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In this project, we propose a new iterative algorithm  for finding  common
solutions of generalized mixed equilibrium problems and fixed point problems for Bregman
totally quasi-asymptotically nonexpansive mappings in reflexive Banach spaces. Moreover,
we also study the strong convergence theorem under  suitable control - conditions.
Furthermore, we are interested in introducing a new iterative algorithm for finding common
solutions of mixed equilibrium problems and common fixed point problems for a countable
family of Bregman totally quasi-asymptotically nonexpansive mappings in reflexive Banach

spaces.
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CHAPTER |
EXECUTIVE SUMMARY

The fixed point theory of nonexpansive mappings can be applied to solve the solutions of the
certain evolution equations and to solve convex feasibility, variational inequality and equilibrium
.problems. There are, in faoct, many papers deal with methods for finding fixed points of nonexpansive
and quasi-nonexpansive mappings in Hilbert, uniformly convex and uniformly smooth Banach spaces.

When we try to extend this theory to general Banach spaces we encounter some difficulties,
and there are severdl ways to overcome these difficulties. One of them is to use the Bregman
distance instead of the norm, Bregman (quasi-) nonexpansive mappings instead of the (quasi-)
nonexpansive mappings and the Bregman projection instead of the metric projection.

In 1967, Bregman discovered an elegant and effective technique for using Bregman distance
function in the process of designing and analyzing feasibility and optimization algorithms. This
opened a growing area of research in which Bregman’s technique has been applied in various ways
in order to design and analyze iterative algorithms for solving the feasibility and optimization
problems, for approximating the variational inequalities and equilibrium problem, for computing the
fixed points of nonlinear maoppings and so on.

In 2014, Chang et al. used the shrinking projection method introduced by Takahashi, Kubota
and Tokeuchi to propose an iteration algorithm  for Bregman total quasi- g —asymptotically
honexpansive mapping to have the strong convergence under a limit condition only in the framework
of reflexive Banach spaces. As dpplications, they applied their results to a system of equilibrium
problems and zero point problem of maximal monotone mappings in reflexive Banach spaces. The
results presented in the mentioned paper improved and extended the cofrespoﬁding results in the
literature.

In 2015, Darvish studied a new iterative method for a common fixed point of a finite family of
Bragman  strongly nonexpansive mappings in the frame work of reflexive real Banach spsces.
Moreover, the author proved the strong convergence theorem for finding common fixed points with

the solutions of a mixed equilibrium problem.



In 2016, ZhQ and Huang proposed a new hybrid iterative scheme for finding @ common
solution of an equilbrium problem and fixed point of Bregman totally quasi~asymptotically
honexpansive mapping in reflexive Banach spaces. Moreover, they proved some strong convergence
theorems under suitable control conditions. Finally, the application to zero point problem of maximal
monotone operators was given by the result.

Inspired and motivated by the above results, we are interested in proposing a new iterative
algorithm for finding common solutions of generalized mixed equilibrium problems and fixed point
problems for Bregman totally quasi-asymptotically nonexpansive mappings in reflexive Banach
spaces. Moreover, we dlso study the strong convergence theorem under suitable control conditions.
Furthermore, we are interested in introducing a new iterative algorithm for finding common solutions
of mixed equilibrium problems and common fixed point problems for a countable family of Bregman

totally quasi-asymptotically nonexpansive mappings in reflexive Banach spaces.



CHAPTER II
OUTPUT

In this project, we obtain two publications that published in the international journal as the
followings:

1. Kittisak Jantakarn and Anchalee Kaewcharoen, Strong convergence theorems for mixed
equilibrium problems and Bregman relatively nonexpansive mappings in reflexive Banach spaces,
Journal of Nonlinear Science and Applications, 14 (2021), no. 2, 63-79 (SCOPUS)

In this paper, we propose a new iterative method for solving the mixed equilibrium
problems and the fixed point problems for a countable family of Bregman relatively nonexpansive
mappings in reflexive Banach spaces. We prove that the sequence generated by the proposed
iterative algorithm converges strongly to @ common solution of the mentioned problems. Further, a

numerical example of the iterative algorithm supporting our main result is presented.

2. Kittisak Jantakarn and Anchalee Kaewcharoen, Strong convergence theorems for
generalized mixed equilibrium problems and Bregman relatively nonexpansive mappings in reflexive
Banach spaces, Journal of Nonlinear and Convex Analysis, Impact Factor 0.710 (ISI), accepted.

In this paper, we deal with the Bregman iterative methods for finding common solutions of
generalized mixed equilibrium problems and fixed point problems for Bregman relatively nonexpansive
mappings in reflexive Banach spaces. The strong convergence theorems for the Bregman iterative
methods under some mild conditions are proven..Furthermore, we present a numerical example to

illustrate the main result.
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Abstract

In this paper, we propose a new iterative method for solving the mixed equilibrium problems and the fixed point problems
for a countable family of Bregman relatively nonexpansive mappings in reflexive Banach spaces. We prove that the sequence
generated by the proposed iterative algorithm converges strongly to a common solution of the mentioned problems. Further, a
numerical example of the iterative algorithm supporting our main result is presented.
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1. Introduction

Throughout this paper, let C be a nonempty closed convex subset of a reflexive Banach space E
and denote the dual sapce of E by E*. The norm and the dual pair between E and E* are denoted by
|| and (.,-), respectively. We denote the set of fixed points of a mapping T on a subset C of E by
F(T) ={x € C: Tx = x} and R is the set of all real numbers. Let G : C x C — IR be a bifunction and
Y : C — R be a real-valued function. We consider the following mixed equilibrium problem which is to
find x € C such that

The solution set of the problem (1.1) is denoted by MEP(G, ) and studied by Ceng and Yao [12]. If we set
U to be the zero mapping, then the mixed equilibrium problem (1.1) becomes the following equilibrium
problem, find x € C such that

G(x,y) >0, WweC. (1.2)

The solution set of the problem (1.2) is denoted by EP(G) which is introduced and studied by Blum and
Oettli [5]. The equilibrium problem provided a very general formulation of variational problems such as:

*Corresponding author
Email addresses: kittisakj61@nu.ac.th (Kittisak Jantakarn), anchaleeka@nu.ac.th (Anchalee Kaewcharoen)

doi: 10.22436 /jnsa.014.02.02
Received: 2019-10-22 Revised: 2020-02-11 Accepted: 2020-02-19



K. Jantakarn, A. Kaewcharoen, J. Nonlinear Sci. Appl., 14 (2021), 63-79 64

(i) minimization problem: find x € C such that h(x) < h{y) for ally € C, where h: C — R is a
functional, in this case, we define G(x,y) = h(y) —h(x) for all x,Yy € C;

(i) variational inequality: find x € C such that (A(x),y—x) > 0forally € C, where A: C — E*isa
mapping, in this case, we define G(x,y) = (A(x),y —x) for all x,y € C.

In 2008, Ceng and Yao [12] investigated the problem of finding a common element of the set of
solutions of the mixed equilibrium problem (1.1) and the set of common fixed points of finitely many
nonexpansive mappings in real Hilbert spaces.

Whenever the researchers attempted to extend this theory to generalized Banach spaces, they dis-
covered some difficulties and there are a lot of ways to overpower these barriers, for instant, using the
Bregman distance in place of the norm, Bregman (quasi-) nonexpansive mappings in place of the (quasi-)
nonexpansive mappings and the Bregman projection in place of the metric projection.

In 1967, Bregman [6] discovered an elegant and effective technique using the Bregman distance func-
tion D¢(-,-) in the process of designing and analyzing feasibility and optimization algorithms. This
opened a growing area of research in which the Bregman’s technique has been applied in various ways
in order to design and analyze iterative algorithms for solving the feasibility and optimization problems,
for approximating the variational inequalities and equilibrium problems, for computing the fixed points
of nonlinear mappings and so on (see, e.g., [7,14-16, 20, 22, 27] and the references therein).

In 2013, Agarwal et al. [1] proved the strong convergence theorems for finding the common solutions
of the equilibrium problem (1.2) and the fixed point problem of a weak Bregman relatively nonexpansive
mapping in real reflexive Banach spaces. Recently, Kazmi et al. [18] introduced the following algorithm:

( x1,21 € C,
Un = VF*(an VF(zn) + (1 — on ) VF(Txn)),

| #Zn+1 = Resg pun,
Cn ={z € C: D¢(z,2n41) < anD¢(2,zn) + (1 — an)D¢(z,%n)},
Qn ={z € C: (Vf(x1) — Vf{xn),z—xn) <0},

L Xnt1 = projfcannxl, Yn>1,

(1.3)

where {x,} is a sequence in [0,1] such that lim,_,. oty = 0. They proved a strong convergence theorem
for finding a common solution of a generalized equilibrium problem and a fixed point problem for a
Bregman relatively nonexpansive mapping in reflexive Banach spaces.

Recall the generalized equilibrium problem which is to find x € C such that

Glxy)+o(x,y)—b(x,x) 20, YyeC, (1.4)

where ¢ : C x C — R is a bifunction. The solution set of the problem (1.4) is denoted by GEP(G, $).

Motivated and inspired by above works, the purpose of this paper is to establish a new iterative
method for finding a common solution of the mixed equilibrium problems and the fixed point problems
for a countable family of Bregman relatively nonexpansive mappings in reflexive Banach spaces. The
strong convergence theorems under suitable control conditions are proven and a numerical example of
the iterative algorithm supporting our main result is also illustrated.

2. Preliminaries

Throughout this paper, we let E be a reflexive Banach space and with dual E*, f: E — (—o00,+00] be a
proper lower semicontinuous convex function. We denote the domain of f by domf, that is domf = {x €
E: f(x) < +oo}. The subdifferential of f at x € int(domf) is the convex set defined by

of(x) ={x* € E*: f(x) + (x",y —x) < f(y), Yy € E},
and the Fenchel conjugate of f is the function f* : E* — (—o0, +00] defined by
f*(x*) = sup{(x*,x) — f(x) : x € E}.
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We know that the Young-Fenchel inequality holds:
(x*, %) < f(x) +*(x*), ¥x € E, x* € E*.

Furthermore, we know that x* € 3f(x) if and only if f(x) + f*(x*) = (x*,x) for all x € E. It is not difficult
to check that * is a proper convex and lower semicontinuous function. A function f on E is said to be

strong coercive if
, ( f (X)>
lim — | =+o00
lIxll=+o0 \ [|x]]

For any x € int(domf) and y € E, the right-hand derivative of f at x in the direction Yy is defined by

fo(x,y) = lim flx+ ty) —f(x).

t—0+ t

(2.1)

The function f is said to be Gateaux differentiable at x if the limit as t — 07" in (2.1) exists for any y.
In this case, the gradient of f at x is the linear function V£(x), which is defined by (y, VFf(x)) = f9(x,y)
for all y € E. The function f is said to be Gateaux differentiable if it is Gateaux differentiable at each
x € int(domf). When the limit as t — 0% in (2.1) is attained uniformly [ly|| = 1, we say that f is Fréchet
differentiable at x. Finally f is said to be uniform Fréchet differentiable on a subset C of E if the limit is
attained uniformly for x € C and |jy| = 1.

The Legendre function f is defined from a general Banach space E into (—co, +o0], see [4]. Tt is well
known that in reflexive spaces, f is the Legendre function if and only if it satisfies the following conditions:

(L1) int(domf) # 0, f is Gateaux differentiable on int(domf) and domVf = int(domf);
(L) int(domf*) # @, f* is Gateaux differentiable on int(domf*} and domVf* = int(domf*).

Remark 2.1 ([4]). If E is a reflexive Banach space and f: E — (—~o0,+00] is the Legendre function, then all
of the following conditions are true:

(a) fis the Legendre function if and only if f* is the Legendre function;

(b) (@)~ =af;

(©) Vf=(Vf*)™, ranVf = domVf* = int(domf*), ranV* = domVF — int(domf);
(d) the functions f and * are strictly convex on the interior of respective domains.

Example 2.2 ([4]). Let E be a smooth and strictly convex Banach space. One important and interesting
Legendre function is %H-llp( 1 < p < o). In this case, the gradient Vf of f is coincident with the gener-
alized duality mapping of E, i.e., Vf = Jp (1 <p < o0). In particular, Vf = I the identity mapping in
Hilbert spaces. - : -

Definition 2.3 ([6]). Let f : E — (—o0, +00] be a Gateaux differentiable and convex function. The Bregman
distance with respect to f is the bifunction D¢ : domf x int(domf) — [0, 4+00) defined by

Dr(y,x) = fy) — f(x) = (Vf(x),y — x). (2.2)

Remark 2.4 ([23]). The Bregman distance Dy is not a distance in the usual sense because Dy is not sym-
metric and does not satisfy the triangle inequality. However, Dy satisfies the three point identity:

Dt(x,y) + D+(y, z) — D¢(x, 2) = (Vf(z) — VI(y),x —y),
for any x € domfand y,z € int(domf).

Definition 2.5 ([6]). Let C be a nonempty closed convex subset of int(domf), f : E —s (—o0,+00] be a
Gateaux differentiable and convex function. The Bregman projection with respect to f of x € int(domf)
onto C is defined as the necessarily unique vector proj-(x) € C, which satisfies

Df(projfc(x),x) =inf{D¢(y,x) :y € C}. (2.3)
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Remark 2.6 ([1]). In Example 2.2, if f(x) = %Hx”z, Vx € E, then we have Vf = ], where | is the normalized
duality mapping from E to 2%", and hence D¢(x,y) is reduced to the Lyapunov function defined by
D(x,y) = yll*—2(Jx,y) + |x|%, Vx,y € E, which is introduced by Alber [2], and so we obtain that the
Bregman projection proj’. (x) is reduced to the generalized projection [ [~ (x), which is defined by

o] J(x), %) = min ©(y, ).

C
¢ ye

Moreover, in Hilbert spaces, the Bregman projection projL- (x) is reduced to the metric projection of x onto
C.

Definition 2.7 ([8]). Let f : E — (—o0,+00] be a Gateaux differentiable and convex function, v¢ :
int(domf) x [0, +00) — [0, +0), define the modulus of total convexity of the function f at x by

ve(x,t) ;= inf{D¢(y,x) : y € domf, |jy —x|| = t}.
Then the function f is called to be

(a) totally convex at a point x € int(domf), if the modulus of total convexity of the function f at x is
positive, v¢(x,t) > 0 whenever t > 0;

(b) totally convex, if it is totally convex at every point x € int(domf), let B be a nonempty bounded
subset of E, define the modulus of total convexity of the function f on the set B by

v¢(B, t) := inf{v¢(x,t) : x € BN domf);

(c) totally convex on bounded sets, if the modulus of total convexity of the function f on the set B is
positive, v¢(B, t) > 0 for any nonempty bounded subset Bof Eandt > 0.

Lemma 2.8 ([9]). Let f : E — (—o0, 400l be a Legendre function. Then, the function f is totally convex on
bounded sets if and only if f is uniformly convex on bounded subsets of E.

Lemma 2.9 ([29]). Let f: E — IR be a strong coercive and uniformly convex on bounded subsets of E, then f* is
bounded and uniformly Fréchet differentiable on bounded subsets of E*,

Lemma 2.10 ([21]). Let C be a bounded subset of a reflexive Banach space E and f : E — (—o0, +00) be uniformly
Fréchet differentiable and bounded on C C E. Then, f is uniformly continious on C C E and V¥ is uniformly
continuous on a bounded subset C from the strong topology of E to the strong topology of E*.

Definition 2.11 ([22]). The function f : E — (—o0, +o0] is called sequentially consistent, if for any two
sequences {xn} and {yn } in int(domf) and domf, respectively such that sequence {x,,} is bounded, then
1im De(yn,xn) =0 implies nh'_r)féo lyn —xn| =0.

Lemma 2.12 ([11]). If f : E — (—o0, +00] is a convex function whose domain contains at least two points, then,
f is totally convex on bounded sets if and only if it is sequentially consistent.

Let f : E — R be a Legendre and Gateaux differentiable function. We make use of the function Vs :
E x E* — [0, 4-00) associated with f, which is defined by

Vi(x, x*) = f(x) — {(x,x*) + f*(x*), Vx € E,x* € E*.
Then V¢ is nonnegative and
Ve(x,x*) = D¢(x, VF(x*)), Vx € E,x* € E*.
Moreover, by the subdifferential inequality,
Vie(x, x*) + (Y™, VI (x*) —x) < Ve(x,x* +y*), ¥x e E,x*,y" € E¥,

(for more details see [2]).
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Lemma 2.13 ([19]). Let f : E — (—o0, +00] be a proper lower semicontinuous and convex function, then
f* 1 B* — (—o00,+00] is proper weak* lower semicntinuous and convex. Hence, Vs is convex in the second
variable, Thus, for all z € E, we have

N N
D¢ <z, \Yi (Z tin(xi)>) <) tiDs(z ), (2.4)
i=1

i=1
AN AN ; N .
where {x;};1; C Eand {t;}; C (0,1) with Yigti=1

Lemma 2,14 ([22]). Let f: E — (—o0, +00] be a Gateaux differentiable and totally convex function. If x; € E
and the sequence {D¢(xn, x1)} is bounded, then the sequence {xy } is also bounded.

Lemma 2.15 ([25]). Let f: E — (—o0, +00] be g Legendre function such that V* is bounded on bounded subsets
of int(domf). If x; € E and {D¢(x1,%n)} is bounded, then the sequence {xn } is bounded.

Lemma 2.16 ([11]). Let f : E — (—c0, +00] be a Gateaux differentiable and totally convex function on int(domf ).
Let x € int{domf) and C C int(domf) be g nonempty closed convex set. If z € C, then the following conditions
are equivalent:

(i) the vector z € C is the Bregman projection of x onto C with respect to f, i.e., z = proj&(x);
(ii) the vector z € C is the unique solution of the variational inequality:

(VH(x) = Vf(z),z~1y) 2 0, Wy € C;
(iif) the vector z is the unique solution of the inequality:
D¢(y,z) + D¢(z,x) < D¢(y,x), Yy € C. (2.5)

Definition 2.17 ([20]). Let T be a mapping from C into itself. A point & € C is said to be an asymptotic
fixed point of T if there exists a sequence {x,} in C such that x,, — % and [[Xn — Txn|| — 0. We denote
the set of asymptotic fixed points of T by F(T).

Definition 2.18 ([13]). Let T: C — int(domf) bé a mapping. Then
(a) T is said to be Bregman quasi-nonexpansive if
F(T) # 0 and D¢(p, Tx) < D¢(p,x), Vx € C,p € F(T);
(b) T is said to be Bregman relatively nonexpansive if - - - -
F(T)=FT) #0 and D¢(p, Tx) < De(p,x), Vx € C,p € F(T);
(c) T is said to be Bregman firmly nonexpansive if
D¢(Tx, Ty) + D¢(Ty, Tx) + D¢(Tx, x) + D¢(Ty,y) < De(Tx,y) + D¢(Ty,x), Vx,y € C.

Assumption 2.19. Let G : C x C — R be a bifunction satisfying the following assumptions:

i) G(x,x)=0forall x € C;
(ii) G is monotone, i.e., G(x,y) + G(y,x) <0 forall x,y € C;
(iii) for each x,y,z € C, limsup G(tz + (1 —t)x,y) < G(x,y);

t—0+
(iv) for each x € C, G(x, ) is convex and lower semicontinuous.

Assumption 2.20. The function 1\ : C — R satisfies the following assumptions:

(i) W is lower semicontinuous;
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(ii) P is convex.

Lemma 2.21 ([17]). Let f : E — (—o0, +00] be a strong coercive Legendre function and C be a nonempty closed
convex subset of int(domf). Let G : C x C — R be a bifunction satisfying Assumption 219 and ¢ : C — R
satisfying Assumption 2.20. For x € E and define a mapping Resf;,w : E — 2C as follows:

Res,y (x) ={z € C: Gz, y) +(y) —b(z) + (VF(z) — VF(x),y —z) > 0,vy € C}.
Then the following statements are true:

(1) Resglq, is single-valued and dom(Restlq,) =E

(2) Restlw is Bregman firmly nonexpansive;

(3) MEP(G, ) is a closed convex subset of C and MEP(G, ) = F(Resfslw);
(4) for all x € E,u € F(Resf; ),

D¢ (u, Rest,u,x) + Df(Resglwx,x) < De(u, x). (2.6)

Let CB(C) denote the family of nonempty closed bounded subsets of C.

Lemma 2.22 ([26]). Let E be a reflexive Banach space, and let £ : E — R be uniformly Fréchet differentiable
and totally convex on bounded subsets of E. Let C be a nonempty closed and convex subset of int(domf) and
T: C—> CB(C) be a Bregman relatively nonexpansive mapping. Then F(T) is closed and convex.

Lemma 2.23 ([22]). Let f : £ — (—oo0, +00] be a Géateaux differentiable and totally convex function, xq be an
element in € and C be a nonempty closed convex subset of E. Suppose that the sequence {xy} is bounded and the
weak limits of any subsequence of a sequence {x,,} belong to C C E. If D¢(xn,%1) < Df(projfc(xl),xl) for any
n € N, then {xn} converges strongly to proj. (x;).

3. Main Result

In this section, we prove the strong convergence theorems for the common solutions of the mixed equi-
librium problems and the common fixed points for a countable family of Bregman relatively nonexpansive
mappings in reflexive Banach spaces.

Theorem 3.1. Let E be a reflexive Banach space with dual E* and C be a nonempty closed convex subset of E such
that C C int(domf). Let f: E — (—o0,-+c0] be a strong coercive Legendre function which is bounded uniformly
Fréchet differentiable and totally convex on bounded subsets of E, G : C x C — R bea bifunction satisfying the
Assumption 2.19 and b : C — R satisfy the Assumption 2.20. Let {T; : C — CIN., be a countable family
of Bregman relatively nonexpansive mappings. Assume that Q) = n‘;‘zl F(T;) N MEP(G, ) # 0. Let {x,} be the
sequence generated by the iterative scheme:

( x1 € C,Tixg =zl e

Up = Vf*(OCan(Z;) +(1- on ) VE(Tixn));

zh 11 = Res§  (ul); . .

Ch={z€ C:D¢(z,z; 1) < anD¢(z,24) + (1 — 0 ) D¢ (z, x0)};
N

Cn=[)CL

i=1
Qn ={z € C: (Vf(x1) — Vf(xn),z—xn) < 0};
Xn4l = projEannxl, yn>1,

(3.1)

\

where {0ty } is a sequence in [0, 1] such that li_l)n %n = 0. Then, {xn} converges strongly to proji, x; where projl,x;
n—oo
is the Bregman projection of C onto Q.
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Proof. The proof is separated into seven steps.

Step 1: We will show that Q) is closed and convex. By the result of Lemma 2.22, we obtain that F(T;) is
closed and convex for all i = 1,2,...,N which implies that ﬂ?j:l F(T;) is also and follows from Lemma
2.21 (3), we have MEP(G, ) is closed and convex and hence Q := ﬂ}ll F(Ty) N MEP(G,) is closed and
convex.

Step 2: We will prove that C, N Q, is closed and convex for all n. First, we will show that Qn is convex
foralln > 1. Leta,be Qnand t € [0,1], setting w = ta+ (1 —t)b. Then

(Vf(x1) — Vf(xn),a—xn) <0 (3.2)

and
(Vf(x1) — Vf(xn),b—xn) <0. 3.3)

Multiplying t and (1 —t) on both sides of (3.2) and (3.3), respectively, we obtain that

implies that
(Vf(x1) = Vf(xn), w—%xn) < 0.

Therefore, w € Qn, and so Q,, is convex. Let {v,,} be a sequence in Q, with v;, — v as m — oo. From
the definition of Q,,, we have
(Vi(x1) = VI(xn), v =X,

implies that
(VE(x1) — Vf(xn), vm —V) + (Vf(x1) — VF(xn),v —%n) < 0.

Taking m — oo, we obtain
(Vf(x1) = Vf(xn),v— xn) < 0.

Hence v € Qq,, this shows that Q,, is closed for all n > 1. Next, we will show that Cy, is closed for all
n 2= 1. Let {s;m} be a sequence in C,, with s, — s as m —» co. Then {sm}is a sequence in CI, for all
i=1,2,...,N, by the definition of Ct, we have

D¢(sm, Z;_H) < oy De(sm, Z;L) + (1 —an)De(sm,xn), Vi=1,2,...,N. (3.4)
By the equation (2.2), definition of the Bregman distance D¢(-, -), we obtain that

f(sm) — F(Zh1) = (VF(zh 1), sm — 24 41) < atn (F(5m) — F(2h21) — (VF(2E), 5 — 25))
+ (1= an) (F(sm) = f(xn) — (VF(xn), Sm —%n)),  (3.5)

it follows that

an(VE(zy,), sm —zh) + (1= )(VE(Xn), Sm — xn) — (VF(Zh 1), Sm — 25 41)
< flzh 1) — onflzh) — (1 — an)f(xn).  (3.6)

This implies that

on ((f(zh), s — s)+H(VF(zh), s —zE)) (1 —an) ((Vf(xn), sm —s) + (VF(xn), s —xn))

— (Vf(zilﬂ), Sm —S§) — (Vf(z}wl),s —ZLH) < f(z;H) - ocnf(zil) — (1 — an ) f(xn).
Taking m — oo, we obtain that

oan(VF(z3), s —zh) + (1 — 0 ) (VE(xn), 8 — Xn)—(VF(2h 1 1), s — 2, 4)
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- AR 00 BB
< i) = onflzn) = (1= on)flxn), Vi=1, FinMbaya

which implies that s € Ci foralli=1,2,. .., N. Therefore, s € C;, and Cy, is closed. For any a,b € Cy,
we have a,b € Ci for all i = 1,2,...,N and a,b € C. Since C is convex, w = ta+(1—-t)b € C for
t € [0,1]. By the definition of C,, we have

Dt(a,z41) < anDi(a, z8) + (1 — an)Dy(a, xn)

and
Ds(b, 24 11) < anDi(b, 25 ) + (1 — ot ) D¢ (b, x10).

It follows from (3.4), (3.5), and (3.6), we observe that the above two inequalities are equivalent to
an(VH(zh), a—24) + (1 — o )(VF(xn),a — *n)~(Vf(zn 1), @ — 25 41)
< flznga) = flzh) — (1 — an ) f(xn) (3.7)
and
o (VE(zn), b — z1) + (1= otn (VE(xn), b = xn) ~(VH(2, 1), b — 21, )
SHen) = flz) — (1 an)fxn).  (38)
Multiplying t and (1 —t) on both sides of (3.7) and (3.8), respectively, we obtain that
on(VF(zh), ta+(1—t)b— z8) 4 (1= ) (VF(xn ), ta + (I—=t)b—xn) — (VF(zh 1), ta+ (1 —t)b— zL 1)
< flzng) = flzh) — (1 — o) f(xn), Vi=1,2,...,N.
From the above inequality, we can rewrite that
n{VE(zn), w—2h) + (1 = an (VE(xn), W — X ) —(VH(2h 1), w— 2, ) <flzy ) = f(z24) — (1 — o) flxn),

which implies that w ¢ C}l foralli =1,2,...,N and hence w ¢ Cy. It follows that Cy is closed and
convex for all n > 1. Therefore, C,, N Qn is closed and convex for all n > 1.

Step 3: We show that O € C,, N Q,, forall n > 1. Let p € Q be given. Since Restlq, is single-valued,
Res( y (ul) = 24 +1foralli=1,2,...,N. Then, by the results of Lemma 2.21 (3) and (2.4), we obtain that

D+ (p, zp41) = De(p, Res§  (uh))
< Df(p, up) — Di(Resh , (uh), ul)
< D¢(p,ub) | (3.9)
= D¢(p, VF* (xn VI(z},) + (1 — ) VF(Tixn))) .

This implies that p € Ci foralli =1,2,...,N and hence p € Cn = NI, CL.. Therefore, O c C,, for all
n = 1. Next, we show by induction that O ¢ C,, N Q,, for all n > 1. By the definition of Q;,, we obtain
that Q; = C, implies that O ¢ C; N Q1. Suppose that O C Cy N Qy for some k > 0. Since CkNQx is
closed and convex, it follows from (2.3), definition of Bregman projection, there exists xi11 € Cy N Qx
such that xx 1 = projfCank (x1). From Lemma 2.16 (ii), we have

(VE(x1) = V(xi11), X1 —2) 2 0, Vz € Cic N Q.
Since O c Cy N Qx,
(VI(x1) = V(xq1), %11 —p) 2 0, ¥p € Q,

and hence p € Qy.1. Since Q ¢ C,, for all n 2 1, O C Cx41N Qiy1. Therefore, we have Q C C,, N Qn,
for all n > 1 and hence Xn+l = proijann (x1) is well-defined for all n > 1. This means that {xn} is
well-defined.
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Step 4: We will prove that the sequences {x,,}, {zt}%°_, and {Tix,}%°_, are bounded for all i = 1,2, .. ., N.

= 11:]

It follows from the definition of Q;, and Lemma 2.6 that x,, — projgn (x1). By using (2.5), we have

D+(xn, x1) = Dr(projg, (x1),%1) < D¢(p,x1) — De(p, projfy (x1)) < De(p,x1), ¥p € Q C Qu.
Hence {D¢(xn, x1)} is bounded. Therefore by Lemma 2.14, {x,} is bounded. On the orther hand, we have
D¢(p,xn) = Df(P,pl'Oij“_an_1 (x1)) < D¢(p,x1) — Df(xn, x1) < De(p,x1),

implies that {D¢(p, x»)} is bounded. Now, it follows from the fact D¢(p, Tixn) < De(p, %) forall p € Q,
i =1,2,...,N, which implies that {D¢(p, Tixn)¥°_; is bounded for all i = 1,2,...,N. Since f is strong
coercive, f* and Vf* are bounded on bounded subsets. It follows from Lemma 2.15, we obtain that
{Tixn}2°_; is bounded for all i = 1,2,...,N. Since {D¢(p,xn)} is bounded, there exists M > 0 such that
D¢(p,xn) < M. It follows from (3.9), we obtain that

D¢(p, 2t 1) < o0 De(p, zh) + (1 — an) M.

Let K = max{D¢(p, z}}, M}. Clearly that D¢(p,zt) < K foralli=1,2,...,N. Let D¢(p,zt) < K for some n,
then it follows from above inequality, we get that

De(p, 2t 1) € anK+ (1 —an)K <K, Vi=1,2,...,N.
It follows that {D¢(p, zi‘l)}le is bounded, for alli =1,2,...,N. Again, by Lemma 2.15, we have {z}, ® 1
is also bounded foralli =1,2,..., N,
Step 5: We will show that T}i_l;r;oﬂxn ~zL a1l =0, T}'E)r;ollxn —ul| = 0and 71}i_r)l;tollxn — Tixnll = 0 for all

i=1,2,...,N. We know that x, ;1 = proj‘é:ann (x1) and xn, = proj’(c2n (x1), we have
Dy¢(xn,%1) < De{xnq1,x1), Vn > 1.

It follows that {D¢(xn, 1)} is nondecreasing. Sine {D¢(xn, %)} is bounded, T}E)n D¢(xn, x1) exists. Further,
the inequality

D(xn41,%n) = Df(xn+1, projly, (x1)) < D(xnig,x1) — D (projg, (x1),%1) = D¢ (xnt1,%1) — Di(xn, x1),

implies that - L
lim D¢(xp41,%n) =0. (3.10)

n—00

Since f is totally convex on bounded sets, f is sequentially consistent. It follows from Lemma 2.11 and
above equality, we have

m ||xn41—xa| =0. (3.11)
n—oo
It follows from the three point identity of the Bregman distance, we have
Dt(xn+1,2) = (VH(zh) ~ Vilxn41), P = xn41) + De(p, z4) — De(p, xns1).

Since f is bounded on bounded subsets of E, Vf is also bounded on bounded subsets of E. It follows from
boundedness of {xn}, {z},}%_; and {Tixn}®_,, we obtain that the sequences {Vf(xn)}, {Vf(z})}®_, and
{Vf (Tixn)}2>_; are bounded in E* foralli=1,2,..., N, which implies that {D¢(xn41,25)1%_; is bounded.
It follows from x,, .1 = projfcnﬂ Qn (x1) € C, and the definition of C,,, we have

D¢ (Xn41, Z%-H) < anDe(xnt1, Z}J +(1— on)De(xnt1,%n), Vi=1,2,...,N.
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Since {Df{xn41, z;)}le is bounded and lim «, = 0, it follows from the above inequality and (3.10), we

n—oo
obtain that '
n11_1r)r°1c> D¢(Xnt+1,2n41) =0, Vi=1,2,...,N,

Since f is totally convex on bounded subsets, again using Lemma 2.11, we have

Jim Jlxny1 — 2yl =0, Vi=1,2,...,N. (3.12)

Taking into account _ .
IPen =21 [l <l = Xl + s — zn 4l

it follows from (3.11) and (3.12), we get

Jim Jixn — zL4l=0, Vi=1,2,...,N. (3.13)

It follows from Lemma 2.10, we have f and Vf are uniformly continuous since f is uniformly Fréchet
differentiable on bounded subsets. Therefore,

Jim [f(xn) = f(zE )| =0, Vi=1,2,...,N (3.14)
and .
Jim [[VF(xn) = VE(zr I, Vi=1,2,...,N. (3.15)

We next consider the following inequality, for each i =1,2,..., N,

D¢(p,xn) —Dr«(p, Zi1+1)
= f(P.) —flxn) — (Vf(xn),P —xn) — (f(p) — f(Z;—H) i (Vf(§;+1)fp —Zh 1)) (3.16)
=f(zq41) — F(xn) + (Vi(zh (1), p —%n) + (VE(zp 1) %n —2541) — (VE(xn), P — %n)
= f(z;H) ~—f(xn) + (Vf(zhﬂ) — Vi(xn),p—%n) + (Vf(z,iwl),xn — ZLH).

Since {z}1 1%, and {Vf(z,i1 +1)1%°_; are bounded for alli =1,2,...,N, it follows from (3.13), (3.14), (3.15),
and (3.16) that .
lim ”Df(p/xn) 1 Df(-p/z’?l-lﬁ—l)” = OI Vi= 1/2/- vy N. (317)

n—oo

Moreover, it follows from (2.6) and Lemma 2.13, we obtain that, foreachi=1,2,...,N,

D#l(zp 41, uh) < De(p,ul) — Dy(p,2hyq)
= D¢(p, V*(an VH(zh) + (1 — an ) VF(Tixn))) — Di(p, 2t ,4)
< anD¢(p,z3) + (1 — otn)Ds(p, Tixn) — De(p, 2, 1)
< anDe(p, z3) + (1 — otn )D¢(p, xn) — De(p, 24 1)
= an (Dt(p,z1,) — De(p, xn)) + Di(p, xn) — Di(p, 2k 1 p). (3.18)

Since {D¢(p, xn)} and {D¢(p, z}l)}le are bounded for alli=1,2,...,N, it follows from (3.17), (3.18), and
lim o, =0,

n—oo . i
11}i_r)r;oDf(z’;hq,u;‘l) =0, Vi=1,2,...,N,
so, we have ' '
lim ||z, —up||=0, Vi=1,2,...,N. (3.19)
TL—>00

Taking into account _ )
IPen —unll < fpen = Zq g1l + 1200 —unl,
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and using (3.13) and (3.19), we get that

xn—ub]| =0, Vi=1,2,...,N. (3.20)

lim

n—oeo
Since f is uniformly Fréchet differentiable and by Lemma 2.10, VF is uniformly continuous on bounded
sets. It follows from (3.19) and (3.20), we obtain that

lim [VF(zii1) = VEUL)| =0, Vi=1,2,...,N, (3.21)

and _
nlgn [VE(xn) — VF(up)|| =0, ¥i=1,2,...,N. (3.22)

Furthermore, for eachi=1,2,..., N, we now consider the following inequality

[V(xn) = VL) = [ VE(xn) — V (VF* (xn VE(zL) + (1— oy VE(Tixn))) |
= | V(xn) — an VE(zh) — (1 — oen ) VH(Tixn )
= [lon (VF(xn) = V(z)) + (1 = an) (VE(xn) — VH(Toxn )|
21— on )| VE(xn) — VE(Tixn)|| — on || V(%) — Vf(zh)”/

which implies that
(1= on | VE(xn) = VE(Tixn)|| < I VF(xn) = VEL)|| + o [| VE(xn) — VEZL)). (3.23)

Since {Vf(xn)} and {Vf(z‘;)};’f’:l are bounded for all i = 1,2,...,N, it follows from (3.22), (3.23) and
T}gn on = 0, we have

Hm || V(xn) — VF(Tixn)| =0, Vi=1,2,...,N.
n—oc0

It follows from f is the Legendre function and f* is uniformly Fréchet differentiable on bounded subsets,
the above inequality yields that

lim |Jxn — Tixn| =0, Vi=1,2,...,N. (3.24)
n-—co

Step 6: We show that x* € Q. By the boundedness of the sequence {x,,}, there exists a subsequence {xn, }
of {xn} such that x,,, — x* € Cask — oo, It follows from (3.13) and (3.19), there exist subsequences
{un,}of {uy} and {z} } of {z!} such that up, = x*and z;, — x*x as k — oo, foralli = 1,2,...,N,
respectively. The consequence of (3.24) is L

T}E;I;ollxnk - T{_Xnkl| = O, Vi= 1, 2, vy N. :

Since xn, — x* and using the above equality, it follows from the definition of asymptotic fixed points,

we have x* € F(Ty) for all i = 1,2,...,N. Since {Ti}lll is a countable family of Bregman relatively
N

nonexpansive mappings, x* € F(T;) foralli=1,2,...,N, implies that x* € ﬂ F(T;). Next, we show that
i=1

x* is the solution of the mixed equilibrium problem. Since z; = Restlq, (u}l), foreachi=1,2,...,N

Glzny 11, Y) +V(Y) —lzh, 1) + (VE(EL, 1) — VFUL )y — 24 1) >0, Wy eC.

Using the Assumption 2.19 (ii), we obtain that

YY) —(zg, 1) + (VH(zh, 1) — VUL ),y — 2 L) > —G(z 1,y
>Gly,zh, 1), YyeC, i=1,2,...,N.
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Foranyy € Cand t € (0,1], we let y; =ty + (1 —t)x* € C. This implies that

w(yt)*ﬂ)( ) +(Vf(z nk+1) Vf( )Ut nk—|—1> Gyt 2z nk—l-l)

Using the Assumption 2.19 (iv) and the Assumption 2.20 (i), G(x,-) and 1 are lower semicontinuous, it
follows from (3.21) and above inequality, this yields

B inf(G (ye, 2h, 1) — W (Ye) + (2h 1)) < liminf(VH(zh, (1) — VH(ub, ), ye — 2k, 41), Vi=1,2,..,N.

k—o0

This implies that
Gyt x*) —b(yd) +b(x") <0

Furthermore, we next consider the following inequality,

Gyt ye) +0(ye) —P(ye)

G(ye, ty + (1 —t)x*) + Wty + (1 — t)x) — P(ye)

tG(yt,y) (1—-t)G(ye,x*) +tdb(y) + A = t)(x*) ~ th(ye) — (1 — thp(ye)
=t (G(yt, y) + Y(y) —(ye)) + (1 — 1) (G(ys, x*) + Y(x*) =P (yt))

<t(Glye, y) +W(y) —U(ys)),

which implies that
Gy, y) +(y) —blyt) > 0.

It follows from the Assumption 2.19 (iii), we have

0 < limsup (G(ye,y) +U(y) —v(ye))

t—0+

= limsup (G(ty + (1 —t)x",y) +Y(y) — bty + (1 - t)x*)) < G(x*, y) + b (y) —h(x*).

t—0+

This implies that x* is a solution of the mixed equilibrium problem and hence x* € MEP(G, ). To sum
N

up, we have x* € Q .= ﬂ 1) N MEP(G, ).
i=1

Step 7: We shall show that the sequence {xn} converges strongly tox* = pro] o [x1).7Since Q) is a nonempty
closed convex subset of E, pro]Q (x1) is well-defined. Let u* = pro]Q(xl) be given. It follows from
Xn+1 = pro]C AAQn (x1) and pI‘O]Q(X1) € O C C N Qq, we obtain that

Dt(xn+1,%1) < De(u*, x1).

Since {xn, } is a weak convergent subsequence of {xn,} and follows from Lemma 2.23, we obtain that {x.}
converges strongly to u*. By the uniqueness of the limit, we obtain that the sequence {xn} converges
strongly to x* = proj Q(xl) This completes the proof. a

If we assume that T; = T foreachi=1,2,...,N and 1 is a zero mapping in Theorem 3.1, then we get
the following corollary.

Corollary 3.2. Let E be a reflexive Banch space with dual * and C be a nonempty closed convex subset of E such
that C C int(domf). Let f : E — (—o00,+00] be a strong coercive Legendre function which is bounded uniformly
Fréchet differentiable and totally convex on bounded subsets of E, G : C x C — R be a bifunction satisfying the
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Assumption 2.19, Let T: C —s Cbea Bregman relatively nonexpansive mapping. Assume that F(T) NEP(G) # 0.
Let {xn} be the sequence generated by the iterative scheme:

( X1 € C,TX] =2z €(C;
Un = VI {on V(zn ) + (1 — on ) VF(Txn));
) Zn+1 = RESE,q, (un);
Ch={zeC: D¢(z,zn41) < onDs(z,zn) + (1 — on)De(z, xn)};
Qn={z € C: (Vf(x1) — Vf(xn),z—xn) < 0};
L Xnit1 = proj‘é“nanl, Yn>1,

where {on } is a sequence in [0,1] such that li_r)n on = 0. Then, {xn} converges strongly to projf:(T)nEP(G)xl.
n—oo

In Theorem 3.1, if we assume that MEP(G, ) = C and using the facts given in Example 2.2 for the
generalized duality mapping J,,, then we obtain the following corollary.

Corollary 3.3. Let E be a uniformly smooth and uniformly convex Banach space and C be a nonempty closed convex
subset of € such that C C int(domf). Let f(x) — %”X”P l<p<oo)and {T;: C — CY\., be a countable
family of relatively nonexpansive mappings. Assume that ﬂ{il F(Ti) # 0. Let {xn} be the sequence generated by
the iterative scheme:

( x1 € CTixg =zt e [¢F
Zn1 =T (@n]p (2h) + (1 — on)p (Tixn));
Ch={z€C:V(z,zl_ ) S anV(z,z})+ (1—an)V(z XA\
N
Co=()CL
i=1

il
Qn={z€C: (Jp(x1) — Jp(xn), z—xn) <0}
Xni1 = proj‘éannxl, vn > 1,

where {on } is a sequence in [0,1] such that Jgr;o on = 0. Then, {xn} converges strongly to projrfﬁq=1 SEINCE

i)
4. Applications

Zeros of maximal monotone operators

Let A: E ~—— 2% be a set-valued mapping. Denote G(A) by the graph of A, that is G(A) = {(x,x*) €
ExE* : x* € Ax}. A multi-valued operator A is said to be monotone if-(x* =y*,x —=y) > 0 for each
(x,x*), (y,y*) € G(A). A monotone operator A is said to be maximal if its graph, G(A) is not contained
in the graph of any other monotone operators on E. Let f: E —s (—00, +o0), then the resolvent of A,
Res) 5 : E — 2F is defined as follows:

Resia(x) = (VE4+AA) Lo VF(x), A > 0.

In 2003, Bauschke et al. [3] proved that Res] , is a single-valued and Bregman firmly nonexpansive
mapping and F(Res{ ) = A~1(0*) = {x € E: 0* ¢ Ax}. Tt is known that if A is maximal monotone, then
the set A=1(0*) is closed and convex. We also define the Yosida approximation Ay : E — E by

Ax(x) = %(Vf—VfoRes{A)(x), vx e E,A > 0.
It is shown in Reich and Sabach [22] that for any x € E and A > 0, we have
(1) (Res{A(x),Ay\(x)) € G(A);
(ii) 0* € Ax if and only if 0* € A (x).
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In 2011, Reich and Sabach [24] proved that if f is the Legendre function which is bounded uniformly
Fréchet differentiable on bounded subsets of E, then F(Res{ A) = F(Res{,). We also know that if
F(Resia) = F(Res} A), then a Bregman firmly nonexpansive mapping is a Bregman relatively nonex-
pansive mapping. Furthermore, if we take MEP(G,{y) = C and T; = Resf A, foralli=1,2,...,Nin
Theorem 3.1, then we obtain the following consequence.

Theorem 4.1. Let E be a reflexive Banch space with dual E* and C be a nonempty closed convex subset of E such
that C C int(domf). Let f : E — (—oo0, +00] be a strong coercive Legendre function which is bounded uniformly
Fréchet differentiable and totally convex on bounded subsets of E. Let {A; : E —s 28" )N | be a countable family of
maximal monotone operators. Assume that (\ A7H0) # 0. Let {xn) be the sequence generated by the iterative

scheme: ) ]
X1 € C,ResiAi(xl) =z; €C;

Zni1= Vf*(ochf(z}L}) +(1—- ocn)Vf(R_es;;Ai(xn)));

Ch={z€ C:D¢(z,2z; 1) < anD¢(z,z8) + (1 — ot ) D¢z, xn)};
Cn= ﬂ{\'=1 Ci/

Qn ={z € C: (VFf(x1) = Vf(xn), z—xn) < 0};

Xn41 = proij“nanl, n=l,

\

where {0} is a sequence in [0, 1] such that nh_r)réo on = 0. Then, {xn} converges strongly to proja{\,zl AT Rt

5. Numerical example

In this section, we present some numerical examples for comparing the values of sequences generated
by iteration (1.3) and (3.1) and supporting Theorem 3.1.

Example 5.1. Let E = R, C = (—00,0], let f : R — R be defined by f(x) = %xz (f is a strong coercive
Legendre function which is bounded uniformly Fréchet differentiable and totally convex on bounded
subsets of E, see in the numerical example of [28]). Let T: C — C be defined by Tx =3x,G:CxC —R
be defined by G(x,y) = x —y for all x,y € C, 1 : C — R be defined by W(x) = %% for all x € C. Let
¢ : Cx C — R in the iteration (1.3) be defined by ¢(x,y) =y —x for all x,y € C. By the numerical
example section of [18], we obtain that T is a Bregman relatively nonexpansive mapping. It is easy to
show that G and 1 satisfy the Assumption 2.19 and the Assumption 2.20, respectively, and ¢ is skew-
symmetric, i.e., ¢(x,x) — d(x,y) — by, x) + d(y,y) = 0 for all x,y € C, convex in the second argument
and continuous. Let {x,} be generated by iteration (1.3) and (3.1). Given initial values x; = —1 = z1 and
Oy = % for all n > 1. Then the sequence {x,} converges strongly to 0, where proijEP(G’d) )r‘]F(T](Xl) =

O=proj];\AEP(G,q))nF(‘L)(,xl)-, —®

o1 T — -

—— Algadithn (1.3)
e e RSO (3. ) e

s 10 15 20 5 0
No. of iteralions

Figure 1: The numerical results for comparing Algorithm (3.1) and Algorithm (1.3).
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We now illustrate the example supporting our main result.
Example 52. LetE =R, C = (—00,0], and let f : R — R be defined by f(x) = %xz. Let{T;: C — C}i.:’=1 be
defined by Tix = %x, and let G : C x C — R be defined by G(x,y) = x —y for all xyeC{P:C—R
be defined by y(x) = x? for all x € C. Setting o, = % for alln > 1. Let {xn} be the sequence generated by
the iterative scheme. Given initial values x;, Tix; = z7e€Cfori=1,2,...,5,
(up = V(o VE(zh) + (1 — on) VH(Tixn));
Zpni = Res&/w (u); .
Ch ={z€ C:D¢(z,2}, ;) < anD¢(z,2}) + (1 — o) De(z, xn)};
5
Cn=(CL
i=1

1
Qn ={z € C: (Vf(x1) = Vf{xn),z—xn) <0}
Xntl = projfcannxl, yn > 1.

(5.1)

\

It follows from Example 5.1, we know that f is a strong coercive Legendre function which is bounded
uniformly Fréchet differentiable and totally convex on bounded subsets of R such that Vf(x) = %x and
G, satisfy the Assumption 2.19 and the Assumption 2.20, respectively. Since f*(x*) = sup{(x*,x) — f(x) :
x € E}, f*(z) = %zz such that Vf* = %z. Next, we show that T; is a Bregman relatively nonexpansive
mapping foralli=1,2,...,5. Clearly F(T;) =0 = B(Ty) foralli = 1,2,...,5. Furthermore, we obtain that

D¢(0, Tix) = £(0) — f(Tix) — (0 — Tyx, VF(Tix))

~0- s e = - - 2 ()
T i+17330+1)"  3(1+1)2 3i+1)7 3\ (1+1)2)7
and
— £0) — Flx) — 022 1 A 42 2, 2,
D¢(0,x) = £(0) — f(x) — (0 —x, VF(x)) =0 3* (x,3x)—3x 3¢ =%

Since ﬁ‘)—z SO0foralli=1,2,...,5 D0, Tix) < D¢(0,x) for all i =1,2,...,5. It follows that {T,;}f=1 isa

countable family of Bregman relatively nonexpansive mappings. We also know that

G(0,y) +¥(y) —¥(0) = (0—y)+y*~0=yy—1) =0, Yy eC,

this implies that 0 € MEP(G, ) and Q = ﬂ?=1 F(T:) N MEP(G, 1) ={0}. It follows from iteration (5.1), we
have

o : 1 '
= ez (1= ain) (1 ) o

i _ i.
Zn1 = ?un/

(2} 1 1)? + (on — 132 — ot (21)2
2(zh | —onzh + (o — 1)xn)

Ch = e}, 00), where el =

7

5
Ch= ﬂ Cil;
i=1
Qn = [xn, 00);
Xn4+1 = proijnﬂanll mn>1i= 1,2,...,5.

Then the sequence {x,} generated by (5.1) converges strongly to x* = 0 € Q as n — co. The Figure 2
shows the comparision of the values of the sequence {xn}. Given initial values x; = —5, let x,, (i) denote
by the values of the sequence {x,,} fori=1,2,...,5.
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. . i ) i
L] 0 2 14 10 18 20
No. of Rermalions

Figure 2: The numerical results for differenti=1,2,...,5.
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STRONG CONVERGENCE THEOREMS FOR
GENERALIZED MIXED EQUILIBRIUM PROBREM AND
BREGMAN RELATIVELY NONEXPANSIVE MAPPINGS IN
REFLEXIVE BANACH SPACES

KITTISAK JANTAKARN AND ANCHALEE KAEWCHAROEN

ABSTRACT. In this paper, we deal with the Bregman iterative methods
for finding common solutions of generalized mixed equilibrium problems
and fixed point problems for Bregman relatively nonexpansive mappings
in reflexive Banach spaces. The strong convergence theorems for the
Bregman iterative methods under some mild conditions are proven. Fur-
thermore, we present a numerical example to illustrate the main result.

1. INTRODUCTION

Let C be a nonempty closed and convex subset of the reflexive Banach
space I/ with dual space E*. Suppose that G : C x C — R is a bifunction.
The equilibrium problem (EP) is to find z € C such that

(1.1) G(z,y) >0, VyeC.

The solution set of the equilibrium problem is denoted by EP(G). The
equilibrium problem is a generalization of many mathematical models such
as variational inequalities, fixed point problems and optimization problems.
In 2006, Takahashi and Takahashi [28] introduced another iterative scheme
for finding a common element of the set of solutions of equilibrium problem
and fixed point problem of a nonexpansive mapping in a real Hilbert space.
Their results extended and improved the corresponding results in [14, 18, 27].

Ceng and Yao [13] introduced the mixed equilibrium problem (MEP)
which is to find z € C such that '

(1.2) G(z,y) +o(y) —p(2) 20, VyeC,

where ¢ : C' — R is a real valued function. The solution set of the mixed
equilibrium problem is denoted by MEP(G). In 2008, Ceng and Yao [13]
investigated the problem of finding a common solution of mixed equilibrium
problem and fixed point problem of finite family of nonexpansive mappings
in Hilbert spaces.

Now we consider the following generalized mixed equilibrium problem
(GMEP) which is to find z € C such that

(1.3) G(z,9) + ¢(y) — p(2) + (¥(2),y —2) 20, VyeC,

2010 Mathematics Subject Classification. 47TH10, 54H25.
Key words and phrases. Generalized mixed equilibrium problems, Bregman relatively
nonexpansive mappings, reflexive Banach spaces.
1



2 K. JANTAKARN AND A. KAEWCHAROEN

where ¥ : C — E* is a nonlinear mapping. The solution set of GMEP is
denoted by GMEP(G). It is well-known that GMEP is a generalization of
the mixed equilibrium and the equilibrium problem by considering ¥ = 0
and ¢ = 0, respectively.

In 1967, Bregman [6] discovered an elegant and effective technique for
using the Bregman distance function D #(+) in the process of designing and
analyzing feasibility and optimization algorithms. This opened a growing
area of research in which Bregman'’s technique has been applied in various
ways in order to design and analyze iterative algorithms for solving the feasi-
bility and optimization problems, for approximating the variational inequal-
ities and equilibrium problems, for computing the fixed points of nonlinear
mappings and so on (see, e.g., (7, 20, 22] and the references therein).

In 2013, Agarwal et al. [2] proved the strong convergence theorems for
finding the common solutions of the equilibrium problem (1.1) and the fixed
point problem of weak Bregman relatively nonexpansive mappings in real
reflexive Banach spaces. Recently, Kazmi et al. [17] introduced the following
algorithm:

( z1,21 € C,
Un = VI (anVf(zn) + (1 — on)Vf(T2n)),
Zp4] = ResG,(ﬁun,
(14) { Co={zeC: D(z,2n11) < anDy(z, 2,)
(1= 00) Dyl 2},
Qn={2 € C:(Vf(z1) = Vf(zn), 2 = z,) <0},
\ Tny1 = p"'ojcannzl, Yn > 1,

where {a,} is a sequence in [0, 1] such that li_)m an = 0. They proved a
n—oo

strong convergence theorem for finding a common solution of a generalized
equilibrium problem and a fixed point problem for a Bregman relatively
nonexpansive mapping in reflexive Banach spaces.

Recall the generalized equilibrium problem (GEP) which is to find z € C
such that ' ’ .

(1.5) G(2,y) + 8(2,y) — ¢(2,2) 20, VyeC,
where ¢ : C'x C' — R s a bifunction. The solution set of the GEP is denoted
by GEP(G).

In this paper, motivated and inspired by the above literatures, we con-
sider a new algorithm for finding a common solution of generalized mixed
equilibrium problem and fixed point problem of Bregman relatively nonex-
pansive mappings in reflexive Banach spaces. That is, we are interested in
considering the following problem: let E be a reflexive Banach space and C
be a nonempty closed convex subset of E. Let T : C — C be a Bregman
relatively nonexpansive mapping and G, ¢,V satisfy the suitable control
conditions. We consider the problem of finding a solution p € C such that

p€ F(T)NGMEP(G) := 0,
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where F(T) is the fixed point set of T and Q # (. Under some suitable
control conditions, the strong convergence theorem will be provided.

2. PRELIMINARIES

We now provide some basic concepts, definitions and lemmas which will
be used in the sequel. We let E be a reflexive Banach space with dual E*
and f: E — (—o00,400] be a proper lower semicontinuous convex function.
We denote the domain of f by domf, that is domf = {z € E : f(z) < +oo}.
The subdifferential of f at = € int(domf) is the convex set defined by

Of(z) = {z" € E*: f(z) + (2",y — ) < f(y), Vy <€ E},
and the Fenchel conjugate of f is the function f* : E* — (—o0, 4-00] defined
by
f*(z*) = sup{(z*,z) — f(z) 'z € E}.
We know that the Young-Fenchel inequality holds:
(*,z) < f(z)+ f*(z*), Yz € E, z* € E*.

Furthermore, we know that z* € 0f(z) if and only if f(z)+ f*(z*) = (z*, )
for all z € E. It is not difficult to check that f* is a proper convex and lower
semicontinuous function.

Definition 2.1. The function f : E — (—o0, +00] is called;
(1) cofinite if domf* = E*;
(2) coercive if lim  f(z) = +o0;
z||—++o0
f(z)

(3) strongly coercive if lim "2 = 400
lall—+co ]

Definition 2.2. Let z € int(domf) and y € FE, we define the right-hand
derivative of f at z in the direction y by
t —
fO(IE,y) = lim f(.’l? 7t y) f(il?)

t—=0t 1. o RS

The function f is called to be
fz +ty) — f(z)

(i) Géateaux differentiable at z if lim exists for any y;

t—0+ t
(i) Géteaux differentiable if it is Gateaux differentiable for any z €
int(domf);
(iif) Fréchet differentiable at z if this limit is attained uniformly in ||y|| =
L

(iv) uniformly Fréchet differentiable on a subset C of E if the above limit
is attained uniformly for z € C and ||y|| = 1.

In this case, the gradient of f at z is the linear function V f(z), which is
defined by (y, Vf(z)) := f%(x,y) for all y € E.

The Legendre function f : E — (—oo,+o00] is defined in [3]. It is well-
known that in reflexive spaces, f is the Legendre function if and only if it
satisfies the following conditions:
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(L1) The interior of the domain of f, int(domf), is nonempty, f is
Gateaux differentiable on int(domf) and domf = int(domf);
(L2) The interior of the domain of f*, int(dom f*), is nonempty, f* is
Gateaux differentiable on int(domf*) and dom f* = int(dom f*).
Since E is reflexive, (9f)~! = 8f* (see[3]). This, with (L1) and (L2), imply
the following equalities:
(i) Vf= (V)
(i) ranVf = domV f* = int(dom f*);
(ili) ranV f* = dom(V f) = int(dom ).
When the subdifferential of f is single-valued, it coincides with the gradient
Of = V, for more details see [19]. By Bauschke et al. [3], the conditions
(L1) and (L2) also yield that the functions f and f* are strictly convex on
the interior of their respective domains.

Definition 2.3. [6] Let f : E — (~o00, +00] be a Gateaux differentiable and
convex function. The Bregman distance with respect to f is the bifunction
Dy : domf x int(domf) — [0, 400) defined by

(2.1) Dy(y,2) := f() — f(2) = (V(2),y - z).

Moreover, the Bregman distance D ¢ is not a distance in the usual sense
because Dy is not symmetric and does not satisfy the triangle inequality.

Remark 2.4. [23] The Bregman distance D 7 satisfies the three point iden-
tity:

(2.2) Dy(z,y) + De(y, 2) — Dy(z,2) = (Vf(2) - V (), z — v),
for any x € domf and y, z € int(domf).

Definition 2.5. [6] Let f : E — (—00,400] be a convex and Gateaux
differentiable function. The Bregman projection of z € int(domf) onto
‘the nonempty closed and convex subset-C. - C-dom, f-is-the necessary unique
vector projé(:v) satisfying

(2.3) Dy(projf(z),z) = inf{D;(y,2) : y € C}.

Remark 2.6. ([2]) If f(z) = ||z||%, Vz € E, then we have Vf = J, where
J is the normalized duality mapping from E to 2€°, and hence D (z,y) is
reduced to the Lyapunov function defined by &(z,y) = ||y||2 — 2(Jz,y) +

lz||?, Vz,y € E, which is introduced by Alber [1], and so we obtain that

the Bregman projection projé(w) is reduced to the generalized projection

[T (z), which is defined by

O(Illg(z),z) = ggg D(y, ).

Moreover, in Hilbert spaces, the Bregman projection projé (z) is reduced to

the metric projection of z onto C for f(z) = 1||z2.
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Definition 2.7. [8] Let f : E — (—o0, +00] be a Gateaux differentiable and
convex function, vy : int(domf) x [0, +00) — [0, +00), define the modulus
of total convexity of the function f at z by

vi(z,t) ;= inf{Dy(y,z) : y € domf, ||y — x| = t}.

Then the function f is called to be

(a) totally convex at a point z € int(domf), if the modulus of total
convexity of the function f at x is positive, vs(z,t) > 0 whenever
t>0;

(b) totally convex, if it is totally convex at every point z € int(dom f)-
Let B be a nonempty bounded subset of E, define the modulus of
total convexity of the function f on the set B by

vf(B,t) == inf{vs(z,t) : z € BNdomf};

() totally convex on bounded sets, if the modulus of total convexity of
the function f on the set B is positive, vy(B,t) > 0 for any nonempty
bounded subset B of E and t > 0.

Lemma 2.8. [9] Let f : E — (—00,+00] be a Legendre function. Then, the
function f is totally convex on bounded sets if and only if f is uniformly
convez on bounded subsets of E.

Lemma 2.9. [30] Let f : E — R be a strongly coercive and uniformly
conver on bounded subsets of E, then f* is bounded and uniformly Fréchet
differentiable on bounded subsets of E*.

Lemma 2.10. [21] Let f : E — R be uniformly Fréchet differentiable and
bounded on bounded subsets of E. Then, f is uniformly continuous on
bounded subsets of E and V f is uniformly continuous on bounded subsets of
E from the strong topology of E to the strong topology of E*.

_ Definition 2.11. [22] The function f : £ — (0o, +co|is called sequen-
tially consistent, if for any two sequences {z,} and {y,} in int(domf) and
domf, respectively such that sequence {z,} is bounded, then

(2.4) lim Dy(yn,z,) =0 implies Jlim lyn — zn]| = 0.

Lemma 2.12. [11] If f : E — (—oo0, +00] is a convez function whose domain
contains at least two points. Then, f is totally conver on bounded sets if
and only if it is sequentially consistent.

By using totally convex functions, one can obtain algorithms which are
less dependent on the geometry of the Banach space in which they are placed.
Total convexity is a property of the modulus of total convexity of the func-
tion which ensures that some sequential convergence properties which are
true in the uniformly-like structure defined on the space via the Bregman
distances with respect to a totally convex function are inherited by the norm
topology of the space. Therefore, in order to establish convergence of some
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algorithms in infinite dimentional settings it is enough to do so with re-
spect to the uniformity-like structure determined by the Bregman distance
associated to a totally convex function (for more details see 8]).

The usefulness of the strongly coercive Legendre function which is bounded
uniformly Fréchet differentiable and totally convex on bounded subsets of re-
flexive Banach spaces is to establish the convergence for finding the common
solution of fixed point problem and generalized mixed equilibrium problem
via Bregman distance.

The following is the example of the strongly coercive Legendre function
which is bounded uniformly Fréchet differentiable and totally convex on
bounded subsets of reflexive Banach spaces appeared in [3]:

Example 2.13. [3] Suppose E is a Hilbert space, v > 0, and

1) = 2ol - L(a,),

where d(z, C) = mineec ||z — ¢|| = ||z — Pz||, P denotes the projection map
onto C and z € E. Then Vf(z) = yz + Pz,

Dy(z,y) = 3 (vllz — 9l + flz = Py|?> - ||z — Pz||?) for all 2,y € E and f is
the strongly coercive Legendre function which is bounded uniformly Fréchet
differentiable and totally convex on bounded subsets of E.

Let f: E — R be a Legendre and Gateaux differentiable function. We
make use of the function Vit B x E* — [0,+00) associated with f, which
is defined by

Vi(@,2%) = f(z) — (z,2*) + f*(z*), Vz € E,z* € E*.
Then V; is nonnegative and
Vi(z,z2*) = Dy(z,V f(2*)), Vz € E,z* € E*.
Moreover, by the subdifferential inequality,

e Ve ) R V) — o) SV (e ) Voe B, o yte B

o ——{for-more-details - 8ee [1]): -

Lemma 2.14. [19] Let f : E — (—o0, +00] be a proper lower semicontinuous
and convez function, then f* : E* — (—o00, +00] is proper weak* lower
semicontinuous and conver. Hence, Vi is convexr in the second variable.
Thus, for all z € E, we have

N N
(2.5) Df (Z,Vf* (Z tsz($1)>> < Ztin(Z,.’L‘i)a
i=1 i=1

where {z;}V; C E and {t:3¥, C (0,1) with SN =1

Lemma 2.15. [22] Let f : E — (—o0, +00] be a Gdteauz differentiable and
totally convex function. Ifz1 € E and the sequence {D¢(zn, 1)} is bounded,
then the sequence {x,} is also bounded.
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Lemma 2.21. [16] Let f : E — (—o00,400] be a coercive and Géiteaus
differentiable function. Let C be a closed and convex subset of E. Assume
that o : C'— R is a lower semicontinuous and convex function, ¥ : C — E*
is a continuous monotone mapping and the bifunction G : C x C — R
satisfies the Assumption 2.19, then dom(Resé’%\P) =E.

Lemma 2.22. [16] Let f : E — (—o0,400] be a Legendre function. Let C
be a closed and convez subset of E. If the bifunction G : CxC — R satisfies
the Assumption 2.19, then

(i) Resé,%w is single-valued;
(ii) Resé,%‘l, is a BFNE operator;
(iii) F (Resgw) = GMEP(G);
(iv) GMEP(G) is closed and convez;
(v) Dy (p, Resty , g (x)) + Dy (Rest, 0(2),3) < Dy(p,2),
Vpe F (Resé,(p’\p) ,T € K.

Let CB(C) denote the family of nonempty closed bounded subsets of C.

Lemma 2.23. ([26]) Let E be a reflezive Banach space, and let f : E — R
be uniformly Fréchet differentiable and totally convez on bounded subsets
of E. Let C be a nonempty closed and conver subset of int(domf) and
T:C — CB(C) be a Bregman relatively nonezpansive mapping. Then
F(T) is closed and convez.

Lemma 2.24. (122]) Let f : E — (~00,+00] be a Géteaus differentiable
and totally convex function, z1 be an element in E and C be a nonempty
closed conver subset of E. Suppose that the sequence {z,} is bounded and
the weak limits of any subsequence of a sequence {z,} belongto C C E. If

Di(zp,z1) < Df(projé(xl), z1) for anyn € N, then {z,} converges strongly

3. MAIN RESULT

In this section, we present our main algorithm and prove the strong con-
vergence theorem for finding a common solution of the generalized mixed
equilibrium and the fixed point problem of Bregman relatively nonexpansive
mappings in reflexive Banach spaces.

Let E be a reflexive Banach space with dual E* and C be a nonempty
closed convex subset of E such that C' C int(domf). Let f : E — (—o00, +00]
be a strongly coercive Legendre function which is bounded uniformly Fréchet
differentiable and totally convex on bounded subset of E,G:CxC—>R
be a bifunction satisfying the Assumption 2.19, ¢ : C — R be a convex
lower semicontinuous mapping and ¥ : ¢ — E* be a continuous monotone
mapping. Let T': C' — C be a Bregman relatively nonexpansive mapping.
We introduce the following algorithm for solving the generalized mixed equi-
librium problem and the fixed point problem.
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Algorithm 3.1. Choose z1,21 € C. The control parameters oy, 8, satisfy
the following conditions:

an € (0,1), nll)n;o an =0,

Bn € (0,1), ‘1inrgi£f(1 — o)1= B,) > 0.

Let {z,,} be the sequence generated by the iterative scheme:
( un = VI (BuVS(zn) + (1 = Bn)VI(T4)),
Yn = VI (anVf(2n) + (1 — an)V f(un)),
Zn_l_]_ = Resg)w"ll(yn),
(81) § Ch={2€C:D¢(z,2n41) < anDy(z, 2p)
+(1 — an)Dg(z,zn)},
Qn={2€C : (Vf(z1) — Vf(zn),z2 — zn) < 0},

C [T projéann(ml);Vn >1.

We now present the convergence theorem for the sequence generated by
(3.1).
Theorem 3.2. Assume that Q2 = F(T)NGMEP(G) # 0. Then the sequence
{zn} generated by Algorithm 8.1 converges strongly to projg;(ml).

Proof. From Lemma 2.22 and Lemma 2.23, we obtain that F(T)NGM EP(G)
is a closed and convex subset of E. It is easy to prove that C, and Q,, are
closed and convex. Therefore, C,, N @, is closed and convex for all n > 1.
Since Resé,%\l, is single-valued, we get that Resé’¢,q,(yn) = Zp4+1. Taking
p € 1 arbitrarily, we obtain that

Dy (p, 2n41) = Df(p, Resl , 4 (yn))
< Di(p,yn) = Dy(Resly , 4 (n), n)

< Df(payn)
o =D VeV ) + (1~ an)V f (un)))
(3.2) < anDs(p, 2n) + (1 — an)Dy(p, un).
Since -
Df(p, un) = Df(p> vf*(ﬁnvf(xn) + (1 - ﬂn)vf(T-'En)))
< /Ban(p) wn) + (1 - ,Bn)Df(pa Tzn)
(3.3) < D¢(p, zn),
by (3.2) and (3.3) imply that
(3.4) Dy(p, zn41) < anDy(p, 2a) + (1 — an) D5 (p, 24).

It follows that p € C,,. Therefore, Q} C C,, for all n > 1. We now show that
1 C @Qp forall n > 1. Clearly, Q C Q; = C. Assume that ) C Qy, for all
k> 0. In view of 41 = projéka (1) € Q, it follows from the result of
Lemma 2.17 (2), we have

(Vf(l‘l) - Vf($k+1),mk+1 - Z) 2 Oa Vz € Qk-
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Moreover, one has

(Vf(@1) = Vf(@rs1), or41 —p) >0, VpeQ,
and so, for each p € Q,

(Vf(z1) = VI(@ks1),p — Tr41) < 0.

This implies that Q@ C Q4. Therefore, Q C Q, foralln > 1. Consequently,
2C CpoNQp for all n > 1. This, together with Q @ yields that C,, N Qn is
a nonempty closed and convex subset of C for all n > 1. Moreover, {zn} is
well-defined. In view of Lemma 2.17 and the definition of Qn, we conclude
that

Di(zn, z1) = Df(pmjén(ivl),xl)

< D¢(p,z1) — Dy (p,proj}, (z1))
(3.5) < Df(p,z1), VpE€QCQp.
This implies that the sequence {D¢(xn,z1)} is bounded. In view of Lemma

2.15, we obtain that the sequence {z,} is bounded. On the other hand, we
have

Df(pa :En) - Df(pa projén_lﬂQn_l(‘Tl))
< Ds(p,z1) — Dy(zn, 1)
< Df(p,.’l,'l),

which implies that {Dy(p,z,)} is bounded. Since T is a Bregman rela-
tively nonexpansive mapping, we obtain that Dy(p,Tz,) < Dy¢(p,zn) for
all p € 0. By the boundedness of {D{(p, z,)}, we get that {D¢(p,Tzy,)} is
bounded. Since f is strongly coercive, f* and Vf* are bounded on bounded
subsets. It follows from Lemma 2.16, we obtain that {Tz,} is bounded.
Since {D¢(p, z,)} is bounded, there exists M > 0 such that D¢(p,zn) < M.
In view of (3.4), we obtain that

Dy(p,2ni1) < 0D (py 20) (1= G .

Let K = max{D(p, 21), M}. Clearly that Ds(p,z) < K. Let D¢(p, zn) <
K for some n, then it follows from above inequality, we get that

Dy(p,zn41) < 0nK + (1 — o) K < K.
This implies that {D¢(p, z,)} and {2,} are bounded. Moreover,
Ds(p,yn) = D (p, VI (anV f(2n) + (1 — an)V £ (un)))
< aner(p7 zn) +(1 - an)Df(p,un)
(36) S aan(p7 Zn) + (1 - a’n«)Df(p, ‘Tﬂ))
which implies that {D¢(p, yn)} is also bounded. In view of zp 1 = projéann (z1),
Tp = projé;n (1) and C, N Q, C Qn, we conclude that
(3.7) Df(IL‘n,.’El) < Df(.'l?n+1,£L'1), vn > 1.
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This implies that {D(z,, 1)} is nondecreasing. From the boundedness of
{Dj(zn, 1)}, we obtain that limy_,co Df(zn, 1) exists. In view of Lemma
2.17, we obtain that
Dg(zn+1,20) = Df(mn+1,P7’0j¢f3"($1))
< Dy(n41,21) — Dy(proghy (z1),71)
= Df(zn+1,21) — Dj(mn, 71),
which implies that
(3.8) n]l)rlolo Df(.’l:n+1, .’En) =0.

Since f is totally convex on bounded sets, it follows from Lemma 2.12 that
[ is sequentially consistent. This, together with (3.8), implies that

(3.9) Ji_{f)lo”xnﬂ — Zn[| = 0.
It follows from the three point identity that

Df($n+1a Zn) = <Vf(zn) = V.f(wn+1),p — Tpy1) + Df(p7 Zn) — Df(p, Tn+1)-

Since f is bounded on bounded subsets of E, V f is also bounded on bounded
subsets of E. It follows from the boundedness of {z,} and {2,}, we obtain
that the sequences {V f(z,)} and {Vf(2,)} are bounded in E*, which im-

plies that {D¢(zn+1,2,)} is bounded. In view of 2,41 = projg;ann (z1) €
C, with the definition of C,,, we get that

Df($n+1> Zn+1) < aan(mn+1; zn) + (1 = an)Df($n+l, -'L'n)-
From the boundedness of {Df(zn41, zn)} and li_)m a, = 0, it follows from

the above inequality together with (3.8), we conclude that
nlglolo Df(In+17 Zn—i—l) =0.

This, together with Lemma 2.11, we obtain that
(3.10) Jim a1 = znial =00 -
Taking into account

2 = Znt1ll < Non = Tpesll + 241 = 204,
it follows from (3.9) and (3.10), we get that
(3.11) lim ||z, — 2p41]| = 0.

n—oo

Since f is uniformly Fréchet differentiable on bounded subsets of E, it follows
from Lemma 2.10 that f and Vf are uniformly continuous on bounded
subsets of E. It follows that

(3.12) lim |f(zn) — f(zn41)| =0

n—o0

and
(3.13) Jim IV f(zn) — Vf(zn41)] = 0.
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In view of the definition of the Bregman distance, we obtain that

Dy(p,zn) — Ds(p, 2n41) = f(p) — f(@n) — (Vi(zn),p — xn)
- (f(p) - f(zn+1) - (Vf(zn+1),p — Zn+1))
= f(zn+1) - f(xn) + (Vf(zn+1),;0 — Zn41)
- (Vf(-’l?n),p - zn)
= fzns1) — f(@n) + (Vf(2n41),0 — zn)
+ (vf(zn+1)a Tn = Znt1) — (Vf(zn),p - Tn)
= f(zn1) = f(zn) + (VI (2n41) = VI (@n),p — zn)

(3.14) +{V f{znt1), 2n — Zn+1)-
From this, together with (3.11), (3.12) and (3.13), we conclude that
(3'15) nll>nc}o lDf(p, xn) - -Df(p7 Zn+1)| = 0.

In view of Lemma 2.14 and 2.22, we obtain that
Dg(znt1,yn) = Df(ReSé,<p,\11 (Yn), Yn)

< Dy(p,yn) — Dy(p, Resf , 4 (yn))
= D¢(p, VI (anVf(zn) + (1 — an Vf(un))) — Ds(p, 2n+1)
< aan(p, zn) + (1~ an)Df(p, Up) — Df(pa Znt1)
< aan(p, Zn) + (1 — an)Df(p, Tn) — Df(p> Zit1)
(3.16) = an(Df(p, zn) — Ds(p, z4)) + (Dy(p, xn) — D¢(p, 2n41))

From the boundedness of {Df(p,2)} and {D(p, 2,)} together with (3.15),
(3.16) and li_)m oy, = 0, we obtain that
n—oo

Jim D(znt1,9m) =0,
again using Lemma 2.11, we have

(3:17) nli_l){.lo lznet = Yul|=0.— - —= - —

Taking into account

[2n = ynll < 120 = 2zat1ll + 2041 — wml,
and using (3.11) and (3.17), we get that
(3.18) lim ||z, — y,|| = 0.

n—o0

Since f is uniformly Fréchet differentiable, it follows from Lemma 2.10 that
Vf is uniformly continuous on bounded subsets of E. This, together with
(3.17) and (3.18), we obtain that

(3.19) IVf(zni1) = VE(n)ll = 0

lim
n—oo
and

(3.20) Tim [V f(zn) — V£ (un)]| = 0
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Furthermore, in view of the property of the Legendre function f, we obtain
that

IVF(zn) = VEya)ll = IV f(@n) - vf(Vf (anVf(zn) + (1 — )V f(un)))|
= [[Vf(zn) —anVf(zn) = (L — an)V ()|l
(

= aa(V(zn) = Vf(zn)) + (1 = an)(VF(2n) = Vf (un)) |
= llen(Vf(zn) = Vf(2n))

+ (1= an)(VF(VF(BuV fzn) + (1 = Ba)Vf(Tzn))))
= llan(Vf(zn) = VF(zn))

+ (T = an)(1 = Ba)(Vf(zn) = VI(Tzu)l
2 (L —an)(1 = Bu)lIVF(zn) — VF(Tza)|
(3.21) —an||Vf(zn) — Vf(z)l,

which implies that

(1= an)(1 = )V (@n) = VI (Tzn)l| < onl|VF(zn) = V.f(20)ll
(3.22) + V(@) = Vi)l

Since liminf, oo (1 — apn)(1 — Brn) > 0, there exists a > 0 such that

a||Vf(zn) = VI(T2)| < (1= an)(1 = Br)IVf(zn) — VF(Tzn)||
(3'23) < an”vf(xn) i Vf(zn)” - ||Vf(£l7n) - vf(yn)”

This, together with (3.20), li_)m apn, =0 and the boundedness of {V f(z,)}
n—oo
and {V f(z,)}, we obtain that

(5.24) Jim [V F(@n) = V(Toa)| = 0.

Since {z,} is a bounded sequence in C, there exists a subsequence {zp, } of
" {@n} such that z,, — z* € C asg'k'— oo, It follows from (3711)and (3.17),
there exist subsequences {yn,, } of {yn} and {2n, } of {2n} such that y,, — z*
and z,, — z* as k — oo, respectively. In view of f is the Legendre function
and f* is uniformly Fréchet differentiable on bounded subsets of E* together
with (3.24), it implies that

(3.25) Jim_lzn, — Tzn, || = 0.

Since the asymptotic fixed point with z,, — z* and (3.25), we conclude
that z* is a asymptotic fixed point of T. Since T' is a Bregman relatively
nonexpansive mapping, z* is a fixed point of 7. Further, in the light of
Res%;,‘p,‘l, (yn) = zn+1 and Definition 2.20, it follows that, for each y € C,

G(zny+1,9) + 0(Y) ~ 0(Zng+1) + (Y (Uni ) ¥ — Znyt1)
+ (vf(znk+1) - vf(ynk)7y - znk+1> > 07 Vy S C,
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and hence, combining this with the Assumption 2.19 (ii), we obtain that
‘P(y) - So(znk-H) + <\Il(ynk)’ Y- an+1> =+ <vf(znk+1) - Vf(ynk)»y - an.+1>
2 _G(z’nk+17 y)
> G(ya Z’ﬂk-f-l)a Vy cC.
For any y € C and t € (0,1}, we let y; = ty + (1 — t)z* € C. This implies
that
@(Yt) — P(2ng+1) (P (WUni ) ¥t — 2ng11) + (VF(Zng+1) — Vi Une ) Ut — 2Zng+1)
> G(yt: an+1)'
Since G(z,y) in the second variable y and ¢ are lower semicontinuous,
lim inf(G (yes zn+1) = 0(¥) + @(2nr1) + (¥ (Yny)s 241 — v1))
<lim inf(V f(2n,+1) — YV (yn)s vt — Zng+1)s
k—o0
it follows that
(3.26) Gys, o) = pye) + p(a*) + (¥(z*), 2" —y) < 0.
Furthermore, we next consider the following inequality,
0=Gys,ye) +o(ye) — o(ye) + (L(z™), %1 — vs)
= G(ynty + (1= 1)z") + oty + (1 — t)z*) — to(ys) — (1 — t)plws)
+(U(z"), ty + (L —t)z* —t(w) — (1 — t)w)
< tG(ys,y) + (1 = 1)G(ys, 2%) + to(y) + (1 = t)p(z*) — to(ye)
— (1= t)e(ye) + (T ("), y = yr) + (1 = 1)(¥(z"), 2" — yz)
= 4G (yy ) + oY) — o(ys) + (¥(z™), y = ve)
+ (1 = 1)(G(ys, &) + () — (ye) + (¥(z™), 2" — yr))
(3.27) <G, y) +@(y) — o(w) + (¥ (z"),y — v)),

- which implies that —_

(3.28) Glye,y) + ey) — olye) + (@ ),y —yp) 20.

Moreover, it follows from the Assumption 2.19 (iii), we conclude that

0 < limsup(G(yt,y) + () — o(ys) + (T(z¥),y — y¢))

t—0+
= lim zgp(G(ty + (1= 8)z",y) + o(y) — plty + (1 — t)z*)
t—

+(¥(z*),y — ty — (1 - t)z™))
(3.29) < G(z%y) + o(y) — (") + (¥(z7),y — z7).
This implies that z* is a solution of the generalized mixed equilibrium
problem, and hence z* € GMEP(G). To sum up, we have z* € Q =
F(T) N GMEP(G). Finally, we now prove that {z,} converges strongly
to T = projf (z1). It follows from the definition of the Bregman projec-

Q
tion together with 2 is a nonempty closed and convex subset of F, we
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obtain that p'rojg-;(xl) is well-defined. Let 7z = proj(fl(xl). In view of
Tptl = projéann (z1) and projé(zl) € Q C C, NQy,, we obtain that

(3.30) D¢(zpi1,21) < Df(projé(:cl),ml).
It follows from Lemma 2.24, we conclude that {zn} converges strongly to
z= projé (z1). This completes the proof. O

If we assume that ¥ is a zero mapping in Algorithm (3.1), then we get
the following corollary.

Corollary 8.3. Let E be a reflezive Banach space with dual E* and C be
a nonempty closed convezr subset of E such that C C int(domf). Let f :
E — (—00,400] be a strongly coercive Legendre function which is bounded
uniformly Fréchet differentiable and totally convex on bounded subsets of E,
G : CxC — R be a bifunction satisfying the Assumption 2.19 and ¢ : C —
R be a lower semicontinuous and conver. Let T : C —s C be a Bregman
relatively nonezpansive mapping. Assume that F(T) N M EP(G) # 0. Let
{zn} be the sequence generated by the iterative scheme:

( 11,21 € C,
Un = VI (BaV I (zn) + (1 = Bo)Vf(Txn));
Yn = vf*(afnvf(zn) + (1~ an) V£ (un));

zne1 = Resyy  (uy);
(8.81) J Cn={z€ g,?Df(z,zn_H) < onDys(z,2p)

+(L —an)Ds(z,z0) };

Qu=1{z€C: (Vf(21) =V (), 2 - z) < O}
\  Tntl = pmjéannm, vn 2> 1,

where {an} and {B,} are sequences in (0,1) such that

lim @, =0, liminf(l —a,)(1 - B,) > 0.
n—r00 n—00 .

-Then, {x,} converges strongly to projf;(m /[E_P(G_)('xi)” e

4. NUMERICAL EXAMPLES

In this section, we will present a numerical example in the N-dimensional
space of real numbers to show that our algorithm is efficient and illustrate
the numerical example for comparing the values of sequences generated by
iteration (1.4) and (3.31).

If E is a uniformly smooth and uniformly convex Banach space, then an
important and interesting Legendre function is f(z) = 1—17||m||p (1 <p<oo)
satisfying all assumptions in Theorem 3.2. In this case the gradient V[ of
[ coincides with the generalized duality mapping of E, ie., Vf = J, (1 <
p < 00). In particular in Hilbert spaces, V J =1, the identity mapping (see
[31])

Let 1YY [a,b] be the set of vectors z € RV where each component of z
contained in the interval [a, b].
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Example 4.1. Let E = RY with the Euclidean norm and C = II)Y , [-Z, ],
Let f : RY — (—co,+00] defined by f(z) = %Hm“'p (1 < p < ). The
mapping T' : C — C is given by T(z) = %x,- we have T is a Bregman
relatively nonexpansive mapping and 0 is the unique fixed point of 7. Let
G : C x C — R be defined by G(z,y) = y(z — y), ¢ : C — R be defined by
o(z) =22, ¥ : C — RN be defined as ¥(x) = sin(x) where z,y € C. We get
that 0 € GMEP(G) and hence 0 € Q@ = F(T) N GMEP(G). We illustrate
the results for three cases p = 2, 2.5, 3. For experiment, we randomly

generated starting points z1,21 € Hﬁl[—g, %] with the following control
parameter o, = —4—. The following two cases of the control parameter

(n+1)P-
Br, are considered:

_1n-10 1
Case 1. 8, =107V + Pl

Case 2. £, = 0.99 — #_2

Using Algorithm (3.1) with the initial points z1, 21, generated by randomly
10 starting points and presented results are on average. We get the following
observation for different iterations using the stopping criterion ||zp+1—2s| <
1073, we have the numerical result for supporting our main result in Table
1.

TABLE 1. The numerical results for different parameters 3,

Size Average Iteration Average Times (sec)
N p Bn defined as in | f, defined as in | 3, defined as in | 8, defined as in

Case 1 Case 2 Case 1 Case 2

5| 2 430 450 0.070 . 0.100

2.5 821 911 0.156 0.218

3 852 1000 0.210 0.22

10| 2| 559 560 0.12 0.234

2.5 963 1094 0128 0.238

3 1159 1227 0.262 0.238
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From Table 1, we may suggest that the smallest size of parameter £,
defined as B, = 10710 + - +2 provides less computational times and itera-
tions than other cases. As Example 4.1, we consider p = 2 for comparing
numerically in Algorithm (3.31) with Algoritm (1.4).

Example 4.2. Let £ = RY and C = val[ —m,m]. Let f : RV —
(—00, +o0] defined by f(z) = 1||z||2 and T : C — C be defined by Tz = 3.
LetG C x C — R be defined by G(z,y) = z(y —z), v : C = R be
defined by ¢(z) = 2 and ¢ : C x C — R be defined by ¢(m,y) =y—uz,
for all z,y € C. Let the sequence {z,} generated by Algorlthm (1.4) and
Algorithm (3.31) with randomly the initial point 1,2 € MY, [—7, 7). We
consider the problem setting and the control parameters as in Example 4.1,
using o, = % with only the case of parameter 3, = 10710 + - +2 We
compare Algorithm (1.4) with Algorithm (3.31) using the stopping criterion
|Zn+1 = 2a|| < 1073, we have the numerical result in Table 2 with randomly
10 starting points a:l, 21.

TABLE 2. The numerical results for comparing Algorithm
(1.4) and Algorithm (3.31)

Size Average Iterations Average Times (sec)

RN | Algorithm (3.31) | Algorithm (1.4) | Algorithm (3.31) | Algorithm (1.4)
5 204 _ 217 0.0470 0.0610

10 269 283 0.0530 0.0590

50 454 472 0.0870 0.0886

100 969 600 0.1110 0.1310

500 996 1045 0.1550 0.2380
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