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Abstract

We present the approach to obtain eigenfunctions and eigenenergies for abruptly varying
potentials in the framework of Wentzel-Kramers-Brillouin (WKB) approximation. To illustrate
it, two examples of the potentials are studied. The first one is the combination of a step
barrier and a harmonic oscillator potential, and the second one consists of a step barrier
and a linear potential. The formulation of WKB quantisation rule is proposed. Our approach
shows that WKB energies and those from numerical calculation are in good agreement.
According to matching conditions used, WKB wavefunctions in this present work are violated
at only orne classical turning point, but they behave well at another point where the

potentials are discontinuous.
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We begin this section with the one-dimensional Schrodinger equation:

[—fﬁ + v(;ﬂ] W(r) = BW() (4)

2m du?
where /() is a confined potential which rises suddenly at x = 0. The general model of our

considered potential is given by

Vi(e) 2 <0
V)= { LS )
Va(a) x> 0.

Vi(x) and V5(x) are arbitrary functions which are not connected each other at x = 0. In
our model, the vertically finite wall is on the side of V4, leading to a turning point localised
at x; = 0 and another one at 2 as depicted in Fig. 1. We then express the quantities in
the following units: = = #a, E = FEp, and V = V Ep, where E; = i? /(ma®) and a is an

arbitrary fixed length. Now, the Schrédinger equation (4) becomes

(6)

V(x)

FIG. 1. An attractive potential V(2) varying abruptly at @ = 0. For a particle with energy E,
the symbols I and III represent the classically forbidden regions, while II represents the classically

allowed region.



Note that the tilde will be dropped in the following expression for convenience. It is not a
good idea to apply the conventional energy quantisation in equation (3) to our considered
potential because of two reasons. Firstly, equation (3) is derived from the assumption that
a potential V(z) depends linearly on the variable @ at the turning points. This assumption
is obviously violated at & = 0. Secondly, integrating from 2, to x, in equation (3) suggests
that the approximated eigenenergies are totally independent of the potential in the classically
forbidden regions. This is a bad approximation for the investigated potential since V;(x), the
potential in region I, indicates how far quantum wavefunctions penetrate into the nonclassical
region, and certainly influences the eigenenergies. In other words, it is unreasonable that
varying the potential Vj(x) results in unchanged energies.

We propose that the WIKB theory can still be used. The decaying WKB wavefunctions
corresponding to the dimensionless Schrédinger equation (6) in the first and the third regions
in Fig. 1 are

Uy(z) = %exp [— / : H(.r')d.t"] (7)

and
B e (4 1
U (e) = ——exp |— | &(2")da'|, (8)
VK Sy
respectively, where A and B are the normalising constants and x(z) = /2(V — E). Note

that the subscripts refer to the regions where the wavefunctions exist. If V() does not
change abruptly, we can use the connection formulae to connect the decaying wavefunctions
i to the oscillating wavefunetions in region II, obtaining

2B e T
Uy (x) = ﬁsin [/ k(a")da' + I‘} : 9

where k(z) = /2(F — V). As discussed before, one should not join the wavefunction ¥
and wavefunction Wy together at @ = 0 by using the connection formulae. However, we
notice that the WKB wavefunctions in both regions behave well around the turning point
x = 0; therefore, the wavefunctions can be matched normally by the boundary condition:

!
\I;[

'
\Jr I

=0 ‘I’ 1T

(10)

=0



Now, the coeflicients A and B are disappeared, and the quantised energies are expected
to be obtained after imposing the condition. To demonstrate the advantage of this WKB
analysis, we will calculate the eigenenergies and eigenstates associated with the considered

potential in the following two examples.

2.1 vanasnudnevaaiandutudulavazenluila

The step-harmonie potential which contains a vertically finite wall is of the form discussed
in equation (5). It is formed by the step function Vy©(=2) and the harmonic oscillator
potential 2?0 (x), where O(z) is the Heaviside step function and I is a constant indicating
the width of the quantum well. To get the Sehrddinger equation in the dimensionless form
of equation (G), we measure energies in the unit of Ey; = h?/(ma?), where a is the length
[h?/ (2[(7?1)]1/ ! The potential is consequently expressed as

Ww <0

Vi(z)= 11
i 3%/ 2re >0, )

as depicted in Fig 2. Before constructing WIKB wavefunetions, we need to calculate the

80

V(x)

401

FIG. 2. The step-harmonic potential with the classical turning points at 2; = 0 and x5 = V2F.

) : L 2 \1/4 .
The potential V(2) and distance 2 are in units of Ey = h 27"} and a = (7{55) respectively.



and

N g vEE 2 /
2)de' = g E—? dx

Er €T T
PSS i a2 .
= [2\/2E x? + Etan ( T 312)} . (13)

In the above calculation, the classical turning points are localised at x; = 0 and x5 = v/2F.

We straightforwardly substitute equations (12) and (13) into the WKB wavefunctions ¥y
(7) and Py (9), then applying the boundary condition (10) to get the energy quantisation

rule:

VVo— E = —VEcot#, (14)

where 6 = (22 4 1),

Our WKB energies are compared with ones from the finite difference method which are
converged and accurate to 5 decimal places. Table I shows that WKB energies and those
due to the numerical calculation are in very good agreement; the percentage error is less
than 0.5 for all trial values of V. We notice that the approximated values are always greater
than the numerical ones. The number of confined states is determined by the strength
of the potential Vj; it increases as the potential is stronger. For a given value of V;, the
agreement between two independent methods is improved with increasing n. That is, the
approximation is better for higher energy states. This is the conventional trend in the WKB
method, which can be explained by the inspirational assumption that a potential V' (x:)
changes slowly compared with wavelengths of quantum wavefunctions. In other words,
the distance on which a potential changes significantly is large compared with quantum
wavelengths. Therefore, high-energy excited states with small wavelengths seem to satisfy
the assumption more than the low-lying confined states. For each value of n, the table shows
WIKB approximation gives higher accurate results when the potential V5 is stronger. When
the potential 14, becomes an infinity well, a quantum wavefunction cannot tunnel through

the side. In this case, we have the boundary condition

Uy (;l? =} = (15)



resulting in the quantised energies
1
E:n—§ for n=9246,... (16)

This is the exact solution of the half-space harmonic oscillator which confirms that WIKB
calculation is a good approximation for high strength of the barrier V5.

After obtaining eigenenergies, we use them to calculate WKB eigenfunctions in those
three regions and combine them together to get total WKB wavefunctions (#'VKB = ;4
Wi+ Tyyp). The first 4 eigenstates corresponding to the step-harmonic potential with 15 = 50
are shown in Fig 3. We find WKB eigenstates have the same behaviour as those from the
finite difference method everywhere except the region around the turning point x;. They
go to infinity at the turning point, but behave very well at another point 2; = 0. The
local momentum p(x) plays a key role in the distribution of WKB wavefunctions at the
turning points. At @, the energies of trapped states are equal to the potential, resulting
in p(x;) = 0 and inappropriate distribution of WKB wavefunctions; on the other hand, at
#; the quantised energies that are always less than Vj lead to p(x,) # 0 and appropriate

distribution of the wavefunctions.

Vo=10 Vo=50
E(numerical )| E(WKB)|Percentage error E(numerical)|E(WKB)|Percentage error
n=1 1.26217 1.2G820 0.47762 n=1 1.39055 1.39323 0.19261
n=2 3.12085 3.12253 0.05376 n=2 3.33290 23373 0.02495
n=3 4.99927 5.00000 0.01467 n=3 5.288G9 5.28911 0.00799
n=4 6.87711 6.87747 0.00529 n=4 7.25102 7.25128 0.00364
V=90 Vo=130
E(numerical )| E(WIKB)|Percentage error E(numerical) |E(WKB) |[Percentage error
n=1 1.41785 1.41983 0.13978 n=1 1.43139 1.43304 0.11470
n=2 3.37530 3.37592 0.01845 n=2 3.39G12 3.39664 0.01527
n=3| 5.34208 5.34330 0.00600 n=3| 5.36944 5.36971 0.00500
n=4| 7.31574 7.31594 0.00278 n=4| 7.34702 7.34719 0.00234

TABLE 1. Comparison between numerical and WKB energies for various values of the barrier

Vo and for several low-lying states. All eigenenergies and potentials are measured in the unit of

Ey = h/2K,
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FIG. 3. Comparison between the numerical wavefunctions W,, and WIKB wavefunctions ¥WKB
corresponding to the step-harmonic potential with 15 = 50 for several values of quantum number

n. The distanee 2 is in the unit of a = (gﬁ%)l/ll.
2.2 Uanasnudngveelandutudulalaadady

The next example we will show is a particle in the step-linear potential. It is the potential
with a vertical wall at @ = 0, containing the step function V;0(—x) and the linear potential
KzO(x), where K is a constant determining the slope of the linear term. The Schrédinger
equation can be written in the dimensionless from of equation (G) by introducing the energy

: : D ‘ - 1/3 . i -
unit Ep = h?/(ma?), where @ = [R?/(2Km))| A Now, the dimensionless potential becomes

W 2<0 ,
V(e) = (17)
x/2 x> 0,
where the classical turning points are at 2, = 0 and x; = 2F, shown in Fig 4. Again, we

start finding WKB wavefunctions by caleulating the integral

= %(2}3 —z)¥2, (18)



FIG. 4. The step-linear potential with the classical turning points at x; = 0 and a» = 2E.
The potential V(x) and distance @ are in units of Ey = [(21*11"\')2/m]l"':i and a = [fig/(?h'm.)]l’l3

respectively.

Substitute equations (12) and (18) into the WKB wavefunctions ¥; (7) and Uy (9), and

impose the boundary condition (10) to obtain the energy quantisation rule:

i _ V2

E(Vo— E) — E3cot(8), (19)
16
where § = 22E3/2 4 &
Vo=10 Vo=50
E(numerieal) |[E(WKB)|Percentage error E(numerical) |E(WIKB)|Percentage error
n=il 1.056529 1.04G625 0.85661 n=1 1.11887 1.10993 0.79877
n=2| 192834 1.92524 0.16090 n=2| 1.99364 1.99057 0.15410
n=3 2.64297 2.64126 0.06489 n=3| 2.70982 2.70812 0.06268
n=4 3.27445 3. 21834 0.03472 n=4| 3.34278 3.34166 0.03369
V=90 Vo=130
E(numerieal) |E(WKDB)|Percentage error E(numerical) |[E(WKB)|Percentage error
n=1 1.13171 1.12278 0.78924 n=1 1.13800 1.12907 0.78474

n=2| 2.00657 2.00350 0.15302 n=2 2.01289 2.00982 0.15252

n=3| 272282 272112 0.06235 n=3 2.72010 2.72746 0.06220

n=4| 3.35585 3.35472 0.03354 n=4| 3.36221 3.36108 0.03347

TABLE II. Comparison between numerical and WKB energies for various values of the barrier

Vo and for several low-lying states. All eigenenergies and potentials are measured in the unit of



10

The resulting WKB energies and those due to the finite difference method are shown in
table II. Similar to the previous results, the percentage error decreases with increasing quan-
tum number n. Moreover, the strength of the potential 14 is still the parameter determining
the number of confined states. However, we notice that the approximated values are slightly
less than the numerical ones in this case. For an infinity hard wall of the potential V;, the
WKB wavefunction Wy satisfying the boundary condition (15) results in the quantisation
of WKB energies associated with the half-space linear potential,

2/3

= Sﬁﬂ- (" | i) for n= 1,‘2. I N (20)

8
Considering the results shown in tables IT and III for each value of n, we find the WKB
calculation does better with increasing 4. Unlike the results in the case of the step-harmonic
potential, WKB calculation cannot. produce exact eigenenergies for 1, = oc.

WKB eigenenergies are then used to caleulate WKB wavefunctions in the same way we
did before. They are compared with several numerical wavefunctions in Fig 5. As expected,
wavefunctions from both methods agree well with each other everywhere except the region
around the turning point x;. The distribution of WKB eigenstates can be again explained

by considering the local momentum p(z).

'1] = 5

E(numerical) | E(WKB)|Percentage Error

n=1{|1.16905 1.16013 0.76372
n=2 204397 2.04091 0.15017
n=3 276028 2.75858 0.06147

n=41-.3.39335 3.39223 0.03319

TABLE IIl. Comparison between numerical and WKB energies associated with the half-space

linear potential. All eigenenergies are measured in the unit of Ey = [(2hK)?/ m]u 5
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Abstract

We present the approach to obtain eigenfunctions and eigenenergies for abruptly varying poten-
tials in the framework of Wentzel-Kramers-Brillouin (WKB) approximation. To illustrate it, two
examples of the potentials are studied. The first one is the combination of a step barrier and a
harmonic oscillator potential, and the second one consists of a step barrier and a linear potential.
The formulation of WKB quantisation rule is propoesed. Our approach shows that WKB energies
and those from numerical calculation are in good agreement. According to matching conditions
used, WKB wavefunctions in this present work are violated at only one classical turning point, but

they behave well at another point where the potentials are discontinuous.
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I. INTRODUCTION

The WKB method is a powerful technique for estimating solutions of the Schrodinger
equation. Its application is concerned with solving differential equations and can be found
in many branches of physics!™. In quantum mechanics classes, students have been taught
that WKB approximation is effective when a potential V(x) changes slowly compared with
wavelengths of guantum wavefunctions. This leads to an approximately oscillating wave-

function of the form®
U(z) = : exp [i?—_-/p(:zr)dzrr} (1)
p(x) h

in a classically allowed region (77 > V) and an approximately decaying wavefunction of the

form

U(r) = \/hl {i} [ o) f} @)

in a classically forbidden region (K < V), where p(z) = v/2m|[E — V()] is the local momen-

tum of a particle with energy . Near the turning points where ¥ = V', WKB wavefunctions
do not behave appropriately as the denominators in (1) and (2) go to infinity®. As a result,
they ecannot be matched at the points normally.

To obtain the bound-state energies, the approximated wavefunctions in those two regions
are connected by the connection formulae’ derived by linearising a confined potential well
at the turning points. For a potential well which changes slowly, WIKB energy quantisation

is given by®7

/m V2m[E, =V (a)]de = g (n, - %) \ (3)

1

where 7 and 2, are the classieal turning points.

The method can also be applied to an abruptly varving potential, particularly a potential
with an infinity wall®®?, In this case, the quantisation energies are obtained by imposing
the boundary condition in which the approximated wavefunctions vanish at the infinity wall.
Successful examples of the case are an infinity quantum well and a half-space harmonic oscil-
lator (a harmonic oscillator with a hard wall) where WKB approximation gives surprisingly
exact eigenenergies®?.

A potential well is not often the case. It could jump upward and then go to a certain
value, for instance, a rectangular well formed by a narrower gap semiconductor between two

adjacent wider gap semiconductors!®!!. It seems that the connection formulae do not work
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well here because the potential cannot be linearised at the classical turning points. To the
best of our knowledge, there is no attempt to apply the WKB method to such a potential.

In this work, we present the approach in the framework of WKB approximation to find
the solutions of the Schrédinger equation with a sharply rising potential. To illustrate our
idea, we apply the approach to two case studies: the step-harmonic potential'? (a step
barrier and a harmonic oscillator potential) and the step-linear potential’® (a step barrier
and a linear potential). The first one is an interestingly modified harmonic oscillator which
could be an exercise in a class. The second one is sometimes called a triangular well which
is widely discussed in semiconductor physies!!. It may be a model for the potential of
a heterojunction of two semiconductors with different energy bandgaps. For example, a
GaAs-AlGaAs interface!® where AlGaAs and GaAs are represented by a step and linear
barrier respectively. To show the accuracy of our WKB results, we compare them with the
eigenenergies and eigenstates obtained by the finite difference method®. It is the numerical
calculation which can be easily applied to the Schrodinger equitation with any type of
confinement potential. Although the highly accurate solutions can be obtained numerically,
the solutions are just sets of discretised points. Students may not gain insight into the
problems. On the other hand, the WKB theory gives us analytical expression. At least
students will understand oscillating and decaying behaviours of guantum wavefunctions.
The tendency of allowed energies is also possible to be analysed. The agreement between

these two independent methods will be discussed.

II. WKB ANALYSIS FOR ABRUPTLY VARYING POTENTIALS

We begin this section with the one-dimensional Schrodinger equation:

h2..a8%
9. 9.2 S Py iy, *
555+ V(@) Ux) = EY(e), (4)

where V(z) is a confined potential which rises suddenly at = = 0. The general model of our

cousidered potential is given by
V() = o (5)

Vi(x) and V,(x) are arbitrary functions which are not connected each other at = = 0. In

our model, the vertically finite wall is on the side of V;, leading to a turning point localised

3
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V(x)

Vi

FIG. 1. An attractive potential V' (x) varying abruptly at x = 0. For a particle with energy E,
the symbols I and III represent the classically forbidden regions, while II represents the classically

allowed region.

at ;1 = 0 and another one at x5 as depicted in Fig. 1. We then express the quantities in
the following units: @ = &a, E = EEy, and V = VEy, where Ey = h2/(ma?) and a is an

arbitrary fixed length. Now, the Schrodinger equation (4) becomes
1 i % 1
[*gw * V(a;)] U(z) = BY(%). (6)
Note that the tilde will be dropped in the following expression for convenience. It is not a
good idea to apply the conventional energy quantisation in equation (3) to our considered
potential because of two reasons. Firstly, equation (3) is derived from the assumption that
a potential V(x) depends linearly on the variable « at the turning points. This assumption
is obviously violated at @ = 0. Secondly, integrating from a1 to x5 in equation (3) suggests
that the approximated eigenenergics are totally independent of the potential in the classically
forbidden regions. This is a bad approximation for the investigated potential since V;(z), the
potential in region I, indicates how far quantum wavefunctions penetrate into the nonclassical
region, and certainly influences the eigenenergies. In other words, it is unreasonable that
varying the potential V}(z) results in unchanged energies.
We propose that the WKB theory can still be used. The decaying WKB wavefunctions
corresponding to the dimensionless Schrédinger equation (6) in the first and the third regions
in Fig. 1 are

W(z) = %exp {— / K,(ﬂ:')d:c'} (7)



>age 5 0f 13

N N T e e —

BN RGN B 5SRO N o0 IS RO S8 NG RN ISR IGGERRSS ™

CONFIDENTIAL - FOR REVIEW ONLY EJP-100353.R1
and
B T
Up(z) = —=exp [—f H(:L'I)(l:l}il , (8)
vl A
respectively, where A and B are the normalising constants and k(z) = 1/2(V — E). Note

that the subscripts refer to the regions where the wavefunctions exist. If V,(z) does not
change abruptly, we can use the connection formulae to connect the decaying wavefunctions

Wy to the oscillating wavefunctions in region II, obtaining

Ui(@) = 2Tj_r;:sin [Ln k(a")dz' + ﬂ ; (9)

where Ak(z) = /2(F — V). As discussed before, one should not join the wavefunction ¥y
and wavefunction ¥y together at = 0 by using the connection formulae. However, we
notice that the WKB wavefunctions in both regions behave well around the turning point
x = 0; therefore, the wavefunctions can be matched normally by the boundary condition:

\pi

Yy
Uy =

% (10)

2=0 =0
Now, the coefficients A and B are disappeared, and the quantised energies are expected
to be obtained after imposing the condition. To demonstrate the advantage of this WKB
analysis. we will calculate the cigenenergies and ecigenstates associated with the considered

potential in the following two examples.

IIT. THE STEP-HARMONIC POTENTIAL

The step-harmonic potential which contains a vertically finite wall is of the form discussed
in equation (5). It is formed by the step function V;0(—z) and the harmonic oscillator
potential K2*0O(z), where ©(z) is the Heaviside step function and K is a constant indicating
the width of the quantum well. To get the Schrodinger equation in the dimensionless form
of equation (6), we measure energies in the unit of Ey = h?/(ma?), where a is the length

[h?/ (2K-m.)]1/ *. The potential is consequently expressed as

Viz) = Vo w0 (11)

22/3 @ = 0,
as depicted in Fig 2. Before constructing WKB wavefunctions, we need to calculate the

5
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V(x)

40

201

FIG. 2. The step-harmonic potential with the classical turning points at 1 = 0 and xy = V2E.

1/4
. . . . - 2 .
The potential V(z) and distance & are in units of Ey = h 2;51\ and a = (%) respectively.

integrals
fm w(a")da' = fD V2(Vo — E)da'
: N ((EY5) (12)
and

/ uu/ 2 r__’z

2 B [ VIE 2 + Etan- (\/QE%)] (13)

In the above calculation, the classical turning points are localised at @y = 0 and 2z, = V2F.
We straightforwardly substitute equations (12) and (13) into the WKB wavefunctions ¥y
(7) and Wy (9), then applying the boundary condition (10) to get the energy quantisation

rule:
v'Vo — B=—VEcot, (14)

where 0 = (%ﬁ + %)

Our WKB energies are compared with ones from the finite difference method which are
converged and accurate to 5 decimal places. Table I shows that WKB energies and those
due to the numerical calculation are in very good agreement; the percentage error is less

than 0.5 for all trial values of 4. We notice that the approximated values are always greater

6
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than the numerical ones. The number of confined states is determined by the strength
of the potential Vj: it increases as the potential is stronger. For a given value of V;, the
agreement between two independent methods is improved with increasing n. That is, the
approximation is better for higher energy states. This is the conventional trend in the WKB
method, which can be explained by the inspirational assumption that a potential V(z)
changes slowly compared with wavelengths of quantum wavefunctions. In other words,
the distance on which a potential changes significantly is large compared with quantum
wavelengths. Therefore, high-energy excited states with small wavelengths seem to satisfy
the assumption more than the low-lving confined states. IFor each value of n, the table shows
WIKB approximation gives higher accurate results when the potential 14 is stronger. When
the potential V4 becomes an infinity well, a quantum wavefunction cannot tunnel through

the side. In this case, we have the boundary condition
11’1](11) — 0) ==() (15)
resulting in the quantised energics
1
E=n-~ 5 for =2 4u4, ... (16)

This is the exact solution of the half-space harmonic oscillator which confirms that WKB

calculation is a good approximation for high strength of the barrier V.

After obtaining eigenenergies, we use them to calculate WKB ecigenfunctions in those
three regions and combine them together to get total WKB wavefunctions (TWVEB — ¥ 4
Wy +Wyyp). The first 4 eigenstates corresponding to the step-harmonie potential with V4 = 50
are shown in Fig 3. We find WKB eigenstates have the same behaviour as those from the
finite difference method everywhere except the region around the turning point 25. They
go to infinity at the turning point, but behave very well at another point ; = 0. The
local momentum p(z) plays a key role in the distribution of WKB wavefunctions at the
turning points. At x5 the energies of trapped states are equal to the potential, resulting
in p(22) = 0 and inappropriate distribution of WKB wavefunctions; on the other hand, at
7 the quantised energies that are always less than V4 lead to p(7;) # 0 and appropriate

distribution of the wavefunctions.
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=10 Vo=50
E(numerical) |E(WIKB) [Percentage error E(numerical) | E(WKB) Percentage error
n=1| 1.26217 1.26820 0.47762 n=1| 1.39055 1.39323 0.19261
n=2 3.12085 3.12253 0.05376 n=2| 3.33290 3.33373 0.02495
n=3| 4.99927 5.00000 0.01467 n=3| 5.28869 5.28911 0.00799
n=4| 6.87711 6.87747 0.00529 n=4| 7.25102 7.25128 0.00364
5=90 Vo=130
E(numerical) |E(WKB)|Pereentage error E(numerical) |E(WKB) [Percentage error
n=1| 1.41785 1.41983 0.13978 1ol el 39 1.43304 0.11470
n=2 3.37530 3.37592 0.01845 n=2f 3.39612 3.39664 0.01527
n=3 5.34298 5.34330 0.00600 n=3| 5.36944 5.36971 0.00500
n=4| 7.31574 7.31594 0.00278 n=4| 7.34702 7.34719 0.00234

Page 8 of 1:

TABLE 1. Comparison between numerical and WKB energies for various values of the barrier

Vo and for several low-lying states. All cigenenergies and potentials are measured in the unit of

Eo = hy/2K.

IV. THE STEP-LINEAR POTENTIAL

The next example we will show is a particle in the step-linear potential. It is the potential

with a vertical wall at @ = 0, containing the step function Vo0(—

z) and the linear potential

KaO(z), where K is a constant determining the slope of the linear term. The Schrédinger

equation can be written in the dimensionless from of equation (6) by introducing the energy

unit Fy =

h?/(ma?), where a = [h? /(2K m)]l/ °. Now, the dimensionless potential becomes

Vi

Vo <0
L2 ret],

(17)

wherc the classical turning points arc at ; = 0 and 2, = 2F, shown in Fig 4. Again, we

start finding WKB wavefunctions by calculating the integral

[ ke

2E
d:z,—f E—— da'

2E—:L 3/2

(18)
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FIG. 3. Comparison between the numerical wavefunctions ¥, and WKB wavefunctions \DX"KB

corresponding to the step-harmonic potential with V5 = 50 for several values of quantum number

1/4
. . . i 2 /
n. The distance z is in the unit of a = (ﬁ) :

6r
V(x)
4;
| W WL S R R ST S, SR B g
1
1
2+ ]
1
x,=0 Vo [xm2E]
i e
0 . e .
-5 0 5 10 15

FIG. 4. The step-linear potential with the classical turning points at ; = 0 and xy = 2F.
The potential V(z) and distance & are in units of Ey = [(22K)?/m] 3 and a = [A2/(2Km)] 178

respectively.

Substitute equations (12) and (18) into the WKB wavefunctions ¥; (7) and ¥y (9), and

impose the boundary condition (10) to obtain the energy quantisation rule:

E(V, - B)Y2 = ‘1/—5 — I32cot(9), (19)

where 6 = % E¥? 4z
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The resulting WKB energies and those due to the finite difference method are shown in
table II. Similar to the previous results, the percentage error decreases with increasing quan-
tum number n. Moreover, the strength of the potential Vj is still the parameter determining
the number of confined states. However, we notice that the approximated values are slightly

less than the numerical ones in this case. For an infinity hard wall of the potential V;, the

Vo=10 Vo=50
E(numerical)|[E(WKB) |Percentage error E(numerical ) |E(WKB)|Percentage error
n=1| 1.05529 1.04625 0.85661 n=1 1.11887 1.10993 0.79877

n=2 1.92834 1.92524 0.16090 n=2[ 1:99364 1.99057 0.15410

n=3| 2.64297 2.64126 0.06489 n=3| 2.70982 2.70812 0.06268

n=4| 3.27445 3.27331 0.03472 n=4| 3.34278 3.34166 0.03369
Vo=90 V=130
E(numerical) [E(WKB)|Percentage error E(numerical )|E(WKB)|Percentage error
n=1 1.13171 1.12278 0.78924 n=1| 1.13800 1.12907 0.78474

n=2| 2.00657 2.00350 0.15302 n=2( 2.01289 2.00982 0.15252

n=3| 2.72282 2.72112 0.06235 n=3| 2.72916 2.72746 0.06220

n=4| 3.35585 3.35472 0.03354 n=4| 3.36221 3.36108 0.03347

TABLE II. Comparison between numerical and WKB energies for various values of the barrier
W and for several low-lying states. All eigenenergies and potentials are measured in the unit of

Eo = [(2hE)2/m]">.

WKB wavefunction ¥y satisfying the boundary condition (15) results in the quantisation

of WKB cnergies associated with the half-space linear potential,

2/3
3vV2
fﬁ (n. = %)} or =188 . . (20)

o
8

Considering the results shown in tables II and III for each value of n, we find the WKB
calculation does better with increasing V5. Unlike the results in the case of the step-harmonic
potential, WKB calculation cannot produce exact eigenenergies for V4 = oco.

WKB eigenenergies are then used to calculate WKB wavefunctions in the same way we
did before. They are compared with several numerical wavefunctions in Fig 5. As expected,

wavefunctions from both methods agree well with each other everywhere except the region

10
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VBZ:CO

E(numerical) |[E(WIKB)|Percentage Error

n=1 1.16905 1.16013 0.76372

n=2| 2.04397 2.04091 0.15017
n=23| 2.76028 2.75858 0.06147
n=4| 3.39335 3.39223 0.03319

TABLE III. Comparison between numerical and WIKB energies associated with the half-space

linear potential. All cigencnergics are measured in the unit of Ey = [(2!‘1.]()2/771} 1z,

25 . .
! —T] =
I '
2r i ] : I g LPZ
[} 1 i | !
' 1 H i ]
! ! i i v,
P A X
[l [ 1 M ; Y /
g 1T Ay " = - - b
- d = i ¥
] -?;‘H
05 L
[i|=
-0.51
_1 1 N ,
0 : 1 2 8 10

s | . . . 7
FIG. 5. Comparison between the numerical wavefunctions ¥,, and WKB wavefunctions ll‘:;“(B
corresponding to the step-linear potential with 15 = 50 for several values of quantum number n .

The distance @ is in the unit of @ = [H‘Z/(Qfx'm)] q3.

around the turning point xy. The distribution of WKB eigenstates can be again explained

by considering the local momentum p(z).

V. CONCLUSION

WKB analysis for abruptly varyving potentials containing one vertically finite wall is pre-
sented. At the classical turning point where a potential changes slowly, WKB wavefunctions

do not behave well because of the vanished momentum. To match WKB wavefunctions at

i (o}
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the point, one needs to use the connection formulae. On the other hand, at another turn-
ing point where a potential rises suddenly, WKB wavefunctions exhibit good behaviour. We
therefore suggest that the wavefunctions should be matched normally (a quantum wavefunc-
tion and its first derivative are continuous at the turning point). Our resulting eigenenergies
are found to be in good agrecement with the numerical results especially for high-cnergy
excited states. Although WKB eigenstates are violated at the turning point (a quantum
wavefunction must be finite everywhere.), their distribution is mostly consistent with that
due to the numerical calculation.

Finally, the advantages of our WKB analysis are discussed in the following. It can
be applied to the potential with a vertical wall. As seen in our examples, we apply it
to a triangular potential which is found at the interface between two layers of different
semiconductors’®. At the conduction band edge, clectrons trapped by the potential lead to
a two-dimensional electron gas which refers to electrons moving freely in the plane parallel to
the interface. For a heterostructure of two semiconductors with a sufficiently large difference
of energy band gaps, the half-space linear potential (a linear potential and an infinity wall)
may be a good approximation of the confined potential. However, when the energy band
gaps are not different enough, quantum wavefunctions can significantly enter into the side of
the vertical wall. In this case, our WKB approach is necessary. Moreover, it can be applied
to the multidimensional Schrédinger equation with a centrally symmetric potential. Like
the standard WKB approach!™!® a multidimensional problem is needed to be transformed

into the one-dimensional radial equation before applying the WKB method as usual.
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Abstract

We present an approach to obtain eigenfunctions and eigenenergies for
abruptly varying potentials in the framework of the Wentzel-Kramers—Bril-
louin (WKB) approximation. To illustrate it, two examples of the potentials
are studied. The first one is the combination of a step barrier and a harmonic
oscillator potential, and the second one consists of a step barrier and a linear
potential. The formulation of a WKB quantization rule is proposed. Our
approach shows that WKB energies and those from numerical calculation are
in good agreement. According to maiching conditions used, WKB wave-
functions in this present work are violated at only one classical turning point,
but they behave well at another point where the potentials are discontinuous.

Keywords: WKB approximation, step-harmonic potential, step-linear potential

1. Introduction

The Wentzel-Kramers—Brillouin (WKB) method is a powerful technique for estimating
solutions of the Schrodinger equation. Its application is concerned with solving differential
equations and can be found in many branches of physics [1-4]. In quantum mechanics
classes, students have been taught that WKB approximation is effective when a potential V(x)
changes slowly compared with wavelengths of quantum wavefunctions. This leads to an
approximately oscillating wavefunction of the form [5]

a1 i .
¥ix) = Jp—(;)_ cxp[ + 7 fp(,\)dx] (D

in a classically allowed region (E > V) and an approximately decaying wavefunction of the
form
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1 1
Y(x) = ——cex [ +— [ |p)] dt] (2)
Jpor PLE 7 Ji

in a classically forbidden region (E < V), where p(x) = J2m|[E — V (x)] is the local
momentum of a particle with energy E. Near the turning points where £ = V, WKB
wavefunctions do not behave appropriately as the denominators in (1) and (2) go to infinity
[6]. As a result, they cannot be matched at the points normally.

To obtain the bound-state energies, the approximated wavefunctions in those two regions
are connected by the connection formulae [7] derived by linearizing a confined potential well
at the turning points. For a potential well which changes slowly, WKB energy quantization is
given by [5, 7]

j:z \/2 m[E,, — V(.t)] dx = ‘;—‘(n - é) (3)

where x; and x; are the classical turning points.

The method can also be applied to an abruptly varying potential, particularly a potential
with an infinity wall [5, 8, 9]. In this case, the quantization energies are obtained by imposing
the boundary condition under which the approximated wavefunctions vanish at the infinity
wall. Successful examples of the case are an infinity quantum well and a half-space harmonic
oscillator (a harmonic oscillator with a hard wall) where WKB approximation gives sur-
prisingly exact eigenenergies [5, 9].

A potential well is not often the case. It could jump upward and then go to a certain
value; for instance, a rectangular well formed by a narrower gap semiconductor between two
adjacent wider gap semiconductors [10, 11]. Tt seems that the connection formulae do not
work well here because the potential cannot be linearized at the classical tuming points. To
the best of our knowledge, there has been no attempt to apply the WKB method to such a
potential.

In this work, we present the approach in the framework of the WKB approximation to
find the solutions of the Schrddinger equation with a sharply rising potential. To illustrate our
idea, we apply the approach to two case studies: the step-harmonic potential [12] (a step
barrier and a harmonic oscillator potential) and the step-linear potential [13] (a step barrier
and a linear potential). The first one is an interestingly modified harmonic oscillator which
could be an exercise in a class. The second one is sometimes called a triangular well which is
widely discussed in semiconductor physics [14]. It may be a model for the potential of a
heterojunction of two semiconductors with different energy bandgaps; for example, a GaAs-
AlGaAs interface [15] where AlGaAs and GaAs are represented by a step and linear barrier
respectively. To show the accuracy of our WKB results, we compare them with the eigen-
energies and eigenstates obtained by the finite difference method [16]. It is the numerical
calculation which can be easily applied to the Schridinger equitation with any type of
confinement potential. Although the highly accurate solutions can be obtained numerically,
the solutions are just sets of discretized points. Students may not gain insight into the
problems. On the other hand, the WKB theory gives us analytical expression. At least
students will understand oscillating and decaying behaviours of quantum wavefunctions. The
tendency of allowed energies may also be analysed. The agreement between these two
independent methods will be discussed.
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Figure 1. An atlractive potential V(x) varying abruptly at x = 0. For a patticle with
energy E, the symbols I and IIT represent the classically forbidden regions, while II
represents the classically allowed region.

X

2. WKB analysis for abruptly varying potentials

We begin this section with the one-dimensional Schridinger equation:

2952
[ _fi_()_ & V(;l;)]'ly(.\') = E¥ (x), )
2m ox?

where V(x) is a confined potential which rises suddenly at x = 0. The general model of our
considered potential is given by

~E Vx) x<0
J®% {vz(.r) x>0 )

W (x) and V,(x) are arbitrary functions which are not connected to each other at x = 0. In our
model, the vertically finite wall is on the side of Vi, leading to a turning point localized at
x; = 0 and another one at x, as depicted in figure 1. We then express the quantities in the
following units: x = fa, E = EEy, and V = VE,, where Eq = 42/(ma®) and a is an arbitrary
fixed length. Now, the Schrodinger equation (4) becomes

[ —la—_z + V(.\"')]EP(.?) = E¥(x). (6)

Note that the tilde will be dropped in the following expression for convenience. It is not a
good idea to apply the conventional energy quantization in equation (3) to our considered
potential for two reasons. Firstly, equation (3) is derived from the assumption that a potential
V(x) depends linearly on the variable x at the turning points. This assumption is obviously
violated at x = 0. Secondly, integrating from x, to x, in equation (3) suggests that the
approximated eigenenergies are totally independent of the potential in the classically
forbidden regions. This is a bad approximation for the investigated potential since V;(x), the
potential in region I, indicates how far quantum wavefunctions penetrate into the nonclassical
region, and certainly influences the eigenenergies. In other words, it is unreasonable that
varying the potential Y (x) resulis in unchanged energies.

We propose that the WKB theory can still be used. The decaying WKB wavefunctions
corresponding to the dimensionless Schridinger equation (6) in the first and the third regions
in figure | are
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Figure 2. The step-harmonic poltential with the classical tuming points at x; = 0 and

Xy = \fg_E . The potential V(x) and distance x are in units of [y = f?\% and
a= (;’K—;ﬂ)”“ respectively.
Hix) = A cxp[ -fxl K(.\")dr’] €))
JK x
and
B x
Hn(x) = —E 6Xp[ —_/I.: x(x’)ch"], (8)

respectively, where A and B are the normalizing constants and x (v) = \/2(V — E). Nole that
the subscripts refer to the regions where the wavefunctions exist. If V5 (v) does not change
abruptly, we can use the connection formulae to connect the decaying wavefunctions ¥y to
the oscillating wavefunctions in region 11, obtaining

2B 2 b4

Hrx) = — sin[ f k(x)dy' + —]. )
Jk x 4

where k(x) = 2(E — V). As discussed before, one should not join together the

wavefunction ¥ and wavefunction ¥ at x = 0 by using the connection formulae. However,

we notice that the WKB wavefunctions in both regions behave well around the tuming point

x = 0; therefore, the wavefunctions can be matched normally by the boundary condition

¥

¥
Hi

H

Now, the coefficients A and B have disappeared, and the quantized energies are expected to be
obtained after imposing the condition. To demonstrate the advantage of this WKB analysis,
we will calculate the eigenenergies and eigenstates associated with the considered potential in
the following two examples.

(10)

x=0 x=0

3. The step-harmonic potential

The step-harmonic potential which contains a vertically finite wall is of the form discussed in
equation (5). It is formed by the step function V@ (—x) and the harmonic oscillator potential
Kx?0(x), where @ (x) is the Heaviside step function and K is a constant indicating the width
of the quantum well. To get the Schridinger equation in the dimensionless form of

4
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Table 1. Comparison between numerical and WKB energies for various values of
the barrier V,, and for several low-lying states. All ecigenenergies and potentials are
measured in the unit of Ep = ﬁ\/i :

m

Vo=10 Vo =50
E (numerical) E (WKB) Percentage E (numerical) E (WKB) Percentage
error error
n=1 126217 1.26820 0.47762 n=1 1.39055 1.39323 0.19261
n=2 3.12085 3.12253 0.05376 n=2 3.33290 3.33373 0.02495
n= 499927 5.00000 0.01467 n=23 5.28869 5.28911 0.00799
n=4 6.87711 6.87747 0.00529 n=4 7.25102 7.25128 0.00364
Vo =90 Vo= 130
E (numerical) E (WKB) Percentage E (numerical) E (WKB) Percentage
error error
n=1 1.41785 1.41983 0.13978 n=1 1.43139 1.43304 0.11470
n=72 3.37530 3.37592 0.01845 n=2 3.39612 3.39664 0.01527
n =i3 5.34298 5.34330 0.00600 n=3 5.36944 5.36971 0.00500
n=4 7.31574 7.31594 0.00278 n=4 7.34702 7.34719 0.00234

equation (6), we measure energies in the unit of Ey = ;;,2/ (ma*), where a is the length
[/22/(2Km)]"*. The potential is consequently expressed as

( ) lﬂ X < 0' (I])
V)=
2 x 2 0,

as depicted in figure 2. Before constructing WKB wavefunctions, we need to calculate the
integrals

_/IIIK(A")d\": fo J2(v%o - E)dv

= —x/2(% - E) (12)

/;Izk(.r’)dr'= fﬁ Jz(E— ;)m

= ? By tan‘l[;] : (13)
2 V2E — x2

In the above calculation, the classical tuming points are localized at x; = 0 and x; = 2E.
We straightforwardly substitute equations (12) and (13) into the WKB wavefunctions ¥ (7)
and ¥, (9), then apply the boundary condition (10) to get the energy quantization rule:

and

tdl.—-

5



Eur. J. Phys. 35 (2014) 065009 A Amthong

25
2 3

15} §

£ D p———
[ T ——
-

]
i

-0.5+

- 0 1 2 3 4 5 6
Figure 3. Comparison between the numerical wavefunctions ¥, and WKB

wavefunctions ¥ "*B comesponding to the step-harmonic potential with V4 = 50 for

; . oy : #
several values of quantum number #. The distance v is in the unit of @ = (5~ e,

JV% — E = —JE cot 8, (14)

where 8 = (% + %)

Our WKB energies are compared with ones from the finite difference method which are
converged and accurate to five decimal places. Table | shows that the WKB energies and
those due to the numerical calculation are in very good agreement; the percentage error is less
than 0.5 for all trial values of V. We notice that the approximated values are always greater
than the numerical ones. The number of confined states is determined by the strength of the
potential Vj; it increases as the potential becomes stronger. For a given value of V,, the
agreement between two independent methods is improved with increasing n. That is, the
approximation is better for higher energy states. This is the conventional trend in the WKB
method, which can be explained by the inspirational assumption that a potential V(x) changes
slowly compared with wavelengths of quantum wavefunctions. In other words, the distance at
which a potential changes significantly is large compared with quantum wavelengths.
Therefore, high-cnergy excited states with small wavelengths seem to satisfy the assumption
more than the low-lying confined states. For each value of n, the table shows that WKB
approximation gives higher accurate results when the potential V; is stronger. When the
potential V, becomes an infinity well, a quantum wavefunction cannot tunnel through the
side. In this case, we have the boundary condition

¥iy(x = 0) =0, (15)

resulting in the quantized energies
B= ni % for =2, 4,67 (16)

This is the exact solution of the half-space harmonic oscillator, which confirms that the WKB
calculation is a good approximation for the high strength of the barrier Vi,

After obtaining eigenenergies, we use them to calculate WKB eigenfunctions in those
three regions and combine them together to get total WKB wavefunctions
(VKB = ¥ + ¥, + ¥Hy). The first four ecigenstates corresponding to the step-harmonic
potential with Vo = 50 are shown in figure 3. We find WKB cigenstaies have the same
behaviour as those from the finite difference method everywhere except the region around the
turning point x,. They go to infinity at the turning point, but behave very well at another point
X1 = 0. The local momentum p(x) plays a key role in the distribution of WKB wavefunctions

6
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Figure 4. The step-linear potential with the classical turning points at x; = 0 and
Xy = 2E. The potential V(x) and distance x arc in units of Ey = [(2#K)¥/m]'? and
a = [#Y(2Km)]'"? respectively.

at the turning points. At x5, the energies of trapped states are equal to the potential, resulting
in p(x;) = 0 and inappropriate distribution of WKB wavefunctions; on the other hand, at x,
the quantized energies that are always less than Vg lead to p(x)) # 0 and appropriate dis-
tribution of the wavefunctions.

4. The step-linear potential

The next example we will show is a particle in the step-linear potential. Tt is the potential with
a vertical wall at x = 0, containing the step function ¥ @(—x) and the linear potential Kx@ (x),
where K is a constant determining the slope of the linear term. The Schrodinger equation can
be written in the dimensionless form of equation (6) by introducing the energy unit
E, = ﬁz/(maz), where a = [#2/(2Km)]"">. Now, the dimensionless potential becomes

VO x<0
V)= 17
) {.r/2 xz 0, a2

where the classical turning points are at x7 = 0 and x> = 2E, shown in figure 4. Again, we
start finding WKB wavefunctions by calculating the integral

fr * ey = f X \/2( E— %)dr’
= %(QE - )2, (18)

Substitute equations (12) and (18) into the WKB wavefunctions ¥{ (7) and ¥ (9), and impose
the boundary condition (10) to obtain the energy quantization rule
7
E(Vy - E)%= lig — E3 cot (8), (19)
where 6 = #Em + I
The resulting WKB energies and those due to the finite difference method are shown in
table 2. Similar to the previous results, the percentage error decreases with increasing
quantum number n. Moreover, the strength of the potential V, is still the parameter deter-
mining the number of confined states. However, we notice that the approximated values are

7
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Table 2. Comparison between numerical and WKB energies for various values of the
barrier V; and for several low-lying states. All eigenenergies and potentials are mea-
sured in the unit of E;, = [(24K)¥/m]"".

Vo=10 Vo =50
E (numerical) E (WKB) Percentage E (numerical) E (WKB)  Percentage
error error
n=1 1.05529 1.04625 0.85661 n=1 1.11887 1.10993 0.79877
A=2 1.92834 1.92524 0.16090 = 1.99364 1.99057 0.15410
=3 2.64297 2.64126 0.06489 fp==d 2.70982 2.70812 0.06268
n=4 3.27445 3.27331 0.03472 n=4 3.34278 3.34166 0.03369
Vo =90 Vo= 130
E (numerical) E (WKB) Percentage E (numerical) E (WKB)  Percentage
error error

n=1 1.13171 1.12278 0.78924 oyl 1.13800 1.12907 0.78474

n=2 2.00657 2.00350 0.15302 n= 2.01289 2.00982 0.15252
n=3 2.72282 2,72112 0.06235 n=73 2.72916 2.72746 0.06220
n=4 3.35585 3.35472 0.03354 n=4 3.36221 3.36108 0.03347

Table 3. Comparison between numerical and WKB energies associated with the half-
space linear potential. All eigenenergies are measured in the unit
of Eg = [(24K)*/m]".

E (numerical) E (WKB) Percentage error

= 1.16905 1.16013 0.76372
nEl2 2.04397 2.04091 0.15017
n=3 2.76028 2.75858 0.06147
n=4 3.39335 3.39223 0.03319

slightly less than the numerical ones in this case. For an infinity hard wall of the potential V,,
the WKB wavefunction % satisfying the boundary condition (15) results in the quantization
of WKB energies associated with the half-space linear potential,

23
E= [——Jr[n - —)] for n=1,2,3,.. (20)
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Figure 5. Comparison between the numerical wavefunctions ¥, and WKB
wavefunctions %" < cormesponding to the step-linear potential with 5 = 50 for
several values of quantum number n. The distance x is in the unit of « = [#2/(2Km)]">.

Considering the results shown in tables 2 and 3 for each value of n, we find the WKB
calculation does better with increasing V;,. Unlike the results in the case of the step-harmonic
potential, the WKB calculation cannot produce exact eigenenergies for ¥ = co.

WKB eigenenergies are then used to calculate WKB wavefunctions in the same way we
did before. They are compared with several numerical wavefunctions in figure 5. As
expected, wavefunctions from both methods agree well with each other everywhere except
the region around the turning point x,. The distribution of WKB eigenstates can again be
explained by considering the local momentum p(x).

5. Conclusion

WKB analysis for abruptly varying potentials containing one vertically finite wall is pre-
sented. At the classical turning point where a potential changes slowly, WKB wavefunctions
do not behave well because of the vanished momentum. To match WKB wavefunctions at the
point, one needs to use the connection formulae. On the other hand, at another turning point
where a potential rises suddenly, WKB wavefunctions exhibit good behaviour. We therefore
suggest that the wavefunctions should be matched normally (a quantum wavefunction and its
first derivative are continuous at the turning point). Our resulting eigenenergies are found to
be in good agreement with the numerical results especially for high-energy excited states.
Although WKB eigenstates are violated at the turning point (a quantum wavefunction must be
finite everywhere), their distribution is mostly consistent with that due to the numerical
calculation.

Finally, the advantages of our WKB analysis are discussed in the following. It can be
applied to the potential with a vertical wall. As scen in our examples, we apply it to a
triangular potential which is found at the interface between two layers of different semi-
conductors [15]. At the conduction band edge, electrons trapped by the potential lead to a
two-dimensional electron gas which refers to electrons moving freely in the plane parallel to
the interface. For a heterostructure of two semiconductors with a sufficiently large difference
of energy band gaps, the half-space linear potential (a linear potential and an infinity wall)
may be a good approximation of the confined potential. However, when the energy band gaps
are not different enough, quantum wavefunctions can significantly enter into the side of the
vertical wall, In this case, our WKB approach is necessary. Moreover, it can be applied to the
multidimensional Schrodinger equation with a centrally symmetric potential. Like the

9
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standard WKB approach [17, 18], a multidimensional problem needs to be transformed into
the one-dimensional radial equation before applying the WKB method as usual.
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