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UNAALB(A1EIDINGY)

In this research, a robust optimization problem, which features a maximum
function of continuously differentiable functions as its objective function, is
investigated. Some new conditions for a robust KKT point, which is a robust
feasible solution that satisfies the robust KKT condition, to be a global robust
optimal solution of the uncertain optimization problem, which may have many
local robust optimal solutions that are not global, are established. The obtained
conditions make use of underestimators, which were first introduced by
Jayakumar and Srisatkunarajoh [1,2] of the Lagrangian associated with the
problem at the robust KKT point. Furthermore, we also investigate the Wolfe type
robust duality between the smooth uncertain optimization problem and its
uncertain dual problem by proving the sufficient conditions for a weak duality and
a strong duality between the deterministic robust counterpart of the primal model
and the optimistic counterpart of its dual problem. The results on robust duality
theorems are established in terms of underestimators. Additionally, to lllustrate or
support this study, some examples are presented.
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CHAPTER 1

INTRODUCTION

It has been acknowledged that the data of objective function or constraints of
the numerous practical programs, including real-world optimization problems, are
usually not known exactly beforehand and infrequently uncertain owing to errors
(from estimation, prediction or measurement) and asymmetric information[3, 4].
Solving the optimization problems with ignorance of the uncertainty may result in
solutions which are suboptimal for even infeasible, so it is essential to take care of
uncertain optimization problems, which have data uncertainty within the objective
function and/or the constraint; see, e.g., [4, 5, 6, 7, 8, 9, 10, 11]. In line with this
fact, it is imperative to review the optimization problems with data uncertainty
[3, 8, 12, 13, 14]. A robust optimization, which is its robust counterpart of an
uncertain optimization problem [3], has emerged as a useful deterministic approach
in [5, 10] to study optimization problems with data uncertainty. The concept of the
robust counterpart is minimizing the value of the objective function in the worst
case of all scenarios and getting a solution that works well even in the worst-case
scenario but is also immmunized against the data uncertainty [11]. Furthermore,

constraints are enforced for every possible value of the parameters within their

prescribed_uncertainty. set

On the other hand, seeking a global solution is of fundamental importance
in mathematical programming, where problems have many, often infinitely many,
possible solutions. Nevertheless, it is known that locating a global solution of a
multi-extremal problem, whose several local solutions are not global, is intrinsically
tough [15, 16, 17, 18]. Accordingly, improving the criteria for identifying global
solutions of optimization problems is of noticeable interest. Over the years, much

attention has been targeted on developing criteria for identifying global solutions of



nonconvex optimization problems [19, 20, 21]. The KKT condition, which is, under
a certain qualification, a necessary condition for a feasible point to be a locally
optimal solution of a mathematical programming problem, is often used to creating
criteria for identifying global solutions. For instance, a feasible solution that fulfills
the KKT conditions, referred to likewise as the KKT point, is a global minimizer for
a convex programming problem. Different criteria for identifying global minimizers
of nonconvex programming problems regarding the KKT conditions have been given
in the literature. Nonetheless, a significant part of work in this area the KKT
sufficiency frequently necessitates that the Lagrangian associated with the problem

fulfills certain generalized convexity conditions [22, 23, 24, 25, 26, 27].

In [1], the authors employed underestimators of the Lagrangian functions
for developing criteria for a KKT point to be a global minimizer of a mathematical
programming problem as well as presented also sufficient conditions for weak and
strong duality results in terms of underestimators. Furthermore, in [2], the authors
presented geometric criteria, which is established in terms of underestimators of
the Lagrangian of a mathematical programming problem, for a KKT point to be
a global minimizer of such problem with or without bounds on the variables. The
idea of dealing with a problem by requiring its Lagrangian to admit underestima-

tor with certain generalized convexity conditions, which was given [1, 2], is very

effective and interesting. It leads us to interesting : “How does one obtain suffi-

cient optimality conditions for a robust KKT point to be a global robust optimal
solution of a smooth nonconvex optimization problem with data uncertainty in
terms of underestimators?” and also, How does one derive robust duality results
between the uncertain optimization problem and its dual uncertain optimization
problem?”. These questions motivate us to handle with a smooth nonconvex un-
certain optimization problem that features with data uncertianty in both objective
and constrains for obtaining global optimality conditions and duality theorems for

robust optimal solutions.



In this research, we employ underestimators of the Lagrangian function for
developing criteria for a robust KKT point to be a global robust optimal solution of
a smooth nonconvex optimization problem with data uncertainty in both objective
function and constraints. We establish sufficient optimality conditions by requiring
an underestimator, rather the Lagrangian, to satisfy a geometric condition. Here,
we present that a robust KKT point is a global robust optimal solution if the
Lagrangian associated with the uncertain problem admits an underestimator that
fulfills certain conditions (the convexity, or the pseudo-convexity, or the property
that every stationary point is a global minimizer). In special, by using the fact that
the biconjugate function of the Lagrangian is a convex underestimator at a point
whenever it coincides with the Lagrangian at that point, we derive the sufficient
optimality conditions as well. We also obfain results on sufficient conditions for
a robust weak duality and a robust strong duality between the smooth uncertain
optimization problem and its conventional Wolf type dual optimization problem,
by proving the sufficient conditions for a weak duality and a strong duality between
the deterministic robust counterpart of the primal model and the optimistic coun-
terpart of it conventional Wolf type dual model, in terms of underestimators of the

Lagrangian function.

The research is organized as follows. In Chapter 2 , we recall some 1no-

tions and give some preliminary results. In section 3.1, several sufficient optimality

conditions for a robust KKT conditions to be a global robust optimal solution in
terms of underestimators are presented, and also, some examples for illustrating
the applications of our results to nonconvex optimization problem with data uncer-
tainty are given. In section 3.2, we present some results on sufficient conditions for
a robust weak duality and a robust strong duality between the smooth uncertain
optimization problem and its uncertain dual problem. Finally, in Chapter 4, we

conclude our study.



CHAPTER 2

NOTATIONS AND PRELIMINARIES

Let us first recall some notation and preliminary results which is able to used
throughout this paper. First of all, let R",n € IN, be the n-dimensional Euclidean

space and for x,y € R”, the notation xTy stands for the inner product of x and v.

Let f : R" — R be a real-valued function, it is said to be continuously
differentiable if the derivative f/(x), where x € R”, exists and is itself a continuous
function. Although the derivative of a differentiable function never features a jump
discontinuity, it is possible for the derivative to possess an essential discontinuity.
Besides, a point ¥ € R” is called a stationary point of the function f : R* — R if
f is differentiable at x and V f(x) = 0, where V f denotes the usual gradient of f.
Simultaneously, the function f is said to be a convex function if for any x,y € R"
and A € [0,1],

FOx+ (1= Ny) S AF) + (1= D).

For a convex function, its local minimizer is also a global minimizer, and if the

convex function is differentiable, then its stationary point is its global minimizer as

well. Furthermore, let C be a given subset of IR” and the function f be (Gateaux)

differentiable at a point x € C, then f is said to be pseudoconvex at x if

Vi) (y—2) 20y € C= f(y) = f(x).

The term pseudoconvex is employed to explain the very fact that such functions
share many properties of convex functions, particularly with regards to deriva-
tive properties and finding local extrema. Note, however, that pseudoconvexity is
strictly weaker than convexity as every convex function is pseudoconvex though one

easily checks that f(x) = x + x° is pseudoconvex and non-convex. The Legendre-



Fenchel conjugate function (for short, conjugate function) of f : R* — R is
f*:R" — RU {400} defined by

fr(x") = sup {(x", x) - f(x)}

xeR"

for all x € R™. The function f* is lower semicontinuous convex irrespective of the
nature of f but for f* to be proper, we need f to be a proper convex function. By
reiterating the operation f — f** on f, we get the biconjugate of f, defined for

all x € R" by

fr7(x) = sup {(xx7) = f(x")}.

x*eR”
Clearly, if f is identically equal to 4-co, then f** is identically equal to —oo. Note
that f**:R" — RU{—oo} is a convex function and it coincides with f when f

is convex.

Next, we recall the conceptbs of underestimators, introduced in [1, 2] for
developing conditions for a KKT point to be a global minimizer of a standard
mathematical programming problem. First of all, please consider the following

mathematical programming problem:

Minimize f(x)

subject to ¥ € Q, gi(x) <0,i=1,...,m, (P)

where ) is a closed and convex subset of R” and f,¢; : R* — R,i=1,...,m, are

continuously differentiable functions. Let A := {x € R*: g;(x) <0,i=1,...,m}

and let the feasible set K:= QN A.

The following conceptbs of underestimators for developing conditions for a

KKT point to be a global minimizer of (P) can be found in [1, 2].

Definition 2.1. A function p : R” — R is said to be

(i) an underestimator of the function f : R” — R at X over the feasible set K

if, for each x € K, f(x) > p(x), and f(%) = p(%);



(ii) a minimizing underestimator of the function f : R* — R at ¥ over the
feasible set K if it is an underestimator of f at ¥ over K and it attains its

minimum over K at ¥;

(iii) a smooth underestimator of the function f : R* — R at % over the feasible

set K if it is an underestimator of f at X over K that is differentiable at ¥ and

Vf(x) = Vp(%).

It is easy to check from the definition of biconjugate function of f that, for
each x € R”, f(x) > f**(x). So, if f(%) = f**(¥), then we get from Definition 2.1

that f** is a convex underestimator of f at X over R".

A feasible point ¥ € K is said to be a local minimizer of (P) if there is
a neighborhood U of % such that for each x € KN U, f(x) > f(%). Specially, if
U = R" % is called a global minimizer of (P). If a feasible point % is a local
minimizer of (P) and if a certain constraint qualification holds then the following

KKT conditions hold at ¥ with multiplier A € R%:
m
Y Aigi(%) =0 and VL(£,A) (x ~ %) > 0, Vx € Q.
i=1

Here L(%, A) := f(&) + X", A;gi(%) is the Lagrangian associated with (P) and IR}

is the set of all nonnegative vectors of R™.

To-conclude thissection;, we recall-some-important-conceptions-which-will
be used in the sequel. Consider the following parameterized program, which is an
analog of the deterministic program (P) if the objective, as well as the constraints,

are uncertain:

Minimize  f(x,u)

subject to  x € ), g(x,v) <0,i=1,...,m. (UP)

Here u and v; are uncertain parameters belonging to compact convex uncertainty

sets Y C RP, and V; C RY,i = 1,...,m, respectively. f : R" x R» — R and



g; : R" x R — R are continuously differentiable function on an open subsets of
R" x R?, and R™ x RY, respectively. By enforcing the constraints for all possible
uncertainty within V;,i = 1,...,m, the problem (UP) becomes an uncertain semi-

infinite program, which is the robust (worst-case) counterpart of (UP):

Minimi X, U
inimize I;l&){( f(x,u)

subject to  x € O, gi(x,v;) <0, Vo; €V, i=1,...,m. (RP)

In section 3.1 and section 3.2, we investigate the smooth uncertain programming
problem (UP) by using examine (RP). The following definition is of the set, is

termed as the robust feasible set of (UP).

Definition 2.2. The set of all robust feasible solutions of (UP), equivalently the
set of all feasible solution of (RP), is called the robust feasible set of (UP) and is
defined by

K={xeQ:gixv;) <0,Vv;€V,i=1,... m}

To avoid triviality in (UP), we always assume that K # @.

The below notion commonly referred to as robust optimal solution or robust

minimax solution, can be found in [3]. This concept has been studied extensively

[ 1
by many authors, see; e.g.; (8,712

Definition 2.3. A robust feasible solution ¥ € K is said to be a local robust optimal
solution for (UP) if it is a global optimal solution of (RP), i.e., there exists a

neighborhood U of % such that for each x € XN U,

max f(x,u) > max f{X,u).
ueuf( )_ueuf( ’ )

Specially, if U = R", then £ € K is said to be a global robust optimal solution for

(UP), equivalently, a global optimal solution of (RP).



The Lagrangian associated with (UP), denoted by L(x,u,v,A), is given as

follows:

m
L(x,u,0,A) = f(x,u) + Y _ Aigi(x,v),
i=1
where 4 € U CRP, v:= (v1,...,0m),0; € Vi CRY, and A := (Ag,...,Am), A €
R,i=1,...,m. If % is a local robust optimal solution of (UP), i.e., a local optimal

solution of (RP), and if a certain constraint qualification holds at that point, then

the following robust KKT conditions hold: 3 € I/, 30 € V, 94 € R}, such that

f(%,a) = rbflea}j(f(f,u),é}\igi(f, ;) =0, and VL(%,%,7,A)T (x—%) > 0,Vx € Q

(2.1)
where V := V; X -+ XV, V; € R7,i = 1,...,m. Whenever the robust KKT
conditions hold at a robust feasible solution ¥ € IC,. the point % is said to be a

robust KK'T' point.




CHAPTER 3

MAIN RESULTS

3.1 The robust KKT sufficiency for global robust optimal solutions

via underestimators

In this section, we establish that a robust KKT point is a global robust optimal
solution of (UP) if the Lagrangian associated with (UP) admits an underestimator,
which is convex or, more generally, has the property that every stationary point is
its global minimizer. In addition, by using the fact that the biconjugate function
of the Lagrangian is a convex underestimator at a point whenever it coincides with
the Lagrangian at that point, we establish sufficient optimality conditions for the

point to be a global robust optimal solution of (UP).
The following lemmas are used for obtaining our later results.

Lemma 3.1. Let ¥ € K and the robust KKT conditions hold at X with the uncertain
parameters i, and the multiplier A. Suppose that the Lagrangian L(:,, 7,A)
associated with (UP) admits a minimizing underestimator at X over the robust

feasible set K. Then, % is a global robust optimal solution of (UP).

Proof. Let p be a minimizing underestimator of L(-,%,7,A) at X over K and let

x € K be arbitrary. Then, for the uncertain parameters %, 7 and the multiplier A,
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we have Y ;1 A;gi(x, ;) <0, and

max f(x, u) — max f(%,u) = max f(x,u) — f(%, )

> f(x, 1) —f(x,9) + i)‘zgz(x/vz)

= f(x,u) + in;)»lgl(x, 7;) — | f(x,a) + iAlgl(fl ;)
> L(x,#,0,A) — L(%,1,7,A)

> p(x) — p(x)

>0

Since x was arbitrary, this inequality yields max, <y f(x, ) > maxyey f(%, u) for
all x € K. Thus, % is a global optimal solution of (RP), and so it is a global robust

optimal solution of (UP) as desired. a

The following theorem shows that every smooth underestimator at X over

(), which is pseudo-convex, is a minimizing underestimator at that point over ().

Theorem 3.2. Let ¥ € K and the robust KKT conditions hold at ¥ with the uncer-

tain parameters i1, 7 and the multiplier A. Suppose that p : R* — R is a smooth

underestimator of Lagrangian L(+, 1,0, A) associated with (UP) at X over (Y amnd p

is pseudo-convex at ¥ over (). Then, the function p is a minimizing underestimator

of L(-,1,5,A) at & over () as well as % is a global robust optimal solution of (UP).

Proof. By the definition of the smooth underestimator of a function at a point, we

have Vp(%) = VL(%,i,7,A). Hence, from the robust KKT conditions, we have
Vo) (x — %) = VL(%,7,5,A)T(x — %) > 0, Vx € Q.

It then follows from the pseudo-convexity of p that p(x) > p(%), for all x € Q). This

means 0 is a minimizing underestimator of L(,%,7,A) associated with (UP) at *
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over K C (). Then, by Lemma 3.1, the point ¥ is a global robust optimal solution

of (UP). O

Remark 3.3. In the special case that there is no uncertainty in the objective function

and constraint function, i.e., I/ and V are singletons, it can be seen easily that

1. the problem (UP) becomes min{f(x) : 8i(x) < 0,i=1,...,mx € Q)

which was studied in [2];
2. Lemma 3.1 provides the same results presented in [2, Lemma 2.1];
3. Theorem 3.2 provides the same results presented in [2, Theorem 2.1].

Lemma 3.4. If p is a convex underestimator of L(-,i1,7,A) associated with (UP) at
X over () and p is differetiable at %, then p is a pseudo-convex underestimator of

L(-,a,0,A) at % over (),

Proof. Since p is convex over () and is differentiable at %, we have from the gradient
inequality that

p(x) 2 (%) + Vp(2)T(x— %), Yx € Q.
Hence, for each x € O, if p(%)T(x — %) > 0 then p(x) > p(x). This means p is

pseudo-convex at ¥ over ), and so the conclusion holds. 0

The following result follows from Theorem 3.9 and Lemma 3.4.

Corollary 3.5. Let £ € K and the robust KKT counditions hold at % with the
uncertain parameters %, 7 and the multiplier A. Suppose that p:R" — Risa
smooth convex underestimator of Lagrangian L(-,,3,A) associated with (UP) at
X over (). Then, the function P is a minimizing underestimator of L(-, 4, 77,/_\) at ¥

over () as well as ¥ is a global robust optimal solution of (UP).
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Proof. Since p is a smooth underestimator of L(-,#,7,A) at X over ), it is differ-
entiable at . Then, from Lemma 3.4, p is pseudo-convex at X over (). Hence, it

follows from Theorem 3.2 that X is a global robust optimal solution of (UP). O

The following results (Theorem 3.6, Corollary 3.9, Corollary 3.12 and Corol-
lary 3.14) are applicable for the problem (UP) with (O = R". The sufficient con-
ditions for a robust KKT point to be a global robust optimal solution of (UP) are

presented in the following theorem.

Theorem 3.6. For the uncertain optimization problem (UP), let O = R". Let ¥ € K
and the robust KKT conditions hold at % with the uncertain parameters #,7 and
the multiplier A. Suppose that the Lagrangian L(-,%,7,A) associated with (UP)
admits an underestimator at ¥ and this underestimator is differentiable at %. If
every stationary point of the underestimator is its global minimizer, then % is a

global robust optimal solution of (UP).

Proof. Let p be an underestimator of L(, 1,7, A) at %, and let d € R" be arbitrary.

Then, for each x € R", p(x) < L(x,,7,A). So, for any ¢ > 0, we have

p(% + pud) — p(%) > L(x+ud,-,4,0,A) — L(%,-,i,7, /\)
H > #
*“*A——Takmg“yﬁ—ﬁ—we—obtamﬂp (#)Td < V(%01 d=0-Henee;r V() <0——

for each d € R™. Therefore, Vp(%) = 0, and so the point ¥ is a stationary point
of p. By the assumption, it then follows that, p(x) > p(%) for all x € R" and
hence for all x € K C R",p(x) > p(%) as well. Clearly, p is an underestimator
of L(-,,0,A) at ¥ over K and it attains its minimum over the set X at X. That
is to say, p is a minimizing underestimator of L(-,4,7, }L) at ¥ over R"” and so, by

Lemma 3.1, ¥ is a global robust optimal solution of (UP). O

Let us give some examples of multi-extremal nonconvex optimization prob-

lems that have some local robust optimal solutions such that the robust KKT
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conditions hold at each of the solutions. In each example, the Lagrangian admits
a nonconvex underestimator at only one local robust optimal solution with the

property that every local minimizer of the underestimator is its global minimizer.
Example 3.7. Consider the nonconvex problem:

Minimize ux* — 2x%u

subject to  x € O :=R, %xz —16 <0, (UPy)

where u € U := [1,2],v € V := [1,2]. The robust counterpart of (UPq) is the

following robust optimization problem:

Minimize max ux* — 2x3u
uel

1
subject to  x € ), sz —16 < 0,Vv € V. (RP4)

It is not hard to see that the set of all robust feasible solusions of (UPq) is K =
[—4,4]. Indeed, K = {x € R : 122 -16 < 0,¥0 € [L,2]} = Nyepg{x €
R : %xz —16 <0} = {x € R: x2—16 < 0} = [—4,4]. Besides, the robust

optimization (RP7) can be written as follows: min{¢(x) : x € [—4,4]} where

¥4 —2x3. 0<x< %,
P(x) =

2x% —4x3;  otherwise.

Then, 0 and % are local robust optimal solutions of (UP1) and the robust KKT

conditions are satisfied at both points with # = 1,A = 0 and any @ € V. Further-

more, the Lagrangian L(:,, 17,}\) associated with the problem (UP7) is given by
L(x,4,3,A) = x* — 2x3 for all x € R. So, the function p : R — R defined by

¥t —2x3 x< %,

27,
16/

p(x) =

otherwise

is a (nonconvex) underestimator of the Lagrangian L(-,#,7,A) at ¥ = % In addi-

tion, we also obtain

2x2(2x —3) <0; x < 3,
p'(x) = e 20 v

0; otherwise,.



14

It can be seen that, all the stationary points of p are its global minimizers and the

point ¥ = % is a global robust optimal solution of (UP1).

The following example is motivated by Example 2.1, in [1], whose objective

and constraint functions are absent of data uncertainty.
Example 3.8. Consider the nonconvex problem:
Minimize wuxe* (x — 1)2
subject to  x € ) :=1R, %xz —18 <0, (UP,)

where u € U = [1,2],v € V := [%,2], by examining the following robust optimiza-

tion problem:

Minimize  max uxe® (x —1)°
ucl

1
subject to x € (), Exz —-18<0,Vov e V. (RP3)
The robust feasible set of the problem (UP5) is K = [-3,3] and we can rewrite the
problem (RP,) as follows: min{¢(x) : x € [—3,3]} where

o) = xe* (x —1)%;  x € (~00,0],

2xe* (x —1)%;  otherwise.

So, the points ¥ =1 and ¥ = —1 — /2 are robust feasible solutions and also local

robust optimal solutions of (UP;). The robust KKT conditions are satisfied at both

points with # = 1,A = 0 and any 7 € V and the Lagrangian L(-, %, 7, A) associated
with (UP3) at x € R is given by L(x,#,3,A) = xe* (x — 1)2. Thus, the function
p : R — IR defined by

xe* (x —1)%; x< -1-v72,

(14 + 10\/5)6_1_‘/5,' otherwise,
is a (nonconvex) underestimator of the Lagrangian L(-,4, 27,/_\) at £ = —1 — /2.
Then, by following the scheme used for solving the problem (P1) in [1, Example

2.1], we can verify that —1 — /2 is a global robust optimal solution of (UPy).
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Corollary 3.9. For the uncertain optimization problem (UP), let 0 = R". Let
% € K and the robust KKT conditions hold at ¥ with the uncertain parameters
11, 9 and the multiplier A. If the Lagrangian L(-, 1,7, A) associated with (UP) admits

a convex underestimator at X, then ¥ is a global robust optimal solution of (UP).

Proof. Let p be the convex underestimator of L(-,%,7,A) at % over R", and let
d € R" be arbitrary. Since for each x € R", p(x) < L(x,1,7,A), we obtain that

for each ¢ > 0,
o(%+ ud) = p(#) _ L(2+ pd,0,A) — L(%,0,A)

K K
By taking y — 0, we arrive p'(%,d) < VL(%, 1, 5,A)Td = 0. Since p is convex

and p'(%,d) < 0 for all d € R", p is differentiable at % and Vp(%) = 0. Thus, X is a
stationary point of the convex function p and so it is a global minimizer of p over
R”. Hence, p is a minimizing underestimator of L(+,%,7,A) at % over K C IR" and
then it follows from Lemma 3.1 that % is a global robust optimal solution of (UP).

(]

The following examples illustrate Corollary 3.9.

Example 3.10. Consider the nonconvex uncertain optimization problem (UPq) de-

fined as in Example 3.7. The function p: R — R defined by

(-2, x<3,

plx) = -
(x — %)2 — %,' otherwise
is a convex underestimator of the Lagrangian L(-,%,7,A) at ¥ = %, where L(x,,0,A) =
x* — 2x3 for all x € R. It can be seen that, the point x = % is a global robust optimal

solution of (UPq).
Example 3.11. Consider the following nonconvex programming problem:
Minimize x*+x3 —3x% +u

subject to x € Q:=R, x> — x> —v; < 0,00 — x? <0, (UP3)
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where U := [-1,1],V; := [0,1],), := [0,1], by examining the following robust

optimization problem:

Minimize me;} x3 + x3 — 32 +u
ue

subject to x € R, x% — x3 — v <0,You € Vi, 00 —x% <0,V0, € W (RP3)
Clearly, the problem (RP3) becomes min{x* + x3 —3x% +1: x € K} where

. K={xeR:x*—x>—v; <0,Yv; €[0,1] and v, — x2 < 0,Vv, € [0,1]}
={xeR:x* - <0, and1~x2§0}
= [1, 00).
Direct calculations show that the robust KKT conditions hold at the feasible point
Z=1with# =1,7:= (03,5,) = (0,1) and A := (11,1,) = (1,0). The Lagrangian
L(-,4,9,A) associated with (UP3) is given by L(x,i,0,A) = (x*> —1)%. Hence, we

obtain the function p : R — R defined by

0; 30 5
p(x) = i
L(x,4,7,A);  otherwise

is a convex underestimator of the Lagrangian L(-,i,7,A) at ¥ = 1, which is a global

robust optimal solution of (UP3).

———————FCorolary 3:12—For-the-uncertain—optimization problemr(UP); Tet- O =R*Tet—

T ¥ € K and the robust KKT conditions hold at % with the uncertain parameters

1,0 and the multiplier A. If L**(%,i,,A) = L(%, 1,3, A), then % is a global robust

optimal solution of (UP).

Proof. It is clear by the definition of bicongugate for a function that L**(:,v,A)

is convex and L**(x,1,0,A) < L(x,#,0,A) for all x € R™. So, it then follows

9,A) = L(%,4,0,A) that L**(-,@,7,A) is a convex underestimator

from L**(x,1,
of L(-,i,9,A) at X. Hence, by applying Corollary 3.9, % is a global robust optimal
solution of (UP) as desired. O
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Example 3.13. Consider the following nonconvex minimization problem:

Minimize —u + (x> — 4)?

subjectto x € Q:=R,x—1—v<0, (UPy4)

where U := [-1,1],V := [-1,1], by examining the following robust optimization

problem:

Minimize — max u + (¥* —4)2
ue[-11]

subject to x—1—9v<0,Vve V. (RPy)

Clearly, the problem (RPy) becomes min{1 + (x? —4)? : x € K} where the robust
feasible set of the problem is K = Mye_1y{* ER:x~1-0v<0,Yo € [0,1]} =
(—o0,0]. Then, ¥ = —2 is a local robust optimal solution of (UP,) and the robust
KKT conditious are satisfied at ¥ with # = 1,A = 0 and any 7 € V. Thus, we

obtain L(x,1,7,A) = 1+ (x* —4)? and

X 1; x € (—2,2|,

L*(x,4,0,A) = [ ]

1+ (x*—4)%  otherwise.
It is clear that L(x,#,0,A > L**(x,4,0,A) for all x € K and L*™(%,#, 7,A) =
L(%,4,3,A) = L(—2,1,9,0) = 1. Thus, L**(-,%,7,A) is a convex underestimator

of the Lagrangian L(-,#,3,A) associated with (UP,) at ¥ = 2. Besides, it can be

. geenthat, the points —2 is-a global robust optimal solutions of (UPy)

Corollary 3.14. For the uncertain optimization problem (UP), let O = IR". Let
¥ € K and the robust KKT conditions hold at ¥ with the uncertain parameters
1,7 and the multiplier A. If the Lagrangian L(-,#,0,A) associated with (UP) is

convex, then % is a global robust optimal solution of (UP).

Proof. Clearly, by assumption, L(-, %, @, A) admits its convex underestimator L(-, %, 7, A)
at %. Hence, it follows from Corollary 3.9 that % is a global robust optimal solution

,, of (UP). O
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Remark 3.15. In the special case that there is no uncertainty in the objective func-
tion and constraint function, i.e., ¢ and )V are singletons, it can be seen easily

that
1. the problem (UP) with Q = R" becomes min{f(x) : gi(x) < 0,i =
1,...,m}, which was studied in [1];
2. the Therem 3.1 provides the same results presented in [1, Theorem 2.1.];
3. the Corollary 3.9 provides the same results presented in [1, Corollary 2.1];
4. the Corollary3.12 provides the same results presented in [1, Corollary 2.2];

5. the Corollary 3.14 provides the same results presented in {1, Corollary 2.3].

3.2 Duality

In this section, we study particularly the case that () of (UP) is R". By virtue
of robust optimization, we formulate a Wolfe type robust dual problem for the
uncertain optimization problem and then discuss the robust weak duality and robust
strong duality properties for a class of, not necessarily convex, possibly multi-

extremal, optimization problems. To begin, let us call the following uncertain

optimization problem (UP) with (3 = R™ as (UPg):

Minimize,  f(x, u)

subject to  gi(x,v;) <0, i=1,...,m. (UPy)
The robust counterpart of (UPy) is the following problem:

Minimi max f(x,u
inimize, ma f(x,u)

subject to  gi(x,v;) <0, Yo; € V;,i=1,...,m. (RPg)
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Let y € R” and A € R, For each fixed u € i and v € V, the conventional Wolfe
type dual program of (UPy) is given by
m
Maximize(, 5y L(y, u,0,A) = f(y,u) + 21 Aigi(y,v;)
1=

subject to VL(y,u,v,A) =0, A; >0,i=1,...,m. (UDyg)

The optimistic counterpart of the uncertain dual (UDg), called optimistic dual
optimization problem, is a deterministic optimization problem which is given by
m
Maximize(, ,,,2) L(y, 4,0,A) = f(y,u) + Y Aigi(y,vi)
i=1

subject to VL(y,u,v,Ay=0,ucld,v; e V;,A; >0,i=1,...,m, (ODy)

where the maximization is also over all the parameters 4 € U and v € V. The

feasible solution set of (ODy) is defined by

Kp:= {(y,u,v,/\) eER"XUXVXR™): VL(y,u,v,A) =0, u cU,v; € Vi, A; 20,i=1,...,

Remark 3.16. In the special case that there is no uncertainty in the objective
function and constraint function, i.e., U and V are singletons, (RPy) becomes
min{f(x) : gi(x) <0,i=1,...,m}, and (ODyg) collapses to the following Wolfe
type dual problem: max{L(y,A) = f(y) + Lit1 Aigi(y) : VL(y,A) = 0,A; >
0,i=1,...,m}.

It is also worth to note that by Wolfe type robust strong duality we under-
stand the situation when the optimal value of (RPg) equals the optimal value of
(ODyp) and both the minimum of (RPg), denoted by min (RPp), and the maximum

of (ODy), denoted by max (ODy), are attained.

The following result is the robust weak duality theorem between (RPg) and

(ODy).

Theorem 3.17. (Robust Weak Duality) For the problems (RPp) and (ODy), sup-

pose that at each (y,u,v,A) € Kp, the Lagrangian L(-,4,v,A) associated with
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(UPg) admits an underestimator Z(~,u, v,A), which is differentiable at that point
(y,u,v,A), and every stationary point of the function Z(, u,0,A) is its global min-

imizer. Then, for each feasible solution x of (RPyg),

>
max f(x,u) 2 L(y, 0,

and hence min (RPp) > max (ODy).

Proof. Let (y,u,v,A) be feasible for (ODy), i.e., (y,u,v,A) € Kp and let d € R"

and g > 0 be arbitrary. By assumption, we have

f(y +ud, u,v,A) — f(y, u,v,\) Y Ly +ud,u,v,A) — L(y,u, v,/\).
K K
Taking 4 — 0, we obtain Vf(y,u,v,/\)Td < VL(y,u,u,A)Td = 0. Hence,
Vf(y, u,v,A) = 0, and so y is a stationary point of f(-,u, v,A). It follows from
assumption that L(y,u,0,A) < L(z,u,v,A) for all z € R™ Let x € R” be an
abritrary feasible solution of (RPg), then one has

ma (x,) = L(y, ,0,4) 2 f(x,4) = Ly 4,0,1)

xelU

> fx,u) + EAlgl(x,vl) — L(y,v,A)
i=1

L(x,u,v,A) — L(y,u,0v,A)

v

T.(y, u,v,A) =Ly, uv A)

L(x,u,0,A) = L(y,u,v,A)

I

AV

0,

which yields maxyey f(x,u) > L(y,u,v,A). Furthermore, since x and (y,u,v,A)
are arbitrary solutions of (RPg) and (ODy), respectively, we arrive min (RPp) >

max (ODyp) as desired. O

Corollary 3.18. For the problems (RPg) and (ODy), suppose that at each (y, u,v,A) €
Kp, the Lagrangian L(-,u,v,A) associated with (UPg) admits a convex underesti-

mator L(-,u,v,A). Then min(RPg)> max(ODy).



Proof. Let d € R" and p > 0 be arbitrary. By assumption, we have

f(y +ud, u,v,A) — f(y, u,v,A) < Ly + ud,u,v,A) — L(y,u,v,A)
7z - Z '

Taking 4 —> 0, we obtain (f)’((y, u,v,A),d) < VL(y,u,v,A)Td = 0. It then

follows from the convexity of L and (f)’ ((y,u,v,A),d) <0, for each d € R" that
L is differentiable at (y,u,v,A) and Vz(y, u,v,A) = 0. That is (y,u,v,A) is a
stationary point of L. Since every stationary point of a convex function is its global
minimizer, we obtain f(y, u,v,A) < Z(z, u,0,A) for all z € R". Then, following the
scheme for proving the desired inequality in Theorem 3.17, we arrive the conclusion

of this corollary. [l

Corollary 3.19. For the problems (RPg) and (ODg), if at each (y,u,v,A) € Kp,
L(-,u,v,A) = L**(-,u,v,A). then min(RPp)> max(ODy).

Proof. Clearly, by assumption and the definition of biconjugate of a function, for
each feasible (y,u,v,A) € Kp, the Lagrangian L(-,u,v,A) associated with (UPg) -
admits a convex underestimator L**(-,1,v,A). Then, the conclusion follows from

Corollary 3.18. O

Theorem 3.20. (Strong Duality) For the problems (RPg) and (ODp), suppose that
at each (y,1,v,A) € Kp, the Lagrangian L(-,1,v,A) associated with (UPg) ad-

mits an underestimator L (,L,,u,,u,,ZL),,7W,hichjs,differ,entiabl&atthatp,oint_(,y,,,u,,u,,/,\,L
and every stationary point of the function f(~,u, v,A) is its global minimizer. If
the robust KKT conditions hold at a robust optimal solution % of (UPg), then
min(RPg)= max(ODy).

Proof. Let ¥ be a robust of optimal solution of (UPp), then it an optimal solution
of (RPg). Since the KKT conditions hold at ¥, there exist # € U,0; € V; and
A; >0,i=1,...,msuch that f(% %) = max,ey f(% 1), Lirq Aigi(%,7;) = 0 and
VL(%,,9,A) = 0. Thus, (%,,7,A) € Kp. It then follows from the robust duality
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theorem (Theorem 3.17) that

min (RPg) > max (ODy)

Hence, the conclusion of this theorem holds. O

Corollary 3.21. For the problems (RPg) and (ODy), suppose that at each (y,u,v,A) €
Kp, the Lagrangian L(-,u,v,A) associated with (UPp) admits a covex underesti-
mator f(, u,v,A). If the robust KKT conditions hold at a robust optimal solution

% of (UPy), then min(RPg)= max(ODy).

Proof. The scheme for proving this corollary is the same as in the proof of Theorem

3.20, but Corollary 3.18 is used instead of Theorem 3.17. U

Corollary 3.22. For the problems (RPg) and (ODy), suppose that at each (y,%,v,A) €
Kp, the equality: L(y,u,v,A) = L**(y,u,v,A) holds. If the robust KKT conditions

- held-ata robust optimal solutien ¥ of (UPg}; then min(RPy)= max{OBgF———— —

Proof. The conclusion of this corollary follows easily from Corollary 3.21 and The-

orem 3.20. O




CHAPTER 4

CONCLUSION

In this research, a robust optimization problem, which has a maximum function of
continuously differentiable functions as its objective function, is investigated. We
present new conditions for a robust KKT point to be a global robust optimal so-
lution of such uncertain optimization problems which may have many local robust
optimal solutions that are not global. The obtained conditions make use of under-
estimators, which were first introduced by Jeyakukar and Srisatkunarajah [1, 2] of
the Lagréngian at that robust KKT point. We also investigate Wolfe type robust
duality between the smooth uncertain optimization problem and its uncertain dual
problem by proving the sufficient conditions for the weak and strong duality be-
tween the deterministic robust counterpart of the primal model and the optimistic
counterpart of its dual problem. The obtained conditions for duality results are
established in terms of underestimators. Also, to illustrate or support this study,

some examples are presented.
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Abstract: In this paper, a robust optimization problem, which features a maximum function of continuousty
differentiable functions as its objective function, is investigated. Some new conditions for a robust KKT
point, which is a robust feasible solution that satisfies the robust KKT condition, to be a global robust
optimal solution of the uncertain optimization problem, which may have many local robust optimal solutions
that are not global, are established. The obtained conditions make use of underestimators, which were first
introduced by Jayakumar and Srisatkunarajah [1, 2] of the Lagrangian associated with the problem at the
robust KKT point. Furthermore, we also investigate the Wolfe type robust duality between the smooth
uncertain optimization problem and its uncertain dual problem by proving the sufficient conditions for a
weak duality and a strong duality between the deterministic robust counterpart of the primal model and the
optimistic counterpart of its dual problem. The results on robust duality theorems are established in terms
> of underestimators. Additionally, to illustrate or support this study, some examples are presented.

Keywords: robust KKT conditions, Sufficient optimality conditions, Strong duality, Robust optimization
problems, Underestimators, Biconjugate functions
~Mathematics Subject Classification: 90C26, 90C30, 90C46

1 Introduction

It has been acknowledged that the data of objective function or constraints of the numerous practical
programs, including real-world optimization problems, are usually not known exactly beforehand and infre-
quently uncertain owing to errors (from estimation, prediction or measurement) and asymmetric information|3,
4]. Solving the optimization problems with ignorance of the uncertainty may result in solutions which are
suboptimal for even infeasible, so it is essential to take care of uncertain optimization problems, which have
data uncertainty within the objective function and/or the constraint; see, e.g., [4, 5, 6, 7, 8, 9, 10, 11]. In line
with this fact, it is imperative to review the optimization problems with data uncertainty [3, 8, 12, 13, 14]. A
robust optimization, which is its robust counterpart of an uncertain optimization problem (3], has emerged
as a useful deterministic approach in (5, 10] to study optimization problems with data uncertainty. The
concept of the robust counterpart is minimizing the value of the objective function in the worst case of all
scenarios and getting a solution that works well even in the worst-case scenario but is also immunized against
the data uncertainty [11]. Furthermore, constraints are enforced for every possible value of the parameters
within their prescribed uncertainty set.

On the other hand, seeking a global solution is of fundamental importance in mathematical programming,
where problems have many, often infinitely many, possible solutions. Nevertheless, it is known that locating
a global solution of a multi-extremal problem, whose several local solutions are not global, is intrinsically
T tough {15; 16, 17, 18} Accordingly, improving the criteriafor-identifying global-solutionsof optimization—————
problems is of noticeable interest. Over the years, much attention has been targeted on developing criteria
for-identifying-global-solutions-of nonconvex-optimization-problems{19;-20,-21)—The-KKT-condition;which
is, under a certain qualification, a necessary condition for a feasible point to be a locally optimal solution
of a mathematical programming problem, is often used to creating criteria for identifying global solutions.
For instance, a feasible solution that fulfills the KKT conditions, referred to likewise as the KK'T point, is a
global minimizer for a convex programming problem. Different criteria for identifying global minimizers of
nonconvex programming problems regarding the KKT conditions have been given in the literature. Nonethe-
less, a significant part of work in this area the KKT sufficiency frequently necessitates that the Lagrangian
associated with the problem fulfills certain generalized convexity conditions [22, 23, 24, 25, 26, 27].

IThis research was supported by Naresuan University and the Science Achievement Scholarship of Thai-
land and the second author was partially supported by the Thailand Research Fund, Grant No. RSA6080077.
2Corresponding author.




In [1], the authors employed underestimators of the Lagrangian functions for developing criteria for a
KKT point to be a global minimizer of a mathematical programnming problem as well as presented also
sufficient conditions for weak and strong duality results in terms of underestimators. Furthermore, in [2],
the authors presented geometric criteria, which is established in terms of underestimators of the Lagrangian
of a mathematical programming problem, for a KKT point to be a global minimizer of such problem with or
without bounds on the variables. The idea of dealing with a problem by requiring its Lagrangian to admit
underestimator with certain generalized convexity conditions, which was given [1, 2], is very effective and
interesting. It leads us to interesting : “How does one obtain sufficient optimality conditions for a robust
KKT point to be a global robust optimal solution of a smooth nonconvex optimization problem with data
uncertainty in terms of underestimators?” and also, How does one derive robust duality results between the
uncertain optimization problem and its dual uncertain optimization problem?”. These questions motivate
us to handle with a smooth nonconvex uncertain optimization problem that features with data uncertianty
in both objective and constrains for obtaining global optimality conditions and duality theorems for robust
optimal solutions.

In this paper, we employ underestimators of the Lagrangian function for developing criteria for a robust
KKT point to be a global robust optimal solution of a smooth nonconvex optimization problem with data
uncertainty in both objective function and constraints. We establish sufficient optimality conditions by
requiring an underestimator, rather the Lagrangian, to satisfy a geometric condition. Here, we present that
a robust KKT point is a global robust optimal solution if the Lagrangian associated with the uncertain
problem admits an underestimator that fulfills certain conditions (the convexity, or the pseudo-convexity,
or the property that every stationary point is a global minimizer). In special, by using the fact that the
biconjugate function of the Lagrangian is a convex underestimator at a point whenever it coincides with the
Lagrangian at that point, we derive the sufficient optimality conditions as well. We also obtain results on
sufficient conditions for a robust weak duality and a robust strong duality between the smooth uncertain
optimization problem and its conventional Wolf type dual optimization problem, by proving the sufficient
conditions for a weak duality and a strong duality between the deterministic robust counterpart of the primal
model and the optimistic counterpart of it conventional Wolf type dual model, in terms of underestimators
of the Lagrangian function.

The paper is organized as follows. In section 2, we recall some notions and give some preliminary
results. In section 3, several sufficient optimality conditions for a robust KKT conditions to be a global
robust optimal solution in terms of underestimators are presented, and also, some examples for illustrating
the applications of our results to nonconvex optimization problem with data uncertainty are given. In section
4, we present some results on sufficient conditions for a robust weak duality and a robust strong duality
between the smooth uncertain optimization problem and its uncertain dual problem. Finally, in section 5,
we conclude our study.

2 Preliminaries

Let us first recall some notation and preliminary results which is able to used throughout this paper. First
of all, let R™,n € N, be the n-dimensional Euclidean space and for z,y € R", the notation zTy stands for
the inner product of z and y.

Let f : R® — R be a real-valued function, it is said to be continuously differentiable if the derivative
f!(z), where z € R", exists and is itself a continuous function. Besides, a point « € R" is called a stationary
point of the function f : R™ — R if f is differentiable at = and V f(z) = 0, where Vf denotes the usual
gradient of f. Simultaneously, the function £ is said to be a convez function if for any =,y € R™ and A € [0,1],

Fz 4+ (1= A)y) < f(z) + (1 - A)f@).

For a convex function, its local minimizer is also a global minimizer, and if the convex function is differen-
tiable, then its stationary point-is-its global minimizer as well. Furthermore, let C' be a given subset of R™

and the function f be (Gateaux) differentiable at a point z € C, then f is said to be pseudoconver at x if
Vi@ -2) 20,y €C= f(y) 2 f(@).

The term pseudoconvex is employed to explain the very fact that such functions share many properties of
convex functions, particularly with regards to derivative properties and finding local extrema. Note, however,
that pseudoconvexity is strictly weaker than convexity as every convex function is pseudoconvex though one
easily checks that f(z) = z -+ 3 is pseudoconvex and non-convex. The Legendre-Fenchel conjugate function
(for short, conjugate function) of f: R® — R{+oo} is f* : R® — RU {400} defined by

f*(@*) == sup {(z*, %) — f(x)}
TERM

for all z € R™. The function f* is lower semicontinuous convex irrespective of the nature of f but for f* to
be proper, we need f to be a proper convex function. By reiterating the operation f — f** on f, we get the



biconjugate of f, defined for all z € R™ by
*(z) :== sup {{z,z") — f*(z*)}.
T*ER™

Clearly, if f is identically equal to +oo, then f** is identically equal to —co. Note that f** : R™ — RU{—oc}
is a convex function and it coincides with f when f is proper, lower semicontinuous and convex.

Next, we recall the conceptbs of underestimators, introduced in [1, 2] for developing conditions for a
KKT point to be a global minimizer of a standard mathematical programming problem. First of all, please
consider the following mathematical programming problem:

Minimize f(z)
subject to g€, gi(x) <0,i=1,...,m, (P)
where € is a closed and convex subset of R™ and f, g; : R® = R,7=1,...,m, are continuously differentiable

functions. Let A := {x € R™ : g;(z) < 0,i=1,...,m} and let the feasible set K := QN A.
The following conceptbs of underestimators for developing conditions for a KKT point to be a global
minimizer of (P) can be found in [1, 2].

Definition 2.1. A function p: R® — R is said to be
(i) an underestimator of the function f:R™ — R at T over the feasible set K if, for each z € K, f(zx) >
plz), and f(3) = p(2);
(ii) a minimizing underestimator of the function f : R™ — R at Z over the feasible set K if it is an
underestimator of f at Z over K and it attains its minimum over K at z;

(ii1) a smooth underestimator of the function f:R™ — R at Z over the feasible set K if it is an underes-
timator of f at T over K that is differentiable at & and Vf(Z) = Vp(Z).

It is easy to check from the definition of biconjugate function of f that, for each z € R”™, f(z) > f**(x).
So, if f(z) = f**(z), then we get from Definition 2.1 that f** is a convex underestimator of f at T over R™,

A feasible point £ € K is said to be a local minimizer of (P) if there is a neighborhood U of & such that
for each z € K NU, f(z) > f(%). Specially, if U = R™,Z is called a global minimizer of (P). If a feasible
point Z is a local minimizer of (P) and if a certain constraint qualification holds then the following KKT
conditions hold at z with multiplier A € RT:

m

> " Xigi(z) =0 and VL(3, )T (z - z) 20, Vz € Q.

=1 .
Here L(&, M) := ()41 Migi(&) is the Lagrangian associated with (P) and RT is the set of all nonnegative
vectors of R™.

To conclude this section, we recall some important conceptions which will be used in the sequel. Consider

the following parameterized program, which is an analog of the deterministic program (P) if the objective,
as well as the constraints, are uncertain:

Minimize Sz, u)

subject to z€Q, gi(z,v;) <0,i=1,...,m. (UP)
Here u and v; are uncertain parameters belonging to compact convex uncertainty sets & C R?, and V; C
RY,i = 1,...,m, respectively. f : R® x R? — R and g; : R® x R? — R are continuously differentiable
functlon on an open subsets of R™ x RP, and R™ x R, respectively. By enforcing the constraints for all

nnssMnmﬁaMM@WM@ﬂi&mmmﬂmm&Mmgm__

which is the robust (worst-case) counterpart of (UP):

Minimize mex (7, %)
subject to z€Q, gi(z,v;) 0, Vo; €Vyyi=1,...,m. (RP)

In section 3 and section 4, we investigate the smooth uncertain programming problem (UP) by using examine
(RP). The following definition is of the set, is termed as the robust feasible set of (UP).

Definition 2.2. The set of all robust feasible solutions of (UP), equivalently the set of all feasible solution
of (RP), is called the robust feasible set of (UP) and is defined by

K:={z€Q:glz,v) <0,Vv; € Vs,i=1,...,m}.

To avoid triviality in (UP), we always assume that K # 0.
The below notion commonly referred to as robust optimal solution or robust minimaz solution, can be
found in [3]. This concept has been studied extensively by many authors, see, e.g., [8, 12].



Definition 2.8. A robust feasible solution Z € K is said to be a local robust optimal solution for (UP) if it
is a global optimal solution of (RP), i.e., there exists a neighborhood U of Z such that for each x € KN U,

glgb);f(w,u) 2 max f(z,u).

Specially, if U = R"™, then Z € X is said to be a global robust optimal solution for (UP), equivalently, a global
optimal solution of (RP).

The Lagrangian associated with (UP), denoted by L(z,u, v, A), is given as follows:

m
L({E, U, v, /\) = f(il?, u) + Z )\‘ig‘i(my ‘Ui),
i=1
where u € U C RP, v := (v1,...,vm),v; € V; TR and A := (A1,...,Am),\i ER,i=1,....m. Ifzis
a local robust optimal solution of (UP), i.e., a local optimal solution of (RP), and if a certain constramt
qualification holds at that point, then the followmg robust KKT conditions hold: 3 e U,30 € V,IX € R
such that
m
f(z,u) = maxf T, u) Z i9i(Z,7;) =0, and VL(%,4,5,\)T (z — &) > 0,Vz € Q (2.1)
=1
where V := V1 X+« X YV, V; C R%,4 = 1,...,m. Whenever the robust KKT conditions hold at a robust
feasible solution Z € K, the point Z is said to be a robust KKT point.

3 The robust KKT sufficiency for global robust optimal
solutions via underestimators

In this section, we establish that a robust KKT point is a global robust optimal solution of (UP) if the
Lagrangian associated with (UP) admits an underestimator, which is convex or, more generally, has the
property that every stationary point is its global minimizer. In addition, by using the fact that the bi-
conjugate function of the Lagrangian is a convex underestimator at a point whenever it coincides with the
Lagrangian at that point, we establish sufficient optimality conditions for the point to be a global robust
optimal solution of (UP).

The following lemmas are used for obtaining our later results.

Lemma 3.1. Let £ € K and the robust KKT conditions hold at Z with the uncertain parameters 4,
and the multiplier X. Suppose that the Lagrangian L(-, 4,0, \) associated with (UP) admits a minimizing
underestimator at T over the robust feasible set K. Then, & is a global Tobust optimal solution of (UP).

Proof. Let p be a minimizing underestimator of L(-,_ﬁ,ﬁ, X) at & over Kand let z € K be arbitrary. Then,
for the uncertain parameters 4, v and the multiplier A, we have ), _; Aigi(z,7;) <0, and

meax f (2, ) —max f(Z, u) = max f(z, u) — f(2,%)
2 f(.’E,’lTL) _f(jlﬁ)
> f(mvﬁ) = f(jxﬁ) + y: )\igi(w,’vi)

i=1

W

N [ =
=)+ ) _ Migilz,v:) - |_f(f, @)+ ) AigilE, ’Ui)]

i=1 =1
= L(z, 4,7, \) — L(Z, 4,7,
2 p(z) — p(@)
>0

Since = was arbitrary, this inequality yields maz,cy f(z,u) > maxyey f(Z,u) for all z € K. Thus, Z is a
global optimal solution of (RP), and so it is a global robust optimal solution of (UP) as desired. [}

The following theorem shows that every smooth underestimator at Z over , which is pseudo-convex, is
a minimizing underestimator at that point over .



Theorem 3.2. Let & € K and the robust KKT conditions hold at & with the uncertain parameters i,?
and the multiplier X. Suppose that p : R® — R is a smooth underestimator of Lagrangian L(,%,T,))
associated with (UP) at & over Q and p is pseudo-convez at & over Q0. Then, the function p is a minimizing
underestimator of L(.,@,9,)) at & over Q as well as T is a global robust optimal solution of (UP).

Proof. By the definition of the smooth underestimator of a function at a point, we have Vp(Z) = VL(Z, 4, 7, A).
Hence, from the robust KKT conditions, we have
Vo) (z — ) = VL(z, 3,5, )T (¢ — ) >0, Yz € Q.

It then follows from the pseudo-convexity of p that p(z) > p(%), for all z € Q2. This means p is a minimizing
underestimator of L(-, i, ¥, A) associated with (UP) at Z over K C Q. Then, by Lemma 3.1, the point Z is a
global robust optimal solution of (UP). O

)
Z

Remark 3.3. In the special case that there is no uncertainty in the objective function and constraint
function, i.e., i and V are singletons, it can be seen easily that

1. the problem (UP) becomes min{f(z) : gi(z) <0,i=1,...,m,z € Q}, which was studied in [2];
2. Lemma 3.1 provides the same results presented in [2, Lemma 2.1];

3. Theorem 3.2 provides the same results presented in [2, Theorem 2.1].

Lemma 3.4. If p is a conver underestimator of L(-,@,9,X) associated with (UP) at & over § and p is
differetiable at %, then p 15 a pseudo-convez underestimator of L(-,4,v, ) at & over §.

Proof. Since p is convex over ) and is differentiable at Z, we have from the gradient inequality that
p(z) 2 p(Z) + Vp(@)" (= — &), Y& €.

Hence, for each z € Q, if p(Z)T(x — &) > 0 then p(z) > p(z). This means p is pseudo-convex at T over (,
and so the conclusion holds. ]

The following result follows from Theorem 3.2 and Lemma 3.4.

Corollary 3.5. Let £ € K and the robust KKT conditions hold ot T with the uncertain parameters u,v
and the multiplier . Suppose that p : R™ — R is a smooth convez underestimator of Lagrangian L(:, @, , h)
associated with (UP) at Z over Q. Then, the function p is a minimizing underestimator of L(-, 4,7, X) atz
over Q as well as T is a global robust optimal solution of (UP).

Proof. Since p is a smooth underestimator of L(-,@,, \) at Z over §, it is differentiable at Z. Then, from
Lemma 3.4, p is pseudo-convex at & over (. Hence, it follows from Theorem 3.2 that  is a global robust
optimal solution of (UP). O

The following results (Theorem 3.6, Corollary 3.9, Corollary 3.12 and Corollary 3.14) are applicable for
the problem (UP) with 2 = R™. The sufficient conditions for a robust KKT point to be a global robust
optimal solution of (UP) are presented in the following theorem.

Theorem 3.6. For the uncertain optimization problem (UP), let Q@ =R"™. Let & € K and the robust KKT
conditions hold at T with the uncertain parameters @,7 and the multiplier \. Suppose that the Lagrangian
L(-, @, 5, A) associated with (UP) admits an underestimator at T and this underestimator is differentiable at
z. If every stationary point of the underestimator is its global minimizer, then T is a global robust optimal

N

solution of (UP):

P'roofrﬂLetfpfbefgn—underest—imatorfoffL(—-,4&,417,4—)ab@,fand—letfdfelkn—beﬂar—bittarfyﬁ’Ilhenrforfeach z-€ R,
p(z) < L(z, @, 7, A). So, for any p > 0, we have

p(fl_: + l"'d) - p(:f) < L(j + #d, U, U, ;‘) — L(jv 5,7, x)
Jz - 7

Taking p — 0, we obtain Vp(z)Td < VL(&,, 4,5, A)Td = 0. Hence, Vp(z) < 0 for each d € R™. Therefore,
Vp(Z) = 0, and so the point Z is a stationary point of p. By the assumption, it then follows that, p(z) > p(Z)
for all z_ € R™ and hence for all z € K C R",p(z) > p(Z) as well. Clearly, p is an underestimator of
L(-,u,,)) at Z over K and it attaing its minimum over the set K at Z. That is to say, p is a minimizing
underestimator of L(-, %, %, ) at & over R™ and so, by Lemma 3.1, Z is a global robust optimal solution of
(UP). g



Let us give some examples of multi-extremal nonconvex optimization problems that have some local
robust optimal solutions such that the robust KKT conditions hold at each of the solutions. In each
example, the Lagrangian admits a nonconvex underestimator at only one local robust optimal solution with
the property that every local minimizer of the underestimator is its global minimizer.

Example 8.7. Consider the nonconvex problem:
Minimize uz? — 2z%u
1
subject to zeQ:=R,-z?-16<0, (UP)
v
where u € U := [1,2],v € V := [1,2]. The robust counterpart of (UP1) is the following robust optimization

problem:
Minimize max uz? — 25U
ueY

1
subject to z€Q,-z%—-16<0,Yv € V. (RP1)
v

It is not hard to see that the set of all robust feasible solusions of (UP;) is K = [—4,4]. Indeed, K = {z €
R: 212216 <0,¥w € (1,2} = Nyepg{z € R: 12?16 < 0} = {z € R: 2 — 16 < 0} = [~4,4]. Besides,
the robust optimization (RP1) can be written as follows: min{¢(z) : © € [—4,4]} where
4 3 3
_J =223 0<z<3,
$(z) = { 2z% — 4a3; otherwise.
Then, 0 and 2 are local robust optimal solutions of (UP;) and the robust KKT conditions are satisfied at

2 - -
both points with @ = 1, A = 0 and any © € V. Furthermore, the Lagrangian L(-, @, 7, A) associated with the

problem (UP;) is given by L(z, 4,0, \) = a* — 22° for all z € R. So, the function p : R — R defined by
4 3 3
z* — 2x°; < g
— H —_ 2)
p(z) { %; otherwise
is a (nonconvex) underestimator of the Lagrangian L(-,%,,\) at = % In addition, we also obtain
iy f 22222 -3) <0 :DS%,
Pla) = { 0; otherwise,
It can be seen that, all the stationary points of p are its global minimizers and the point Z = % is a global
robust optimal solution of (UPj1).

The following example is motivated by Example 2.1, in 1], whose objective and constraint functions are
absent of data uncertainty.

Example 3.8. Consider the nonconvex problem:

Minimize  uze® (z — 1)?
1
subject to @€ N:=R,=z? 18 <0, (UP5)
v
where u € U :=[1,2),v € V= [%, 2], by examining the following robust optimization problem:

Minimize  max uze® (z — 1)2
ueU

1
subject to  w e, -z2—18<0,Yv € V. (RP»)
v

Phe robust feasible set of the problem (UP3) is K =1{=3; 3land-wecanrewrite the problem{RPz}-as follows:—————

min{¢(z) : z € [-3, 3]} where

ze®(z —1)2; € (—00,0],
2%we® (z — 1)%; otherwise.

#(o) = {

So, the points =1and Z = —1 — \/2 are robust feasible solutions and also local robust optimal solutions
of (UPg). The robust KKT conditions are satisfied at both points with @ =1,A=0and any 2 €V and the
Lagrangian L(-, %, 7, A) associated with (UP2) at z € R is given by L(z,4,,)) = ze” (z — 1)2. Thus, the
function p : R — R defined by
(z) = we® (z — 1)%; z < —1—+/72,
PEIZY 4+ 10v/2)e 1-V%  otherwise,
is a (nonconvex) underestimator of the Lagrangian L(-,@,9,\) at £ = —1 — V2. Then, by following the

scheme used for solving the problem (P1) in [1, Example 2.1], we can verify that —1 — v/2 is a global robust
optimal solution of (UP2).



Corollary 3.9. For the uncertain optimization problem (UP), let Q = R™. Let z € K and the robust KKT
conditions hold at & with the uncertain parameters @,% and the multiplier . If the Lagrangian L(-, 4,9, ))
associated with (UP) admits a convex underestimalor at Z, then & is a global robust optimal solution of
(UP).

Proof. Let p be the convex underestimator of L(:, @, 7, )) at Z over R™, and let d € R™ be arbitrary. Since
for each € R", p(z) < L(z, u, D, A), we obtain that for each u > 0,

p(‘i + #d) — P(fi’) < L(:E + ﬂd)vx >‘) — L(.’I_l,’U, )‘)
H - M
By taking p — 0, we arrive p'(%,d) < VL(Z, 4,7, \)Td = 0. Since p is convex and p/(%,d) < 0 for all
d € R", p is differentiable at Z and Vp(Z) = 0. Thus, Z is a stationary point of the convex function p and

s0 it is a global minimizer of p over R™. Hence, p is 2 minimizing underestimator of L(, %, 7, \) at & over
K C R™ and then it follows from Lemma 3.1 that Z is a global robust optimal solution of (UP). ]

The following examples illustrate Corollary 3.9.

Example 3.10. Consider the nonconvex uncertain optimization problem (UP;) defined as in Example 3.7.
The function p: R — R defined by

27
_27. <3
= 16’ =72
o
A=) { (:z: — %)2 - %; otherwise

is a convex underestimator of the Lagrangian L(-,%,7,)) at # = 3, where L(z,%,%,)) = % ~ 22% for all
z € R. It can be seen that, the point z = % is a global robust optimal solution of (UP1).
Example 3.11. Consider the following nonconvex programming problem:
Minimize zt +23 - 322+ u
subject to  z € Q:=R,z? — 23 — v <0,v3 —z? <0, (UP3)
where U := [—1,1], V1 := [0,1], V2 :=0, 1], by examining the following robust optimization problem:
Minimize Teaz?(( et 2% - 322 4 u
subject to  x € R, 2% — 2% —v1 < 0,Vv1 € Vi,v2 — 22 < 0,Vus € Vs (RP3)
Clearly, the problem (RP3) becomes min{z? + 23 — 322 +1: 2 € K} where
K={zeR:2? —2® - v <0,Vv; €[0,1] and vz — z% < 0,Vuv; € [0,1]}
={z€eR:2% -2 <0, and 1 - 2% <0}
= [1, 00).

Direct calculations show that the robust KKT conditions hold at the feasible point =1 with & = 1,9 :=
(91,72) = (0,1) and X := (A1, A2) = (1,0). The Lagrangian L(.,@,,\) associated with (UP3) is given by
L(z,4,9,)) = (22 — 1)2. Hence, we obtain the function p : R — R defined by

0; z<1,
. pley=< 2 _ _ < A
L 1L\x, T, v, /\} UUITeTWISE
. is a convex underestimator of the Lagrangian L(-, 1,4, A) at Z = 1, which is a global robust optimal solution

of (UP3)

Corollary 3.12. For the uncertain optimization problem (UP), let Q = R™. Let Z € K and the robust KKT
conditions hold at T with the uncertain parameters @, o and the multiplier X. If L**(Z, 4, %, A) = L(Z, @, 7, A),
then Z is a global robust optimal solution of (UP).

Proof. 1t is clear by the definition of bicongugate for a function that L**(-,v, X) is convex and L**(z, @, 7, ) <
L(=z, 4, %, \) for all z € R™. So, it then follows from L**(Z, 4,3, A) = L(&, @, 9, A) that L**(., &, 3, A) is a con-
vex underestimator of L(-, 4, ¥, A) at . Hence, by applying Corollary 3.9, Z is a global robust optimal solution
of (UP) as desired. (]



Example 3.13. Consider the following nonconvex minimization problem:

Minimize  u+ (z? — 4)2

subjectto zeQ:=R,z—-1-v<0, (UP4)
where Uf :=[-1,1],V := [-1, 1], by examining the following robust optimization problem:
Minimize uen[l—afl] u+ (@2 — 4)?
subject to z-1—-v<0,VveV. (RP4)

Clearly, the problem (RP4) becomes min{1+ (z? —4)2 : z € K} where the robust feasible set of the problem
8 K=Nye-1y{z €R:x—1—-v<0,Vo €[0,1]} = (—00,0]. Then, & = —2 is a local robust optimal
solution of (UP4) and the robust KKT conditions are satisfied at # with 4 = 1,X = 0 and any % € V. Thus,
we obtain L(z,@, %, ) = 1+ (z2 — 4)2 and

" sy 1; zc [_2v2]!
L (z:u!v»A) = { 14 (1.2 — 4)2; otherwise.

It is clear that L(z, @, 3, X > L**(x, 7,7, ) for all ¢ € K and L**(&, 4,5, A) = L(z, 1,9, ) = L(—2,1,3,0) =

1. Thus, L**(:, 4,7, ) is a convex underestimator of the Lagrangian L(-, 1,9, A) associated with (UP4) at
Z = 2. Besides, it can be seen that, the points —2 is a global robust optimal solutions of (UP4).

Corollary 3.14. For the uncertain optimization problem (UP), let 2 = R™. Let z € K and the robust KKT
conditions hold at & with the uncertain parameters @,% and the multiplier \. If the Lagrangian L(-, 4,7, \)
associated with (UP) is convez, then % is a global robust optimal solution of (UP).

Proof. Clearly, by assumption, L(,@,%, ) admits its convex underestimator L(-,4,%,2) at %. Hence, it
follows from Corollary 3.9 that Z is a global robust optimal solution of (UP). O

Remark 3.15. In the special case that there is no uncertainty in the objective function and constraint

function, i.e., U and V are singletons, it can be seen easily that
1. the problem (UP) with & = R™ becomes min{f(z) : g;(z) < 0,7 = 1,...,m}, which was studied in
(1];
. the Therem 3.1 provides the same results presented in [1, Theorem 2.1.];

. the Corollary 3.9 provides the same results presented in {1, Corollary 2.1];

AW

the Corollary3.12 provides the same results presented in [1, Corollary 2.2];
the Corollary 3.14 provides the same results presented in [1, Corollary 2.3].

fon

4 Duality

In this section, we study particularly the case that Q of (UP) is R™. By virtue of robust optimization, we
formulate a Wolfe type robust dual problem for the uncertain optimization problem and then discuss the
robust weak duality and robust strong duality properties for a class of, not necessarily convex, possibly
multi-extremal, optimization problems. To begin, let us call the following uncertain optimization problem
(UP) with 2 =R" as (UPg):

Minimizey  f(z,u)

subject-to—gi(wv) < Opt=1yym— (UPg)

The robust counterpart of (UPg) is the following problem:

Minimize, max flz,u)

subject to  gi(x,v;) <0, Yu; € Vy,i=1,...,m. (RPg)
Let y € R™ and A € RT. For each fixed u € U and v € V, the conventional Wolfe type dual program of
(UPyg) is given by

Maximize(, ») L(y,u,v,\) = f(y,u) + Z/\igi(y,vi)

i=1

subject to VL(y,u,v,A\) =0, ;;>0,i=1,...,m. (UDyg)



The optimistic counterpart of the uncertain dual (UDg), called optimistic dual optimization problem, is a
deterministic optimization problem which is given by

m
MaXimize(y,u,v,)\) L(y,u,v, ’\) = f(?h u) + Z )‘igi(yv ’U‘i)
i=1

subject to VI{y,u,v,A) =0, u €U,v; EV;, \; >20,i=1,...,m, (ODg)
where the maximization is also over all the parameters u € U and v € V. The feasible solution set of (ODyg)
is defined by
Kp = {00 ER™ xUX VX R™): VL(y,u,v,A) = 0, u € Uyv; € Vi, A 2 0, = L...,m}.

Remark 4.1. In the special case that there is no uncertainty in the objective function and constraint
function, ie., U and V are singletons, (RPg) becomes min{f(z) : gi(z) < 0,4 = 1,...,m}, and (ODg)
collapses to the following Wolfe type dual problem: max{L(y,A) = f{y) + > 10, Xigi(y) : VL(y,A) =0, \; >
0,i=1,...,m}.

It is also worth to note that by Wolfe type robust strong duality we understand the situation when the
optimal value of (RPp) equals the optimal value of (ODg) and both the minimum of (RPg), denoted by
min (RPg), and the maximum of (ODyp), denoted by max (ODyg), are attained.

The following result is the robust weak duality theorem between (RPg) and (ODg).

Theorem 4.2. (Robust Weak Duality) For the problems (RPg) and (ODg), suppose that at each (y,u, v, ) €
Kp, the Lagrangion L(-,u,v,\) associated with (UPp) admits an underestimator L(-,u,v,)), which is
differentiable at that point (y,u,v,\), and every stationary point of the function L(-,u,v,)) is its global
minimizer. Then, for each feasible solution z of (RPp),

glg&cf(rv,u) 2 L{y,u, v, \)

and hence min (RPg) > max (ODg).
Proof. Let (y,u,v,A) be feasible for (ODg), i.e., (y,u,v,A) € Kp and let d € R™ and p > 0 be arbitrary.
By assumption, we have
f(y + pd,u, v, A) — E(y, u, v, A) \ L{y + pd,u,v, A) — Ly, u, v, \)
1 B
Taking p — 0, we obtain VL(y,u,v,\)Td < VL(y,u,v,A)Td = 0. Hence, VL(y,u,v,A) =0, and so y is a

stationary point of Z(~,u,v, A). It follows from assumption that E(y,u, v, A) < f(z,u,v, A) for all z € R™.
Let z € R™ be an abritrary feasible solution of (RPg), then one has

Tea‘l?{(f(z)u) - L(y,u,v,)\) > f((L‘,’U-) - L(y,u,v, A)

2 f(:l},u) 7 Z/\ig‘i(myvi) F L(y,'u, )‘)

i=1
L(:l:, u, v, )‘) T L(yy u, v, A)
A(:v,u,v, A) — Ly, u, v, A)
(z,u,v,A) — f(y, u, v, A)

Il

>
L
0

=t )

which yields max; ¢y f(z,u) > L(y,u, v, A). Furthermore, since = and (y,u, v, A) are arbitrary solutions of
(RPo) and (ODyg), respectively, we arrive min (RPg) > max (ODg) as desired. d

Corollary 4.3, For the problems (RPg) and (ODyg), suppose that at each (y,u,v,\) € Kp, the Lagrangian
L(-,u,v, A) associated with (UPg) admits o conver underestimator L(-,u,v, A). Then min(RPg)> max(ODyg).
Proof. Let d € R™ and p > 0 be arbitrary. By assumption, we have
E(y + l‘d)ua v, )‘) _ Z(y) u, v, /\) < L(y + ,ud,u, v, ’\) - L(yx u, v, /\)
K B 7
Taking p — 0, we obtain (E)’ ((y,w,v,A),d) < VL(y,u,v,A)Td = 0. It then follows from the convexity of
L and (L)' ((y,u,v,)),d) <0, for each d € R™ that L is differentiable at (y,u,v,A) and VL(y,u,v,\) = 0.
That is (y,u,v, ) is a stationary point of L. Since every stationary point of a convex function is its global

minimizer, we obtain Z(y,u, v, A) < E(z,u,v, A) for all z € R"™. Then, following the scheme for proving the
desired inequality in Theorem 4.2, we arrive the conclusion of this corollary. 0O




a

Corollary 4.4. For the problems (RPg) and (ODy), if at each (y,u, v, \) € Kp, L(-,u,v,A) = L**(-,u, v, A).
then min(RPg)> max(ODg).

Proof. Clearly, by assumption and the definition of biconjugate of a function, for each feasible (y,u,v,A) €
Kp, the Lagrangian L(-, u, v, A) associated with (UPg) admits a convex underestimator L**(-, u, v, A). Then,
the conclusion follows from Corollary 4.3.

Theorem 4.5. (Strong Duality) For the problems (RPg) end (ODyg), suppose that at each (y,u,v,))
€ Kp, the Lagrangian L(-,u,v,\) associated with (UPg) admits an underestimator Z(-,u,v,)\), which is
differentiable at that point (y,u,v,)), and every stationary point of the function E(~,u, v, A) is its global
minimizer. If the robust KKT conditions hold al a robust optimal solution  of (UPg), then min(RPg)=
max(ODg).

Proof. Let T be a robust of optimal solution of (UPy), then it an optimal sclution of (RPg). Since the KKT
conditions hold at Z, there exist @ € U,v; € V; and X; > 0,5 = 1,..., m such that f(Z,4) = maxycy f(Z,u),
S Aigi(®, 7;) = 0 and VL(Z, @, 9,A) = 0. Thus, (%,,7,)\) € Kp. It then follows from the robust duality
theorem (Theorem 4.2) that

min (RPp) > ma:

~~

> max (ODp
> L(3,4,7,\)

@)+ > Xigi(Z, ;)

i=1
= maxf(zu)
= min (RPp).
Hence, the conclusion of this theorem holds. O

Corollary 4.6. For the problems (RPg) and (ODy), suppose that at each (y,u,v,\) € Kp, the Lagrangian
L(-,u,v,\) associated with (UPg) admits a covezr underestimator f(~,u, v, A). If the robust KKT conditions
hold at a robust optimal solution T of (UPg), then min(RPg)= max(ODg).

Proof. The scheme for proving this corollary is the same as in the proof of Theorem 4.5, but Corollary 4.3
is used instead of Theorem 4.2. O

Corollary 4.7. For the problems (RPg) and (ODyg), suppose that at each (y,u,v,A) € Kp, the equality:
L(y,u,v,\) = L*(y,u,v,A\) holds. If the robust KKT conditions hold at a robust optimal soluiion T of
(UPg), then min(RPg)= max(ODy).

Proof. The conclusion of this corollary follows easily from Corollary 4.6 and Theorem 4.5. O

5 Conclusion

In this paper, a robust optimization problem, which has a maximum function of continuously differentiable
functions as its objective function, is investigated. We present new conditions for a robust KKT point to be
a global robust optimal solution of such uncertain optimization problems which may have many local robust

optimal solutions that are not global. The obtained conditions make use of underestimators, which were first
introduced by Jeyakukar and Srisatkunarajah [1, 2] of the Lagrangian at that robust KKT point. We also

investigate Wolfe type robust duality between the smooth uncertain optimization problem and its uncertain
dual problem by proving the sufficient conditions for the weak and strong duality between the deterministic
robust counterpart of the primal model and the optimistic counterpart of its dual problem. The obtained
conditions for duality results are established in terms of underestimators. Also, to illustrate or support this
study, some examples are presented.
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