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* |n this project, we discuss the existence of orthogonal *-basis of the symmetry classes
of polynomials. Analogously to the orthogonal *-basis of symmetry classes of tensor, some
criteria for the existence of the basis for finite groups have been provided. We also investigate
a con_giition for the existence of such basis of symmetry classes of polynomials associated to

symmetric groups and some irreducible characters.
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CHAPTER 1
INTRODUCTION

Oné of the classical areas of algebra, the theory of symmetric polynomials is well-
known because of its role in branches of algebra, such as Galois Theory, representation
theory and algebraic combinatorics. For a review of the theory of symmetric polynomials,
one can see the book of Macdonald, [6]. The relative symmetric polynomials as a gen-
eralization of symmetric polynomials are introduced by M. Shahryari in [11]. In fact, he
used the idea of symmetry classes of tensors to introduce such notions.

~ One of the most interesting topies about symmetry classes of tensors is the issues of
finding a necessary condition for the existence of an orthogonal *-basis for the symmetry
classes of tensors associated with a finite group and an irreducible character. Many
researchers pay a lot of attention to investigate condition stated above. For example,
M.R. Pournaki, [8], gave such a necessary condition for the irreducible constituents of the
permutation character of the finite groups in which he extended a result of R.R. Holmes,
[2]. Also, M. Shahryari provided an excellent condition for the existence of such basis
in [10]. Furthermore, the existence of the special basis for particular groups have been
discussed by many authors, see, for example, [3, 4, 13]. Similar questions concerning
about the existence of an orthogonal #-basis arise in the context of relative symmetric
polynomials as well, see, for example (9, 14, 15). The general criterion is still an open
problem, [11].

In this project, we provide some criteria for the existence of the special basis of
symmetry classes of polynomials for finite groups and some corresponding permutation
characters which are parallel to those of M.R. Pournaki in (8], R.R. Holmes in [2] and
M. Shahryari in [10]. We also investigate some condition for the existence of such basis
of symmetry classes of polynomials associated to symmetric groups and some irreducible
characters, which are similar to the results of Y. Zamani in [12].
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CHAPTER 2
NOTATIONS AND BACKGROUND

Let G bea subgroup of the full symmetric group Sy, and x be an irreducible character
of G. Let Hy[z), ..., xm) be the complex space of homogenous polynomials of degree d with

the independent commuting variables @y, ..., Tm,. Let I‘;‘d be the set of all m-tuples of
non-negative integers o = (u, ..., &m), such that > 7", o; = d. For any a € T o let X*
be the monomial z3'z52...x%m . Then the set {X*|a € T/, ;} is a basis of Hy[zy, ..., Tn].

An inner product on Hy[z1, ..., Zn,) is defined by
(0.1) (X%, XBY = 6o p.
The group G, as a subgroup of the full symmetric group Sy, acts on Hylzy, ..., Tm] by (for
o € G),
AT, el S I Lok () )
It also acts on I}, ; by
o= (), -+, Aa(m))-

Let A be a set of representatives of orbits of I‘:u, under the action of G. Now consider
the symmetrizer associated with G and x

02) 76,0 = XS x(o)o

||0’EG

It is well known that T(G,x)? = T(G,x) and T(G,x)* = T(G,x). The image of
Hgy[zy, ..., Tm] under the map T(G, x) is called the symmetry class of polynomials of degree
d with respect to G and x and it is denoted by Ha(G; X).
For any g € Hylz1, -, Trml,
gy = T(G, x)(q)
is called a symmetrized polynomial with respect to G and x. Note that

Hy(G;x) = (Xg™a € I

m,d

We write X®* instead of X3'* unless it is necessary to avoid confusion.

Definition 0.1. An orthogonal *-basis (o-basis, for short) of a subspace U of Ha(G; x)
is an orthogonal basis of U of the form {X®* Xe¥* . X°*} for some ; € i

m,d’

Since the set {T(G,x) : x € Irr(G)} is a complete set of orthogonal idempotents,
where Irr(G) is the set of irreducible complex characters of G, we have the following
orthogonal direct sum decomposition (cf. Remark 2.3 in [11])

(03) . Hylz, o @m) = D HalG; x)-

xelrr(G)

Note that X®* is a generator of Hy(G;x) if X** # 0, which can be checked from
(x,1)c., where (X, #)x is the inner product of characters x and ¢ of an arbitrary group
I{: ie. (X’¢)I( = '%i ZUEI{ X(o—)w(gﬁl)‘ Namely, (Seei [9: 11])»

(0.4) X** =0 if and only if (x,1)g, # 0.



Also, for the induced inner product on Hy(G; x), we have (see, [9, 11]).

0 if a ¢ Orb(f) ;

0.5 » Xglat*,XG'Qﬁ,* :{ ) :
( ) ( ) ?Iigl_) ZUEUzGual_l X(O-): if = f3,

where Orb(f) is the orbit of B in T} ; under the action of G. Then the norm of X%,
with respect to the induced inner product, is given by

06) I 2 |7= x(1) fg%"']

According to (0.4), let @ = {a € I'™»d : (x, 1)¢, # 0}. Since
Hylzy, .o Tm) = @{X‘m o € G),

. acA
we have the orthogonal direct sum
(0.7) Hy(Gix) = D Hy (),
o€l

where A = AN Q and H*(x) = (X°®*|o € G). The dimension of H$"(x) can be
calculated by using Freese’s Theorem (see, e.g. [1], [9])

" A (1
09) dim B () = X(D06 Vo = 71 3 (0).
e
As an immediate consequence of (0.7) and (0.8),
(0.9) dim Hg(G; x) = x(1) Y0 1)ca-
aEl

In particular, if x is linear, then the set {X®* . o € A} is an orthogonal basis of Hy4(G; X)
and dim Hy(G; x) = |A|. Thus, the orthogonal *-basis for Ha(G; x) exists for any abelian
group G.



CHAPTER 3
MAIN RESULTS

According to the notations in the previous section, Hy(G; x) denotes the relative
symmetry classes of polynomials of degree d with respect to G and x. This class is
equipped with the induced inner product as in (0.5). Let A be a set of m elements.
Suppose G acts faithfully on A. So, we consider {f, | ¢ € G} as the group G, where
f, : A —=A defined by fo(A) =0 A, forall A € A. Namely, G can be viewed as a subgroup
of S, in this way. We also denote the permutation character of G by 8. It is well known
that 8(c) = |{\ € A | o - A = A}|, for each o € G. The similar criterion as in the main
theorem of [8] is shown below.

Theorem 0.2. Let G be @ finite group and let A be a set of m elements, m > 1. Assume
that G acts transitively and faithfully on A. Let x be an wrreducible constituent of permu-
tation character @ of G. If x(1)(x,0)c > %, then Hy(G;X) does not have an orthogonal
x-basis.

Proof. Suppose Hy(G;x) has an orthogonal #-basis. Then, by (0.7), Hy" (x) has an o-
basis for each @ € A. We now consider a = (d,0,0, ..,0) € I‘j’n,d and choose A to be
the set of representatives of orbits of I} ; under the action of G in which & € A. We
can assume without loss of generality that A = {1,2, ..., m} and thus G, = Gy, where G4
refers to the stabilizer subgroup of a (when G acts on F;’d) and G, refers to the stabilizer
subgroup of 1 (when G acts on A). Since G acts transitively on A, (1¢,)¢ = (1¢,)¢ =9,
by Lemma 5.14 of [5]. Hence, by (0.8) and Frobenius reciprocity, we have that

3 x(0) = 1Gal(x 1a)e.

0€Ga
= |Gal(x; (1c.)%)e
= K;QHX?HM}

Since x is an irreducible constituent of permutation character 6 of G, (x,0)c¢ # 0 and
> ec. X(o) # 0. Thus ar € A. So, H$™(x) has an o-basis.

By orbit-stabilizer theorem and transitive action of G on A, we have that m = |A] =
Orb(1) = [G : Gi] =[G : Ga). So, G = UL, 0:Gq, where {01,03,...,0n} is a system of
distinct representatives of left cosets of G4 in G. Let

dm 300 = S Y xo) = 6 0o =t
o c€Gq



5
We can assume that {X71®*, X2 X7**} is an o-basis for H™(x). Define the mxm
complex matrix D = [D;;] by Dyj = (X7, X7i®*). Note that D is idempotent. In fact,
e
(D) = Y DDy
k=1

m

= ) (e, ey (RO, X9

k=1
m 1 1

-3 (M > ) (i T
k=1 o€oxGaoy} 7€0;Gaoy

- 5" S 5 xenosr o

=0 UEG‘(\ TEGO

- Xl_glllz S x0T (o

k=1 AeoGa HGGQU‘;]‘

Now, let gl = § € G,. Then p = 6271 and we have

@ = KLY 3 P x0T e

k=1 A€01Gqa 0€Ga

x(1) x(1) -1y, -1
- I—GTZ ("\GTZX(AO{ Dx(a0A ))

deGa AEG
— @ .&Q o -g._lo'—l
LM 5 (S atves )

By orthogonal relations of irreducible character, we have

) =X S ojsart,

Gl e,

which shows that D? = D.

We note that m = (1) = >, coX(1)(x,8), where © is the set of all irreducible
constituents of the permutation character . Since m > 1, |©] > 1 and hence m > t. We
can now write D in the form

Dy Dy
D3 Dy |’

where D;, Do, D3 and Dy are matrices of sizes tX1,1 X (m—t), (m—t)xt and (m—1t)x (m—t)
respectively. On the matrix D;, we have, by (0.5), that, for 1 <1,7 <1,

. _ 0, if i # J; 0, ifi#7; (t
D = XU;(Z,*,X(IJCY,* — . ) — ) o .: = —"I ,
(Dr)is = ) { %Zaega x(o), ifi=7j { Lo ifi=j t)ij
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t
where I, is the t x t identity matrix. So, D = [ (”b) L gz } . Now, using D? = D, we
3 4

t 2
Dng = (E = —*‘) It.

m2

get

Since t < m, (
has an o-basis, then
t = rank Dy D3 < min{rank Dy, rank D3} < min{t,m — t}<m =t

Therefore, if ¥(1)(x,8)c = t > 2, then Hy(G;x) does not have an orthogonal *-basis, by
(0.7). 0

L %) # 0 and hence Dy D3 is invertible. This means that if H3"(x)

T

We also obtain a similar results of Holmes in [2].

Corollary 0.3. (cf. [2,8]) Let G be a 2-transitie subgroup of Sypym > 2. Let x = 0—1g,
where 0 is the permutation character of G. Then Hq(G; x) does not have an orthogonal
*-basts. ' ;

Proof. Note that G has a canonical transitive an faithful action on theset A = {1,2, ...,m},
given by ¢ -4 := o(i) for cach 0 € G < Sy, and 2 € A. Since G acts 2-transitively on
A with permutation character ¢, by Corollary 5.17 in [5], x = 0 — 1¢ is an irreducible
constituent of . We compute that

X(I)(Xag)(} = X(l)(@ n 1G>9)G = X(l)[(eﬂe)G o (9: 1G')G'] = X(l)[z X 1] =m—1
Since m > 2, m — 1 > % and hence x(1)(x,0)c > 2. Thus, by Theorem 0.2, the result
follows. 0

Example 0.4. (cf. [8]) Let G = A = Ay be the alternating group of degree 4. We know
that G acts transitively and faithfully on A by left multiplication. Then we can view G
as a subgroup of S12. Note that G has an irreducible character, x, of degree 3 and the
permutation character 8 of G is regular. Thus X is an irreducible constituent of 8 of
multiplicity 3. Hence x(1)(x,0)¢ = 9 > L= % and then Hg(Aq4; x) does not have an
orthogonal #-basis, by Theorem 0.2. In this ezample, however, the action G on A is not

2-transilive.

By using the same technique as in the proof of Theorem 0.2, we also obtain an
analogous criterion of Shahryari in [10].

Theorem 0.5. Let G be a permutation group of degree m and x be a non-linear wrreductble
character of G. If there is a € T}, ; such that

V2
2
then Hy(G;x) does not have an orthogonal =-bass.

<l X3 < 1,

Proof. Let a € I‘;’d. Suppose the orbit of o under the action of G is Orb(e) =
{010,020, ..., 0.}, Then, by orbit-stabilizer theorem, 7 = [G : Go] and G = |J._, 0:Ga
is a partition. Now, we construct 7 X 7 matrix D = [Dj;] by Dyj == (X7**, X 7;%*) which
is idempotent as before. Next, suppose X is a non-linear irreducible character of G and
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o € A and assume also that {Xo19*, X2e* X 7t*} is an o-basis for H, 77 (x) in which
t < r, where t = dim Hy"*(x). So, the matrix D has the block partition form

t

fo (F) I Dy

Dy D4 |’
where Dy, D3 and D, are matrices of sizes t x (r —t),(r —1) x ¢ and (r—t) x (r—t)
respectively. By the same arguments as in the proof of Theorem 0.2, we reach to the
conclusion that ¢ <r—tort < Z. Thus if t < 7 and t > §, then H$*(x) does not have
o-basis. Substituting r = [G : Ga), t = x(1)(x, 1), in the inequality 5 <t <7 and using
(0.6) and (0.7), the result follows. 0

SYMMETRIC GROUPS

It is well known that there is a standard one-to-one correspondence between the. -

complex irreducible characters of the symmetric group S, and the partitions of m. Here,
a partition 7 of m of length ¢, denoted by m I m, means an unordered collection of ¢
positive integers that sum to m. In this article, we use the same symbol to denote an
irreducible character of S, and the partition of m corresponding to it. Typically, we
represent the partition by a sequence m = [m1, 72, ..., Mg} in which m > 7 2> ... 2 ™ > 0.
A partition m = [my, T, ..., 7] is usually represented by a collection of m boxes arranged
in ¢ rows such that the number of boxes of row ¢ is equal to m;, for @ = 1,2, ..., %. This
collection is called the Young diagram associated with = and denoted by [m). The Young
subgroup-corresponding to m - m is the internal direct product

Sr={57, X 9% X - X Sh\

We write 1g, = 1, for the principle character of S;. Note that 15= is a character of
Sy, 50 there must exist integers K such that

o Z L T T
pkEm
The numbers K, . = (lﬁ"‘,,u.) g are called Kostka coefficients. By Corollary 4.54 in [7],
the Kostka coefficient K, » =1 for all = - m.
For each ordered pair (3, j), 1 < 4 < ¢, 1 < j < 7y, there is corresponding a box, Bi;,
in Young diagram [r]. Each Bj; determines a unique hook in [7] consisting of B;; itself,

all the boxes in row i of [7] to the right of B;; and all boxes in column j of [r] below Bj;.
The hook length,

hip="(atp ) Foa5 =01,
where 7 = [{k € {1,2,...,t}m. > j}| (a j part of conjugate partition of 7), is the
number of boxes in the hook determined by B;;. By the Frame-Robinson-Thrall Hook
Length Formula (see, e.g., Theorem 4.60 in [7]), if 7 is a partition of m, then the degree
of the irreducible character of S,, corresponding to m = [my, 7y, ..., ) s
ml!

As a consequence of Theorem 0.5, we have an analogous result of Y. Zamani in [12].

(0.10) (1) =

A5
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Theorem 0.6. Let © be an irreducible character of Sm of the cycle type;

La=[m-4l,d=0 mod [, d # 0 such m > 3l, or
II: 7= [m—{,l—1,1], d=7 mod l,0<'r<l,l>2,d5£rsuchm>3l+f§.

Then Hy(Sy; ) does not have an orthogonal %-basts.

T

Proof. For the form I, we set @ = (0,0,...,0,k,k, ..., k), where k = %. Then a0 € F;,d.

m—1 I
Under the action of S,,, on I'}, & We choose a system A of representatives such that o € A.
Since d # 0, k£ # 0 and
(Sm)a = DX S-! == SJ’H

where (S )q is the stabilizer subgroup of o and S is the Young subgroup corresponding
to 7 - m. Hence, by Frobenius Reciprocity Theorem,

1
Tl Z (o) = (W=1(Sm)n)(5m)q

g€(Sm)a
= {m, lﬂ)sﬂ

= (’.tT, lim) g

== ("Tr Z I{,u,frp'>
,ul"m S
ke Z Kun(m,10)s,,

ukFm

= f,=1 #0
This yields @ € A and, moreover, by (0.8), that

dim H*(w) = i) Z ) =ML

; Ue(sm}a

™m

Now, we compute the product of the hook lengths of [} which we get

Hﬂizij % (m—lJr1)(771—5)---(171—2£+2)(mﬁ21)---(2)(1)l(l—1)---(2)(1)

i=1 j=1
(m — T+ 1)1
(m—2l+1)
Hence, by (0.10),
(m=2l+1)m!

dim Hy™ () = (1) = (m— 1+ 1)1

Now, using (0.6), we have
o_ dim Hy"(m) m—21+1
[Sm : (Sm)a) m—14+1"

Hence, L <|| X** ||?>< 1 if and only if m > 3I. Thus the result for the first form follows
from Theorem 0.5.

I x|
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For the form II, 7 = [m — I,1 — 1,1], we set a = (0,0,...,0,k, K, ..., k,k +7), where
—— o N——

m—l1 -1
k = %r Then a € I‘+ 4 Under the action of 5,, on I‘m 4 Wwe choose a system A of
representatlves such that a€A. Sinced#1r#0,k#0 and &k 4+ # k and hence

(Sm)a—Sm IXS[ 1XSI—S

By the same arguments as the first form, we conclude that dim H$*(r) = w(1). For the
p1 oducts of the hook lengths, we compute that

HH% = (m—l+2)(m—l)---(m~2l+3)(m—2l+1)--;(2)(1)1(:!—2)(5ﬁ3)---(2)(1)5

i=1 j=1
(m — U+ 2)M!
(m—1+1)(m—20+2)(—1)

Then
(m — 1+ 1)(m— 204 2)(l — L)m!

dim HS" (7)) = 7(1) = (m =1+ 2)I!

Now, using -(0.6) again, we have
X |2 dim Hg"(m) _ (m—2l+2)(1—1)
[Sin : (Sm)al (m — L+ 2)(1)
It is now easy to show that 1 <|| X** ||?< 1 if and only if m > 3l + 1%, because [ > 2.
The result for the second form follows from Theorem 0.5. a
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ORTHOGONAL *-BASIS OF SYMMETRY CLASSES OF
* POLYNOMIALS*

KIJTI RODTES!

Abstract. In this note, we discuss the existence of orthogonal #-basis of the symmetry classes
of polynomials. Analogously to the orthogonal #-basis of symmetry classes of tensor, some criteria
for the existence of the basis for finite groups have been provided . We also investigate a condition
for the existence of such basis of symmetry classes of polynomials associated to symmetric groups
and some irreducible characters.

Key words. Symmetry classes of polynomials, Orthogonal *- basis

AMS subject classifications. Primary 05E05 ; Secondary 15A69

1. Introduction. One of the classical areas of algebra, the theory of symmetric
polynomials is well-known because of its role in branches of algebra, such as Galois
Theory, representation theory and algebraic combinatorics. For a review of the theory
of symmetric polynomials, one can see the book of Macdonald, [6]. The relative
symmetric polynomials as a generalization of symmetric polynomials are introduced
by M. Shahryari in [11]. In fact, he used the idea of symmetry classes of tensors to
introduce such notions.

One of the most interesting topics about symmetry classes of tensors is the issues
of finding a necessary condition for the existence of an orthogonal +-basis for the
symmetry classes of tensors associated with a finite group and an irreducible char-
acter. Many researchers pay a lot of attention to investigate condition stated above.
For example, M.R. Pournaki, (8], gave such a necessary condition for the irreducible
constituents of the permutation character of the finite groups in which he extended
a result of R.R. Holmes, [2]. Also, M. Shahryari provided an excellent condition for
the existence of such basis in [10]. Furthermore, the existence of the special basis for
particular groups have been discussed by many authors, see, for example, (3, 4, 13].
Similar questions concerning about the existence of an orthogonal x-basis arise in the
context of relative symmetric polynomials as well, see, for example [9, 14, 15). The
general criterion is still an open problem, (11].

*Received by the editors on Month x, 200x. Accepted for publication on Month y, 200y Handling
Editor: .

tDepartment of Mathematics, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thai-
land (kijtir@nu.ac.th). Supported by Naresuan University on the project R2558C030.
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2 Kijti Rodtes

In this article, we provide some criteria for the existence of the special basis of
symmetry.classes of polynomials for finite groups and some corresponding permuta-
tion characters which are parallel to those of M.R. Pournaki in [8], R.R. Holmes in
[2] and M. Shahryari in [10). We also investigate some condition for the existence of
such basis of symmetry classes of polynomials associated to symmetric groups and
some irreducible characters, which ave similar to the results of Y. Zamani in [12].

2. Notations and Background. Let G be a subgroup of the full symmetric
group S, and x be an irreducible character of G. Let Hylz,...,tm] be the com-
plex space of homogenous polynomials of degree d with the independent comnting
variables 2y, ...,Zm. Let T T";l 4 be the set of all m-tuples of non-negative integers
a = (ay,...,ctm ), Such that 377", a; = d. For any o € 't . let X® be the monomial

n,d?
2325223 . Then the set {X°|a € l";;'d} is a basis of Hylz1;...,%m]. An inner

product on Hy[zy, ..., ZTnm) is defined by
L, XBN Sl (2.1)

The group G, as a subgroup of the full symmetric group S,,, acts on Halz1y ooy Zm)
by (for o € G),

qa($1; eey :E?n) F Q(ma‘l(l)» veny :Eu"l(m))'

1t also acts on '}, ; by

ox = (ﬁ'a(l)) ety aa(m)).

Let A be a set of representatives of orbits of F;, 2 under the action of G. Now consider
the symmetrizer associated with G and

76,0 = XG4 3 x(a)e (22

c€G

r

It is well known that T(G,x)? = T(G,x) and T(G,x)* = T(G,x). The image of
Hylz1, ..., %) under the map T(G, ) is called the symmetry class of polynomials of
degree d with respect to G and x and it is denoted by Hq(G; x).

For any g € Hylz1, ..., i),

05, =T(G,x)(q)
is called a symmetrized polynomial with respect to G and ). Note that

Hy(G;x) = (X$"ael] ).

L3
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Orthogonal #-basis of symmetry classes of polynomials 3

We write X®* instead of X" unless it is necessary to avoid confusion.

DEFINITION 2.1. An orthogonal *-basis (o-basis, for short) of a subspace U of
Hy(G; x) is an orthogonal basis of U of the form {X®:*, X927, ., Xev*} for some
a; € F:}‘d

Since the set {T'(G, x) : x € Irr(G)} is a complete set of orthogonal idempotents,
where Irr(G) is the set of irreducible complex characters of G, we have the following
orthogonal direct sum decomposition (cf. Remark 2.3 in [11])

Hylaakd,, 48] = @ Hy(G;x). (2%
x€lIrr(G)

Note that X is a generator of Hy(G; x) if X®* # 0, which can be checked from
(x:1)c,, where (x; @)k is the inner product of characters x and ¢ of an arbitrary

group K, ie. (x,@)x = I71€_E Y oeek x(e)(c!). Namely, (see, [9, 11]),
X%* £ Qif and only if (x,1)g. #0. (2.4)
Also, for the induced inner product on Hy(Gjx), we have (see, (9, 11]).

0, if a ¢ Orb(8) ;

(Xora® X720 —{ (1)

i 2.5
W ZUGUQGDG'II X(U}, ifa= ﬂ‘ ( )

where Orb(g) is the orbit of 8in '} .4 under the action of G. Then the norm of X**
with respect to the induced inner ploduct is given by

I 1P ) (2.6)

According to (2.4), let Q = {a € Mt : (x, 1), 7 0}. Since

Mz, = @(X““ 10 €G),

a€cA
we have the orthogonal direct sum
Ha(Gsx) =P Hy” (), (2.7)
a€l

where A = AN§ and HY (x) = (X°“*|o € G). The dimension of H;""(x) can be
calculated by using Freese’s Theorem (see, e.g. (1}, [9])

dim HZ* (x) = x(1) (0 De. = 1’ 3 x(0). (2.8)

a c€Gq

A

(5



4 Kijti Rodtes

As an immediate consequence of (2.7) and (2.8),

dim Ha(G;x) = x(1) D (6 Ve (2.9)

€N

In particular, if x is linear, then the set N o S A} is an orthogonal basis of
H4(G;x) and dim Hq(G;x) = |A]. Thus, the orthogonal *-basis for Ha(G; x) cxists
for any abelian group G.

3. Main criteria . According to the notations in the previous scetion, Ha(Gix)
denotes the relative symmetry classes of polynomials of degree d with respect to G
and x. This class is equipped with the induced inner product as in (2.5). Let A be
a set of m elements. Suppose G acts faithfully on A. So, we consider {f, | o € G}
as the group G, where f, : A — A defined by f,(A) = oA, for all A € A. Namely,
G can be viewed as a subgroup of S, in this way. We also denote the permutation
character of G by €. It is well known that 8(¢) = |{A € A | o - A = A}, for each
o € G. The similar criterion as in the main theorem of [8] is shown below.

THEOREM 3.1. Let G be a finite group and let A be a set of m elements, m > 1.
Assume that G acts transitively and faithfully on A. Let x be an irreducible constituent
of permutation character 8 of G. If x(1)(x,0)c > %, then H4(G; x) does not have
an orthogonal x-basis.

Proof. Suppose Ha(G; x) has an orthogonal x-basis. Then, by (2.7), Hy"™(x) has
an o-basis for each o € A. We now consider a = (d,0,0,...,0) € F;,t,d and choose
A to be the set of representatives of orbits of I' ; 4 under the action of G in which
a € A. We can assume without loss of generality that A = {1,2,...,m} and thus
G, = G, where Gy refers to the stabilizer subgroup of « (when G acts on an‘ 4) and
G refers to the stabilizer subgroup of 1 (when G acts on A). Since G acts transitively
on A, (1g,)¢ = (1¢,)¢ = 0, by Lemma 5.14 of [5]. Hence, by (2.8) and Frobenius

reciprocity, we have that

> xlo) = |Galx. 16, ).

0€Ga

=|Gal(x: (16.)%)e
:l(;J(Xag)Gv

Since y is an irreducible constituent of permutation character § of G, (x,8)c # 0 and
Yocq, X(0) #0. Thus a € A. So, Hy""(x) has an o-basis.

By orbit-stabilizer theorem and transitive action of G on A, we have that m =
|A| = Orb(1) = [G : G1] =[G : Ga). So, G = Un, 0iGa, where {01,02,...,0m} is a



(23

Orthogonal *-basis of symmetry classes of polynomials
system of distinct representatives of left cosets of G in G. Let
dim Hy"" (x) = 1Gal Z x(e) = x(1)(x,0)¢ =1t
(a3

We can assume that {X 1% Xo2e* | Xo«*} ig an o-basis for H;*"(x). Define
the m x m complex matrix D = [Dy;] by D;; == (X%®* X%%*) Note that D is
idempotent. In fact,

:ZDikDLrj

k=1

m
il Z(XU"E!,*,XG’]_-LI,*)(){O’,I_.Q,*,Xaj{l,!)

k=1

— [ x(1) x(1)
O X @) G0 s
2.\ 76 , icl 1

0€01Guo; 7€0;Ga0,

2 m
= )Tgﬁz > > > xlowoa xlosror’)

k=10€Ga TEG

|G|22 > >, x(GaiMx(en)-

k=1 A€o0 G, HEG . ak

Now, let )\ =8 € G. Then g = dA7! and we have

m

()= Kﬂz }: o > x(oixloserh)

k=1 A€o G 6EG,

7X(1) 1
= 2, (I > x(o)x(o0A ))

S€CGa XeG
Z (\igl) Z x(a)x(a,éafla“l)) a
deGa ocEG

By orthogonal relations of irreducible character, we have

(DY = X5 tosior),

I &5,
which shows that D? = D
We note that m = 8(1) = 3_, cg X(1)(X,0), where O is the set of all irreducible

constituents of the permutation character #. Since m > 1, |@] > 1 and hence m > ¢.
We can now write D in the form

Dy Dy

Dy Dy |’



6 Kijti Rodtes

where Dy, Da, D3 and Dy are matrices of sizes ¢ x t,¢ x (m — t),(m —t) x ¢ and
(m — t) x (m — t) vespectively. On the matrix D;, we have, by (2.5), that, for
1<i,j <4,

D ii= XU’L“’*,X"J"‘-'-‘ = i |
e ) { T—SI”) Yooec, Xlo), ifi=j

0, ifi#j3; L
= t 2, - —It )
5 W=7 m ij

: i : (£)Ix Do
where I is the t x ¢ identity matrix. So, D = T
Dy Dy

2
D2D3 s (% == %}72) If.

Since £ < m, (i - i) # 0 and hence DyD3 is invertible. This means that if

m 17’!2

] . Now, using D? = D,

we get

HS (x) has an o-basis, then
t = rank Dy D3 < min{rank Dy, rank D3} < min{t,m —t} <m —t.

Therefore, if x(1)(x,0)c =t > 3, then Hy(G; x) does not have an orthogonal =-basis,
by (2.7). O

We also obtain a similar results of Holmes in [2].

COROLLARY 3.2. (cf. [2, 8]) Let G be a 2-transitive subgroup of S, m > 2. Let
x = 8 — 1¢g, where 8 is the permutation character of G. Then Hy(G; x) does not have
an orthogonal %-basis.

Proof. Note that G has a canonical transitive an faithful action on the set A =
{1,2,...,m}, given by o - i := o(i) for each 0 € G < 5, and 7 € A. Since G acts
2 transitively on A with permutation character 6, by Corollary 5.17 in [5], x = 8 - 1¢
is an irreducible constituent of §. We compute that

x(1)(x,0)c = x(1)(0 —16,8)c = x(V{(6,0)c — (0, 1c)e] = x(1)[2— 1] =m ~1.

Since m > 2, m — 1 > 2 and hence x(1)(x,0)¢ > % Thus, by Theorem 3.1, the
result follows. O

EXAMPLE 3.1. (¢f. [8]) Let G = A = A4 be the alternating group of degree 4. We
know that G acts transitively and faithfully on A by left multiplication. Then we can
view G as a subgroup of S12. Note that G has an irreducible character, X, of degree 3
and the permutation character 8 of G is regular. Thus X is an irreducible constituent
of 0 of multiplicity 3. Hence x(1)(x,0)c =9 > 2= h}} and then Hy(Aq; x) does not

~

e



Orthogonal *-basis of symmetry classes of polynomials i

have an ol‘thogonal x-basis, by Theorem 3.1. In this ezample, however, the action G
on A is not 2-transitive. By using the same technique as in the proof of Theorem
3.1, we also obtain an analogous criterion of Shahryari in [10)].

THEOREM 3.3. Let G be a permutation group of degree m and x be a non-lincar
srreducible character of G. If there is a € P;‘;,d such that
V2

2 xgr i<,

then Hy(G;x) does not have an orthogonal x-basis.

Proof. Let a € F;,d. Suppose the orbit of « under the action of G is Orb(a) =
{010, 020, ...,0va}. Then, by orbit-stabilizer theorem, » = [G : Go) and G =
U::_:lUiGn is a partition. Now, we construct 7 x 7 matrix D = [Dy;] by Dyj =
(X XY ) which is idempotent as before. Next, suppose x is a non-linear irre-
ducible character of G and o € A and assume also that {X1@* Xo2®%, | X7t}
is an o-basis for HJ'*(x) in which ¢ < r, where { = dim Hg**(x). So, the matrix D
has the block partition form

’ D= [ (%) Iy Dy ]
Dy Dy |’
where Dy, D3 and Dy are matrices of sizes £ x (r —t),(r—#) x t and (r —t) x (r — t)
respectively. By the same arguments as in the proof of Theorem 3.1, we reach to the
conclusion that t <7 —tort < L. Thusift <randt> Z, then Hy”(x) does not
have o-basis. Substituting r = [G : G4], t = x(1)(x, 1)@, in the incquality 5 <t <r
and using (2.6) and (2.7), the result follows. O

4. Symmetric groups. It is well known that there is a standard one-to-one
correspondence between the complex irredueible characters of the symmetric group
S, and the partitions of m. Here, a partition « of m of length ¢, denoted by n I- m,
means an unordered collection of ¢ positive integers that sum to m. In this article,
we use the same symbol to denote an irreducible character of S, and the partition
of m corresponding to it. Typically, we represent the partition by a sequence m =
[m1, 72, ..., 7] in which my > g > ... > m > 0. A partition = [m,ma, ..., ) is usually
represented by a collection of m boxes arranged in t rows such that the number of
boxes of row i is equal to m;, for ¢ = 1,2,...,¢. This collection is called the Young
diagram associated with 7 and denoted by [n]. The Young subgroup corresponding
to 7 I~ m is the internal direct product

Sp = Sny X Spy X000 X Og,.
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We write 1g_ = 1, for the principle character of S;. Note that 13w is a character
of Sy, s0 there must exist integers K, » such that

1§m = Z Kyt

pbm

The numbers K, » = (ljf’", ,u) g are called Kostka coefficients. By Corollary 4.54 in
[7), the Kostka coefficient K » =1 for all = - m.

For each ordered pair (i,7), 1 <% <t, 1 < j < my, there is corresponding a box,
Bij, in Young diagram [r). Each B;; determines a unique hook in [r] consisting of
B;; itself, all the boxes in row % of [n] to the right of B;; and all boxes in column j of
[w] below B;;. The hook length,

h‘ij = ('ﬂ'!‘ = L) ~+ (Tl'; T _j‘) i ].,

where @} = [{k € {1,2,..,t}|m: = j}| (a j part of conjugate partition of ), 18
the number of boxes in the hook determined by B;;. By the Frame-Robinson-Thrall
Hook Length Formula (see, e.g., Theorem 4.60 in [7]), if 7 is a partition of m, then
the degree of the irreducible character of S,, corresponding to @ = [m, 72, ..., ™ is

m!

(1) = ————.
H::I Hj;I hii

(4.1)

As a consequence of Theorem 3.3, we have an analogous result of Y. Zamani in
[12].

THEOREM 4.1. Let m be an irreducible character of S, of the cycle type;

I w:[m;i,l}, d=0 mod !, d#0 suchm = 3l, or
Na=m-Ll-11, d=r 1n0dl,0<r<l,l>2,d7£1‘Suchm>3l+1;%.

Then Hg(S.n;m) does not have an orthogonal -basis.

Proof. For the form I, we set o = (0,0,...,0,k,k, ..., k), where k = % Then
T

m—1 l
ac I‘:;Id. Under the action of S, on ]."n*“ 4» We choose a system A of representatives
such that o € A. Since d # 0, k # 0 and

(Sm)a = Sm.—l X S! =R Sn':

where (S,)q is the stabilizer subgroup of o and Sy is the Young subgroup corre-

o
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] ]

[ L9 49%

sponding {:;0 7 = m. Hence, by Frobenius Reciprocity Theorem,

1
| Z fr(a):(ﬂ,l(sm)n)(sm)a

0€(Sm)a
= (ﬂ—a 171).5'"

(7T, l,Sr"‘ ) s

(Tﬂ Z Ky, ﬂﬂ*)
putm

- Z Kyx (T, 11)s,,

ubm

=K,,=1#0

Il

Sm

This yields & € A and, moreover, by (2.8), that

dim Hj"" () _1 ) Z x(o

v E(Sﬂ)

Now, we compute the product of the hook lengths of [r] which we get

H ]j hij=(m=1+1)(m—1)- (m—20+2)(m—20)--- (2)()Y(I=1)---(2)(1)
i=1j=1

SYm =4+ )Y

T (m=2+1)

Hence, by (4.1),

) e ) (m—2l+1)m
dim Hd ( ) ?T(].) TT—;—]_)‘T'
Now, using (2.6), we have
= dlmH“”(ﬂ) m—20+1
[ 1P 2o o i\
[ m - m)a] m—1+1

Hence, 3 <|| X®* |[?< 1 if and only if m > 3{. Thus the result for the first form

follows from Theorem 3.3.

For the form I, # = [m — 1,1 — 1,1], we set a = (0,0, ...,0,k, %, ..., k, k +7), where
! -1
i >
k= . Then a € I‘ 4 Under the action of S, on I‘:‘Id, we choose a system A of

1epresentat1ves such that a€A. Sinced#r#0, k#0and k+r # k and hence

(Sm)a ES5na X Sl—l x5 =8
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By the same arguments as the first form, we conclude that dim Hj"*(w) = «(1). For

the products of the hook lengths, we compute that

3
TTIT his= m—1+2)(m =0 (m =20+ 3)(m — 20 +1)--- (I —2)(1 = 3) - --

i=1j=1
B (m— 14+ 2)I!
S m=l+)(m—-20+2)(1-1)

Then

(m—1+1)(m— 21+ 2)(l = 1)m!
(m— 1+ 20 :

dimH " (r) = n(1) =

Now, using (2.6) again, we have

o dimHZ(n)  (m-=2042)(1-1)

W= T =t

1)

It is now easy to show that 3 <|| X®* ||2< 1 if and only if m > 3l + =5, because

I > 2. The result for the second form follows from Theorem 3.3. O
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