอิเล็กตรอนพลังงานสูงเคลื่อนเข้าสู่สนามคู ลอมบ์ (coulomb field) บริเวณใกล้นิวเคลียส ความหนาแน่นของสนามไฟฟ้าสถิตย์บริเวณ ดังกล่าวทำให้อิเล็กตรอนสูญเสียพลังงานอย่างรวดเร็วและปล่อยรังสีเอกซ์ออกมา

ก่อนที่อิเล็กตรอนปฐมภูมิจะทำอันตรกิริยากับสนามไฟฟ้าบริเวณใกล้นิวเคลียสที่เกิดจาก ประจุของอะตอม อิเล็กตรอนจะสูญเสียพลังงานบางส่วน อันเนื่องจากการกระเจิงของอิเล็กตรอน ดังนั้นพลังงานของรังสีเอกซ์ที่เกิดขึ้น จึงมีค่ากระจายต่อเนื่องจากพลังงานต่ำสุดถึงสูงสุดของ อิเล็กตรอนปฐมภูมิ ถ้าอิเล็กตรอนปฐมภูมิมีพลังงานสูงพอที่จะกระตุ้นให้อิเล็กตรอนในวงโคจรชั้นใน ของอะตอมหลุดออกได้ก็จะเกิดรังสีเอกซ์เฉพาะค่าปะปนซ้อนอยู่กับสเปกตรัมของรังสีเอกซ์ต่อเนื่อง ด้วยเสมอ

การปลดปล่อยรังสีเอกซ์ออกมาที่ความยาวคลื่นใดๆ ขึ้นอยู่กับระดับพลังงานที่คายออกมา ซึ่ง ความยาวคลื่นที่สั้นที่สุดเกิดจากการที่อิเล็กตรอนคายพลังงานที่ได้รับมาทั้งหมดจากแหล่งกำเนิดโดย ไม่ขึ้นกับชนิดของเป้าหมายที่ใช้

เมื่อรังสีเอกซ์ตกกระทบผิวหน้าของผลึกโดยทำมุม *θ* บางส่วนของรังสีเอกซ์จะเกิดการ กระเจิงด้วยชั้นของอะตอมที่ผิวหน้า อีกส่วนหนึ่งของลำรังสีเอกซ์จะผ่านไปยังชั้นที่ 2 ของอะตอม ซึ่ง บางส่วนจะกระเจิงและส่วนที่เหลื<mark>อก็จะผ่านเข้าไปยังชั้นที่ 3 ของอะตอม</mark>ดังรูปที่ 9

ภาพ 9 แ<mark>บบจำลองสำหรับการพิสูจ</mark>น์กฎของแบรกก์

ถ้าอะตอมในผลึกมีการจัดเรียงตัวอย่างไม่เป็นระเบียบและมีระยะห่างระหว่างอะตอมเท่าๆ กันลำรังสีเอกซ์ที่ผ่านเข้าไปในแต่ละชั้นของอะตอมจะเกิดการเลี้ยวเบนเป็นลำขนานกันสิ่งสำคัญใน การเกิดการเลี้ยวเบนของรังสีเอกซ์ขึ้นอยู่กับภาวะ 2 ประการ คือ

- 1. รังสีที่ตกกระทบ รังสีเลี้ยวเบน และเส้นตั้งฉากกับผิวหน้าจะต้องอยู่ในระนาบเดียวกัน
- 2. ระยะระยะห่างระหว่างชั้นของอะตอมควรมีค่าใกล้เคียงกับความยาวคลื่นของรังสีเอกซ์

เมื่อปี ค.ศ. 1912 แบรกก์ได้ยิ่งลำรังสีเอกซ์แคบๆ กระทบผิวหน้าผลึกเป็นมุม heta เพื่อให้เกิด การเลี้ยวเบนและการกระเจิงเมื่อเกิดอันตรกิริยากับอะตอม O, P และ R ถ้า

18

$$SQ + QT = n\lambda \tag{10}$$

เมื่อ n คือ จำนวนเต็ม รังสีที่กระเจิงจะอยู่ในเฟสที่ OCD ผลึกก็จะทำหน้าที่สะท้อนรังสีเอกซ์จะเห็นว่า

$$SQ = QT = d\sin\theta \tag{11}$$

เมื่อ d คือ ระยะห่างระหว่างชั้นของผลึก เขียนสนการใหม่ได้ว่า

$$n\lambda = 2d\sin\theta \tag{12}$$

เรียกสมการนี้ว่า สมการของแบรกก์ (Bragg's equation) ซึ่งมีประโยชน์มาก สำหรับ การศึกษาที่มีโครงสร้างเป็นระเบียบ เช่น สารที่มีโครงสร้างเป็นผลึกเดี่ยว (single crystal)fและผลึก เชิงซ้อน (polycrystalline) เพราะในสารแต่ละชนิดจะมีรูปแบบการเรียงตัวของอะตอมเป็น ลักษณะเฉพาะ เมื่อเราทราบถึงค่ามุมที่เกิดการเลี้ยวเบนไปของรังสีเอกซ์เมื่อชนกับอะตอมของสาร เราจะทราบถึงระยะห่างระหว่างแต่ละอะตอมของสารนั้นๆ จึงเป็นประโยชน์อย่างมากในการวิเคราะห์ หาชนิดของสาร (qualitative analysis) รวมไปถึงสมบัติทางกายภาพของสารนั้นๆ อีกด้วย

การคำนวณหาค่าคงที่แลตทิช c, a และค่าอัตราส่วน c/a สามารถกระทำได้โดยอาศัยข้อมูล จากเครื่องเอกซเรย์ดิฟแฟรกชัน และจากสมการที่ (13)

$$\frac{1}{d} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}$$
(13)

ในระบบคิวบิกนั้น ค่าแลตทิช a มีค่าเท่ากับแลตทิช b และ c จากสมการที่ (13) เขียนใหม่ได้เป็น

$$\frac{1}{d_{hkl}^2} = \frac{h^2 + k^2 + l^2}{a^2}$$
(14)

สำหรับเลดไททาเนตสามารถคำนวณหาค่าอัตราส่วน c/a ได้โดยนำค่า d-spacing d₀₀₂ และ d₂₀₀ มา คำนวณตามสมการ (15)

$$c/a = \frac{d_{002}}{d_{200}} \tag{15}$$

จากนั้นนำข้อมูลสเปกตรัมที่ได้จากเครื่องเอกซเรย์เพื่อใช้ในการหาค่าคงตัวของหน่วยเซลล์และกลุ่ม ปริภูมิของสารด้วยโปรแกรมฟูลพรอฟ (fullprof) โดยโปรแกรมฟูลพรอฟมีลักษณะโปรแกรมดังรูปที่ 10

FullProf Suite ToolBar		In Argenhauth antibilities (Area	- 0 - X-
File Programs Settings FP Dimen	nsions Tools Edit Results Help		
🗟 📴 💌 🖉 🔂	😴 🛃 Por Por 🄐 🄐 🎫 🔐 🔐 🎉 🎆		

กระบวนการวิเคราะห์ด้วยโปรแกรมฟูลพรอฟ (Rodriguez, 2000, p.1) เป็นโปรแกรมที่ใช้ ในการเปรียบเทียบระหว่างผลการวิเคราะห์โครงสร้างที่ได้จากการทดลองกับแบบจำลองโครงสร้างที่ ถูกกำหนดขึ้น ทำให้สามารถเข้าใจโครงสร้างของสารและสามารถหาค่าคงตัวของหน่วยเซลล์ ตำแหน่ง อะตอม โดยในการจำลองรูปแบบของโครงสร้างจะต้องมีการใส่ค่าตัวแปรเริ่มต้นดังนี้

- 1. การปรับค่าเป็นศูนย์ (Zero shift)
- 2. สัญญาณพื้นหลัง (Background)
- 3. พารามิเตอร์หน่วยเซลล์ (Unit cell parameter)
- 4. ความกว้างของพีคที่ตำแหน่งครึ่งหนึ่งของความเข้มของรังสีเอกซ์สูงสุด (FWHM parameter)
- 5. ลักษณะของกราฟแบบเกาส์เซียนหรือลอเรนเซียน (Pseudo-Voigt factor)
- 6. ความไม่สมมาตรของโครงสร้าง (asymmetry)

หลักการทำงานของโปรแกรม เป็นการวิเคราะห์ปริมาณสองปริมาณโดยจะต้องทำให้ เส้นกราฟ (สีดำ) ที่เกิดจากการคำนวณไปทับซ้อนกับข้อมูลที่ได้จากการทดลอง (เส้นสีแดง) ให้มาก ที่สุด (20) แสดงดังรูปที่ 11

2. แฟกเตอร์ของข้อมูลโดยน้ำหนัก (Weighted profile factor)

$$R_{wp} = 100 \left[\frac{\sum_{i} |y_{oi} - y_{ci}|^2}{\sum_{i} w_{i} y_{oi}^2} \right]^{1/2}$$
(17)

3. แฟกเตอร์ค่าคาดหมาย (Expected factor)

$$R_{exp} = 100 \left[\frac{n-p}{\sum_{i} w_{i} y_{oi}} \right]^{1/2}$$
(18)

4. ค่าความถูกต้อง (Goodness)

$$\chi^2 = \left[\frac{R_{wp}}{R_{exp}}\right]^2 \tag{19}$$

- เมื่อ R_p คือ ค่าที่น้อยที่สุดที่ได้จากสมการกำลังสองน้อยสุด (least- square)
 - R_{wp} คือ ค่าเฉลี่ย<mark>ถ่วงน้</mark>ำหนักของความสูงพ<mark>ี</mark>คที่อยู่เหนือสัญญาณพื้นหลัง
 - R_{exp} คือ <mark>ค่าป</mark>ระมาณที่ดีที่สุดสำหรับชุดข้อมูล
 - n คือ จำนวนของข้อมู<mark>ลทั้งหม</mark>ด
 - p คือ จำนวนพ<mark>าร</mark>ามิเต<mark>อร์ที่ปรับแต่</mark>ง
 - χ^2 คือ ค่าความถูกต้อง
 - y_{oi} ค<mark>ือ รูปแบ</mark>บของกราฟจากการทดลอง
 - y_{ci} คือ ร<mark>ูปแบบของกราฟจากการจำลองโครงสร้างขึ้นมาจาก</mark>การทดลอง
 - w_i คือ ค่าเฉลี่ยถ่<mark>วงน้ำหนักที่ได้จากการทดลอง</mark>

โดยการเปรียบเทียบของกระบวนการทั้งหมดที่ได้จะดูจากค่า R โดยค่า R เหล่านี้ควรจะมี ค่าน้อยกว่า 15% จึงเป็นค่าที่ดี ส่วนคุณภาพของกระบวนการจำลองโครงสร้างดูได้จาก χ^2 ซึ่งควร จะมีค่าอยู่ระหว่าง 1 ถึง 4 จึงจะดี แต่ถ้ามีค่าน้อยกว่า 1 นี้หมายความว่ามีบางสิ่งบางอย่างผิดพลาด ไป

กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (Scanning Electron Microscope)

เนื่องจากกล้องจุลทรรศน์เลนส์ประกอบทั้งแบบใช้แสงธรรมดาและใช้รังสีแบบอื่นๆ มี ข้อจำกัดในการขยายภาพ เพราะกำลังขยายและกำลังแยกนอกจากจะขึ้นกับลักษณะของเลนส์แล้ว ยังขึ้นอยู่กับความยาวคลื่นของแสงที่ใช้อีกด้วย กล้องจุลทรรศน์เลนส์ประกอบสามารถมีกำลังแยก ขณะขณะส่องดูวัตถุขนาดเล็กสุดได้เพียง 0.2 µm เท่านั้น ส่วนกำลังขยายรวมก็ไม่เกิน 2,000 เท่า จึง ยังมองเห็นวัตถุภายในเซลล์ที่มีขนาดเล็กเป็นจุด ไม่สามารถแยกรายละเอียดได้ว่าส่วนนั้นเป็นอะไร ต่อมาได้มีการนำเอาอิเล็กตรอนซึ่งมีช่วงคลื่นสั้นกว่าคลื่นของแสงมาก เข้ามาใช้ในกล้องจุลทรรศน์ แทนคลื่นแสง และใช้เลนส์แม่เหล็กแทนเลนส์กระจก เรียกกล้องดังกล่าวว่า กล้องจุลทรรศน์ อิเล็กตรอน (21)

กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดเป็นกล้องที่ใช้ศึกษาโครงสร้างหรือองค์ประกอบ พื้นผิวของเซลล์เนื้อเยื่อและวัตถุได้ โดยทำให้องค์ประกอบต่างๆ ของเซลล์หรือวัตถุให้มีความเข้มของ เงาแตกต่างกัน

หลักการเกิดภาพของก<mark>ล้องจุ</mark>ลทรรศน์อิเล็กตรอนแบบส่องกราด

อิเล็กตรอนปฐมภูมิ (primary electron) จากแหล่งกำเนิดอิเล็กตรอน (electron gun) จะ ถูกเร่งด้วยศักย์ไฟฟ้าสูง (1,000 ถึง 3,000 อิเล็กตรอนโวลต์ หรือมากกว่า) ที่สามารถปรับค่าได้ จากนั้นจึงถูกดึงดูดลงสู่เบื้องล่างโดยแผ่นอาโนด (anode plate) ภายใต้ภาวะความดันสุญญากาศ 10⁻⁵–10⁻⁷ ทอร์ และมีชุดคอนเดนเซอร์เลนส์ที่จะปรับลำอิเล็กตรอน (electron beam) ให้มีขนาด เล็กลงเพื่อเป็นการเพิ่มความเข้มของลำอิเล็กตรอน จากนั้นลำอิเล็กตรอนจะวิ่งลงสู่เบื้องล่างผ่านเลนส์ วัตถุ ซึ่งทำหน้าที่ในการปรับลำอิเล็กตรอนปฐมภูมิให้มีจุดโฟกัสบนผิวตัวอย่างพอดี และลำอิเล็กตรอน ที่ตกกระทบผิววัตถุ หรือตัวอย่างจะมีขนาดในช่วง 5 ถึง 200 นาโนเมตร โดยมีชุดขดลวดควบคุมการ ส่องกราด (scan coil) ของลำอิเล็กตรอนทำหน้าที่ในการควบคุมทิศทาง การเคลื่อนที่ของลำ อิเล็กตรอนบนผิวตัวอย่างจะเกิดอันตรกิริยา (interaction) ระหว่างอิเล็กตรอนปฐมภูมิกับอะตอม ธาตุในวัตถุหรือตัวอย่างและเกิดการถ่ายโอนพลังงานที่ชั้นความลึกจากพื้นผิวที่ระดับต่าง ทำให้เกิด การปลดปล่อยสัญญาณอิเล็กตรอน (electron signal) ชนิดต่างๆ ออกมา ซึ่งใช้ประโยชน์ใน การศึกษาลักษณะผิวของตัวอย่างจนนิดค่างๆ ที่เกิดขึ้น คือ

- สัญญาณภาพจากอิเล็กตรอนทุติยภูมิ (Secondary Electron Image, SEI) หรือเป็น อิเล็กตรอนพลังงานต่ำ 3-5 อิเล็กตรอนโวลต์ เกิดที่พื้นผิวระดับไม่ลึก (ไม่เกิน 10 nm) โดยเกิดกับธาตุที่มีแรงยึดเหนี่ยวอิเล็กตรอนที่ผิวต่ำ
- สัญญาณภาพจากอิเล็กตรอนกระเจิงกลับ (Backscattered Electron Image, BEI) หรือเป็นกลุ่มอิเล็กตรอนที่สูญเสียพลังงานให้กับอะตอมในชิ้นงานเพียงบางส่วนและ
กระเจิงกลับออกมา ซึ่งมีพลังงานสูงกว่าอิเล็กตรอนทุติยภูมิ เกิดที่พื้นผิวระดับลึกกว่า 10 นาโนเมตร โดยเกิดได้ดีกับธาตุที่มีเลขอะตอมสูง

3. สัญญาณภาพจากรังสีเอกซ์ (X-Ray Image, XRI) ชนิดที่เป็นรังสีเอกซ์เฉพาะตัวเป็นคลื่น แม่เหล็กไฟฟ้าที่เกิดจากอิเล็กตรอนในระดับชั้นโคจรต่างๆ (K, L, M,...) ถูกกระตุ้น (excited) หรือได้รับพลังงานมากพอจนหลุดออกจากวงโคจรออกมา ทำให้อะตอมต้อง รักษาสมดุลของโครงสร้างรวมภายในอะตอม โดยการดึงอิเล็กตรอนจากชั้นวงโคจรถัดไป เข้ามาแทนที่และต้องลดพลังงานส่วนเกินออกมาในรูปคลื่นแม่เหล็กไฟฟ้าเพื่อทำให้ ตัวเองมีพลังงานเท่ากับชั้นโคจรที่ไปแทนที่ ซึ่งคลื่นแม่เหล็กไฟฟ้านี้มีความยาวคลื่น เฉพาะในแต่ละธาตุตามระดับพลังงานของตัวอย่างได้ทั้งเชิงปริมาณและคุณภาพ

สัญญาณภาพจากอิเล็กตรอนเหล่านี้จะถูกเปลี่ยนมาเป็นสัญญาณภาพปรากฏบนจอรับภาพ ได้โดยต้องเลือกใช้อุปกรณ์ในการวัดให้เหมาะสมกับสัญญาณแต่ละชนิด โดยทั่วไปสัญญาณอิเล็กตรอน ทุติยภูมิใช้ตัวตรวจวัดชนิดพลาสติกเรื่องแสง (Plastic scintillation detector) สัญญาณภาพจาก อิเล็กตรอนกระเจิงกลับจะใช้ตัวตรวจวัดที่เป็นสารกึ่งตัวนำชนิดรอยต่อพีเอ็น (PN junction detector) หรือตัวตรวจวัดชนิดโรบินสัน (Robinson detector) และในสัญญาณภาพจากรังสีเอกซ์ จะใช้หัววัดรังสีชนิดสารกึ่งตัวนำประเภทซิลิคอนลิเทียม (lithium drifted silicon, Si (Li)) ทำงาน ร่วมกับอุปกรณ์ในการวิเคราะห์พลังงานของรังสีเอกซ์เฉพาะตัวซึ่งอุปกรณ์วิเคราะห์นั้นมีทั้งแบบช่อง เดียว (Single Channel Analyzer, SCA) และอุปกรณ์วิเคราะห์แบบหลายช่อง (Multi Channel Analyzer, MCA)

การหาความหนาแน่น (Density)

ความหนาแน่นหมายถึง ค่ามวลต่อปริมาตรของวัสดุ ณ อุณหภูมิหนึ่งๆ หน่วยของความ หนาแน่นสามารถเป็นกรัมต่อมิลลิลิตร, กรัมต่อลูกบาศก์เซนติเมตร, ปอนด์ต่อลูกบาศก์ฟุต, กิโลกรัม ต่อลูกบาศก์เมตร เป็นต้น สำหรับส่วนที่จะได้กล่าวถึงต่อไปนี้จะใช้ในหน่วยของกรัมต่อลูกบาศก์ เซนติเมตร ซึ่งมีความสำคัญทางด้านเซรามิกอย่างยิ่งคือ การอาศัยค่าความหนาแน่นเป็นตัวชี้วัดถึง ประสิทธิภาพในการอัดแน่นตัวของวัสดุในระหว่างขั้นตอนการขึ้นรูป ซึ่งสูตรที่ใช้ในการคำนวณนั้นยัง สามารถนำไปสู่การหาค่าความพรุนของวัสดุได้อีกด้วย

การหาค่าความหนาแน่นของชิ้นงานนั้นอาศัยหลักการของอาร์คิมีดีสที่กล่าวไว้ว่า

"เมื่อจุ่มของแข็งลงในของเหลวจะมีแรงพยุงเกิดขึ้นบนของแข็งนั้น โดยแรงพยุงที่เกิดขึ้นจะมีค่าเท่ากับ น้ำหนักของของเหลวที่ถูกแทนที่ด้วยปริมาตรของของแข็ง" วิธีการนี้ทำได้โดยการหาค่ามวลของวัตถุ ในอากาศและขณะที่จุ่มอยู่ในน้ำ

ความหนาแน่น
$$\rho = \frac{W_a}{W_a - W_{fl}} \bullet \rho_{fl}$$
 (20)

เมื่อ _P คือ ค่าความหนาแน่นของขึ้นงาน มีหน่วยเป็นกรัมต่อลูกบาศก์ เซนติเมตร P_{fl} fคือ ค่าความหนาแน่นของของเหลว มีหน่วยเป็นกรัมต่อลูกบาศก์เซนติเมตร W_a f คือ น้ำหนักแห้งของขึ้นงาน มีหน่วยเป็นกรัม W_{fl} คือ น้ำหนักแห้งของขึ้นงานในของเหลว มีหน่วยเป็นกรัม

ส่วนการหาความหนาแน่นของของเหลวในกรณีที่ทราบปริมาตรที่แน่นอนของของแข็ง ลงไป สามารถหาได้จาก

$$\rho_{fl} = G/V \tag{21}$$

โดยที่ *G* คือ แรงพยุงที่เกิดขึ้นกับของแข็ง หน่วยเป็นกรัม (หาได้จากน้ำหนักของชิ้นงานใน อากาศลบด้วยน้ำหนักของชิ้นงานในของของเหลว) *V* คือ ปริมาตรของของแข็งที่จุ่มลงในของเหลว มีหน่วยเป็นลูกบาศก์เซนติเมตร

สำหรับการหาความหนาแน่นสัมพัทธ์ (relative density: ρ_r) นั้น สามารถคำนวณหาได้ ตามสมการที่ (22)

$$\rho_r(\%) = \left(\frac{\rho_b}{\rho_{th}}\right) \times 100 \tag{22}$$

เมื่อ ρ_r คือ ค่าความหนาแน่นสัมพัทธ์ มีหน่วยเป็นเปอร์เซ็นต์

 ho_{b} คือ ค่าความหนาแน่นของชิ้นงาน มีหน่วยเป็นกรัมต่อลูกบาศก์เซนติเมตร

 $ho_{{}_{th}}$ คือ ค่าความหนาแน่นในทฤษฎีของสาร มีหน่วยเป็นกรัมต่อลูกบาศก์เซนติเมตร

เอกสารและงานวิจัยที่เกี่ยวข้อง

เซรามิกบิสมัทโซเดียมไททาเนต ($Bi_{0.5}Na_{0.5}$)TiO₃ หรือ BNT แสดงสมบัติทางไฟฟ้าที่ดี เช่น อุณหภูมิคูรีสูง (T_c =540°C) สภาพขั้วคงค้างที่ดี (P_r =38 µC/cm²) แต่มีข้อจำกัดในการใช้งาน เนื่องจากเซรามิก BNT มีค่าสนามไฟฟ้าลบล้างที่สูง (E_c =73 kV/cm) จึงทำให้ยากต่อการโพล ส่งผล ให้ค่าสัมประสิทธิ์ไพอิโซอิโล์กทริก (d_{33}) ต่ำ (1-3) ข้อมูลโครงสร้างเฟสในระบบเซรามิก BNT ได้ถูก ตรวจสอบโดยผู้วิจัยหลายกลุ่ม เช่น Chu และคณะ (22), Hiruma และคณะ (23) โครงสร้างเฟสจาก การเลี้ยวเบนของรังสีเอกซ์ของเซรามิก BNT แสดงโครงสร้างเฟสเพอรอฟสไกต์ (ABO₃) แบบรอม โบฮีดรัลที่อุณหภูมิห้อง การก่อตัวเฟสเปลี่ยนจากรอมโบฮีดรัลไปเป็นเททระโกนอล (T_{R-T}) และจาก เททระโกนอลไปเป็นคิวบิก (T_{T-C}) ที่อุณหภูมิ 230°C และ 320°C ตามลำดับ เมื่อไม่นานมานี้ พบว่า การเติมสารละลายของแข็ง เช่น แบเรียมไททาเนต ($BaTiO_3$) แบเรียมสตรอนเทียมไททาเนต ($BaSrTiO_3$) ลงในเซรามิก BNT สามารถปรับปรุงสมบัติทางไฟฟ้าให้ดียิ่งขึ้น โดยพบว่า Takenaka และคณะ (24) ศึกษาเซรามิก 1-xBNT-xBT [($Bi_{0.5}Na_{0.5}/_{1-x}Ba_xTiO_3$] โดยแคลไซน์ที่อุณหภูมิ 800°C เป็นเวลา 1 ชั่วโมง และซินเตอร์ที่อุณหภูมิ 1200°C เป็นเวลา 2 ชั่วโมง พบว่า ที่ x ประมาณ 0.06 เซรามิกแสดงบริเวณเฟสร่วม ดังแสดงในภาพ 12 และแสดงสมบัติไพอิโซอิเล็กทริกที่ดี (d_{33} =125 pC/N)

ภาพ 12 แผนภาพแสดงสถานะเฟสของเซรามิก 1-xBNT-xBT ที่ x=0-30 mol% (24)

Chenggang Xu และคณะ (25) เตรียมเซรามิก (1-x)Bi_{0.5}Na_{0.5}TiO₃-xBaTiO₃ ด้วยวิธีปฏิกิริยา ของแข็ง ที่ x=0-0.12 แคลไซน์และซินเตอร์ที่อุณหภูมิ 850°C และ 1200°C เป็นเวลา 2 ชั่วโมง ตามลำดับ เซรามิกแสดงโครงสร้างเฟสรอมโบฮีดรัลบริสุทธิ์ที่ x=0 อย่างไรก็ตาม เมื่อปริมาณ x เพิ่มขึ้น เริ่มปรากฏโครงสร้างเฟสเททระโกนอลและเพิ่มขึ้นอย่างต่อเนื่อง จนแสดงโครงสร้างเฟสเทท ระโกนอลบริสุทธิ์ที่ x≥0.10 ดังแสดงในภาพ 13 ลักษณะเกรนของเซรามิกเป็นรูปหลายเหลี่ยม มีการ เจริญเติบโตแบบไร้ทิศทาง (anisotropic) ไร้รูพรุนและมีความหนาแน่นสัมพัทธ์สูง (>97%) สำหรับ (1-x)Bi_{0.5}Na_{0.5}TiO₃-xBaTiO₃ ที่ x=0 ขนาดเกรนใหญ่ อยู่ในช่วง 4-6 µm อย่างไรก็ตาม เมื่อปริมาณ x เพิ่มขึ้นเป็น 0.06 ขนาดเกรนเฉลี่ยลดลงจนอยู่ในช่วง 2 µm เนื่องจากการเติม BaTiO₃ จะยับยั้ง การเจริญเติบโตของเกรน สมบัติเฟร์โรอิเล็กทริกของเซรามิกพบว่า P_r เพิ่มขึ้น เมื่อ x เพิ่มขึ้น แสดงค่า P_r สูงสุด (38.8 µC/cm²) ที่ x=0.06 หลังจากนั้นลดลง E_c ลดลงตั้งแต่ 5.69 kV/mm จนถึง 3.25 kV/mm เมื่อ x เพิ่มขึ้นจาก 0 ไปจนถึง 0.12 ดังแสดงในภาพ 14 เซรามิกแสดงสมบัติไพอิโซอิเล็กท ริกที่ดี ที่ x เป็น 0.06 (d₃₃=83 pC/N และ K_p=0.159) ดังแสดงในภาพ 15

ภาพ 13 แบบรูปการณ์เลี้ยวเบนรังสีเอกซ์ของเซรามิก (1-x)Bi_{0.5}Na_{0.5}TiO₃-xBaTiO₃ ที่ x=0-0.12 (25)

ภาพ 14 สมบัติเฟร์โรอิเล็กทริกของเซรามิก (1-x)Bi_{0.5}Na_{0.5}TiO₃-xBaTiO₃ ที่ x=0-0.12 (25)

ภาพ 15 สมบัติไพอิโซอิเล็กทริกของเซรามิก (1-x)Bi_{0.5}Na_{0.5}TiO₃-xBaTiO₃ ที่ x=0-0.12 (25)

ต่อมา Bhoowadol Thatawong และคณะ (26) สังเคราะห์เซรามิก 0.94Bi_{0.5}Na_{0.5}TiO₃-0.06BaTiO₃ (0.94BNT-0.06BT) ด้วยวิธีเผาไหม้สถานะของแข็ง โดยแคลไซน์อุณหภูมิตั้งแต่ 600°C ถึง 800°C เป็นเวลา 2 ชั่วโมง และซินเตอร์อุณหภูมิ 1100 °C ถึง 1200 °C เป็นเวลา 2 ชั่วโมง พบว่า ผงผลึกแสดงโครงสร้างเพอรอฟสไกต์บริสุทธิ์ที่อุณหภูมิแคลไซน์ 750°C ดังแสดงในภาพ 16 ซึ่งต่ำกว่า วิธีปฏิกิริยาของแข็ง 150°C หลังจากนั้นซินเตอร์ที่อุณหภูมิตั้งแต่ 1100 ถึง 1200°C เป็นเวลา 2 ชั่วโมง จากภาพ 17(ก) เซรามิกแสดงโครงสร้างเฟสผสมระหว่างรอมโบฮีดรัลและเททระโกนอลในทุก ตัวอย่าง พีคการเลี้ยวเบนเคลื่อนไปมุมที่ต่ำกว่าเมื่อเพิ่มอุณหภูมิซินเตอร์ ดังแสดงในภาพ 17(ข) เป็น ผลจากแลตที่ซพารามิเตอร์ของเซรามิกเพิ่มขึ้น เมื่อเพิ่มอุณหภูมิซินเตอร์ โครงสร้างจุลของผงผลึก แสดงรูปร่างค่อนข้างกลมและมีขนาดอนุภาคอยู่ในช่วง 230-300 nm โครงสร้างจุลภาคของเซรามิ กซินเตอร์ที่ 1100 ถึง 1200°C เกรนมีรูปร่างหลายเหลี่ยมและเจริญเติบโตแบบไร้ทิศทาง รูพรุนของ เซรามิกลดลงเมื่ออุณหภูมิซินเตอร์เพิ่มขึ้นถึง 1150°C ขนาดเกรนเฉลี่ยอยู่ในช่วงประมาณ 1.18-2.46 µm ความหนาแน่นเพิ่มขึ้น เมื่ออุณหภูมิซินเตอร์เพิ่มขึ้น แสดงค่าสูงสุดที่ 1150°C (5.84 c/cm³) และ หลังจากนั้นลดลง ดังแสดงในตาราง 1 โดยความหนาแน่นสอดคล้องกับผลของโครงสร้างจุลภาค สมบัติไดอิเล็กทริกของเซรามิก โดยเส้นโค้งแสดงพีค 2 บริเวณ พีคแรกเกิดขึ้นที่อุณหภูมิต่ำ เรียกว่า T_d (depolarization temperature) ซึ่งเป็นการเปลี่ยนแปลงสมมาตรของโพลานาโนรีเจียน (polar nanoregions, PNRs) จากโครงสร้างรอมโบฮีดรัลเป็นเททระโกนัลในระหว่างกระบวนการ เปลี่ยนแปลงทางความร้อน (thermal evolution process) พีกที่สองเกิดขึ้นที่อุณหภูมิสูง แสดง ้ ค่าคงที่ไดอิเล็กทริกสูงสุด (T_m) เมื่ออุณหภูมิชินเตอร์เพิ่มขึ้นจาก 1100 ถึง 1150°C T_d เคลื่อนตัวไปที่ ้อุณหภูมิต่ำกว่า จาก 1<mark>16</mark> เป็น 113°C หลังจากนั้นเพิ่มขึ้นเมื่ออุ<mark>ณห</mark>ภูมิซินเตอร์เพิ่มขึ้นและ T_m อยู่ ในช่วง 275-295<mark>°⊂ ด</mark>ังแสดงในตาราง 1 <mark>ค่าคงที่ไดอิเ</mark>ล็กทริกสูงสุดที่ T_m (**ɛ**_m) เพิ่มขึ้นจาก 5150 ถึง 8405 เมื่ออุณหภูมิซินเตอร์เพิ่มขึ้นจาก 1100 ถึง 1150°C หลังจากนั้นลดลงเมื่ออุณหภูมิซินเตอร์ ้เพิ่มขึ้น ดังแส<mark>ดงใน</mark>ตาราง 1 ค่าคงที่ไดอิเล็กทริกที่ได้ สอดคล้องกับ<mark>ผล</mark>ของค<mark>ว</mark>ามหนาแน่นและ ้โครงสร้างจุลภา<mark>ค ค</mark>่า d₃₃ เพิ่มขึ้นจาก 134 เป็น 161 pC/N เมื่ออุณหภูมิซินเตอร์เพิ่มขึ้นจาก 1100 เป็น 1150°⊂ หลัง<mark>จา</mark>กนั้<mark>นลด</mark>ลงเมื่ออุณหภูมิซินเตอร์เพิ่มขึ้น ดัง<mark>แสดงใ</mark>นต<mark>า</mark>ราง 1

ภาพ 16 แบบรูปการณ์เลี้ยวเบนรังสีเอกซ์ของผงผลึก 0.94BNT-0.06BT ที่อุณหภูมิแคลไซน์ ระหว่าง 600 ถึง 800°C (26)

ภาพ 17 แบบรูปการเลี้ยวเบนรังสีเอกซ์ของเซรามิก 0.94BNT-0.06BT ที่อุณหภูมิซินเตอร์ ระหว่าง 1100 ถึง 1200°C ที่มุม (ก) 2**0**=10-70° และ (ข) 2**0**=36-50° (26) ตาราง 1 ความหนาแน่น สมบัติไดอิเล็กทริก เฟร์โรอิเล็กทริก และไพอิโซอิเล็กทริกของเซรามิก 0.94BNT-0.06BT ที่อุณหภูมิซินเตอร์ระหว่าง 1100 ถึง 1200°C (26)

			Phase transition (°C)							
Sintering Temperature (°C)	Measured density (g/cm ³)	Theoretical density (%)	T _d	Tm	T _{F-R} (°C)	€ _m	$tan\delta$ at T _m	P _r (μC/cm ²)	E _c (kV/cm ²)	d ₃₃ (pC/N)
1100	5.56	92.98	116.1	284.6	117.0	5150	0.07	-	-	134
1125	5.67	94.82	115.6	278.2	116.6	7043	0.06	-	-	155
1150	5.84	97.66	113.7	280.6	112.3	8405	0.06	28.24	22.13	161
1175	5.77	96.49	130.3	278.3	113.1	7673	0.03	26.79	23.35	157
1200	5.74	95.99	133.2	293.7	125.1	6263	0.08	28.08	26.32	140

การแทนไอออนที่ตำแหน่ง B ด้วยไอออนที่มีรัศมีต่างกัน ส่งผลทำให้เกิดการเปลี่ยนแปลง โครงสร้างเฟสซึ่งเป็นปัจจัยสำคัญที่มีผลต่อสมบัติทางไฟฟ้า เนื่องจากโครงสร้างแลตทิซเกิดการบิด เบี้ยว ในทำนองเดียวกัน การแทนที่ด้วยไอออนร่วม (complex ions) ทำให้แลตทิซและโครงสร้าง เฉพาะที่ (local structure) ของเซรามิกบิดเบี้ยว ดังนั้นการทำลายความเป็นระเบียบของเฟร์โรอิ เล็กทริก (ferroelectric order) ซึ่งอาจส่งผลต่อสมบัติทางไฟฟ้าของเซรามิก โดย Qiumei Wei และ คณะ (12) ศึกษาเซรามิก ($Bi_{1/2}Na_{1/2})_{0.93}Ba_{0.07}TiO_3$ ถูกแทนที่ด้วยไอออนร่วม ($Zn^{2+}_{1/3}Nb^{5+}_{2/3})^{4+}$ ที่ x=0-0.025 พบว่าเซรามิกแสดงโครงสร้างเพอรอฟสไกต์บริสุทธิ์ในทุกตัวอย่าง ดังแสดงในภาพ 18 ที่ x=0 พีคการเลี้ยวเบน (111)_{pc} ที่มุมประมาณ 40° และพีคการเลี้ยวเบน (200)_{pc} ที่มุมประมาณ 46°

แยกเป็นพีคคู่ แสดงโครงสร้างเฟสร่วมแบบรอมโบฮีดรัล R3c และเททระโกนอล P4bm เมื่อเติม (Zn²⁺_{1/3} Nb⁵⁺_{2/3})⁴⁺ แทนที่ Ti⁴⁺ โดยที่ x>0 พีคคู่หลอมรวมกันเป็นพีคเดี่ยว ซึ่งอาจเกิดจากการบิด เบี้ยวของแลตทีซเพียวเล็กน้อย การแทนที่ของ (Zn²⁺1/3 Nb⁵⁺2/3)⁴⁺ ทำให้เกิดการเปลี่ยนแปลง โครงสร้างเฟสร่วมไปเป็นโครงสร้างเททระโกนอลและเป็นผลให้พีคการเลี้ยวเบน (111)_{pc} และ (200)_{pc} เลื่อนไปทางมุมที่ต่ำลง ดังแสดงในภาพ 18 เนื่องจากขนาดรัศมีไอออนของ Zn²⁺ (0.745 Å) และ Nb⁵⁺ (0.64 Å) มากกว่า Ti⁴⁺ (0.605 Å) แบบรูปการเลี้ยวเบนรังสีเอกซ์ของเซรามิก (Bi_{1/2}Na_{1/2})_{0.93}Ba_{0.07}(Zn_{1/3}Nb_{2/3})_xTi_{1-x}O₃ ที่ x=0.015 และ 0.02 วิเคราะห์โดยวิธีการปรับแต่งเรียท เวลด์ ในตัวอย่างที่ผ่านการโพลมาแล้ว ที่ x=0.015 แสดงเฟสร่วมไม่สมมาตรของเฟสรอมโบฮีดรัล R3c (17.0%) และเฟสเททระโกนอล P4bm (83.0%) เฟสรอมโบฮีดรัล R3c ที่แสดงในเมทริกซ์เทท ระโกนอลมีผลต่อการเกิด<mark>ค</mark>วามเคร<mark>ียดขนาดใหญ่ สำหรับ x=0.02 ในตัวอย่างที่ผ่านการโพล แสดงการ</mark> อยู่ร่วมกันของเฟสร่วมสมมาตรของเฟสคิวบิก Pm3m (83.9%) และเฟสเททระโกนอล P4bm (16.1%) ซึ่งบ่งบอกว่าโ<mark>คร</mark>งสร้างขั้วอ่อนแอ ตัวอย่างที่ไม่ผ่านการโ<mark>พลทั้งสองตัว</mark>อย่างแสดงเฟสร่วมกัน ของเฟสคิวบิก *P<mark>m3</mark>m* (93.5% สำหรับ x=0.015 และ 95.4% สำหรับ x=0.02) และเฟสเททระ โกนอล *P4bm* (6.5% สำหรับ x=0.015 <mark>และ 4.6% ส</mark>ำหรับ x=0.02) เปรียบเทียบกันระหว่างก่อน และหลังการโพ<mark>ล สร</mark>ุปได้ว่าการโพลด้วยไฟฟ้าทำให้เกิดโครงสร้างเฟร์โรอ<mark>ิเล็ก</mark>ทริกแ<mark>บบไม่สมมาตร เส้น</mark> โค้งความเครียด (S-E loops) ของเซรามิก (Bi_{1/2}Na_{1/2})_{0.93}Ba_{0.07}(Zn_{1/3}Nb_{2/3})_xTi_{1-x}O₃ ตั้งแต่ x=0 ถึง 0.025 ดังแสดงใน<mark>ภ</mark>าพ 19 ที่ x=0 วงวน S-E แสดงความเคร<mark>ียดเชิง</mark>ลบ บ่งบอกถึงความเป็น nonergodic จา<mark>กนั้นเมื่อเพิ่ม (Zn²⁺1/3 Nb⁵⁺2/3)⁴⁺ เห็นได้ว่าความเครียดเชิงล[ิ]บหายไปและแสดง</mark> ้ลักษณะเฉพาะของ ergodic อย่างชัดเจนที่ x>0.0125 สมบัติไพอิโซอิเล็กทริกของเซรามิก (Bi_{1/2}Na_{1/2})_{0.93}Ba_{0.07}(Zn_{1/3}Nb_{2/3})_xTi_{1-x}O₃ พบว่า ที่ x<0.015 ความเครียดเชิงบวก (S_{pos}) จะค่อยๆ เพิ่มขึ้น ในขณะที่ความเครียดเชิงลบ (S_{nee}) จะลดลง การลดลงของ S_{nee} เนื่องจากการสลับของเฟร์ โรอิเล็กทริกโดเมนที่มาจาก non-ergodic ลดลง ที่ x=0.0125 ไม่พบ S_{neg} หมายความว่าพฤติกรรม ้ความเครียดเริ่มอยู่ภายใต้การควบคุมของ ergodic ความเครียดสูงสุดพบที่ x=0.015 (0.65% และ d₃₃*=812 pm/V) ดังแสดงในภาพ 20 วงวนฮีสเทอรีซิส (P-E loops) ของเซรามิก (Bi_{1/2}Na_{1/2})_{0.93}Ba_{0.07}(Zn_{1/3}Nb_{2/3})_xTi_{1-x}O₃ ที่ x ตั้งแต่ 0 ถึง 0.025 ดังแสดงในภาพ 21 สำหรับ ้ตัวอย่าง x<0.005 แสดงวงวน P-E อิ่มตัว ซึ่งหมายถึงตัวอย่างอยู่ภายใต้สถานะ non-ergodic ที่ x เพิ่มเป็น 0.005 วงวน P-E เริ่มคอดกิ่ว (pinched) ซึ่งอาจจะเปลี่ยนสถานะเป็น ergodic การเพิ่มขึ้น ของ (Zn²⁺_{1/3} Nb⁵⁺_{2/3})⁴⁺ เป็นผลให้วงวน P-E คอดกิ่วมากยิ่งขึ้น ซึ่งหมายถึงสถานะ ergodic เติมโต มากขึ้นด้วย

ภาพ 18 แบบรูปการเลี้ยวเบนรังสีเอกซ์ของเซรามิก (Bi_{1/2}Na_{1/2})_{0.93}Ba_{0.07}TiO₃ ถูกแทนที่ด้วย

ภาพ 19 เส้นโค้งความเครียดของเซรามิก (Bi_{1/2}Na_{1/2})_{0.93}Ba_{0.07}TiO₃ ถูกแทนที่ด้วยไอออนร่วม (Zn²⁺1/3 Nb⁵⁺2/3)⁴⁺ ที่ x=0-0.025 (12)

ภาพ 20 สมบัติไพอิโซอิเล็กทริกของเซรามิก (Bi_{1/2}Na_{1/2})_{0.93}Ba_{0.07}TiO₃ ถูกแทนที่ด้วยไอออนร่วม

ภาพ 21 สมบัติเฟร์โรอิเล็กทริกของเซรามิก (Bi_{1/2}Na_{1/2})_{0.93}Ba_{0.07}TiO₃ ถูกแทนที่ด้วยไอออนร่วม (Zn²⁺1/3 Nb⁵⁺2/3)⁴⁺ ที่ x=0-0.025 (12)

ต่อมา Liangliang Li และคณะ (27) เติมไอออนร่วม (Al³⁺_{0.5}Sb⁵⁺_{0.5})⁴⁺ ในปริมาณ x=0-0.020 ลงใน ตำแหน่ง B ของเซรามิก (Bi_{0.5}Na_{0.5})_{0.935}Ba_{0.065}Ti_{1-x}(Al_{0.5}Sb_{0.5})_xO₃ เตรียมด้วยด้วยวิธีปฏิกิริยา ของแข็ง พบว่าเซรามิกแสดงโครงสร้างเพอรอฟสไกต์บริสุทธิ์ในทุกตัวอย่าง พีคการเลี้ยวเบนที่มุม ประมาณ 46-47° เลื่อนไปทางมุมที่สูงขึ้น ดังแสดงในภาพ 22 เป็นผลจากการเติม (Al_{0.5}Sb_{0.5})⁴⁺ ทำ ให้หน่วยเซลล์หดตัว เนื่องจากขนาดรัศมีไอออนของ (Al_{0.5}Sb_{0.5})⁴⁺ (0.568 Å) น้อยกว่า Ti⁴⁺ (0.605 Å) สมบัติไดอิเล็กทริกของเซรามิก (Bi_{0.5}Na_{0.5})_{0.935}Ba_{0.065}Ti_{1.x}(Al_{0.5}Sb_{0.5})_xO₃ ที่ x=0-0.02 แสดงใน ภาพ 23 เกิดพีคขึ้นสองบริเวณ พีคเกิดขึ้นที่อุณหภูมิต่ำเป็นพีคการเปลี่ยนเฟสจากเฟร์โรอิเล็กทริกไป เป็นรีแลกเซอร์เฟร์โรอิเล็กทริก (T_{F-R}) พีกที่สองเกิดขึ้นที่อุณหภูมิสูง แสดงค่าคงที่ไดอิเล็กทริกสูงสุด (T_m) เมื่อเพิ่ม (Al_{0.5}Sb_{0.5})⁴⁺ ค่าคงที่ไดอิเล็กทริงสูงสุดลดลงและพีค T_m กว้างขึ้น ยิ่งไปกว่านั้น พีค T_{F-} R เลือนลงไปที่อุณหภูมิต่ำลงเมื่อเติม (Al_{0.5}Sb_{0.5})⁴⁺ บ่งบอกถึงองค์ประกอบที่เกิดขึ้นของการเปลี่ยน เฟสเฟร์โรอิเล็กทริกไปเป็นรีแลกเซอร์เฟร์โรอิเล็กทริก เนื่องจากการก่อตัวของขอบเขตของเฟสเฟร์โรอิ เล็กทริก-รีแลกเซอร์เฟร์โรอิเล็กทริก (F-R) จากภาพ 24 เซรามิกแสดงวงวนฮีทเทอรีซิสอิ่มตัวแบบเฟร์ โรอิเล็กทริก เมื่อเพิ่ม (Al_{0.5}Sb_{0.5})⁴⁺ วงวนเริ่มคอดกิ่ว บ่งบอกว่าเซรามิกเปลี่ยนเฟสจากเฟร์โรอิเล็กท ริกเป็นรีแลกเซอร์เฟร์โรอิเล็กทริก (er-R) จากภาพ 24 เซรามิกแสดงวงวนฮีทเทอรีซิสอิ่มตัวแบบเฟร์ โรอิเล็กทริก เมื่อเพิ่ม (Al_{0.5}Sb_{0.5})⁴⁺ วงวนเริ่มคอดกิ่ว บ่งบอกว่าเซรามิกเปลี่ยนเฟสจากเฟร์โรอิเล็กท ริกเป็นรีแลกเซอร์เฟร์โรอิเล็กทริก (er-R) จากภาพ 24 เซรามิกแสดงวงวนฮีทเทอรีซิสอิ่มตัวแบบเฟร์ โรอิเล็กทริก เมื่อเพิ่ม (Al_{0.5}Sb_{0.5})⁴⁺ วงวนเริ่มคอดกิ่ว บ่งบอกว่าเซรามิกเปลี่ยนเฟสจากเฟร์โรอิเล็กท ริกเป็นรีแลกเซอร์เฟร์โรอิเล็กทริก เซรามิกแสดงเล้นโค้งความเครียดแบบเฟร์โรอิเล็กทริกและแสดง ความเครียดเชิงบวก S_{กอร} เพิ่มขึ้น ความเครียดสูงสุด (0.46%) และความเครียดปกติ (d₃₃*=573 pm/V) ที่ x=0.015

ภาพ 22 แบบรูปการเลี้ยวเบนรังสีเอกซ์ของเซรามิก (Bi_{0.5}Na_{0.5})_{0.935}Ba_{0.065}Ti_{1-x}(Al_{0.5}Sb_{0.5})_xO₃ ที่ x=0-0.020 (27)

ภาพ 23 เส้นโค้งไดอ<mark>ิ</mark>เล็กทริกของเซรามิก (Bi_{0.5}Na_{0.5})_{0.935}Ba_{0.065}Ti_{1-x}(Al_{0.5}Sb_{0.5})_xO₃ ที่ x=0-

ภาพ 24 สมบัติเฟร์โรอิเล็กทริก และไพอิโซอิเล็กทริกของเซรามิก (Bi_{0.5}Na_{0.5})_{0.935}Ba_{0.065}Ti₁₋ _x(Al_{0.5}Sb_{0.5})_xO₃ ที่ x=0-0.020 (27)

บทที่ 3

วิธีดำเนินงานวิจัย

สารเคมีที่ใช้ในการทดลอง

- 1. บิสมัทไนเตรท (Bi(NO₃)₃·5H₂O) ความบริสุทธิ์ 99%
- 2. โซเดียมไนเตรท (NaNO3) ความบริสุทธิ์ 99%
- 3. แบเรียมไนเตรท (Ba(NO₃)₂) ความบริสุทธิ์ 99%
- 4. ไททาเนียมไดออกไซด์ (TiO₂) ความบริสุทธิ์ 99%
- 5. ลิเทียมคาร์<mark>บอเน</mark>ต (Li₂CO₃) ความบริสุทธิ์ 99%
- 6. นิกเกิลออกไซด์ (NiO) ความบริสุทธิ์ 99%
- 7. อะล<mark>ูมิเนี</mark>ยมไนเตรท (Al(NO₃)₃.9H₂O) ความบริสุทธิ์ 98%
- 8. ในโอเบียมเพนตะออกไซด์ (Nb₂O₅) ความบริสุทธิ์ 99%
- 9. ไก<mark>ลซีน</mark> (C₂H₅NO₂)
- 10. สารละลา<mark>ยเอทา</mark>นอล (Ethanol absolution) ควา<mark>มบริสุ</mark>ทธิ์ 99%

วิธีการทดลอง

การสังเคราะห์เซรามิก BNBT เจือแบบแทนที่ด้วย (LiNb)⁴⁺ ในบริเวณ B ด้วยวิธีการเผา ไหม้แบบปฏิกิริยายาสถานะของแข็ง

- ชั่งสารตั้งต้นของระบบ Bi_{0.47}Na_{0.47}Ba_{0.06}TiO₃ ที่เติมด้วย (LiNb)⁴⁺ (BNBT_{1-x}LN_x) ที่ปริมาณ
 0.00, 0.01, 0.02, 0.03, และ 0.04 mol% ตามอัตราส่วนโดยมวลที่ได้จากการคำนวณ
- นำสารตั้งต้นจากการชั่งตามข้อ 1 มาผสมในกระป๋องพลาสติกที่มีเม็ดบอล โดยเติมเอทานอล ในปริมาณ 200 มิลลิลิตร ซึ่งจะช่วยในการผสมสารให้ผสมกันดียิ่งขึ้น หลังจากนั้นนำไปบด ย่อยบนเครื่องบดเป็นเวลา 24 ชั่วโมง
- เมื่อครบ 24 ชั่วโมงแล้วนำสารละลายที่อยู่ในกระป๋องเทลงในตะแกรงลวดที่วางอยู่บนบีก เกอร์เพื่อแยกสารละลายออกจากเม็ดบอล

- อบสารละลายเตาอบโดยใช้อุณหภูมิ 120 องศาเซลเซียสเป็นเวลา 6 ชั่วโมง เพื่อแยกเอทานอ ลออกจากสารละลาย
- นำผงผลึกที่ผ่านการอบ มาบดผสมไกลซีนด้วยอัตราส่วน 1:1.1111 (อัตราส่วนการจุดระเบิด) (propellant ratio)
- นำผงผลึกที่บดผสมไกลซีนแล้วมาใส่ในถ้วยอะลูมินา จากนั้นนำไปแคลไซน์โดยใช้อุณหภูมิ
 750องศาเซลเซียสเป็นเวลา 2 ชั่วโมง โดยใช้อัตราการขึ้นลงของอุณหภูมิ 5 องศาเซลเซียส
 ต่อนาที
- นำผงผลึกหลังจากแคลไซน์มาผสม PVA ลงไปปริมาณร้อยละ 5 โดยน้ำหนัก จากนั้นปิดฝาให้ สนิทแล้วนำไปบดย่อยบนเครื่องบอลเป็นเวลา 12 ชั่วโมง
- นำสารที่อยู่ในกระป๋องบอลเทลงในตะแกรงลวดที่วางอยู่บนบีกเกอร์เพื่อแยกสารละลายออก จากเม็ดบอล หลังจากนั้นนำไปอบที่อุณหภูมิ 120 องศาเซลเซียส เป็นเวลา 6 ชั่วโมง
- จากนั้นนำผงผลึก BNBT_{1-x}LN_x ซึ่งผสม PVA มาอัดขึ้นรูปให้เป็นรูปเหรียญทรงกระบอกโดย ใช้แม่พิมพ์โลหะที่มีขนาดเส้นผ่านศูนย์กลางประมาณ 1.5 เซนติเมตร โดยใช้ผงผลึกปริมาณ 1.0 กรัม ในการอัดขึ้นรูป 1 ครั้ง โดยใช้ค่าความดันในการอัดขึ้นรูป 80 MPa
- 10. ซิ<mark>นเตอร์ที่อุ</mark>ณหภูมิ 1150 องศาเซลเซียส เป็นเวลา 2 ชั่วโมง โดย<mark>อัต</mark>ราการขึ้นลงของอุณหภูมิ เป็น 5 องศาเซลเซียสต่อนาที
- 11. น<mark>ำเซรามิกที่ผ่านการ</mark>ซินเตอร์ไปศึกษาสมบัติทางกายภา<mark>พและ</mark>สมบัติทางไฟฟ้า

การสังเคราะห์เ<mark>ซรามิก BNBT เจือแบบแทนที่ด้วย (NiNb)</mark>⁴⁺ ในบริเวณ B ด้วยวิธีการเผา ไหม้แบบปฏิกิริยายาสถา<mark>นะของแข็ง</mark>

- ชั่งสารตั้งต้นของระบบ Bi_{0.47}Na_{0.47}Ba_{0.06}TiO₃ ที่เติมด้วย (NiNb)⁴⁺ (BNBT_{1-x}NN_x) ที่ปริมาณ
 0.00, 0.01, 0.02, 0.03, 0.04 และ 0.05 mol% ตามอัตราส่วนโดยมวลที่ได้จากการคำนวณ
- นำสารตั้งต้นจากการชั่งตามข้อ 1 มาผสมในกระป๋องพลาสติกที่มีเม็ดบอล โดยเติมเอทานอล ในปริมาณ 200 มิลลิลิตร ซึ่งจะช่วยในการผสมสารให้ผสมกันดียิ่งขึ้น หลังจากนั้นนำไปบด ย่อยบนเครื่องบดเป็นเวลา 24 ชั่วโมง
- เมื่อครบ 24 ชั่วโมงแล้วนำสารละลายที่อยู่ในกระป๋องเทลงในตะแกรงลวดที่วางอยู่บนบีก เกอร์เพื่อแยกสารละลายออกจากเม็ดบอล
- อบสารละลายเตาอบโดยใช้อุณหภูมิ 120 องศาเซลเซียสเป็นเวลา 6 ชั่วโมง เพื่อแยกเอทานอ ลออกจากสารละลาย

- นำผงผลึกที่ผ่านการอบ มาบดผสมไกลซีนด้วยอัตราส่วน 1:1.1111 (อัตราส่วนการจุดระเบิด) (propellant ratio)
- นำผงผลึกที่บดผสมไกลซีนแล้วมาใส่ในถ้วยอะลูมินา จากนั้นนำไปแคลไซน์โดยใช้อุณหภูมิ
 750องศาเซลเซียสเป็นเวลา 2 ชั่วโมง โดยใช้อัตราการขึ้นลงของอุณหภูมิ 5 องศาเซลเซียส
 ต่อนาที
- นำผงผลึกหลังจากแคลไซน์มาผสม PVA ลงไปปริมาณร้อยละ 5 โดยน้ำหนัก จากนั้นปิดฝาให้ สนิทแล้วนำไปบดย่อยบนเครื่องบอลเป็นเวลา 12 ชั่วโมง
- นำสารที่อยู่ในกระป๋องบอลเทลงในตะแกรงลวดที่วางอยู่บนบีกเกอร์เพื่อแยกสารละลายออก จากเม็ดบอล หลังจากนั้นนำไปอบที่อุณหภูมิ 120 องศาเซลเซียส เป็นเวลา 6 ชั่วโมง
- จากนั้นนำผงผลึก BNBT_{1-x}NN_x ซึ่งผสม PVA มาอัดขึ้นรูปให้เป็นรูปเหรียญทรงกระบอกโดย ใช้แม่พิมพ์โลหะที่มีขนาดเส้นผ่านศูนย์กลางประมาณ 1.5 เซนติเมตร โดยใช้ผงผลึกปริมาณ 1.0 กรัม ในการอัดขึ้นรูป 1 ครั้ง โดยใช้ค่าความดันในการอัดขึ้นรูป 80 MPa
- ชินเตอร์ที่อุณหภูมิ 1150 องศาเซลเซียส เป็นเวลา 2 ชั่วโมง โดยอัตราการขึ้นลงของอุณหภูมิ
 เป็น 5 องศาเซลเซียสต่อนาที
- 11. น<mark>ำ</mark>เซรา<mark>มิก</mark>ที่ผ่านการซินเตอร์ไปศึกษาสมบัติทางกายภาพและสม<mark>บัติท</mark>างไฟฟ้า

การสังเคร<mark>าะ</mark>ห์เซรามิก BNBT เจือแบบแทนที่ด้วย (A<mark>INb)⁴⁺ ใน</mark>บริเวณ B ด้วยวิธีการเผา ไหม้แบบปฏิกิริยา<mark>ยาสถาน</mark>ะของแข็ง

- ชั่งสารตั้งต้นของระบบ Bi_{0.47}Na_{0.47}Ba_{0.06}TiO₃ ที่เติมด้วย (AlNb)⁴⁺ (BNBT_{1-x}AN_x) ที่ปริมาณ
 0.00, 0.01, 0.02, 0.03, 0.04 และ 0.05 mol% ตามอัตราส่วนโดยมวลที่ได้จากการคำนวณ
- นำสารตั้งต้นจากการชั่งตามข้อ 1 มาผสมในกระป๋องพลาสติกที่มีเม็ดบอล โดยเติมเอทานอล ในปริมาณ 200 มิลลิลิตร ซึ่งจะช่วยในการผสมสารให้ผสมกันดียิ่งขึ้น หลังจากนั้นนำไปบด ย่อยบนเครื่องบดเป็นเวลา 24 ชั่วโมง
- เมื่อครบ 24 ชั่วโมงแล้วนำสารละลายที่อยู่ในกระป๋องเทลงในตะแกรงลวดที่วางอยู่บนบีก เกอร์เพื่อแยกสารละลายออกจากเม็ดบอล
- อบสารละลายเตาอบโดยใช้อุณหภูมิ 120 องศาเซลเซียสเป็นเวลา 6 ชั่วโมง เพื่อแยกเอทานอ ลออกจากสารละลาย
- นำผงผลึกที่ผ่านการอบ มาบดผสมไกลซีนด้วยอัตราส่วน 1:1.1111 (อัตราส่วนการจุดระเบิด) (propellant ratio)

- นำผงผลึกที่บดผสมไกลซีนแล้วมาใส่ในถ้วยอะลูมินา จากนั้นนำไปแคลไซน์โดยใช้อุณหภูมิ
 750องศาเซลเซียสเป็นเวลา 2 ชั่วโมง โดยใช้อัตราการขึ้นลงของอุณหภูมิ 5 องศาเซลเซียส
 ต่อนาที
- นำผงผลึกหลังจากแคลไซน์มาผสม PVA ลงไปปริมาณร้อยละ 5 โดยน้ำหนัก จากนั้นปิดฝาให้ สนิทแล้วนำไปบดย่อยบนเครื่องบอลเป็นเวลา 12 ชั่วโมง
- นำสารที่อยู่ในกระป๋องบอลเทลงในตะแกรงลวดที่วางอยู่บนบีกเกอร์เพื่อแยกสารละลายออก จากเม็ดบอล หลังจากนั้นนำไปอบที่อุณหภูมิ 120 องศาเซลเซียส เป็นเวลา 6 ชั่วโมง
- จากนั้นนำผงผลึก BNBT_{1-x}AN_x ซึ่งผสม PVA มาอัดขึ้นรูปให้เป็นรูปเหรียญทรงกระบอกโดย ใช้แม่พิมพ์โลหะที่มีขนาดเส้นผ่านศูนย์กลางประมาณ 1.5 เซนติเมตร โดยใช้ผงผลึกปริมาณ
 1.0 กรัม ในการอัดขึ้นรูป 1 ครั้ง โดยใช้ค่าความดันในการอัดขึ้นรูป 80 MPa
- ชินเตอร์ที่อุณหภูมิ 1150 องศาเซลเซียส เป็นเวลา 2 ชั่วโมง โดยอัตราการขึ้นลงของอุณหภูมิ
 เป็น 5 องศาเซลเซียสต่อนาที
- 11. นำเซรามิ<mark>กที่</mark>ผ่านการซินเตอร์ไปศึกษาสมบัติทางกายภาพและสมบัติทางไฟฟ้า

ภาพ 25 แผนผังขั้นตอนการเตรียมเซรามิก BNBT เจือแบบแทนที่ด้วย (LiNb)⁴⁺

ภาพ 26 แผนผังขั้นตอนการเตรียมเซรามิก BNBT เจือแบบแทนที่ด้วย (NiNb)4+

ภาพ 27 แผนผังขั้นตอนการเตรียมเซรามิก BNBT เจือแบบแทนที่ด้วย (AlNb)4+

บทที่ 4

วิเคราะห์ผลการทดลอง

การวิเคราะห์โครงสร้างเฟส โครงสร้างจุลภาค และสมบัติไฟฟ้าของเซรามิก BNBT เติมแบบ แทนที่ด้วย (LiNb)⁴⁺ ในบริเวณ B โดยวิธีการเผาไหม้แบบปฏิกิริยายาสถานะของแข็ง

แบบรูปการเลี้ยวเบนรังสีเอกซ์ของเซรามิก BNBT ที่ปริมาณการเติม (LiNb)⁴⁺ อยู่ในช่วง 0.00 ถึง 0.04 mol% ที่มุม 20=10-70° แสดงในภาพ 28 (ก) พบว่าเซรามิกแสดงโครงสร้างเพ อรอฟสไกต์บริสุทธิ์แบบผสมระหว่างรอมโบฮีดรัล และเททระโกนัลในทุกตัวอย่าง ซึ่งสันนิษฐานได้ว่า (LiNb)⁴⁺ กระจายตัวเข้าไปในแลตทิชของเซรามิก BNBT ได้อย่างสมบูรณ์ โดยทั่วไปแล้ว ลักษณะเฉพาะของโครงสร้างรอมโบฮีดรัลแสดงพีคคู่การเลี้ยวเบน (003)_R/(021)_R ที่มุม 20 ประมาณ 40° และพีคเดียวการเลี้ยวเบน (202)_R ที่มุม 20 ประมาณ 46° (28) ในขณะที่ลักษณะเฉพาะของ โครงสร้างเททระโกนัลแสดงพีคเดียวการเลี้ยวเบน (111)_T ที่มุม 20 ประมาณ 40° และพีคคู่การ เลี้ยวเบน (002)_T/(200)_T ที่มุม 20 ประมาณ 46° (29) เมื่อขยายมุมแบบรูปการเลี้ยวรังสีเอ็กซ์ที่มุม 20=36-50° ดังแสดงในภาพ 28 (ข) พบว่าพีคคู่การเลี้ยวเบน (003)_R/(021)_R และ (002)_T/(200)_T ที่ มุม 20 ประมาณ 40° และ 46° ตามลำดับ ในทุกตัวอย่าง สันนิษฐานได้ว่าเซรามิกแสดงโครงสร้าง แบบผสมระหว่างรอมโบฮีดรัล และเททระโกนัลในทุกตัวอย่าง พีคคู่ (003)_R/(021)_R ที่มุม 20 ประมาณ 40° มีการรวมกันกลายเป็นพีคเดียวมากขึ้นเมื่อเพิ่มปริมาณ (LiNb)⁴⁺ พีคการเลี้ยวเบนขยับ ไปยังมุมต่ำกว่า ซึ่งบ่งบอกว่ามีการขยายตัวของขนาดหน่วยเซลล์ เนื่องจากไอออนที่มีขนาดใหญ่กว่า ของ Li⁺ (0.76 Å) และ Nb⁵⁺ (0.64 Å) แทนที่ Ti⁴⁺ (0.61 Å) ที่บริเวณ B

จากผลการวิเคราะห์การปรับแต่งเรียทเวลด์ (Rietveld refinement method) ด้วย โปรแกรม Fullprof เพื่อใช้ในการวิเคราะห์โครงสร้างผลึกและพารามิเตอร์เบื้องต้นของแลตทีซ ดัง แสดงในภาพ 29 (ก)-(จ) และตารางที่ 2 ซึ่งยืนยันการอยู่ร่วมกันของโครงสร้างโครงสร้างรอมโบฮีดรัล (*R3c*) และโครงสร้างเททระโกนัล (*P4bm*) (26) พบว่าเมื่อปริมาณ (LiNb)⁴⁺ เพิ่มขึ้นจาก 0.00 ถึง 0.04 mol% โครงสร้างเททระโกนัล (T) เพิ่มขึ้นจาก 47% เป็น 73% ในขณะที่โครงสร้างรอม โบฮีดรัล (R) ลดลงจาก 53% เป็น 27% เซรามิก BNBT บริสุทธิ์แสดงอัตราส่วนโครงสร้าง R:T ใกล้เคียงกันในอัตราส่วน 47:53

ภาพ 28 แบบรูปการเลี้ยวเบนรังสีเอกซ์ของเซรามิก BNBT ที่ปริมาณ (LiNb)⁴⁺ ในช่วง 0.00 ถึง 0.04 mol% ที่มุม (ก) 2 $extbf{ heta}$ =10-70° และ (ข) 2 $extbf{ heta}$ =36-50°

ภาพ 29 ผลการปรับแต่งเรียทเวลด์เซรามิก BNBT ที่เติมด้วย (LiNb)⁴⁺ ปริมาณ (ก) 0.00 (ข) 0.01 (ค) 0.02 (ง) 0.03 และ (จ) 0.04 mol% ตามลำดับ

ปริมาณ						ข้อมูลอะ	ตอม		ปริมาณ
(LiNb) ⁴⁺		พารามิเตอ	໌	ธาตุ	Х	у	Ζ	Occ.	โครงสร้าง
(mol%)									(%)
0.00	$\chi^{2}=1.7$	R3c:H	<i>a</i> =5.5938Å	Bi	0	0	0.2627	0.42310	53
	R _p =19.9%		<i>c=</i> 13.3016Å	Na	0	0	0.2627	0.36575	
	R _{wp} =17.7%		c/a=2.3778	Ti	0	0	0.0063	1.05992	
	R _{exp} =12.8%		<i>u</i> =0.0821	0	0.1260	0.3360	0.0833	0.0833	
			v=0.1357	Ва	0	0	0.2627	0.06105	
			w=0.1285	Li	0	= 0	0.0063	0	
				Nb	0	0	0.0063	0	
		P4bm	<i>a</i> =5.4617Å	Bi	0	0.5	0.5450	0.44565	47
			<i>c</i> =3.9004Å	Na	0	0.5	0.5450	0.47245	
			c/a=0.7141	Ti	0	0	0	0.095867	
			u=1.2668	01	0	0	0 <mark>.51</mark> 00	1.37665	
			v=0.1364	02	0.2710	0.2290	0.0150	1 <mark>.</mark> 22850	
			w=0.009	Ва	0	0.5	0.5 <mark>450</mark>	0.04292	
				Li	0	0	0	0	
				Nb	0	0	0	0	
×=0.01	$\chi^{2}=3.0$	R3c:H	<i>a</i> =5.5091Å	Bi	0	0	<mark>0.26</mark> 27	0.3697	40
	R _p =30.2%		<i>c=</i> 13.5244Å	Na	0	0	0.2627	0.4678	
	R _{wp} =22.6%		c/a=2.4548	Ti	0	0	0.0063	1.0125	
	R _{exp} =12.9%		u=-0.3466	0	0.1260	0.3360	0.0833	1.3839	
			v=0.1582	Ва	0	= 0	0.2627	0.0741	
			w=0.0469	Li	0	0	0.0063	0.0011	
				Nb	0	0	0.0063	0.0032	
		P4bm	<i>a</i> =5.4940Å	Bi	0	0.5	0.5450	0.4529	60
			c=3.940 5Å	Na	0	0.5	0.5450	0.4512	
			<i>c/a=</i> 0.7172	Ti	0	0	0	0.8448	
			u=1.9496	O1	0	0	0.5100	0.9053	
			v=0.1970	02	0.2710	0.2290	0.0150	1.7645	
			w=-0.1097	Ba	0	0.5	0.5450	0.0668	
				Li	0	0	0	0.0012	
				Nb	0	0	0	0.0028	

ตาราง 2 ผลการวิเคราะห์โครงสร้างผลึกและพารามิเตอร์เบื้องต้นด้วยการปรับแต่งเรียทเวลด์ของ เซรามิก BNBT ที่ปริมาณ (LiNb)⁴⁺ ระหว่าง 0.00 ถึง 0.04 mol%

ปริมาณ					ข้อมูลอะตอม						
(LiNb) ⁴⁺		พารามิเตอ	າຮົ	ธาตุ	x	у	Ζ	Occ.	_ โครงสร้าง		
(mol%)									(%)		
x=0.02	$\chi^{2}=1.2$	R3c:H	a=5.5223Å	Bi	0	0	0.2627	0.4338	37		
	R _p =16.6%		<i>c=</i> 13.5349Å	Na	0	0	0.2627	0.5165			
	R _{wp} =14.3%		<i>c/a</i> =2.4509	Ti	0	0	0.0063	1.0973			
	R _{exp} =13.1%		u=-0.0746	0	0.1260	0.3360	0.0833	1.9691			
			v=-0.0231	Ba	0	0	0.2627	0.0840			
			w=0.0618	Li	0	0	0.0063	0.0021			
				Nb	0	0	0.0063	0.0061			
		P4bm	a=5.5044Å	Bi	0	0.5	0.5450	0.4001	63		
			c=3.94 52Å	Na	0	0.5	0.5450	0.5185			
			<i>c/a=</i> 0.7167	Ti	0	0	0	0.9522			
			u=0.0888	01	0	0	0.5100	1.1945			
			v=0.9005	02	0.2710	0.2290	0.0150	1.8793			
			w=-0.1468	Ba	0	0.5	0.5450	0.0610			
				Li	0	0	0	0.0028			
				Nb	0	0	0	0.0061			
x=0.03	$\chi^2 = 3.6$	R3c:H	<i>a</i> =5.5076Å	Bi	0	0	0.2627	0.4024	31		
	R _p =32.0%		<i>c</i> =13.4810Å	Na	0	0	<mark>0.26</mark> 27	0.5134			
	R _{wp} =24.5%		c/a=2.4476	Ti	0	0	0.0063	1.0043			
	R _{exp} =12.9%		u=-0.0228	0	0.1260	0.3360	0.0833	2.8138			
			v=0.0498	Ba	0	0	0.2627	0.0746			
			w=0.0778	Li	0	0	0.0063	0.0022			
				Nb	0	0	0.0063	0.0128			
		P4bm	<i>a</i> =5.4903Å	Bi	0	0.5	0.5450	0.3750	69		
			c=3.93 40Å	Na	0	0.5	0.5450	0.5130			
			<i>c/a=</i> 0.7165	Ti	0	0	0	0.9726			
			u=1.2215	O1	0	0	0.5100	0.9714			
			v=0.9262	02	0.2710	0.2290	0.0150	1.3297			
			w=-0.2257	Ba	0	0.5	0.5450	0.0614			
				Li	0	0	0	0.0029			
				Nb	0	0	0	0.0118			

ปริมาณ						ข้อมูลอะ	ตอม		ปริมาณ
(LiNb) ⁴⁺		พารามิเตอ	ร์	ธาตุ	Х	у	Ζ	Occ.	_ โครงสร้าง
(mol%)									(%)
x=0.04	$\chi^{2}=2.3$	R3c:H	<i>a</i> =5.5260Å	Bi	0	0	0.2627	0.3847	27
	R _p =26.9%		<i>c=</i> 13.5460Å	Na	0	0	0.2627	0.5127	
	R _{wp} =20.5%		c/a=2.4512	Ti	0	0	0.0063	0.9969	
	R _{exp} =13.7%		u=-0.0954	0	0.1260	0.3360	0.0833	1.2670	
			v=0.0294	Ba	0	0	0.2627	0.0682	
			w=0.0582	Li	0	0	0.0063	0.0047	
				Nb	0	0	0.0063	0.0127	
		P4 <mark>b</mark> m	<i>a</i> =5.5147Å	Bi	0	0.5	0.5450	0.3631	73
			c=3.9481Å	Na	0	0.5	0.5450	0.5102	
			<i>c/a=</i> 0.7159	Ti	0	0	0	0.9094	
			u=0.2415	01	0	0	0.5100	4.6367	
			v=0.8681	02	0.2710	0.2290	<mark>0.01</mark> 50	1.1981	
			w=-0.1291	Ba	0	0.5	0.5450	0.0530	
				Li	0	0	0	0.0039	
				Nb	0	0	0	0.0129	

ภาพ 30 (ก)-(จ) แสดงโครงสร้างจุลภาคที่ผ่านการขัดแล้วกัดด้วยความร้อน (thermal etching) ของเซรามิก BNBT ที่ปริมาณ (LiNb)⁴⁺ ระหว่าง 0.00 ถึง 0.04 mol% พบว่าเซรามิกแสดง ลักษณะเกรนเป็นรูปค่อนข้างกลมและการเจริญเติบโตแบบไร้ทิศทางในทุกตัวอย่าง รูพรุนเพิ่มมากขึ้น เมื่อปริมาณ (LiNb)⁴⁺ เพิ่มขึ้น นอกจากนี้ จากตาราง 3 การเติม (LiNb)⁴⁺ ส่งผลให้ขนาดเกรนเฉลี่ย ลดลงอย่างต่อเนื่อง โดยขนาดเกรนเฉลี่ยลดลงจาก 1.7 เป็น 0.9 µm เมื่อปริมาณ (LiNb)⁴⁺ เพิ่มขึ้น จาก 0.00 ถึง 0.04 mol% เนื่องจากการเติม (LiNb)⁴⁺ ทำให้เกิดการยับยั้งการเจริญเติบโตของเกรน ส่งผลให้ขนาดเกรนเฉลี่ยลดลง การกระจายตัวของเกรนลดลงเมื่อปริมาณ (LiNb)⁴⁺ เพิ่มขึ้น ดังภาพ 31 (ก)-(จ) เมื่อวัดความหนาแน่นของเซรามิก พบว่าความหนาแน่นลดลงจาก 5.84 เป็น 5.54 g/cm³ เมื่อปริมาณ (LiNb)⁴⁺ เพิ่มขึ้นจาก 0.00 ถึง 0.04 mol% ตามตาราง 3

ภาพ 30 โครงสร้างจุลภาคของเซรามิก BNBT ที่ปริมาณ (LiNb)⁴⁺ เป็น (ก) 0.00 (ข) 0.01 (ค) 0.02 (ง) 0.03 และ (จ) 0.04 mol% ตามลำดับ

ภาพ 31 การกระจายตัวของเกรนของเซรามิก BNBT ที่ปริมาณ (LiNb)⁴⁺ เป็น (ก) 0.00 (ข) 0.01 (ค) 0.02 (ง) 0.03 และ (จ) 0.04 mol% ตามลำดับ

ภาพ 32 (ก)-(จ) แสดงสมบัติไดอิเล็กทริกที่วัดในช่วงอุณหภูมิห้องถึง 450 °C และความถี่ 1 10 และ 100 kHz ของเซรามิก BNBT ที่ปริมาณ (LiNb)⁴⁺ ระหว่าง 0.00 ถึง 0.04 mol% สังเกตได้ ้ว่าเกิดพีคขึ้นในสองช่วงความโค้งอย่างชัดเจน โดยปกติแล้ว เซรามิก BNT แสดงพีคแรกบริเวณที่ อุณหภูมิต่ำเป็นพีค เรียกว่า T_d (depolarization temperature) ซึ่งเป็นการเปลี่ยนแปลงสมมาตร ของโพลานาโนรีเจียน (polar nanoregions, PNRs) จากโครงสร้างรอมโบฮีดรัลเป็นเททระโกนัลใน ระหว่างกระบวนการเปลี่ยนแปลงทางความร้อน (thermal evolution process) (30) และพีคที่สอง เกิดขึ้นที่บริเวณอุณหภูมิสูง เรียกว่า T_m (temperature of maximum dielectric constant) เป็น พืคที่ทำให้ค่าคงที่ไดอิเล็กทริกมีค่าสูงสุด (31) พบว่า ที่ความถี่ 1 kHz T_d ลดลงเล็กน้อยจาก 162 ถึง 133 °C เมื่อปริมาณ (LiNb)⁴+ เพิ่มขึ้นจาก 0.00 ถึง 0.04 mol% ดังตาราง 3 การลดลงของ T_d อาจ ้เกิดจากการบิดเบี้ยวของความเป็<mark>นระเบี</mark>ยบเฟร์โรอิเล็กทริก (ferroelectric order) จากการแทนที่ ของ (LiNb)⁴⁺ ในบริเวณ B ส่งผลให้ลดความเสถียรของโดเมนเฟร์โรอิเล็กทริก (ferroelectric domain) ซึ่ง T_d สามา<mark>รถต</mark>ีความได้ว่าเป็นตัวบ่งชี้ความเสถียรของโดเมนเฟอร์โรอิเล็กทริก (32) ใน ทำนองเดียวกัน T_m ลดลงจาก 285 เป็น 264 °C เมื่อปริมาณ (LiNb)⁴⁺ เพิ่มขึ้นจาก 0.00 ถึง 0.04 mol% ดัง<mark>ต</mark>าราง 3 การแทนที่บร**ิเว**ณ B <mark>ด้วยความแ</mark>ตกต่างของรัศมีไอ<mark>อ</mark>อนทำให้เกิดความผิดปกติ ของแลตทิซ ซึ่ง<mark>รบ</mark>กวนความเป็นระเบียบเฟร์โรอิเล็กทริกระยะยาว (long-range ferroelectric order) และเกิดสนามแบบสุ่มสูงในเซรามิก ส่งผลให้ค่า T_m ลดลง (33) <mark>สำห</mark>รับตัวอย่างทั้งหมด เส้น โค้งไดอิเล็กตริกแ<mark>สด</mark>งจุ<mark>ดพีคที่</mark>กว้างและการกระจายความถี่สูง<mark>รอบๆ</mark> T_d และ T_m เมื่อความถี่เพิ่มขึ้น ้จาก 1 เป็น 100 kHz T_d จะเลื่อนไปที่อุณหภูมิสูงขึ้น ในข<mark>ณะที่</mark> T_m จะ</mark>เลื่อนไปที่อุณหภูมิที่ต่ำลง ตามที่แสดงในลูกศรใน<mark>ภาพ 32 (ก)-(จ) นอกจากนี้ การสูญเสียไดอ</mark>ิเล็กทริ<mark>ก</mark>ที่ T_d ขยับไปอุณหภูมิที่ ้สูงขึ้นเมื่อความถี่เพิ่มขึ้นจาก 1 เป็น 100 kHz ตามที่แสดงในลูกศรประในภาพ 32 (ก)-(จ) จาก ผลลัพธ์เหล่านี้ สามารถจำแนกได้ว่าเซรามิกแสดงพฤติกรรมรีแลกเซอร์-เฟอร์โรอิเล็กทริก (relaxor ferroelectric) ในทุกตัวอย่าง (34)

ค่าคงที่ไดอิเล็กทริก (ϵ_m) และสูญเสียไดอิเล็กทริก (tan δ) ที่ T_m ลดลงจาก 6324 เป็น 3559 และจาก 0.07 เป็น 0.03 ตามลำดับ เมื่อปริมาณ (LiNb)⁴⁺ เพิ่มขึ้นจาก 0.00 ถึง 0.04 mol% ดัง แสดงในตาราง 3 การลดลงของ ϵ_m อาจเกิดจากการเปลี่ยนแปลงของอัตราส่วนโครงสร้างจาก MPB โครงสร้างจุลภาคแย่ลงและความหนาแน่นลดลง

ภาพ 32 สมบัติไดอิเล็กทริกของเซรามิก BNBT ที่ปริมาณ (LiNb)⁴⁺ เป็น (ก) 0.00 (ข) 0.01 (ค) 0.02 (ง) 0.03 และ (จ) 0.04 mol% ตามลำดับ

ภาพ 33 (ก)-(จ) แสดงวงวนโพราไรเซซันกับสนามไฟฟ้า (P-E) หรือวงวนฮีสเทอรีซิสของเซรา มิก BNBT ที่เติมปริมาณ (LiNb)⁴⁺ ต่างกัน วัดภายใต้สนามไฟฟ้า 40 kV/cm ที่อุณหภูมิห้อง โดยทั่วไปแล้ว รีแลกเซอร์-เฟอร์โรอิเล็กทริกจะแสดงพฤติกรรมทั้งแบบ ergodic รีแลกเซอร์-เฟร์โรอิ เล็กทริกและ non-ergodic รีแลกเซอร์-เฟร์โรอิเล็กทริก โดยเซรามิกในตระกูล BNT แสดงพฤติกรรม ergodic รีแลกเซอร์-เฟร์โรอิเล็กทริก ซึ่งเมื่อสนามไฟฟ้าถูกลบออก ลำดับเฟร์โรอิเล็กทริกที่เกิดจาก สนามไฟฟ้าจะแปลงกลับไปเป็นรีแลกเซอร์เฟร์โรอิเล็กทริกเริ่มต้น ในทางกลับกัน พฤติกรรม nonergodic รีแลกเซอร์-เฟร์โรอิเล็กทริก จะเปลี่ยนเป็นเฟร์โรอิเล็กทริกอย่างถาวรภายใต้สนามไฟฟ้า และลักษณะของวงวนฮิสเทอรีซิสจะคล้ายกับเฟร์โรอิเล็กทริกทั่วไป (35) จะเห็นได้ว่าเซรามิก BNBT ที่ไม่เติม (LiNb)⁴⁺ แสดงวงวนฮีสเทอรีซิสขนาดใหญ่ที่มีโพลาไรเซชันสูงสุดสูง (P_{max}) ที่ 25.9 μ C/cm₂ และโพลาไรเซชันคงค้างสูง (P_r) ที่ 21.2 μ C/cm² ดังตาราง 3 ซึ่งบ่งบอกถึงพฤติกรรม non-ergodic รีแลกเซอร์-เฟร์โรอิเล็กทริก สอดคล้องกับผลลัพธ์ของ B. Thatawong และคณะ (26) เมื่อ (LiNb)⁴⁺ เพิ่มขึ้น พบว่าวงวนฮีสเทอรีซิสคอดกิ่วและบางขึ้น โดย P_{max} ลดลงเล็กน้อยและ P_r ลดลงอย่างมาก ดังตาราง 3 ซึ่งบ่งชี้ถึงการเปลี่ยนแปลงเป็นพฤติกรรม ergodic รีแลกเซอร์-เฟร์โรอิเล็กทริก (36) การ เปลี่ยนพฤติกรรมจาก non-ergodic รีแลกเซอร์-เฟร์โรอิเล็กทริก ไปเป็น ergodic รีแลกเซอร์-เฟร์ โรอิเล็กทริก อาจเกิดจากการบิดเบี้ยวของคำสั่งเฟร์โรอิเล็กทริกระยะยาว ซึ่งส่งผลให้เกิดการ เปลี่ยนแปลงของโครงสร้างโดเมนจาก macrodomain ไปเป็น microdomain โดยการเติม (LiNb)⁴⁺ (37)

จากตาราง 3 ค่า P_r และสนามไฟฟ้าลบล้าง (E_c) ลดลงอย่างต่อเนื่องจาก 21.2 เป็น 8.6 µC/cm² และจาก 23.0 เป็น 11.8 kV/cm ตามลำดับ เมื่อปริมาณ (LiNb)⁴⁺ เพิ่มขึ้นจาก 0.00 เป็น 0.04 mol% เนื่องจากการเพิ่มขึ้นของโครงสร้างเททระโกนัล (38) และการแทนที่ของ (LiNb)⁴⁺ ทำให้ ลำดับเฟร์โรอิเล็กทริกของเซรามิก BNBT บิดเบี้ยวอย่างมีนัยสำคัญ ทำให้ความเสถียรของไดโพลไฟฟ้า (electric dipole) ลดลง ส่งผลให้สมบัติเฟร์โรอิเล็กทริกเสื่อมลง (13)

ตาราง 3 ขนาดเกรน ค<mark>วามหนาแน่น สมบัติไดอิเล็กทริกและเฟร์โร</mark>อิเล็กทริกของเซรามิก BNBT ที่ ปริมาณ (LiNb)⁴⁺ ต่างๆ

	ปริมาณ	ขนาดเกรน	ความ	Τ _d	T _m	₽ _m	tan δ	P _{max}	Pr	Ec	
	(LiNb) ⁴⁺	ເฉลี่ย	หนาแน่น	(0)	(0)		at T_m	(- · ·)	(- · · ·)	<i>.</i>	
_	(mol%)	(µm)	(g/cm ³)	(°C)	(°C)			(µC/cm²)	(µC/cm²)	(kV/cm)	
	0.00	1.7	5.84	162	285	6324	0.07	25.9	21.2	23.0	
	0.01	1.7	5.73	138	276	4414	0.03	23.6	17.2	20.2	
	0.02	0.8	5.64	138	265	3638	0.02	23.2	15.0	20.1	
	0.03	0.9	5.62	134	265	3776	0.02	22.7	12.5	16.6	
	0.04	0.9	5.54	133	264	3559	0.02	22.2	8.6	11.8	

ภาพ 33 สมบัติเฟร์โรอิเล็กทริกของเซรามิก BNBT ที่ปริมาณ (LiNb)⁴⁺ เป็น (ก) 0.00 (ข) 0.01 (ค) 0.02 (ง) 0.03 และ (จ) 0.04 mol% ตามลำดับ

การวิเคราะห์ปริมาณการแทนที่ด้วย (NiNb)⁴⁺ ในบริเวณ B ของเซรามิก BNBT ต่อโครงสร้าง เฟส โครงสร้างจุลภาค และสมบัติไฟฟ้า โดยวิธีการเผาไหม้แบบปฏิกิริยายาสถานะของแข็ง

ภาพ 34 (ก) แสดงแบบรูปการเลี้ยวเบนรังสีเอกซ์ของเซรามิก BNBT เติมด้วย (NiNb)⁴⁺ ปริมาณ 0.00 ถึง 0.05 mol% ที่มุม 20=10-70° พบว่าเซรามิกแสดงโครงสร้างเพอรอฟสไกต์บริสุทธิ์ แบบผสมระหว่างรอมโบฮีดรัล และเททระโกนัลในทุกตัวอย่าง สามารถสันนิษฐานได้ว่า (NiNb)⁴⁺ กระจายตัวเข้าไปในแลตทิชของเซรามิก BNBT ได้อย่างสมบูรณ์ เมื่อขยายแบบรูปการเลี้ยวรังสีเอ็กซ์ที่ มุม 20=36-50° ดังแสดงในภาพ 34 (ข) พบว่าแบบรูปแสดงพีคการเลี้ยวเบน (003)_R/(021)_R และ (002)_T/(200)_T ที่มุม 20 ประมาณ 40° และ 46° ตามลำดับ ในทุกตัวอย่าง สันนิษฐานได้ว่าเซรามิก แสดงโครงสร้างแบบผสมระหว่างรอมโบฮีดรัล และเททระโกนัลในทุกตัวอย่าง พบว่าเมื่อปริมาณ (NiNb)⁴⁺ เพิ่มขึ้น พีคการเลี้ยวเบน (003)_R/(021)_R และ (002)_T/(200)_T มีการรวมกันเป็นพีคเดี่ยวมาก ขึ้น นอกจากนี้ พีคการเลี้ยวเบนขยับไปยังมุมต่ำกว่า เมื่อปริมาณ (NiNb)⁴⁺ เพิ่มขึ้น บ่งชี้บอกว่าขนาด หน่วยเซลล์มีการขยายตัว เนื่องจากแทนที่ของไอออนที่มีขนาดใหญ่กว่าของ Ni²⁺ (0.69 Å) และ Nb⁵⁺ (0.64 Å) เทียบกับ Ti⁴⁺ (0.61 Å) ที่บริเวณ B

พบการอยู่ร่วมกันของโครงสร้างโครงสร้างรอมโบฮีดรัล และโครงสร้างเททระโกนัลในทุก ตัวอย่าง เมื่อปริมาณ (NiNb)⁴⁺ เพิ่มขึ้นจาก 0.00 ถึง 0.05 mol% โครงสร้างเททระโกนัลเพิ่มขึ้นจาก 47% เป็น 71% ในขณะที่โครงสร้างรอมโบฮีดรัลลดลงจาก 53% เป็น 29% ดังแสดงในตาราง 4 โดย อัตราส่วนโครงสร้าง R:T ที่ใกล้เคียงกัน (47:53) ได้จากเซรามิก BNBT บริสุทธิ์ ซึ่งยืนยันด้วยผลการ วิเคราะห์การปรับแต่งเรียทเวลด์ ดังแสดงในภาพ 35 (ก)-(ฉ)

ภาพ 34 แบบรูปการเลี้ยวเบนรังสีเอกซ์ของเซรามิก BNBT ที่ปริมาณ (NiNb)⁴⁺ ในช่วง 0.00 ถึง 0.05 mol% ที่มุม (ก) 2 $extbf{ heta}$ =10-70° และ (ข) 2 $extbf{ heta}$ =36-50°

ภาพ 35 ผลการปรับแต่งเรียทเวลด์เซรามิก BNBT ที่ปริมาณ (NiNb)⁴⁺ เป็น (ก) 0.00 (ข) 0.01 (ค) 0.02 (ง) 0.03 (จ) 0.04 และ (ฉ) 0.05 mol% ตามลำดับ

ปริมาณ						ข้อมูลอะ	ตอม		ปริมาณ
(NiNb) ⁴⁺		พารามิเตอ	ີ່	ธาตุ	Х	у	Ζ	Occ.	โครงสร้าง
(mol%)									(%)
0.00	$\chi^{2}=1.7$	R3c:H	<i>a</i> =5.5938Å	Bi	0	0	0.2627	0.42310	53
	R _p =19.9%		<i>c=</i> 13.3016Å	Na	0	0	0.2627	0.36575	
	R _{wp} =17.7%		c/a=2.3778	Ti	0	0	0.0063	1.05992	
	R _{exp} =12.8%		<i>u</i> =0.0821	0	0.1260	0.3360	0.0833	0.0833	
			v=0.1357	Ва	0	0	0.2627	0.06105	
			w=0.1285	Ni	0	= 0	0.0063	0	
				Nb	0	0	0.0063	0	
		P4bm	<i>a</i> =5.4617Å	Bi	0	0.5	0.5450	0.44565	47
			<i>c</i> =3.9004Å	Na	0	0.5	0.5450	0.47245	
			c/a=0.7141	Ti	0	0	0	0.095867	
			u=1.2668	01	0	0	0 <mark>.51</mark> 00	1.37665	
			v=0.1364	02	0.2710	0.2290	0.0150	1 <mark>.</mark> 22850	
			w=0.009	Ва	0	0.5	0.5 <mark>450</mark>	0.04292	
				Ni	0	0	0	0	
	YAL			Nb	0	0	0	0	
0.01	$\chi^{2}=1.3$	R3c:H	<i>a</i> =5.5101Å	Bi	0	0	<mark>0.26</mark> 27	0.3705	34
	<i>R</i> _p =17.6%		<i>c=</i> 13.5828Å	Na	0	0	0.2627	0.4694	
	R _{wp} =16.3%		c/a=2.4650	Ti	0	0	0.0063	1.0139	
	R _{exp} =14.0%		u=-0.0990	0	0.1260	0.3360	0.0833	1.1631	
			v=0.1975	Ba	0	= 0	0.2627	0.0810	
			w=0.0012	Ni	0	0	0.0063	0.0047	
				Nb	0	0	0.0063	0.0031	
		P4bm	<i>a</i> =5.5026Å	Bi	0	0.5	0.5450	0.4022	66
			c=3.94 29Å	Na	0	0.5	0.5450	0.4429	
			<i>c/a=</i> 0.7165	Ti	0	0	0	0.8400	
			u=1.0019	O1	0	0	0.5100	1.1864	
			v=0.1900	02	0.2710	0.2290	0.0150	2.2614	
			w=-0.0141	Ba	0	0.5	0.5450	0.0670	
				Ni	0	0	0	0.0025	
				Nb	0	0	0	0.0025	

ตาราง 4 ผลการวิเคราะห์โครงสร้างผลึกและพารามิเตอร์เบื้องต้นด้วยการปรับแต่งเรียทเวลด์ของ เซรามิก BNBT ปริมาณ (NiNb)⁴⁺ ตั้งแต่ 0.00 ถึง 0.05 mol%

ปริมาณ						ข้อมูลอะ	ตอม		ปริมาณ	
(NiNb) ⁴⁺		พารามิเตอ	ົ້າ	ธาตุ	X	У	Ζ	Occ.	_ โครงสร้าง	
(mol%)									(%)	
0.02	$\chi^{2}=1.8$	R3c:H	<i>a</i> =5.5165Å	Bi	0	0	0.2627	0.3654	32	
	R _p =20.5%		<i>c=</i> 13.5932Å	Na	0	0	0.2627	0.4678		
	R _{wp} =19.2%		c/a=2.4641	Ti	0	0	0.0063	1.0107		
	R _{exp} =14.1%		u=-0.0560	0	0.1260	0.3360	0.0833	1.2559		
			v=0.2044	Ba	0	0	0.2627	0.0850		
			w=-0.0127	Ni	0	0	0.0063	0.0024		
				Nb	0	0	0.0063	0.0209		
		P4bm	<i>a</i> =5.5129Å	Bi	0	0.5	0.5450	0.3958	68	
			c=3.946 2Å	Na	0	0.5	0.5450	0.4404		
			<i>c/a=</i> 0.7158	Ti	0	0	0	0.8401		
			u=0.8071	01	0	0	0.5100	1.1472		
			v=0.0157	02	0.2710	0.2290	0.0150	<mark>2.2374</mark>		
			w=0.0447	Ba	0	0.5	0.5450	0.0677		
				Ni	0	0	0	0.0052		
				Nb	0	0	0	0.0025		
0.03	$\chi^2 = 2.6$	R3c:H	a=5.5242Å	Bi	0	0	0.2627	<mark>0</mark> .4477	31	
	R _p =26.8%		<i>c=</i> 13.5426Å	Na	0	0	<mark>0.26</mark> 27	0.5228		
	R _{wp} =23.4%		c/a=2.4515	Ti	0	0	0.0063	1.0066		
	R _{exp} =14.4%		u=0.0198	0	0.1260	0.3360	0.0833	3.3309		
			v=-0.0302	Ba	0	0	0.2627	0.0787		
			w=0.0183	Ni	0	0	0.0063	0.0078		
				Nb	0	0	0.0063	0.0100		
		P4bm	<i>a</i> =5.5141Å	Bi	0	0.5	0.5450	0.4377	69	
			c=3.95 50Å	Na	0	0.5	0.5450	0.5177		
			<i>c/a=</i> 0.7172	Ti	0	0	0	1.0661		
			u=-0.4205	O1	0	0	0.5100	2.6723		
			v=0.5554	02	0.2710	0.2290	0.0150	3.3435		
			w=-0.1159	Ba	0	0.5	0.5450	0.0695		
				Ni	0	0	0	0.0108		
				Nb	0	0	0	0.0099		
ปริมาณ	ข้อมูลอะตอม									
----------------------	-------------------------	-----------	--------------------	------	--------	--------	----------------------	----------------------	----------------	--
(NiNb) ⁴⁺		พารามิเตอ	ร์	ธาตุ	X	у	Ζ	Occ.	_ โครงสร้าง	
(mol%)									(%)	
0.04	$\chi^{2}=2.0$	R3c:H	a=5.5387Å	Bi	0	0	0.2627	0.4557	30	
	R _p =22.5%		<i>c=</i> 13.5524Å	Na	0	0	0.2627	0.4095		
	R _{wp} =19.8%		<i>c/a</i> =2.4468	Ti	0	0	0.0063	1.05880		
	R _{exp} =13.7%		u=-0.0685	0	0.1260	0.3360	0.0833	1.6255		
			v=0.0301	Ba	0	0	0.2627	0.0923		
			w=0.0196	Ni	0	0	0.0063	0.0067		
				Nb	0	0	0.0063	0.0168		
		P4bm	a=5.5292Å	Bi	0	0.5	0.5450	0.4415	70	
			c=3.947 1Å	Na	0	0.5	0.5450	0.5195		
			<i>c∕a=</i> 0.7138	Ti	0	0	0	1.0182		
			u=-0.2645	01	0	0	0.5100	3.3955		
			v=0.8447	02	0.2710	0.2290	0.0150	<mark>3.8985</mark>		
			w=-0.1129	Ba	0	0.5	0.5450	<mark>0</mark> .0773		
				Ni	0	0	0	0.0229		
				Nb	0	0	0	0.0168		
0.05	$\chi^2 = 2.5$	R3c:H	a=5.5357Å	Bi	0	0	0.2627	<mark>0</mark> .4737	29	
	R _p =25.0%		<i>c=</i> 13.5785Å	Na	0	0	<mark>0.26</mark> 27	0.4121		
	R _{wp} =22.1%		c/a=2.4529	Ti	0	0	0.0063	1.0735		
	R _{exp} =14.0%		u=-0.0785	0	0.1260	0.3360	0.0833	1.2871		
			v=0.0407	Ba	0	0	0.2627	0.0790		
			w=0.0197	Ni	0	0	0.0063	0.0161		
				Nb	0	0	0.0063	0.0171		
		P4bm	<i>a</i> =5.5134Å	Bi	0	0.5	0.5450	0.4022	71	
			c=3.95 88Å	Na	0	0.5	0.5450	0.5200		
			<i>c/a=</i> 0.7180	Ti	0	0	0	1.0482		
			u=-0.2150	O1	0	0	0.5100	3.3570		
			v=0.8441	02	0.2710	0.2290	0.0150	3.3259		
			w=-0.1038	Ba	0	0.5	0.5450	0.0687		
				Ni	0	0	0	0.0141		
				Nb	0	0	0	0.0165		

ภาพ 36 โครงสร้างจุลภาคของเซรามิก BNBT ที่ปริมาณ (NiNb)⁴⁺ เป็น (ก) 0.00 (ข) 0.01 (ค) 0.02 (ง) 0.03 (จ) 0.04 และ (ฉ) 0.05 mol% ตามลำดับ

โครงสร้างจุลภาคที่ผ่านการขัดแล้วกัดด้วยความร้อนของเซรามิก BNBT ที่ปริมาณการเติม (NiNb)⁴⁺ ตั้งแต่ 0.00 ถึง 0.05 mol% ดังแสดงภาพ 36 (ก)-(ฉ) พบว่าเซรามิกแสดงรูปร่างหลาย เหลี่ยมและการเจริญเติบโตแบบไร้ทิศทางในทุกตัวอย่าง ความพรุนของเซรามิกเพิ่มขึ้นเมื่อปริมาณ (NiNb)⁴⁺ เพิ่มขึ้น นอกจากนี้ ขนาดเกรนเฉลี่ยลดลงจาก 1.7 เป็น 1.0 μm เมื่อปริมาณ (NiNb)⁴⁺ เพิ่มขึ้นจาก 0.00 ถึง 0.05 mol% (ตาราง 5) เนื่องจากเกิดการยับยั้งการเจริญเติบโตของเกรน เป็น ผลมาจากการเติม (NiNb)⁴⁺ ทำให้ขนาดเกรนเฉลี่ยลดลง การกระจายตัวของเกรนลดลงเมื่อปริมาณ (NiNb)⁴⁺ เพิ่มขึ้น ดังภาพ 37 (ก)-(ฉ) นอกจากนี้ จากตาราง 5 พบว่าความหนาแน่นของเซรามิกลดลง จาก 5.84 เป็น 5.44 g/cm³ เมื่อปริมาณ (NiNb)⁴⁺ เพิ่มขึ้นจาก 0.00 ถึง 0.05 mol%

ภาพ 37 การกระจายตัวของเกรนของเซรามิก BNBT ที่ปริมาณ (NiNb)⁴⁺ เป็น (ก) 0.00 (ข) 0.01 (ค) 0.02 (ง) 0.03 (จ) 0.04 และ (ฉ) 0.05 mol% ตามลำดับ

เส้นโค้งไดอิเล็กทริกวัดในช่วงอุณหภูมิห้องถึง 450 °C และความถี่ 1 10 และ 100 kHz ของ เซรามิก BNBT ที่ปริมาณ (NiNb)⁴⁺ ระหว่าง 0.00 ถึง 0.05 mol% แสดงดังภาพ 38 (ก)-(ฉ) พบพีค ในสองช่วงความโค้งอย่างชัดเจนในทุกตัวอย่าง เส้นโค้งไดอิเล็กทริกแสดงจุดพีคที่กว้างและการ กระจายความถี่สูงรอบๆ T_d และ T_m ในทุกตัวอย่าง เมื่อความถี่เพิ่มขึ้น T_d จะขยับไปที่อุณหภูมิสูง ในขณะที่ T_m ขยับไปที่อุณหภูมิที่ต่ำลง ตามที่แสดงในลูกศรในภาพ 38 (ก)-(ฉ) ยิ่งไปกว่านั้น การ สูญเสียไดอิเล็กทริกบริเวณ T_d เลื่อนไปที่อุณหภูมิสูงขึ้นเมื่อความถี่เพิ่มขึ้น ตามที่แสดงในลูกศรประใน ภาพ 38 (ก)-(ฉ) บ่งชี้ได้ว่าตัวอย่างทั้งหมดแสดงพฤติกรรมรีแลกเซอร์-เฟอร์โรอิเล็กทริก (34) จาก ตาราง 4 T_d ที่ความถี่ 1 kHz มีแนวโน้มลดลงจาก 164 ถึง 130 °C เมื่อปริมาณ (NiNb)⁴⁺ เพิ่มขึ้นจาก 0.00 ถึง 0.05 mol% โดย T_d สามารถบ่งชี้ความเสถียรของโดเมนเฟอร์โรอิเล็กทริก การลดลงของ T_d อาจเกิดจากการแทนที่ของ (NiNb)⁴⁺ ในบริเวณ B ทำให้ลำดับเฟร์โรอิเล็กทริกบิดเบี้ยว เป็นเหตุให้ ความเสถียรของโดเมนเฟร์โรอิเล็กทริกลดลง (32) ในทำนองเดียวกัน T_m ลดลงจาก 276 เป็น 245 °C เมื่อปริมาณ (NiNb)⁴⁺ เพิ่มขึ้นจาก 0.00 ถึง 0.05 mol% ดังตาราง 5 การลดลงของ T_m เกิดจากการ แทนที่บริเวณ B ด้วยความแตกต่างของรัศมีไอออนทำให้แลตทิชบิดเบี้ยว ทำให้รบกวนความเป็น ระเบียบเฟร์โรอิเล็กทริกระยะยาว และเกิดสนามแบบชุ่มสูงในระบบ (33)

จากตาราง 5 ค่า ε_m และ tan δ ที่ T_m มีแนวโน้มลดลงจาก 5745 เป็น 4236 และจาก 0.02 เป็น 0.01 ตามลำดับ เมื่อปริมาณ (NiNb)⁴⁺ เพิ่มขึ้นจาก 0.00 ถึง 0.05 mol% ค่า ε_m ของเซรามิกลด ลงเนื่องจากการเลื่อนของอัตราส่วนโครงสร้างจาก MPB โครงสร้างจุลภาคที่ด้อยกว่าและความ หนาแน่นลดลง

ภาพ 38 เส้นโค้งไดอิเล็กทริกของเซรามิก BNBT ที่ปริมาณ (NiNb)⁴⁺ เป็น (ก) 0.00 (ข) 0.01 (ค) 0.02 (ง) 0.03 (จ) 0.04 และ (ฉ) 0.05 mol% ตามลำดับ

วงวนฮีสเทอรีซิส (P-E) ของเซรามิก BNBT ที่ปริมาณ (NiNb)⁴⁺ ตั้งแต่ 0.00 ถึง 0.05 mol% วัดที่อุณหภูมิห้อง ภายใต้สนามไฟฟ้า 40 kV/cm แสดงดังภาพ 39 (ก)-(ฉ) พบว่าเซรามิกแสดงวงวนฮี สเทอรีซิสขนาดใหญ่ที่มี P_{max} และ P_r สูงสุดที่ 25.9 และ 21.2 μC/cm² ตามลำดับ (ตาราง 5) ที่ ปริมาณ (NiNb)⁴⁺ เป็น 0.00 mol% บ่งซี้ถึงพฤติกรรม non-ergodic รีแลกเซอร์-เฟร์โรอิเล็กทริก (26) จากตาราง 5 P_{max} ลดลงเล็กน้อยในขณะที่ P_r ลดลงอย่างมาก และวงวนฮีสเทอรีซิสคอดกิ่วและ บางลงเมื่อปริมาณ (NiNb)⁴⁺ เพิ่มขึ้น บ่งบอกถึงการเปลี่ยนแปลงพฤติกรรมจาก non-ergodic รีแลก เซอร์-เฟร์โรอิเล็กทริก เป็น ergodic รีแลกเซอร์-เฟร์โรอิเล็กทริก (36) ซึ่งอาจเกิดจากการการเติม (NiNb)⁴⁺ ทำให้คำสั่งเฟร์โรอิเล็กทริกระยะยาวบิดเบี้ยว ส่งผลให้โครงสร้างโดเมนเปลี่ยนแปลงจาก macrodomain ไปเป็น microdomain (37)

ค่า P_r และ E_c ของเซรามิกลดลงอย่างต่อเนื่องจาก 21.2 เป็น 2.3 µC/cm² และจาก 23.0 เป็น 4.3 kV/cm ตามลำดับ เมื่อปริมาณ (NiNb)⁴⁺ เพิ่มขึ้นจาก 0.00 เป็น 0.05 mol% ดังตาราง 5 สมบัติเฟร์โรอิเล็กทริกลดลง เนื่องจากลำดับเฟร์โรอิเล็กทริกของเซรามิกบิดเบี้ยวจากการแทนที่ของ (NiNb)⁴⁺ ส่งผลให้ความเสถียรของไดโพลไฟฟ้าลดลง (13) และการเพิ่มขึ้นของโครงสร้างเททระโกนัล (38)

ตาราง 5 ขนาดเกรน ความหนาแน่น สมบัติไดอิเล็กทริกและเฟร์โรอิเล็กทริกของเซรามิก BNBT ที่ ปริมาณ (NiNb)⁴⁺ ต่างๆ

ปริมาณ	ขน <mark>าดเกร</mark> น	ความ	Ta	Tm	E	tanδ	Pmax	Pr	Ec
(NiNb) ⁴⁺ (mol%)	เฉลี่ย (µm)	หนาแน่น (g/cm³)	(°C)	(°C)		at T _m	(µC/cm ²)	' (μ <mark>C/cm²</mark>)	(kV/cm)
0.00	1.7	5.84	164	276	5745	0.02	25.9	<mark>21.2</mark>	23.0
0.01	1.4	5.80	157	272	5827	0.03	23.2	13.5	18.2
0.02	1.2	5.64	144	268	4940	0.01	13.5	5.0	17.0
0.03	1.2	5.64	145	253	4589	0.01	17.0	4.9	16.9
0.04	1.0	5.60	138	250	4376	0.01	16.6	3.8	6.7
0.05	1.0	5.44	130	245	4236	0.01	13.7	2.3	4.3

ภาพ 39 สมบัติเฟร์โรอิเล็กทริกของเซรามิก BNBT ที่ปริมาณ (NiNb)⁴⁺ เป็น (ก) 0.00 (ข) 0.01 (ค) 0.02 (ง) 0.03 (จ) 0.04 และ (ฉ) 0.05 mol% ตามลำดับ

การวิเคราะห์ผลการเติมแบบแทนที่ด้วย (AlNb)⁴⁺ ในบริเวณ B ของเซรามิก BNBT โดยวิธีการ เผาไหม้แบบปฏิกิริยายาสถานะของแข็ง ต่อโครงสร้างเฟส โครงสร้างจุลภาค และสมบัติไฟฟ้า

แบบรูปการเลี้ยวเบนรังสีเอกซ์ของเซรามิก BNBT เติมด้วย (AlNb)⁴⁺ ปริมาณ 0.00 ถึง 0.05 mol% ที่มุ่ม 20=10-70° แสดงดังภาพ 40 (ก) พบว่าเซรามิกทุกตัวอย่างแสดงโครงสร้างเพอรอฟส ไกต์บริสุทธิ์แบบผสมระหว่างรอมโบฮีดรัล และเททระโกนัล โดยสันนิษฐานได้ว่า (AlNb)⁴⁺ กระจายตัว เข้าไปในโครงสร้างแลตทิซของเซรามิก BNBT ได้อย่างสมบูรณ์ เมื่อขยายที่มุ่มประมาณ 20=36-50° ดังแสดงในภาพ 40 (ข) แบบรูปแสดงพีคการเลี้ยวเบน (003)_R/(021)_R ที่มุ่ม 20 ประมาณ 40° และ $(002)_T/(200)_T$ ที่มุ่ม 20 ประมาณ 46° ในทุกตัวอย่าง แสดงถึงโครงสร้างแบบผสมระหว่างรอม โบฮีดรัล และเททระเลี้ยวเบน $(003)_R/(021)_R$ ร่วมกันเป็นพีคเดี่ยว มากขึ้นเมื่อปริมาณ (AlNb)⁴⁺ เพิ่มมากขึ้น ยิ่งไปกว่านั้น เมื่อปริมาณ (AlNb)⁴⁺ เพิ่มขึ้น พีคการ เลี้ยวเบนเลื่อนไปยังมุ่มต่ำกว่าเล็กน้อย แสดงถึงการขยายตัวของขนาดหน่วยเซลล์ เนื่องจากแทนที่ ของไอออนบริเวณ B ที่มีขนาดแตกต่างกันของ Al³⁺ (0.54 Å) และ Nb⁵⁺ (0.64 Å) เทียบกับ Ti⁴⁺ (0.61 Å)

จากการยืนยันด้วยผลการวิเคราะห์การปรับแต่งเรียทเวลด์ พบการอยู่ร่วมกันของโครงสร้าง โครงสร้างรอมโบฮีดรัล และโครงสร้างเททระโกนัลในทุกตัวอย่าง ดังแสดงในภาพ 41 (ก)-(ฉ) โครงสร้างเททระโกนัลเพิ่มขึ้นจาก 47% เป็น 68% ในขณะที่โครงสร้างรอมโบฮีดรัลลดลงจาก 53% เป็น 32% เมื่อปริมาณ (AlNb)⁴⁺ เพิ่มขึ้นจาก 0.00 ถึง 0.05 mol% ดังแสดงในตาราง 6 โดยเซรามิก BNBT บริสุทธิ์แสดงอัตราส่วนโครงสร้าง R:T ใกล้เคียงกัน (47:53)

ภาพ 40 แบบรูปการเลี้ยวเบนรังสีเอกซ์ของเซรามิก BNBT ที่ปริมาณ (AlNb)⁴⁺ ตั้งแต่ 0.00 ถึง 0.05 mol% ที่มุม (ก) 2 $extbf{ heta}$ =10-70° และ (ข) 2 $extbf{ heta}$ =36-50°

ภาพ 41 ผลการปรับแต่งเรียทเวลด์เซรามิก BNBT ที่ปริมาณ (AlNb)⁴⁺ เป็น (ก) 0.00 (ข) 0.01 (ค) 0.02 (ง) 0.03 (จ) 0.04 และ (ฉ) 0.05 mol% ตามลำดับ

ปริมาณ					ปริมาณ				
(AlNb) ⁴⁺		พารามิเตอร์		ธาตุ	Х	у	Ζ	Occ.	โครงสร้าง
(mol%)									(%)
0.00	$\chi^{2}=1.73$	R3c:H	a=5.5938Å	Bi	0	0	0.2627	0.42310	53
	R _p =19.9%		<i>c=</i> 13.3016Å	Na	0	0	0.2627	0.36575	
	R _{wp} =17.7%		c/a=2.3778	Ti	0	0	0.0063	1.05992	
	R _{exp} =12.8%		<i>u</i> =0.0821	0	0.1260	0.3360	0.0833	0.90314	
			v=0.1357	Ва	0	0	0.2627	0.06105	
			w=0.1285	Al	0	0	0.0063	0	
				Nb	0	0	0.0063	0	
		P4bm	<i>a</i> =5.4617Å	Bi	0	0.5	0.5450	0.44565	47
			<i>c</i> =3.9004Å	Na	0	0.5	0.5450	0.47245	
			c/a=0.7141	Ti	0	0	0	0.095867	
			u=1.2668	01	0	0	0.5100	1.37665	
			v=0.1364	02	0.2710	0.2290	0.0150	1.22850	
			w=0.009	Ba	0	0.5	0 <mark>.545</mark> 0	0.04292	
				Al	0	0	0	0	
				Nb	0	0	0	0	
0.01	$\chi^2 = 1.11$	R3c:H	a=5.5038Å	Bi	0	0	<mark>0.2</mark> 627	0.3873	45
	R _p =31.20%		<i>c=</i> 13.5825Å	Na	0	0	0.2627	0.4633	
	R _{wp} =24.40%		c/a=2.4678	Ti	0	0	0.0063	1.0324	
	R _{exp} =23.22%		u=-0.0990	0	0.1260	0.3360	0.0833	1.1022	
			v=0.2173	v=0.2173 Ba 0 0		0.2627	0.0807		
			w=0.0119	Al	0	0	0.0063	0.0018	
				Nb	0	0	0.0063	0.0029	
		P4bm	a=5.4902Å	Bi	0	0.5	0.5450	0.5241	55
			c=3.9476Å	Na	0	0.5	0.5450	0.4391	
			<i>c/a=</i> 0.7190	Ti	0	0	0	0.7817	
			u=1.0248	01	0	0	0.5100	1.0351	
			v=0.6169	02	0.2710	0.2290	0.0150	1.8985	
			w=-0.0932	Ва	0	0.5	0.5450	0.0672	
				Al	0	0	0	0.0013	
				Nb	0	0	0	0.0015	

ตาราง 6 ผลการวิเคราะห์โครงสร้างผลึก และพารามิเตอร์เบื้องต้นด้วยการปรับแต่งเรียทเวลด์ ของเซรามิก BNBT เติมด้วย (AlNb)⁴⁺ ตั้งแต่ 0.00 ถึง 0.05 mol%

ปริมาณ											
(AlNb) ⁴⁺		พารามิเตอร์		ธาตุ	X	у	Ζ	Occ.	- โครงสร้าง		
(mol%)									(%)		
0.02	$\chi^{2}=1.38$	R3c:H	<i>a=</i> 5.5208Å	Bi	0	0	0.2627	0.4171	44		
	R _p =30.10%		<i>c=</i> 13.5292Å	Na	0	0	0.2627	0.5460			
	R _{wp} =22.20%		c/a=2.4505	Ti	0	0	0.0063	0.9806			
	R _{exp} =18.88%		u=-0.0705	0	0.1260	0.3360	0.0833	3.0386			
			v=0.0859	Ba	0	0	0.2627	0.0632			
			w=0.0130	Al	0	0	0.0063	0.0062			
				Nb	0	0	0.0063	0.0066			
		P4bm	a=5.5089Å	Bi	0	0.5	0.5450	0.4091	56		
			<i>c=</i> 3.9449Å	Na	0	0.5	0.5450	0.6361			
			<i>c/a=</i> 0.7161	Ti	0	0	0	0.9735			
			u=0.4515	01	0	0	0.5100	1.0095			
			v=0.9238	02	0.2710	0.2290	<mark>0.</mark> 0150	1.1989			
			w=-0.1884	Ba	0	0.5	0.5450	0.0450			
				Al	0	0	0	0.0051			
				Nb	0	0	0	0.0053			
0.03	χ ² =1.53	R3c:H	a=5.5352Å	Bi	0	0	0. <mark>26</mark> 27	0.4026	38		
	R _p =2 <mark>5.30</mark> %		<i>c=</i> 13.5551Å	Na	60	0	0.2627	0.4968			
	R _{wp} =19.60%		c/a=2.4489	Ti	0	0 =	0.0063	0.9954			
	R _{exp} =15.84%		u=-0.0239	0	0.1260	0.3360	0.0833	2.9814			
			v=0.0499	Ba	0	0	<mark>0.2</mark> 627	0.0752			
			w=-0.0068	Al	0/-	0	0.0063	0.0068			
				Nb	0	0	0.0063	0.0072			
		P4bm	a=5.5239Å	Bi	0	0.5	0.5450	0.3752	62		
			c=3.95 31Å	Na	0	0.5	0.5450	0.5475			
			<i>c/a=</i> 0.7156	Ti	0	0	0	0.9773			
			u=0.9266	01	0	0	0.5100	0.9162			
			v=0.9758	02	0.2710	0.2290	0.0150	1.3150			
			w=-0.2134	Ba	0	0.5	0.5450	0.0671			
				Al	0	0	0	0.0072			
				Nb	0	0	0	0.0073			

ปริมาณ					ปริมาณ				
(AlNb) ⁴⁺		ธาตุ	X	У	Ζ	Occ.	โครงสร้าง		
(mol%)									(%)
x=0.04	$\chi^2 = 2.39$ R3c:H		a=5.5373Å	Bi	0	0	0.2627	0.4141	34
	<i>R</i> _p =31.00%		<i>c=</i> 13.5361Å	Na	0	0	0.2627	0.5127	
	R _{wp} =22.20%		c/a=2.4445	Ti	0	0	0.0063	1.0049	
	R _{exp} =14.39%		u=-0.0345	0	0.1260	0.3360	0.0833	1.7041	
			v=-0.0044	Ba	0	0	0.2627	0.0690	
			w=0.0398	Al	0	0	0.0063	0.0129	
				Nb	0	0	0.0063	0.0125	
		P4bm	a=5.5176Å	Bi	0	0.5	0.5450	0.4261	66
			c=3.9525Å	Na	0	0.5	0.5450	0.5118	
			<i>c/a=</i> 0.7163	Ti	0	0	0	1.1333	
			u=0.6764	01	0	0	0.5100	2.7219	
			v=0.9177	02	0.2710	0.2290	<mark>0.0</mark> 150	3.3672	
			w=-0.1776	Ва	0	0.5	0.5450	0.0882	
				Al	0	0	0	<mark>0</mark> .0143	
				Nb	0	0	0	<mark>0</mark> .0137	
x=0.05	$\chi^{2}=1.25$	R3c:H	a=5.5446Å	Bi	0	0	0.2627	<mark>0.4191</mark>	32
	R _p =18.80%		<i>c=</i> 13.5686Å	Na	60	0	0.2627	0.4406	
	R _{wp} =15.30%		c/a=2.4471	Ti	0	0	0.0063	0.9865	
	R _{exp} =13.74%		u=0.0260	0	0.1260	0.3360	0.0833	3.2729	
			v=-0.0031	Ba	0	0	0.2627	0.0807	
			w=0.0005	Al	0	0	0.0063	0.0195	
				Nb	0	0	0.0063	0.0734	
		P4bm	a=5.5358Å	Bi	0	0.5	0.5450	0.4257	68
			c=3.9594Å	Na	0	0.5	0.5450	0.4553	
			<i>c/a=</i> 0.7152	Ti	0	0	0	0.9397	
			u=0.2895	01	0	0	0.5100	0.9871	
			v=0.8392	02	0.2710	0.2290	0.0150	2.1075	
			w=-0.1418	Ba	0	0.5	0.5450	0.0715	
				Al	0	0	0	0.0123	
				Nb	0	0	0	0.0134	

ภาพ 42 โครงสร้างจุลภาคของเซรามิก BNBT ที่ปริมาณ (AlNb)⁴⁺ เป็น (ก) 0.00 (ข) 0.01 (ค) 0.02 (ง) 0.03 (จ) 0.04 และ (ฉ) 0.05 mol% ตามลำดับ

ภาพ 42 (ก)-(ฉ) แสดงโครงสร้างจุลภาคที่ผ่านการขัดแล้วกัดด้วยความร้อนของเซรามิก BNBT ที่การเติม (AlNb)⁴⁺ ปริมาณ 0.00 ถึง 0.05 mol% พบว่าเซรามิกทุกตัวอย่างแสดงรูปร่าง ค่อนข้างกลมและการเจริญเติบโตแบบไร้ทิศทาง รูพรุนบริเวณขอบเกรนมีแนวโน้มเพิ่มขึ้นเมื่อปริมาณ (AlNb)⁴⁺ เพิ่มขึ้น ยิ่งไปกว่านั้น จากตาราง 7 เมื่อปริมาณ (AlNb)⁴⁺ เพิ่มขึ้นจาก 0.00 ถึง 0.05 mol% ขนาดเกรนเฉลี่ยลดลงจาก 1.7 เป็น 0.7 µm เป็นผลมาจากการเติม (AlNb)⁴⁺ ทำให้เกิดการยับยั้งการ เจริญเติบโตของเกรน จากภาพ 43 (ก)-(ฉ) พบว่าการกระจายตัวของเกรนลดลงเมื่อปริมาณ (AlNb)⁴⁺ เพิ่มขึ้น ความหนาแน่นของเซรามิกลดลงจาก 5.84 เป็น 5.54 g/cm³ เมื่อปริมาณ (AlNb)⁴⁺ เพิ่มขึ้น จาก 0.00 ถึง 0.05 mol% ดังตาราง 7

ภาพ 43 การกระจายตัวของเกรนของเซรามิก BNBT ที่ปริมาณ (AlNb)⁴⁺ เป็น (ก) 0.00 (ข) 0.01 (ค) 0.02 (ง) 0.03 (จ) 0.04 และ (ฉ) 0.05 mol% ตามลำดับ

ภาพ 44 (ก)-(ฉ) แสดงเส้นโค้งไดอิเล็กทริกวัดในช่วงอุณหภูมิห้องถึง 450 ℃ ที่ความถี่ต่างๆ (1 10 และ 100 kHz) ของเซรามิก BNBT ที่ปริมาณการเติม (AINb)⁴⁺ ตั้งแต่ 0.00 ถึง 0.05 mol% เซรามิกทุกตัวอย่างแสดงพีคในสองช่วงความโค้งอย่างชัดเจน และเส้นโค้งไดอิเล็กตริกแสดงจุดพีคที่ กว้างและการกระจายความถี่สูงรอบๆ T_d และ T_m พบว่า T_d เลื่อนไปที่อุณหภูมิสูง ในขณะที่ T_m เลื่อนไปที่อุณหภูมิที่ต่ำลง เมื่อความถี่เพิ่มขึ้น ดังแสดงในลูกศรในภาพ 44 (ก)-(ฉ) ยิ่งไปกว่านั้น การ สูญเสียไดอิเล็กทริกบริเวณ T_d ขยับไปที่อุณหภูมิสูงขึ้นเมื่อความถี่เพิ่มขึ้น ดังแสดงในลูกศรประในภาพ 44 (ก)-(ฉ) บ่งบอกถึงพฤติกรรมรีแลกเซอร์-เฟอร์โรอิเล็กทริกในทุกตัวอย่าง (34) ที่ความถี่ 1 kHz T_d ลดลงอย่างต่อเนื่องจาก 165 ถึง 120 ℃ เมื่อปริมาณ (AINb)⁴⁺ เพิ่มขึ้นจาก 0.00 ถึง 0.05 mol% ดัง ตาราง 7 เนื่องจากการบิดเบี้ยวของลำดับเฟร์โรอิเล็กทริก ทำให้ความเสถียรของโดเมนเฟร์โรอิเล็กท ริกลดลง เป็นผลจากการแทนที่ของ (AINb)⁴⁺ ลงในบริเวณ B (32) เช่นเดียวกันกับ T_m มีแนวโน้ม ลดลงจาก 272 เป็น 264 ℃ เมื่อปริมาณ (AINb)⁴⁺ เพิ่มขึ้นจาก 0.00 ถึง 0.05 mol% ดัง เนื่องจากการบิดเบี้ยวของแลตทิชจากการแทนที่บริเวณ B ด้วยรัศมีไอออนที่แตกต่างกัน ส่งผลให้ รบกวนความเป็นระเบียบเฟร์โรอิเล็กทริกระยะยาว และเกิดสนามแบบสุ่มสูงในระบบ (33)

พบว่าค่า \mathbf{E}_{m} ลดลงอย่างต่อเนื่องจาก 5745 เป็น 4484 เมื่อปริมาณ (AlNb)⁴⁺ เพิ่มขึ้นจาก 0.00 ถึง 0.05 mol% ดังตาราง 7 นอกจากนี้ ค่า tanb ที่ T_m อยู่ในช่วง 0.01-0.02 ดังตาราง 7 การ ลดลงของค่า \mathbf{E}_{m} เกิดจากการเปลี่ยนแปลงของอัตราส่วนโครงสร้างจาก MPB โครงสร้างจุลภาคด้อย กว่า และความหนาแน่นลดลง

ภาพ 44 เส้นโค้งไดอิเล็กทร<mark>ิกของเซรามิก BNBT ที่ปริมาณ (</mark>AlNb)⁴⁺ เป็น (ก) 0.00 (ข) 0.01 (ค) 0.02 (ง) 0.03 (จ) 0.04 และ (ฉ) 0.05 mol% ตามลำดับ

ภาพ 45 (ก)-(ฉ) แสดงวงวนฮีสเทอรีซิส (P-E) ของเซรามิก BNBT ที่ปริมาณ (AlNb)⁴⁺ ตั้งแต่ 0.01 ถึง 0.05 mol% วัดภายใต้สนามไฟฟ้า 40 kV/cm โดยเซรามิก BNBT บริสุทธิ์ แสดงวงวนฮี สเทอรีซิสขนาดใหญ่ที่มี P_{max} และ P_r สูง (25.9 µC/cm² และ เป็น 21.2 µC/cm²) ดังตาราง 7 ซึ่ง สามารถบ่งบอกถึงพฤติกรรม non-ergodic รีแลกเซอร์-เฟร์โรอิเล็กทริก (26) เมื่อเพิ่มปริมาณ (AlNb)⁴⁺ วงวนฮีสเทอรีซิสบางลงและค่า P_{max} และ P_r มีแนวโน้มลดลง (ตาราง 7) แสดงถึงการ เปลี่ยนแปลงพฤติกรรมจาก non-ergodic รีแลกเซอร์-เฟร์โรอิเล็กทริก เป็น ergodic รีแลกเซอร์-เฟร์ โรอิเล็กทริก (36) ซึ่งอาจเกิดจากการบิดเบี้ยวของคำสั่งเฟร์โรอิเล็กทริกระยะยาว ทำให้โครงสร้าง โดเมนเปลี่ยนจาก macrodomain ไปเป็น microdomain ซึ่งเป็นผลมาจากการเติม (AINb)⁴⁺ (37)

จากตาราง 7 ค่า P_r และ E_c ของเซรามิกมีแนวโน้มลดลงจาก 21.2 เป็น 2.3 µC/cm² และ จาก 23.0 เป็น 4.3 kV/cm ตามลำดับ เมื่อปริมาณ (AlNb)⁴⁺ เพิ่มขึ้นจาก 0.00 เป็น 0.05 mol% การเสื่อมสภาพของสมบัติเฟร์โรอิเล็กทริกอาจเกิดจากการเพิ่มขึ้นของโครงสร้างเททระโกนัล (38) และการบิดเบี้ยวของลำดับเฟร์โรอิเล็กทริก เป็นผลมาจากการแทนที่ของ (AlNb)⁴⁺ ทำให้ไดโพลไฟฟ้า มีความเสถียรลดลง (13)

ตาราง 7 ขนาดเกรน ความหนาแน่น สมบัติไดอิเล็กทริกและเฟร์โรอิเล็กทริกของเซรามิก BNBT ที่ ปริมาณ (AlNb)⁴⁺ ตั้งแต่ 0.00 <mark>ถึง 0.05 mol%</mark>

ปริมาณ (AlNb) ⁴⁺ (mol%)	ขนาดเกรน เฉลี่ย (µm)	ความ หนาแน่น (g/cm ³)	T _d (°C)	T _m (°C)	Em	tanδ at T _m	P _{max} (µC/cm²)	P _r (µC/cm²)	E _c (kV/cm)
0.00	1.7	5.84	165	272	5745	0.02	25.9	21.2	23.0
0.01	1.7	5.71	153	270	5390	0.01	26.1	17.4	15.8
0.02	1.2	5.70	151	264	5124	0.01	-16.3	10.7	22.6
0.03	1.0	5.67	138	268	4627	0.02	15.4	10.6	23.4
0.04	0.8	5.59	129	264	4619	0.01	21.6	10.0	13.8
0.05	0.7	5.54	120	264	4484	0.01	19.0	7.7	10.6

ภาพ 45 สมบัติเฟร์โรอิเล็กทริกของเซรามิก BNBT ที่ปริมาณ (AlNb)⁴⁺ เป็น (ก) 0.00 (ข) 0.01 (ค) 0.02 (ง) 0.03 (จ) 0.04 และ (ฉ) 0.05 mol% ตามลำดับ

บทสรุป

สรุปผลการทดลองการเติมแบบแทนที่ด้วย (LiNb)⁴⁺ (NiNb)⁴⁺ และ (AlNb)⁴⁺ ลงในบริเวณ B ของเซรามิก BNBT ที่เตรียมด้วยวิธีการเผาไหม้แบบปฏิกิริยาของแข็ง

เซรามิก BNBT เติมแบบแทนที่ด้วย (LiNb)⁴⁺ (NiNb)⁴⁺ และ (AlNb)⁴⁺ ลงในบริเวณ B ที่ เตรียมด้วยวิธีการเผาไหม้แบบปฏิกิริยาของแข็ง โดยแคลไซน์ที่อุณหภูมิ 750 °C เป็นเวลา 2 ชั่วโมง และซินเตอร์ที่อุณหภูมิ 1150 °C เป็นเวลา 2 ชั่วโมง จากผลการวิเคราะห์โครงสร้างผลึกของเซรามิก พบว่าแบบรูปการณ์เลี้ยวเบนรั<mark>งสีเอก</mark>ซ์แสดงโครงส<mark>ร้างเ</mark>พอรอฟสไกต์บริสุทธิ์แบบผสมระหว่าง โครงสร้างรอมโบฮีดรัล <mark>และ</mark>เททระโกนัลในทุกตัวอย่าง โดยเซร<mark>ามิก</mark> BNBT บริสุทธิ์แสดงอัตราส่วน ้โครงสร้างรอมโบฮีด<mark>รัล</mark> และเททระโกนัล (R:T) ใกล้เคียงกันในอัตราส่วน 47:53 เมื่อปริมาณ (LiNb)⁴⁺ (NiNb)⁴⁺ และ (Al<mark>Nb)⁴⁺ เพิ่มขึ้น โครงสร้างเททระโกนัลเพิ่มขึ้น ในขณะที่โค</mark>รงสร้างรอมโบฮีดรัลลดลง ี่ยืนยันด้วยผลกา<mark>รวิเคราะห์การปรับ</mark>แต่งเร<mark>ียทเวลด์ โค</mark>รงสร้างจุลภาคของเซรามิกวิเคราะห์โดยกล้อง ้จุลทรรศน์อิเล็ก<mark>ตรอ</mark>นแบบส่องกราด พบว่าขนาดเกรนเฉลี่ย ความหนาแ<mark>น่น</mark> และ<mark>ก</mark>ารกระจายตัวของ ้เกรนของเซรามิกลดล<mark>งเมื่อ</mark>ปริมาณ (LiNb)⁴⁺ (NiNb)⁴⁺ และ (AlNb)⁴⁺ เพิ่มมากขึ้น การลดลงของ ขนาดเกรนเฉลี่ยอ<mark>าจเกิดจากก</mark>ารสะสมของ (LiNb)⁴⁺ (NiNb)⁴⁺ และ (Al<mark>Nb</mark>)⁴⁺ บร**ิ**เวณขอบเกรน ทำให้ เกิดการยับยั้<mark>ง</mark>การเจริญเ<mark>ติบโตขอ</mark>งเกรน ยิ่งไปกว่านั้น เมื่อวิเคราะห์สมบัติไฟฟ้า พบว่าค่าคงที่ไดอ เล็กทริกมีแนวโน้มลดล<mark>ง เป็นผลมาจากการเติม (LiNb)⁴⁺ (NiNb)⁴⁺ และ (AlNb)⁴⁺ ทำให้โครงสร้าง</mark> เลื่อนออกจากบริเวณรอยต่อ (MPB) โครงสร้างจุลภาคด้อยลงและความหนาแน่นลดลง นอกจากนี้ เซรามิกยังแสดงพฤติกรรมรีแลกเซอร์-เฟร์โรอิเล็กทริกในทุกตัวอย่าง โดยเปลี่ยนสถานะจาก nonergodic รีแลกเซอร์-เฟร์โรอิเล็กทริก ไปเป็น ergodic รีแลกเซอร์-เฟร์โรอิเล็กทริกมากขึ้นเมื่อปริมาณ (LiNb)⁴⁺ (NiNb)⁴⁺ และ (AlNb)⁴⁺ เพิ่มขึ้น

บรรณานุกรม

1. Chou C-S, Yang R-Y, Chen J-H, Chou S-W. The optimum conditions for preparing the lead-free piezoelectric ceramic of $Bi_{0.5}Na_{0.5}TiO_3$ using the Taguchi method. Powder Technology. 2010;199(3):264-71.

2. Hao J, Wang X, Chen R, Li L. Synthesis of $(Bi_{0.5}Na_{0.5})TiO_3$ nanocrystalline powders by stearic acid gel method. Materials Chemistry and Physics. 2005;90(2):282-5.

3. Motohashi T, Kimura T. Development of texture in Bi_{0.5}Na_{0.5}TiO₃ prepared by reactive-templated grain growth process. Journal of the European Ceramic Society. 2007;27(13):3633-6.

4. Takenaka T, Sakata KO, Toda KO. Piezoelectric properties of $(Bi_{1/2}Na_{1/2})TiO_3$ based ceramics. Ferroelectrics. 1990;106(1):375-80.

5. Lee W-C, Huang C-Y, Tsao L-K, Wu Y. Crystal Structure, dielectric and ferroelectric properties of $(Bi_{0.5}Na_{0.5})TiO_3-(Ba,Sr)TiO_3$ lead-free piezoelectric ceramics. Journal of Alloys and Compounds - J ALLOYS COMPOUNDS. 2010;492:307-12.

6. Sasaki A, Chiba T, Mamiya Y, Otsuki E. Dielectric and Piezoelectric Properties of (Bi_{0.5}Na_{0.5})TiO₃-(Bi_{0.5}K_{0.5}TiO₃ Systems. Japanese Journal of Applied Physics. 1999;38(Part 1, No. 9B):5564-7.

7. Zhao W, Zhou HP, Yan YK, Liu D. Morphotropic Phase Boundary Study of the BNT-BKT Lead-Free Piezoelectric Ceramics. Key Engineering Materials. 2008;368-372:1908-10.

8. Mahajan A, Zhang H, Wu J, Ramana EV, Reece MJ, Yan H. Effect of Phase Transitions on Thermal Depoling in Lead-Free $0.94(Bi_{0.5}Na_{0.5}TiO_3)-0.06(BaTiO_3)$ Based Piezoelectrics. The Journal of Physical Chemistry C. 2017;121(10):5709-18.

9. Sindhu M, Ahlawat N, Sanghi S, Kumari R, Agarwal A. Effect of Zr substitution on phase transformation and dielectric properties of $Ba_{0.9}Ca_{0.1}TiO_3$ ceramics. Journal of Applied Physics. 2013;114(16):164106.

10. Cheng R, Xu Z, Chu R, Hao J, Du J, Li G. Electric field-induced ultrahigh strain and large piezoelectric effect in $Bi_{1/2}Na_{1/2}TiO_3$ -based lead-free piezoceramics. Journal of the European Ceramic Society. 2016;36(3):489-96.

11. Li L, Hao J, Chu R, Xu Z, Li W, Du J, et al. Dielectric, ferroelectric and fieldinduced strain response of lead-free (Fe, Sb)-modified (Bi_{0.5}Na_{0.5})_{0.935}Ba_{0.065}TiO₃ ceramics. Ceramics International. 2016;42.

12. Wei Q, Zhu M, Zheng M, Hou Y. Giant strain of 0.65% obtained in B-site complex cations $(Zn_{1/3}Nb_{2/3})^{4+}$ -modified BNT-7BT ceramics. Journal of Alloys and Compounds. 2019;782:611-8.

13. Jin CC, Wang FF, Wei LL, Tang J, Li Y, Yao QR, et al. Influence of B-site complexion substitution on the structure and electrical properties in $Bi_{0.5}Na_{0.5}TiO_3$ -based leadfree solid solutions. Journal of Alloys and Compounds. 2014;585:185-91.

14. Kornpom C, Udeye T, Bongkarn T. The preparation of lead-free bismuth sodium titanate ceramics via the solid state combustion technique. Integrated Ferroelectrics. 2017;177(1):59-68.

15. Pampuch R. Advanced HT ceramic materials via solid combustion. Journal of the European Ceramic Society. 1999;19(13):2395-404.

16. Haertling GH. Ferroelectric Ceramics: History and Technology. Journal of the American Ceramic Society. 1999;82(4):797-818.

17. Mitsui T. An introduction to the physics of ferroelectrics / Toshio Mitsui, Itaru Tatsuzaki, Eiji Nakamura ; translated by Yoshihiro Ishibashi ... [et al.]. Nakamura E, Tatsuzaki I, editors. New York: Gordon and Breach Science Publishers; 1976.

18. Patil KC, Aruna ST, Ekambaram S. Combustion synthesis. Current Opinion in Solid State and Materials Science. 1997;2(2):158-65.

19. Pomeroy M. Encyclopedia of Materials: Technical Ceramics and Glasses: Elsevier Science; 2021.

20. Yotthuan S, Suriwong T, Pinitsoontorn S, Bongkarn T. Effect of Fe_2O_3 doping on phase formation, microstructure, electric and magnetic properties of $(Ba_{0.85}Ca_{0.15})(Ti_{0.90}Zr_{0.10})O_3$ ceramics. Integrated Ferroelectrics. 2018;187(1):100-12.

21. Abdullah A, Mohammed A. Scanning Electron Microscopy (SEM): A Review2019.

22. Chu B-J, Chen D-R, Li G-R, Yin Q-R. Electrical properties of $Na_{1/2}Bi_{1/2}TiO_3$ -BaTiO₃ ceramics. Journal of the European Ceramic Society. 2002;22(13):2115-21.

23. Hiruma Y, Nagata H, Takenaka T. Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics. Journal of Applied Physics.

2009;105(8):084112.

24. Takenaka T, Maruyama K-i, Sakata K. $(Bi_{1/2}Na_{1/2})TiO_3$ -BaTiO_3 System for Lead-Free Piezoelectric Ceramics. Japanese Journal of Applied Physics. 1991;30(Part 1, No. 9B):2236-9.

25. Xu C, Lin D, Kwok KW. Structure, electrical properties and depolarization temperature of $(Bi_{0.5}Na_{0.5})TiO_3$ -BaTiO₃ lead-free piezoelectric ceramics. Solid State Sciences. 2008;10(7):934-40.

26. Thatawong B, Bhupaijit P, Lamyai Y, Vittayakorn N, Bongkarn T. Dielectric and piezoelectric properties near the morphotropic phase boundary for 0.94BNT-0.06BT ceramics synthesized by the solid-state combustion technique. Ferroelectrics. 2022;586(1):199-212.

27. Li L, Hao J, Xu Z, Li W, Chu R. 0.46% unipolar strain in lead-free BNT-BT system modified with Al and Sb. Materials Letters. 2016;184.

28. Sumang R, Bongkarn T, Kumar N, Kamnoy M. Investigation of a new lead-free (1x-y)BNT-xBKT-yBZT piezoelectric ceramics. Ceramics International. 2017;43:S102-S9.

29. Bhupaijit P, Nuntawong N, Kidkhunthod P, Pinitsoontorn S, Bongkarn T. Enhanced electrical properties near the morphotropic phase boundary in lead-free $Bi_{0.5}Na_{0.34}K_{0.11}Li_{0.05}Ti_{1-x}Ni_xO_{3-\delta}$ ceramics. Radiation Physics and Chemistry. 2021;189:109716.

30. Pan H, Hou Y, Chao X, Wei L, Yang Z. Microstructure and electrical properties of La_2O_3 -doped $Bi_{0.5}(Na_{0.68}K_{0.22}Li_{0.1})_{0.5}$ TiO₃ lead-free piezoelectric ceramics. Current Applied Physics. 2011;11(3):888-92.

31. Badapanda T, Sahoo S, Nayak P. Dielectric, Ferroelectric and Piezoelectric study of BNT-BT solid solutions around the MPB region. IOP Conference Series: Materials Science and Engineering. 2017;178(1):012032.

32. Xie H, Zhao Y, Xu J, Yang L, Zhou C, Zhang H, et al. Structure, dielectric, ferroelectric, and field-induced strain response properties of $(Mg_{1/3}Nb_{2/3})^{4+}$ complex-ion modified $Bi_{0.5}(Na_{0.82}K_{0.18})_{0.5}TiO_3$ lead-free ceramics. Journal of Alloys and Compounds. 2018;743:73-82.

33. Hussain A, Ahn CW, Ullah A, Lee JS, Kim IW. Dielectric, ferroelectric and field-

induced strain behavior of K_{0.5}Na_{0.5}NbO₃-modified Bi_{0.5}(Na_{0.78}K_{0.22})_{0.5}TiO₃ lead-free ceramics. Ceramics International. 2012;38(5):4143-9.

34. Viola G, McKinnon R, Koval V, Adomkevicius A, Dunn S, Yan H. Lithium-Induced Phase Transitions in Lead-Free Bi_{0.5}Na_{0.5}TiO₃ Based Ceramics. The Journal of Physical Chemistry C. 2014;118(16):8564-70.

35. Hong C-H, Guo H, Tan X, Daniels JE, Jo W. Polarization reversal via a transient relaxor state in nonergodic relaxors near freezing temperature. Journal of Materiomics. 2019;5(4):634-40.

36. Li D, Shen Z-Y, Li Z, Luo W, Wang X, Wang Z, et al. P-E hysteresis loop going slim in Ba_{0.3}Sr_{0.7}TiO₃-modified Bi_{0.5}Na_{0.5}TiO₃ ceramics for energy storage applications. Journal of Advanced Ceramics. 2020;9(2):183-92.

37. Qi H, Zuo R. Linear-like lead-free relaxor antiferroelectric (Bi_{0.5}Na_{0.5})TiO₃–NaNbO₃ with giant energy-storage density/efficiency and super stability against temperature and frequency. Journal of Materials Chemistry A. 2019;7(8):3971-8.

Lee W-C, Huang C-Y, Tsao L-K, Wu Y-C. Crystal Structure, dielectric and 38. ferroelectric properties of (Bi_{0.5}Na_{0.5})TiO₃-(Ba,Sr)TiO₃ lead-free piezoelectric ceramics. Journal of Alloys and Compounds. 2010;492(1):307-12.

ประวัติผู้วิจัย

ชื่อ-นามสกุล	อนุพงศ์ หลวงปางอ้าย
วัน เดือน ปี เกิด	29 พฤศจิกายน 2538
ที่อยู่ปัจจุบัน	273/1 ม.7 ต.บ้านเรือน อ.ป่าซาง จ.ลำพูน
ที่ทำงานปัจจุบัน	-
ตำแหน่งหน้าที่ปัจจุบัน	-
ประสบการณ์การทำงาน	-
ประวัติการศึกษา	พ.ศ. 2561 วท.บ. (ฟิสิกส์) มหาวิทยาลัยนเรศวร
ผลงานตีพิมพ์	A. Luangpangai, P. Bhupaijit, N. Charoenthai, N. Vittayakorn, S.
	Thountom and T. Bongkarn, Effect of substitution of (NiNb)4+
	into B-sites on the phase formation, microstructure and
	electrical properties of Bi0.47Na0.47Ba0.06TiO3 ceramics,
	Ferroelectrics 2022 Vol. 601, 96-107
รางวัลที่ได้รับ	