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ABSTRACT 

  

Climate change, human activities such as rapid and unplanned urban 

expansion, increase the risk of natural hazards. Landslide is one of the most severe 

that cause imponderable loss of human life and property and showing a trend of 

increasing occurrence worldwide. Both national and provincial scales of landslide-

prone area zonation studies have been found but no regional such study yet for 

Xishuangbanna Prefecture, Yunnan Province, China. The Frequency Ratio (FR) is 

selected as the mapping model due to its popularity, simplicity, and understandability. 

Fourteen most frequently used landslide conditioning factors (LCFs) have been 

extracted from a comprehensive literature review (52 studies) firstly, then 27 

scenarios have been designed to produce the 27 landslide susceptibility maps, and the 

Area Under the Curve (AUC) of each map has been calculated and compared. Finally, 

seven of the fourteen factors are identified as the more effectively decisive LCF for 

the study area, the final landslide susceptibility mapping (LSM) was done based on 

these 7 LCFs. The AUC values of the final landslide susceptibility map with inputting 

landslide inventory dataset and verification dataset are 85.8% and 
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84.0%, respectively, which means the model acquired a very good result for both 

success and prediction rate. Innumerable landslide susceptibility assessment (LSA) 

studies have been done by researchers in recent decades, but most of the outcomes of 

these works have been archived and rare of them have been well used for supporting 

decision-makers in real situations. The last objective of the study is to adopt the 

outcomes of the study to develop a Web-based Spatial Decision Support System 

(Web-based SDSS), which not only can be used as an effective aiding tool to support 

the decision-making processes but its broad potential for further development also 

provides a reconsideration of making better use of the outcomes of these GIS-based 

studies. 
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CHAPTER I 

 

INTRODUCTION 

 

 Background 

 Natural hazards cause noticeable casualties and destruction in the present 

world (Kumar & Anbalagan, 2016). Over the past few decades, due to climate 

change, rapid and unplanned urban expansion especially in less developed regions, as 

well as other human activities, increase the risk of natural hazards. As one of the most 

destructive natural disasters that cause imponderable loss of human life and property, 

landslide is no exception showing a trend of increasing occurrence worldwide. In 

numbers, every year, tens of thousands of people died from landslides and 

caused billions of dollars loss. Furthermore, landslides pose serious impacts to 

people’s normal life by destroying infrastructures such as highways, waterways, and 

pipelines (Lee & Pradhan, 2006; Mind’je et al., 2019; Vakhshoori & Zare, 2016).  

 As a consequence, instead of being regarded as only the incidental results of 

other phenomena such as earthquakes, floods in the early stages, independent 

landslide study interests are having been enhanced among international researchers 

(Abedini & Tulabi, 2018). There are two reasons for this: First, there is a growing 

understanding of the socioeconomic impact of landslides; second, there is a growing 

strain on the environment because of urbanization and development. It is reported that 

development on sloping urban areas, induces slope instability and in turn causes 

landslides (Aleotti & Chowdhury, 1999). On the other hand, requirements of 

economic growth and population pressure have also put a strain on slope stability in 

mountainous locations with the infrastructure expansion and residential zones shifting 

on natural slopes. Furthermore, other human activities including slope cut, 

deforestation, land cover change, mining, etc., would cause slope failures, in 

particularly during triggering phenomena such as extreme high return period and 

prolonged rainstorms. (Le et al., 2021). 
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 Disaster risk management has been a prominent topic across the world, with 

the focus shifting from post-disaster to pre-disaster stages (Mind’je et al., 2019). 

Critical management relies on thorough information regarding hazard characteristics, 

capacity, susceptibility, and vulnerability in pre-disaster phases such as risk 

assessment, hazard identification, preparedness, and preventative efforts (UNISDR, 

2016). To help decision-makers conduct a better urban plan, it is of great significance 

to identify and predict where is more prone to landslides, accordingly they can take 

preventive measures and minimize the damage of landslides (Rasyid et al., 2016). 

Furthermore, the landslide-prone zoning products can facilitate the decision-making 

processes such as helping the decision-makers in taking essential steps in soil and 

natural resource management and protection, as well as achieving a better plan for 

city and village growth (Abedini & Tulabi, 2018; Arabameri et al., 2020). Nowadays 

many modeling methods have been adopted by researchers in identifying landslide-

prone areas worldwide. In disaster management, knowing the process of landslide 

occurrence is critical, it may not be possible to regulate nature and prevent natural 

phenomena such as landslides from occurring, but it is possible to mitigate their 

impacts and damages. As a result, it is vital to appropriately identify places that 

disasters are probable to occur by evaluating various conditioning factors based on 

scientific knowledge in order to mitigate the latter (Mind’je et al., 2019). Assessments 

and management of future hazard can get benefit from a developed landslide 

susceptibility map (LSM). It is also critical for land use, infrastructure, and new 

construction engineering, to lower the expenses of living in areas prone to landslides 

(Zhang et al., 2016). 

 Decision Support System (DSS) has been an important aiding tool for the 

decision-making process while a major limitation of DSSs is their inability to take 

spatial and temporal data into account, despite many useful data being spatially 

referenced (Sugumaran & Sugumaran, 2007). Geographic Information Systems (GIS), 

which has traditionally been employed in fields such as utilities, environmental and 

urban planning, real estate, governance, and natural resource management, has the 

potential to shorten this restriction of DSSs. The GIS-based Spatial Decision Support 

System (SDSS) was built to effectively support decision-making for solving semi-

structured spatial related problems. SDSS is a framework for connecting database 
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management systems to graphical presentation, tabular reporting capabilities, 

analytical models, and expertise of decision-makers (Ghavami, 2019). SDSS has been 

used in many fields, such as agriculture, business, energy, fire protection, land 

planning, site selection, transportation, water resource management, disaster 

management (DM), etc. 

 During the last decades, the rapid rise of the computer, Internet, and 

especially World Wide Web (WWW) technologies has had a great influence on 

architecture, landscape architecture, and urban planning education and practice. The 

ability to overcome constrained resources in terms of time, data, and communication, 

is one of the most significant advantages of employing web services in spatial 

decision-making. The typical Web-based SDSS is an integration application of Web-

based GIS and DSS, where GIS information is implemented in WWW/Internet 

environment, and Open Source GIS software is used (Jeong & García-Moruno, 2016). 

Because GIS provides a wide range of visual and computational support capabilities 

that may be utilized by both planners and lay participants on the web for selection, 

prioritizing, and integration of decision alternatives, Web-based SDSS has been 

recommended as an effective tool for participatory planning. Web-based SDSSs not 

only give participants the flexibility to work from different locations and at different 

times to suit their needs, but they also give everyone an option to participate 

(Jelokhani-Niaraki & Malczewski, 2015). Individual decision-makers' decision times 

were shortened and their accuracy was raised by using GIS as a component of SDSS 

(Herold et al., 2005). 

 

 Statement of the Problems 

 Lin, & Wang (2018) analyzed spatial and temporal characteristics of 

disastrous landslides from 1950 to 2016 on a national scale in China. Yanhui Zhu et 

al. (2018) assessed the landslide and debris flow hazard risk in Yunnan Province of 

China. However, scientific literature revealed that no landslide-related research has 

ever been done on a regional scale in Xishuangbanna Prefecture, Yunnan Province, 

despite it is a slope instability-prone area, therefore, it is at stake and significative to 

assess the landslide susceptibility in Xishuangbanna on a regional scale. Moreover, it 
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is essential to select the appropriate techniques and methods to improve the accuracy 

and quality of prediction of future landslides.  

 The influential landslide conditioning factors (LCFs) in one place can be 

completely different from those in another. However, there is no standard method to 

determine the LCFs. 

 Innumerable landslide susceptibility assessment studies have been done by 

researchers. However, most of the GIS-based outcomes of these works have been 

archived and rarely have been well used for supporting decision-making processes in 

real situations.  

 

 Purposes of the Study 

 The major aims of the study are zoning the landslide-prone areas with the 

application of Geographic Information System (GIS), by adopting the frequency ratio 

(FR) method, in Xishuangbanna, Yunnan Province, China. Of which, there are four 

specific objectives as follows: 

• To extract and analyze the possible landslide causative factors from 

previous studies then identify the effectively decisive factors that influence the 

occurrence of landslides within Xishuangbanna. 

• To assess and map the landslide susceptibility spatial distribution using 

FR model in the study area. 

• To develop a Web-based SDSS using the outcomes of the study to 

effectively support decision-making processes. 

 

 Expected Outcome 

 The expected outcomes of this study are:  

• Get the reasonable and effective landslide conditioning factors (LCFs) for 

Xishuangbanna. 

• Get the instructive landslide susceptibility map(s) that is poorly known in 

the previous studies for the study area. 

• Get a Web-based SDSS platform adopting the derived landslide 

susceptibility map(s) and other outcomes of the study. 
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 The final zonation map(s) of landslide susceptibility for Xishuangbanna will 

be classified into five-level landslide susceptibility classifications including a) very 

low, b) low, c) medium, d) high, and e) very high.  

 The proposed Web-based SDSS will allow decision-makers/users to identify 

the susceptibility level of a clicked location, as well as view and download the related 

outcomes of the study simply by using a web browser on any device, anytime and 

anywhere. 

 

 Significance of Study 

 Losses resulting from landslides can only be reduced in two ways: either by 

modifying the hazard itself or by reducing human vulnerability to it. Nevertheless, 

both approaches require the natural hazard to be zoned first (C. F. Chung & Y. 

Leclerc, 2003). The significance of this study mainly includes: 

• Breaking through the zero-landslide prone zoning product situation for the 

study area, to provide an alternative aiding tool for decision-makers. 

• Extracting the overall possibly reasonable landslide conditioning factors 

(LCFs) through a comprehensive literature review. 

• Finding out the effective LCFs for the study area, by innovatively 

comparing the area under the curve (AUC) values of different scenarios that when the 

specific factors are adopted or not. 

• Considering uniquely adopting the rubber plantation density (RPD) as an 

important LCF based on the local vegetation cover status of the study area. 

• By developing the Web-based SDSS which is adopting the outcomes of 

the study, will increase the values of the LSM process, and facilitate the decision-

making processes, which can also provide a new consideration for other researchers. 

The study reviewed 52 previous studies regarding the methodology, 

conditioning factor types, and numbers used in each study. The innovation points of 

the study can be described as follows: 

a) Conduct the first landslide-prone area assessment study and provide the 

first landslide susceptibility mapping production on a regional scale; 
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b) Many researchers claim that there is not a standard procedure to select the 

decisive landslide causative factors, it may differ among areas. The present study is 

the first to extract the factors used by researchers from a mass of previous studies, 

then get the 14 most frequently used factors by setting the utilization frequency 

threshold of 21% (11 times out of 52 studies), which shows the higher frequency than 

the rest (at most 3 times, most are only 1 time). Which provides a supporting ground 

for the selection of the effective landslide conditioning factors; 

c) Normally, the AUC value is used for the validation of both the success 

rate (verify by using landslide inventory training dataset) and the prediction rate 

(verify by using landslide inventory verification dataset) as the last step of 

implementation of the study. In this study, we are the first to adopt this AUC method 

into the identification process of landslide conditioning factors, by comparing the 

model prediction quality of both when a specific factor is adopted and absent; 

d) Come up with the idea of integrating the landslide susceptibility 

assessment outcomes with the Internet environment and SDSS, to support decision-

making processes as well as provide an idea for researchers to make better use of the 

results of LSA. 

a) As the first regional LSM production for the study area, it can be useful as 

an aiding tool for the decision-makers; 

b) The statistics from the 52 previous studies in regard to the landslide 

conditioning factors used and utilization frequency can be used as a reference for 

other scholars in their future research; 

c) The innovative use of the AUC method into the identification process of 

the landslide conditioning factors for a specific area also can provide a reference for 

other researchers; 

d) It can provide a way to expand and make further use of the conventional 

LSA results. 
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 Scope of Study 

 The scope of the study is presented as follows: 

• Area: The study area is Xishuangbanna Prefecture, Yunnan Province, the 

People’s Republic of China (PRC), lies at (21°0′-22°40′N, 99°55′-101°50′E), borders 

Myanmar to the southwest and Lao People’s Democratic Republic (Lao PDR) to the 

south (Cao et al., 2017). The administrative region includes one county-level city 

(Jinghong) in the center and two counties (Menghai, Mengla) in the west and east 

respectively. 

• Method: Determine the overall possible landslide causative factors from 

the literature review, then analyze them using substitution method with the aids of the 

AUC, finally filter out the unreasonable or unhelpful ones for improving the model 

quality. The landslide inventory is used to reveal the relationships between the spatial 

distribution of each landslide conditioning factor and historical landslides. The 

frequency ratio (FR) and the predictor rate (PR) model which is developed based on 

FR are selected to mapping the landslide susceptibility using landslide susceptibility 

index (LSI), with the aid of GIS tools, then assess the prediction quality of using the 

FR method in landslide susceptibility assessment (LSA) for Xishuangbanna. 

Eventually, making use of the final LCF group and the mapping results that derived 

from different LCF weight values, a Web-based SDSS for landslide platform will be 

developed. 

• Time range of data:  

 

Table 1  The Producing Time of the Data Used in the Study 

 

No. Data name Producing time 

1 Landslide inventory 1956 - 2019 

2 Digital elevation model (DEM) 2000 - 2013 

3 River network 2018 

4 Road network 2020 

5 Fault 2020 

6 Precipitation 1901-2017 

7 Landsat 8 OLI/TIRS Level-2 Data Products 2020 
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No. Data name Producing time 

8 Land use and land cover (LULC) 2020 

9 Lithology 2004 

10 Soil 1990 

 

 Key Words 

 Landslide, Landslide Susceptibility Assessment, Frequency Ratio, Relative 

Frequency, Predictor Rate, Remote Sensing, Geographic Information System, SDSS, 

Web-based SDSS, Xishuangbanna. 

 



 
 

CHAPTER II  

 

LITERATURE REVIEW 

 

2.1 Landslide 

 Landslide has been one of the most catastrophic natural hazards, posing a 

constant threat to human communities across the world. They are the 7th most 

common major hazard in terms of the devastation of property and human life, 

infrastructure, and landscapes (Abedini & Tulabi, 2018; Dao et al., 2020; 

Intarawichian & Dasananda, 2011; Shano et al., 2021). Even in many countries, 

landslides cause more economic damage and deaths than other natural disasters such 

as earthquakes, windstorms and floods,  (Solaimani et al., 2012). 

 Landslide has the definition that it is the downhill movement of a large 

amount of material on a slope, according to engineering geology (Abedini & Tulabi, 

2018). Landslides are the flow of rubble, rock, or soil mass down a slope, which is 

more prone to occur in mountainous places and endangers people's lives and property. 

Landslides happen on a lesser scale than other natural catastrophes, but they have a 

wider spread and are, in many situations, more destructive. Landslides are responsible 

for 17% of all the natural disaster deaths worldwide, according to the data obtained 

from the Centre for Research on the Epidemiology of Disasters (CRED), and some 

researchers believe this trend will continue due to rapid urbanization, deforestation, 

and extreme regional precipitation brought on by climate change. In addition, an 

earthquake, typhoon, or flood may also be the trigger of landslides. What’s more, the 

damage extent resulting from landslides is also expected to rise in the coming decades 

(Nohani et al., 2019). 

  Earth's life cycle process involves rocks being born, growing old, 

dying, and then re-emerging in the molten core of the planet. Landslide is a normal 

component of the process (El Jazouli et al., 2019). Landslides are defined as earthen 

materials sliding along a slope owing to gravity, and it is primarily a geological event 
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that happens when the material's force surpasses the soil's shear force resistance 

(Arabameri et al., 2020). 

Various causal factors influence the occurrence of landslides. The 

stability of slopes is influenced by topography, rainfall, tectonics, lithology, 

vegetation, and also human activities, which all influence the susceptibility of a 

landscape to landslides (Dao et al., 2020; El Jazouli et al., 2019). Furthermore, 

landslides are occurring more frequently for three key reasons. First, natural resources 

overusing and vegetation damage have exacerbated surface soil instability. Second, 

land urbanization, particularly in mountainous areas, increases the number of people 

exposed to landslides. Third, there has been a rise in extreme precipitation in China, 

as well as an increase in the areas receiving abnormally intense precipitation (Lin & 

Wang, 2018). Additionally, areas with fine grit, moraines, or highly fractured and 

altered rocks such as clays, marls, gypsum, are particularly sensitive to landslides. (El 

Jazouli et al., 2019). 

Landslides devastate residential areas, highways, infrastructure, 

agricultural fields, gardens, grasslands, etc. (Abedini & Tulabi, 2018). According to 

CRED data, landslides are responsible for at least 17% of all deaths caused by natural 

disasters worldwide (Shahabi et al., 2014). Landslides kill over 1,000 people per year 

throughout the world, causing $4 billion in property damage (Pradhan, 2010). 

Meanwhile, Landslides have environmental as well as socioeconomic costs affecting 

human populations. Landslides can destroy the forest, disturb wildlife habitat, remove 

productive soils, and disrupt road traffic. Landslides can also cause a tsunami, seiches, 

floods in some cases (Laila Fayez et al., 2018). 

 

2.2 Landslides in China 

 China has been one of the countries that has suffered many fatalities as a 

consequence of landslides. According to the China Institute of Geo-

Environment Monitoring, more than 10,000 landslides occurred in China in 2014, 400 

individuals were killed or missing and 218 were injured (http://www.cigem.gov.cn). 

According to the China Statistical Yearbook, 373,630 landslides occurred in China 

between 2000 and 2015, resulting in 10,996 deaths. The Sichuan Basin and its 

http://www.cigem.gov.cn)a/
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surrounding mountains, The Yun Gui (Yunnan and Guizhou) Plateau, the Yangtze 

River middle reaches, the southeast hilly area, and the Loess Plateau are the most 

frequent site for deadly landslides in China. The northeast Changbai Mountain area, 

the western section of the Kunlun Mountains, and the northwest Tianshan region all 

experienced devastating landslides (Lin & Wang, 2018). 

 Five southeastern provinces including Guangdong, Hunan, Fujian, Zhejiang 

and Jiangxi, five southwestern provinces including Sichuan, Yunnan, Guangxi, 

Chongqing, and Guizhou, Hubei, Gansu, Shaanxi, and Shanxi, are among the 14 

hotspot provinces of occurrence of fatal landslides, accounting for 86 percent of the 

total deadly landslides and resulting deaths and injuries. In particular, deadly 

landslides happened most frequently in Sichuan and Yunnan provinces, with 277 and 

253 incidents, respectively, and caused a largest number of deaths with 82 and 67 

deaths every year (Lin & Wang, 2018). 

 

2.3 Landslides in Yunnan 

 One of the provinces that have been hit by landslides and debris flows is 

Yunnan, in the year 2013 alone, it has witnessed 425 geological hazards in Yunnan 

Province, which reported 69 casualties and caused about 0.52 billion yuan of direct 

economic losses. Among the geological hazards, there were 247 landslides and 68 

debris flows (Yanhui Zhu et al., 2018). 

 

2.4 Landslides in Xishuangbanna 

 Although no regional landslide susceptibility/hazard assessment research was 

found from the literature, in the last few decades, the massive population growth 

(grew by 13% from 2005 to 2020) (Statistics, 2020), rapid urbanization as well as 

dramatic land-use change (Cao et al., 2017) have expanded the landslide-prone 

regions of Xishuangbanna, putting people, property, and infrastructure at risk of 

landslides. As the farmers described: landslides during the rainy season take place 

much more frequently than in the past, water sources are polluted, and the water level 

is lower than past as well. They got water from the river near the village before but 

now they must construct a water pipe system to drainage water from high mountains 

(Groetz et al., 2010). Research also shows that the highest risk region of precipitation 
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in Yunnan, which is considered as an important LCF for landslides occurrence, is 

southwestern Yunnan, among which Xishuangbanna is one of the highest (Yanhui 

Zhu et al., 2018). 

 

2.5 Landslide Susceptibility Concept 

 Various definitions were found in the literature review. As described in 

(Marsala et al., 2019), the concept of landslide susceptibility is a qualitative or 

quantitative assessment of the area (or volume), geographic distribution, and  

classification of landslides that occurred or might occur in a given location (Shahabi 

et al., 2014). Landslide susceptibility is the likelihood of future slope failure given a 

set of geo-environmental conditions, or it refers to the extent to which places can be 

influenced by future slope movement.  It's a prediction of "where" landslides are most 

likely to occur (Shahabi et al., 2014; Shano et al., 2021). Wu et al. (2016) also state 

that landslide susceptibility is defined as the geographical probability of landslides 

occurring. 

 Researchers generally make four fundamental assumptions as follows for 

assessment and zonation of landslide hazards: 

a) Landslides will always happen under the same geological, 

geomorphological, hydrogeological, and climatic circumstances as before; 

b) There are identifiable physical factors that regulate the major conditions 

that induce land sliding; 

c) The hazard of a landslide can be assessed; 

d) All types of land sliding can be identified and classified (Aleotti & 

Chowdhury, 1999). 

Different terminologies were found to be regularly used in past 

landslide research, such as landslide susceptibility, landslide hazard, landslide 

inventory, and landslide risk, each of these terms has its own, data types, applications, 

mapping scales, stages of studies, and purposes. Among these terms, landslide hazard 

and susceptibility study are the most perplexing. They have different definition, 

however, most researchers use them interchangeably rather than using them 

individually (Shano et al., 2021). The risk of potentially harmful phenomena 
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occurring during a particular timeframe and within a certain area is characterized as 

the landslide hazard (Kumar & Anbalagan, 2016), while several scholars claim 

susceptibility holds only for ‘where’ landslides may occur (Shano et al., 2021; Van 

Westen et al., 2003). The uncertainties and complexities of quantitatively determining 

the vulnerability of the elements at risk make it hard to achieve an accurate risk 

assessment. Therefore, rather than hazard, susceptibility is more frequently used for 

assessing the occurrence possibility of landslides in a particular area based on the 

local environmental conditions (Aleotti & Chowdhury, 1999). Thus, the concept of 

landslide susceptibility was selected to zoning the landslide-prone areas in the study. 

The evaluation and identification of landslide-prone regions became a 

critical step in the spatial planning process since it allowed for the early 

implementation of preventative and corrective measures (Marsala et al., 2019). LSA is 

the first stage in assessing the hazard and risk of landslides, assessment of landslide 

hazards has become an essential research task not only for engineers but also for 

urban planners and government decision-makers, the final products are critical in 

environmental impact and land-use planning assessment, as well as in building early 

warning system. (Abbaszadeh Shahri et al., 2019; Intarawichian & Dasananda, 2011; 

Persichillo et al., 2016). For this, studies related to the determining of LCFs and the 

prediction of future landslide events through LSA approaches have become an 

important hotspot in the last decade (Mind’je et al., 2019), LSA is effective in 

preventing or reducing potential damages (Fang et al., 2020). 

 

2.6 Landslide Susceptibility Mapping (LSM) 

 LSM is the zoning by assessing the occurrence probability of landslides in a 

certain area (Meena et al., 2019). LSM has been adopted in recent decades as the 

subject of research worldwide (Arabameri et al., 2020), it is commonly acknowledged 

that disaster prevention and mitigation measures cannot be effectively executed 

without the vital information provided by adequate landslide-related maps (Arabameri 

et al., 2020; Hervás & Bobrowsky, 2009; Marsala et al., 2019; Wu et al., 2016). LSMs 

may be used as strong instruments to predict the places where landslides are likely to 

occur, and so assist to make the best possible use of the land while preventing 



 

 

14 

landslides, particularly in mountainous places (Nohani et al., 2019; Zhang et al., 

2016). The preparation of an LSM is an important stage in total landslide hazard 

management, and the fundamental motive behind is land conservation and 

management (Arabameri et al., 2020; Shahabi et al., 2014). However, the frequency 

or the time of occurrence of future landslides are not assessed in the LSM process 

(Persichillo et al., 2016). 

 

2.7 Landslide Susceptibility Mapping (LSM) Approach 

 In general, the approaches for LSM can be categorized into quantitative or 

qualitative methods (Aleotti & Chowdhury, 1999; Hervás & Bobrowsky, 2009; 

Marsala et al., 2019; Milevski et al., 2019; Nohani et al., 2019; Shano et al., 2021; Wu 

et al., 2016). However, some scholars also propose that some of the qualitative 

techniques such as AHP, which also consider the ranking or weighting of factors, 

should be categorized as the third group, namely semi-quantitative methods (L. Fayez 

et al., 2018; Kumar & Anbalagan, 2016; Mind’je et al., 2019; Nohani et al., 2019; 

Zhang et al., 2016). Nevertheless, each approach has both advantages and 

disadvantages, an agreement that which method is the best does not exist (Wu et al., 

2016; Zhang et al., 2016) 

 Despite the categories of the LSM approaches, all need the following 

procedures in implementation: 

1) Mapping historical landslides in a given region; 

2) Identifying a group of geomorphological/geological factors that are 

thought to be associated with slope instability either directly or indirectly; 

3) Analyzing the relationship between these factors and slope instability; 

and 

4) Dividing the study area into zones with different landslide susceptibility 

(Zhang et al., 2016). 

Qualitative methods (heuristic, landslide inventory, geomorphological 

approaches), are acknowledged as partially subjective, which is limited by 

unconsidered features or insufficient knowledge on which expert choices (the 

selection, weighting, and the combination function of the variables) are based, and 



 

 

15 

relatively low prediction accuracy (Hervás & Bobrowsky, 2009; Huang et al., 2018; 

Milevski et al., 2019; Mind’je et al., 2019; Wu et al., 2016; Zhang et al., 2016). In 

qualitative approaches, actual landslides are compared to geomorphology or geology 

features, and the input data is generally collected from field observations, potentially 

supplemented by aerial photo interpretation (Aleotti & Chowdhury, 1999). Though 

strongly dependent on the experience of surveyors, the advantage of the qualitative 

approach is its only practicability for all scale ranges of landslides (Shano et al., 

2021). 

The advantage of semiquantitative approaches is they can partly reduce 

the subjectivity inherent to qualitative methods. For instance, by applying a semi-

quantitative model based on multi-criteria evaluation, whereby the assigned weighting 

can be re-evaluated to achieve a good consistency ratio (Hervás & Bobrowsky, 2009). 

Examples of semiquantitative models are fuzzy logic (FL) (Devkota et al., 2012), 

weighted linear combination (WLC) (Hung et al., 2015), AHP (El Jazouli et al., 2019; 

Intarawichian & Dasananda, 2010; Kumar & Anbalagan, 2016; Le et al., 2021; 

Milevski et al., 2019; Phrakonkham et al., 2020; Wicaksono et al., 2020; Yanhui Zhu 

et al., 2018; Zhang et al., 2016), etc. Semi-quantitative techniques, on the other hand, 

have the drawback of using subjective judgments and failing to quantify the weight of 

each LCF (Zhang et al., 2016). 

 Quantitative approaches have the advantage of being less subjective 

than qualitative approaches but have high demands for quantity and quality of data 

(Zhang et al., 2016). Comparatively, quantitative methods are typically preferable and 

more commonly used for LSA because they produce more accurate results than 

qualitative methods (Abbaszadeh Shahri et al., 2019). Quantitative models can be 

divided into deterministic models and data-driven models (Marjanović et al., 2011). 

Due to the difficulty in obtaining comprehensive and sufficient soil mechanical and 

hydrological characteristics, the deterministic model is not suitable for large areas. 

Whereas the data-driven models are more effective and widely used in large areas. 

Data-driven models assume that the area under similar environmental conditions to 

previous events are more prone to landslides, and LCFs and landslides are uniformly 
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distributed in an area (Huang et al., 2018; Persichillo et al., 2016; Shano et al., 2021). 

In recent decades, many researchers have conducted LSA using statistical models 

combined with other data-driven approaches such as the frequency ratio (FR) model 

(L. Fayez et al., 2018; Intarawichian & Dasananda, 2011; Khan et al., 2019; Mind’je 

et al., 2019; Zhang et al., 2020), support vector machines (SVM) (Marjanović et al., 

2011), artificial neural network model (ANN) (Abbaszadeh Shahri et al., 2019; Dao et 

al., 2020; Valencia Ortiz & Martínez-Graña, 2018), statistical index (SI) (Milevski et 

al., 2019), logistics regression (LR) (Yalcin et al., 2011), etc. Out of all these data-

driven methods, the FR method is widely used for LSA due to its good performance 

(Laila Fayez et al., 2018). However, a quantitative model is superior only if validity 

and accuracy conditions are met (C.-J. F. Chung & Y. Leclerc, 2003).  

 

2.8 Landslide Causative Factors 

 To develop a model for LSA, identifying the proper LCFs is crucial. LCFs 

have the characteristics of easy obtainability, representativeness, and practicality. 

However, factors that influence landslides in a specific region can be totally different 

from those in another. With the assumption that landslides are more likely to occur 

again under the same environmental conditions as the past events, the collecting of 

landslide inventory data and understanding of landslide formation mechanism are 

required to identify the relevant LCFs that may have relationship with landslide 

occurrence as well as the local surrounding environment such as topography, 

geomorphology, geotechnical properties, weather conditions, land cover and 

anthropogenic, etc. Furthermore, in some circumstances, factors such as heavy 

rainfall, seismic shaking, blasting, drilling, water level changes, storm waves, and so 

on can all play a crucial role in the landslide occurrence. As a result, assessing the 

influence of these LCFs on the geographical distribution of landslides is critical to 

comprehend their operational mechanism and subsequently develop a LSM 

(Anbalagan et al., 2015; Marsala et al., 2019; Mind’je et al., 2019; Nohani et al., 

2019; Yanhui Zhu et al., 2018). 

 According to literature (52 previous studies that retrieved by using the 

keywords “landslide susceptibility”) (Table 2), over the past few decades, dozen 

types of LCFs have been studied and adopted by researchers in their previous LSA 
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studies, at least 5 (Hidayat et al., 2019; Sangeeta & Maheshwari, 2018; Srivastava et 

al., 2010; Yanhui Zhu et al., 2018) and at most 16 LCFs (Arabameri et al., 2020) are 

adopted according to each of the individual studies. Among the LCFs, some are 

widely accepted and frequently used in the literature, whereas others are used only by 

a few researchers. There are 14 of which the utilization frequency ranges from 21% to 

100% (at least 11 and at most 52 times out of the 52 studies), which are Slope Angle 

(F1), Distance to River (F2), Slope Aspect (F3), Lithology (F4), Land Use and Land 

Cover (LULC) (F5), Distance to Fault (F6), Distance to Road (F7), Curvature (F8), 

Elevation (F9), Precipitation (F10), Normalized Difference Vegetation Index (NDVI) 

(F11), Soil Texture (F12), Topographic Wetness Index (TWI) (F13) and Stream 

Power Index (SPI) (F14). Other factors such as Slope Length (Pourghasemi et al., 

2013; Pourghasemi et al., 2012), Profile Curvature (Huang et al., 2018; Javier & 

Kumar, 2019), Relative Relief (Anbalagan et al., 2015; Huang et al., 2018), Distance 

to Reservoir (Kumar & Anbalagan, 2016), Seismicity (Sangeeta & Maheshwari, 

2018; Yalcin et al., 2011; Yanhui Zhu et al., 2018), Topographic Position Index (TPI) 

(Arabameri et al., 2020; Srivastava et al., 2010), Convergence Index (Arabameri et 

al., 2020), material depth (L. Fayez et al., 2018), Geomorphology (L. Fayez et al., 

2018), Normalized Difference Build-Up Index (NDBI) (Huang et al., 2018), Sediment 

Transport Index (STI) (Devkota et al., 2012), Catchment Area (Persichillo et al., 

2016), Catchment Slope (Persichillo et al., 2016), Terrain Ruggedness Index (TRI) 

(Persichillo et al., 2016), Building Density (Wicaksono et al., 2020), however, their 

utilization frequency are less than 7% (at most 3 times out of the 52 studies) and most 

of them are uniquely used only by one researcher, thus have been filtered to be shown 

in the table. There are no standard steps to determine the LCFs, for the current study, 

only the 14 most frequently adopted LCFs are considered based on their universality 

and data availability, in addition, a unique and innovative factor namely Rubber 

Plantation Density (RPD) is adopted based on the local vegetation feature, the 

rationality and applicability of all the 15 LCFs for the study area are to be discussed in 

the following section. 
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Slope angle is a LCF which is related to landslides directly and is 

commonly used in constructing LSMs (Marsala et al., 2019; Wu et al., 2016). The 

interaction of slope angle with material characteristics including permeability, friction 

angle, and cohesion is slope stability/instability (Youssef et al., 2014). The slope 

gradient also directly influences soil moisture, soil formation, and erosion potential. If 

the materials are soil or weak rocks, it is thought that a larger slope angle correlates to 

increased shear stress and a higher failure likelihood (Shano et al., 2021). In theory, as 

the slope rises, shear stress increases, making the structure more prone to failure 

(Nohani et al., 2019; Sur et al., 2020), nevertheless, in almost vertical conditions, 

landslides are scarce or absent (Abbaszadeh Shahri et al., 2019). 

Water is one of the most important components in the triggering of 

landslides; it may exacerbate the occurrence of landslides by eroding slopes or 

soaking the toe material unit, resulting in a rise in water level. Areas with a shorter 

distance to rivers have comparatively more likelihood of landslide initiation than 

areas located far-off (El Jazouli et al., 2019; Nohani et al., 2019; Sur et al., 2020; Wu 

et al., 2016; Youssef et al., 2014). 

The azimuthal orientation of the slope face is indicated by the term 

Aspect (0 to 360°). The link between slope aspect and landslides occurrence has been 

analyzed for long, but no consensus has been found on how they are related (Youssef 

et al., 2014), however, it has been accepted as a possible conditioning factor 

(Abbaszadeh Shahri et al., 2019). The meteorological phenomena such as rainfall 

direction, sunshine amount, drying winds, as well as hydrological processes such as 

evapotranspiration and then, influences soil thickness and moisture and vegetation 

coverage are all related to slope aspect which can instigate landslides, so it has an 

important role in conditioning landslide occurrence (Abedini & Tulabi, 2018; Dao et 

al., 2020; Marsala et al., 2019; Nohani et al., 2019; Shano et al., 2021; Sur et al., 

2020; Youssef et al., 2014). 
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Lithology is also frequently used in LSA studies. Different lithological 

units have various compositions, permeability, and structures, which affect the slope 

material strength. According to the literature, landslides frequently take place in the 

presence of a rock stratum with low shear strength and permeability, in other words, 

stronger rocks can resist dragging forces better than weaker rocks, and have less risk 

of landslide occurrence, and vice versa (Abedini & Tulabi, 2018; Le et al., 2021; 

Marsala et al., 2019; Nohani et al., 2019; Sur et al., 2020; Wu et al., 2016). 

LULC represents both natural processes and human-induced activities 

that promote slope instability, either directly or indirectly. The conversion of 

agricultural and forest land to residential areas, forest to agriculture, and the reduction 

of the unethical or involuntary slope for infrastructure building are all examples of 

land-use change. Landslides are less common in forested areas than in barren areas, 

and vegetated land with a robust root system can stabilize slopes through mechanical 

and hydrological processes. However, landslides may occur in vegetation ground 

cover with strong and large root systems as well (El Jazouli et al., 2019; Le et al., 

2021; Nohani et al., 2019; Sur et al., 2020). 

Lineament factors such as faults, folds, shear zoned have a direct 

influence on the distribution of landslides, which mainly affect co-seismic landslides 

by cracking stones and creating instability, a distance close to the geological faults 

often leads to high landslide susceptibility  (Abedini & Tulabi, 2018; El Jazouli et al., 

2019; Le et al., 2021; Nohani et al., 2019; Shano et al., 2021; Wu et al., 2016; 

Youssef et al., 2014).  

The distance to roads is a major anthropogenic parameter affecting 

landslide occurrence. Utilizing additional hydrologic load change, slope excavation, 

and deforestation, the building of communication networks including roads and 

railways, often leads to the destabilization of slopes and changes the natural 

equilibrium condition of soil and rock in hilly terrain. The lack of toe support can be 

caused by roads built on slopes, the loss of support leads to increase the strain behind 
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the slope and facilitate developing tension cracks. Furthermore, the closer the 

locations are to the road system, the greater the risk of landslides (Le et al., 2021; 

Nohani et al., 2019; Sur et al., 2020; Wu et al., 2016; Youssef et al., 2014). 

Curvature is defined as the rate at which the slope gradient or slope 

aspect changes, generally in one direction. Positive curvature value reveals convexity 

and negative value characterize slope concavity. In other words, the positive value 

represents for ridges and negative one defines valleys, while values around zero 

indicate flat surfaces. curvature affects erosion and groundwater accumulation, as well 

as gravitational stresses and surface run-off on shallow failure surfaces, thus it has a 

dominant influence on slope instability (Abbaszadeh Shahri et al., 2019; Marsala et 

al., 2019; Shano et al., 2021; Youssef et al., 2014). 

The elevation is frequently used as a LCF for LSA. It does not directly 

affect landslide activity, but its indirect influences are various (Le et al., 2021; Wu et 

al., 2016). For example, some researchers believe that elevation may be correlated to 

fluctuations of rainfall and the distribution of vegetation types (Shano et al., 2021; Sur 

et al., 2020). Others argue that changing altitude has a significant impact on soil 

erosion and slope mass movement, allowing for more precise control of runoff 

direction and drainage efficiency (Abedini & Tulabi, 2018). All these 

geomorphological, tectonic, and biological processes, as well as anthropogenic 

activities, can cause slope instability and contribute to spatial landscape variability 

(Abbaszadeh Shahri et al., 2019; Nohani et al., 2019; Sur et al., 2020). Therefore, 

elevation can be considered an important LCF. 

According to statistics, over 90% of the landslides and debris flow 

were triggered by high-intensity rainfall, thus it is a significant landslide initiation 

factor (Marsala et al., 2019; Wu et al., 2016; Yanhui Zhu et al., 2018). Slope stability 

is affected by rainfall due to surface overflow and pore water pressure on the unstable 

slope. Its quantity, intensity, magnitude and return period are important parameters to 

landslide possibility and destructiveness, thus has been adopted by researchers in big 
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or small study areas, either through historical studies or through physical models (Le 

et al., 2021; Sur et al., 2020; Van Westen et al., 2003). 

The normalized difference vegetation index (NDVI) is a quantitative 

measure of vegetation growth and biomass based on surface reflectance. NDVI value 

is calculated using the formula NDVI = (IR – R)/(IR + R), where, the IR and R bands 

are the infrared and red bands of the electromagnetic spectrum of satellite 

photographs, of which values near to -1 represents that the bare earth surface short of 

vegetation, while a value near to +1 represents a higher and healthier vegetation 

cover. The vegetation roots contribute to stabilizing the hill slope and reducing 

landslides occurrence. As the bases of deep tree roots do not change along with 

seasons, the analysis of temporal NDVI is needless, concerning temporal changes in 

vegetation such as recent deforestation is beyond the scope of this study (Abbaszadeh 

Shahri et al., 2019; Nohani et al., 2019; Sur et al., 2020; Wu et al., 2016; Youssef et 

al., 2014). 

Soil type and its corresponding thickness are widely used as a LCF in 

LSA, since it is mostly exposed to weathering, which may influence land permeability 

and other geotechnical parameters. For example, soil characteristics such as clay 

content, texture, organic matter content, structure, and permeability in the 

mountainous areas can be the potential slip factors that lead to slope failure resulting 

in landslides (Abbaszadeh Shahri et al., 2019; Marsala et al., 2019; Sur et al., 2020). 

The topographic wetness index (TWI) is an important factor obtained 

from the digital elevation model (DEM) that depicts geotechnical wetness and is a 

steady-state wetness index represents topography influence. When a large catchment 

area is coupled with a low slope gradient, TWI affects soil moisture and soil depth, as 

well as groundwater conditions (Devkota et al., 2012; Fang et al., 2020; Kumar & 

Anbalagan, 2016; Poudyal et al., 2010; Pourghasemi et al., 2012; Sur et al., 2020; 

Wicaksono et al., 2020).  
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The stream power index (SPI) measures how corrosive a terrain's 

streams are. The slope gradient and the streams' erosive power reveal a positive 

correlation. SPI has been adopted by many researchers in LSA (Devkota et al., 2012; 

Fang et al., 2020; Kumar & Anbalagan, 2016; Poudyal et al., 2010; Pourghasemi et 

al., 2012; Sur et al., 2020; Wicaksono et al., 2020). 

According to literature, Xishuangbanna has the highest rubber 

plantations density among China and South Asia (as is shown in Figure 6) (Zhu et al., 

2014), the area of monoculture rubber plantations has increased by more than 12 

times from 1976 to 2015 and accounts for 22% of the total land cover in 2010 in 

Xishuangbanna, which has led to prominent degradation of the local ecology (Cao et 

al., 2017; Hemati et al., 2020; Min et al., 2019; Zhang et al., 2019). Thus, it is quite 

reasonable and in timely demand to take the RPD into account in LSA in the study 

area. 

 

2.9 Geographic Information System (GIS) and Remote Sensing (RS) in Landslide 

Susceptibility Assessment (LSA) 

 Over the past two decades, in India, Japan, Vietnam, Malaysia, Thailand, 

Iran, Turkey, Romania, China, Nepal, and many other parts of the world, almost all 

methods are used to assess the landslide susceptibility and predict landslides spatial 

distributions, are based on GIS concepts. It's a simple and effective spatial data 

collection, management, and manipulation tool (Abbaszadeh Shahri et al., 2019; Dao 

et al., 2020; Poudyal et al., 2010; Zhang et al., 2020). Moreover, by 

combining remotely sensed (RS) data with GIS, studies using various methods and 

approaches have been made easier by expanding the ability to handle and analyze 

landslide data for large areas, and refining LSA in the future (Marsala et al., 2019; 

Mind’je et al., 2019). 

 The GIS environment, in particular, is commonly employed in models for 

producing single factor layers, computing different LCFs, assigning weights, data 

integration, and generating LSMs (Marsala et al., 2019). The realization of the LSA 

objectives has been greatly enhanced by the introduction of the GIS technique.  
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 When constructing a GIS database in LSA, two basic requirements must be 

followed: 

a) The data must be homogeneous, with the same work-scale and geographic 

projection system; 

b) The database must be organized into basic single thematic layers, each 

containing homogeneous data (Aleotti & Chowdhury, 1999). 

 

2.10 Frequency Ratio (FR) Model 

 The Frequency Ratio (FR) model is based on the geographical distribution of 

landslides in respect to each LCF, which is particularly applicable for larger areas and 

notably performs better accuracy than other methods in mapping landslide 

susceptibility classifications in every single layer. Additionally, it has the advantage 

of simplicity and understandability, it is not necessary to select model parameters and 

to determine the reasonable non-landslides area for FR. The FR model not only 

generates LSMs but also takes into account the sensitivity of landslide failure to 

certain landslide-related factors. Even though numerous complex machine learning 

(ML) approaches have been proposed, this method is still frequently utilized by 

researchers and practitioners. Furthermore, the principles' simplicity and ease of 

implementation in a GIS environment make it an approach for LSM that is both user-

friendly and effective, thus is considered as one of the most widely used approaches 

for preparing LSMs (Milevski et al., 2019; Shano et al., 2021; Zhang et al., 2020). 

The FR is the proportion of landslides in a certain factor's classification as a 

percentage of all landslides, and the area of that classification as a percentage of the 

overall research region (Shahabi et al., 2014). The FR approach, a variation of the 

probabilistic technique, is based on observable links between the distribution of 

historical landslide sites and each of the landslide conditioning factors and is used to 

uncover the association between them (Nohani et al., 2019; Wu et al., 2016). 

 According to the basis of the FR method, the single LCF layer is to be 

overlapped with the past landslide event points layer, then two attributes of each 

factor need to be considered, namely the quantity of area in the zone (classification of 

each factor) and the number of landslides in the same zone, of which, for some 

researchers, the area of landslides has been adopted as the representation of the 



33 

 

 

number of landslides in the zone, however, some others have adopted the number of 

landslide points in the zone instead based on the actual data availability (Hidayat et 

al., 2019; Sangeeta & Maheshwari, 2018), the theory of the latter is based on 

Equation 1.  

 

𝐹𝑅𝑖 =
𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 𝑖

𝑇ℎ𝑒 𝑎𝑟𝑒𝑎 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑖
 

            =

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 𝑖
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 𝑝𝑜𝑖𝑛𝑡𝑠⁄

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑖
𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎⁄

 

            =

𝐿(𝑖)
∑ 𝐿(𝑖)𝑛

𝑖
⁄

𝑆(𝑖)
∑ 𝑆(𝑖)𝑛

𝑖
⁄

                                    (1) 

Where, 𝐹𝑅𝑖 is the frequency ratio value of class i of a selected factor. 

 

 In the relationship analysis, a FR value of 1 is an average value, if a FR value 

is equal to 1 means that the classification has a landslides density proportionally to the 

size of the classification in the map, while if the value greater than 1 means a higher 

correlation, a FR value of less than 1 means a lower correlation area vice versa, 

normally, the original FR values are decimals.  

 To meet the input principle of the new value data type of the raster reclassify 

function (Figure 1) of ArcGIS that “The newValue must be an integer” (Esri, 2016), 

all the original FR values have the need of being converted to integers. 
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Figure 1  The Illustration of Reclassify Function of ArcGIS 

 

Source:  ESRI, 2022 

 

2.11 Relative Frequency (RF) and Predictor Rate (PR) 

 Some researchers (Acharya & Lee, 2018; Rabby & Li, 2020; Sangeeta & 

Maheshwari, 2018), adopted the conversion method of normalizing the FR value into 

a range of probability values [0,1] using the equation of 
𝐹𝑅

∑ 𝐹𝑅
 to get the relative 

frequency (RF) value for each classification of every factor, then convert the RF 

values into integers by multiplying by 100 using Equation 2.  

 

𝑅𝐹 = 𝑅𝑜𝑢𝑛𝑑 (
𝐹𝑅

∑ 𝐹𝑅
∗ 100)                                                    (2) 

 

 where, RF is the normalized relative frequency value of each class of every 

factor. After normalization, however, the RF value still has the drawback of 

considering all LCFs as equally important and having an equal weight value of 1, 

which is unrealistic in the real situation (Acharya & Lee, 2018; Tan et al., 2020). 
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Finally, the weight value for each factor namely predictor rate (PR) is derived from 

Equation 3.   

 

𝑃𝑅 =
(𝑅𝐹𝑚𝑎𝑥−𝑅𝐹𝑚𝑖𝑛)

(𝑅𝐹𝑚𝑎𝑥−𝑅𝐹𝑚𝑖𝑛)𝑚𝑖𝑛
                                                 (3) 

 

Where, PR is the predictor rate (weight) value of each factor, 𝑅𝐹𝑚𝑎𝑥 

and 𝑅𝐹𝑚𝑖𝑛 are the maximum and minimum RF of each selected factor, respectively. 

(𝑅𝐹𝑚𝑎𝑥 − 𝑅𝐹𝑚𝑖𝑛)𝑚𝑖𝑛 is the minimum (𝑅𝐹𝑚𝑎𝑥 − 𝑅𝐹𝑚𝑖𝑛) value of all factors. 

 

2.12 Landslide Susceptibility Index (LSI) 

 To generate the final LSM for the area, the landslide susceptibility index 

(LSI) needs to be defined, it is calculated using Equation 4. 

 

 𝐿𝑆𝐼 = ∑(𝑅𝐹 ∗ 𝑃𝑅)                                                          (4) 

 

 The higher the LSI value, the more susceptible the area is to landslides. The 

lower the LSI value, on the other hand, the lower the susceptibility to landslides. 

 

2.13 Receiver Operating Characteristic (ROC) Curve and Area Under the Curve 

(AUC) 

 A LSM is superior only after the result is validated to check how well the 

model predicts the landslides in the study area (Mind’je et al., 2019). According to 

previous research, most of the validation work has been done by assessing AUC value 

of the ROC method (Intarawichian & Dasananda, 2011; Le et al., 2021; Pourghasemi 

et al., 2013; Wu et al., 2016; Youssef et al., 2014; Zhang et al., 2016). The ROC curve 

may be used to assess the quality of both probabilistic and deterministic detection 

systems, as well as forecasting systems (Youssef et al., 2014). Therefore, the final 

landslide susceptibility productions of the study are to be validated using the AUC. 

The software package Arc-SDM (Brown et al., 2017), which, as the name suggests, is 

a free of charge extension of ESRI’s ArcGIS is adopted to generate the AUC. 
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Figure 2  An Example of ROC Curves with Good (AUC = 0.9) and Satisfactory 

(AUC = 0.65) Results of Specificity and Sensitivity 

 

Source:   Trifonova et al., 2014 

 

 The AUC is based on a graph of 'sensitivity' and '1-specificity,' which 

is calculated for a variety of thresholds. In the AUC method, the number of pixels 

correctly predicted by the model is displayed versus the number of pixels incorrectly 

predicted (Mind’je et al., 2019). The model's sensitivity (the fraction of existing 

landslide pixels accurately predicted by the model) is displayed versus 1-specificity 

(the percentage of predicted landslide pixels over the total study area) in the ROC 

curve. The AUC evaluates a probabilistic model's ability to reliably predict the 

existence or absence of landslides (Youssef et al., 2014). In generally, the higher the 

AUC value, the better the model (Le et al., 2021; Wu et al., 2016). The AUC value of 

1 represents a perfect prediction. However, in the real situation, as is shown in Figure 

2. The quantitative-qualitative relationship between AUC and prediction accuracy is 

classified as follows: 0.9-1 means excellent; 0.8-0.9 means very good; 0.7–0.8 means 

good; 0.6–0.7 means average; and 0.5–0.6 means poor (Pourghasemi et al., 2013). In 

other words, the better the prediction, the steeper the slope of the curve. An AUC of 
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0.9, for example, suggests a very good model in which 90% of the landslides fall in 

the 10% zone with the highest susceptibility (Zhang et al., 2016). 

 

2.14 Decision Support System 

 According to Mohd et al. (2014), a DSS is a collection of tools and 

procedures that work together to manage a system. Making judgments in a dynamic 

and rapidly changing world is difficult because many factors are involved, including 

the decision-maker, conflicts of interest, the importance of the decision, and the 

various criteria involved in the problem. In the face of a complex, uncertain, and 

contradicting situations, DSSs have been widely used (de Lima et al., 2019).  

 Decision support can be defined as the aid for, substantiation, and 

confirmation of an act or result of deciding. The following requirements should be 

met by DSSs: 

• Proposed to solve problems with a semi-structured framework; 

• Analytical models can be combined with traditional data and retrieval 

functions; 

• Easy to use and accessible for decision-makers with not much computer 

experience 

• Flexible and adaptive to various decision-making approaches (Yatsalo & 

Sullivan, 2012). 

The typical framework of a DSS is characterized by including:  

• Capabilities in analytical modeling; 

• Systems for database management; 

• Display of graphical contents; 

• Tools for reporting; 

• Knowledge of decision-makers (Oliveira et al., 2012). 

 

2.15 Spatial Decision Support System 

 Similar to DSS, SDSS is intended to solve semi-structured spatial problems, 

it was evolved from the DSS by including the geospatial content. SDSSs also provide 

functions and tools for spatial/geographic data processing and analysis, in addition to 
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the aforementioned features of DSSs. As a result, SDSS aids decision-making in 

terms of spatial alternatives analysis by merging GIS functionalities with DSS tools 

for stakeholders (Yatsalo & Sullivan, 2012). In some cases, the data are stored in the 

form of tables in a database, of which, their links with locations cannot be visualized. 

GIS allows people to visualize spatial data by linking attribute information from 

tables to a geographic location (Sreekanth et al., 2021). SDSSs are typically designed 

to give a decision-making environment that allows for the flexible analysis of both 

geographical and attribute components (Mansourian et al., 2011). The SDSS aided in 

decision making and is helpful in planning, monitoring, evaluating the delivery, 

evacuation, and coverage of interventions, site selection, and accountability that have 

a strong geographical component (Wangdi et al., 2016). SDSSs have been used in a 

variety of fields, including flood risk management, earthquake disasters, infrastructure 

investment, and public education (de Lima et al., 2019). SDSSs can be used in 

disaster response to identify the best places for rescue crews, plan evacuation routes, 

and assign evacuees to shelters (Nyimbili & Erden, 2017). 

 A SDSS combines GIS capabilities including geographical data management 

and cartographic display with analytical modeling, a customizable user interface, and 

complicated spatial data structures. A SDSS is a framework for integrating:  

• Spatial and analytical modeling ability; 

• Handling of spatial and non-spatial data; 

• Domain expertise; 

• Capabilities of spatial display; 

• Capabilities for reporting (Sugumaran & Sugumaran, 2007). 

 

2.16 Web-based Spatial Decision Support System 

 Web-based SDSS has been suggested as a useful tool for 

participatory/collaborative/group spatial planning and decision-making (Jelokhani-

Niaraki, 2018). As a result of the collaborative nature of many decision-making 

problems, a participatory decision-making process is becoming increasingly important 

for resolving conflicts and reducing uncertainty in spatial planning and decision-

making by facilitating information/knowledge exchange as well as software and 

model sharing. The Internet can be considered a preferred medium for communication 
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between the public and urban planners when large numbers of citizens and a diverse 

range of stakeholders are required for decision-making (Mansourian et al., 2011). The 

challenge of exchanging spatial data in real-time has a new dimension with the recent 

adoption of web services for various GIS applications (Sreekanth et al., 2021). Web 

technologies open up new options for using SDSS in a participatory environment, 

allowing the traditional SDSS to shift from a closed, place-based (time and location 

fixed), and synchronous process to an open, asynchronous, dispersed, and active 

process (Jelokhani-Niaraki, 2018). What the users need to access to a WebSDSS is 

only a web browser that is installed originally on any PCs or mobile devices (e.g., 

PDA, smart phones). This revolution leads to a shift in decision-making from 

individual data browsing, analysis, and management to collective participation and 

communication on scientific and social decision-making issues (Mohd et al., 2014). 

 

 

 

Figure 3  The Progression of Spatial Decision Support Systems Development 

 

Source:  Sugumaran & Sugumaran, 2007 
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 Web-based SDSSs have many advantages compared with stand-alone 

desktop systems such as platform independency, cutting down costs, reduction of 

maintenance problems, ease of use, data sharing among the users worldwide, 

supporting group discussion, and an increase in public access and decision-making 

participants (Yatsalo & Sullivan, 2012). Furthermore, as is customary, a large number 

of people and permission applicants must visit the municipality offices to submit their 

applications and track their progress. As a result, the creation of a WebSDSS can 

assist municipal officers in making the transition from traditional urban planning and 

management to an online public participatory spatial planning approach (Mansourian 

et al., 2011). 

 Figure 3 shows the progression of Spatial Decision Support Systems 

Development which includes the development of GIS, DSS and their combination 

SDSS, and the Web-based SDSS that Internet is introduced in. 



 
 

CHAPTER III 

 

METHODOLOGY 

 

3.1 Introduction 

The purpose of this study is to assess the landslides susceptive areas 

and degree with the adoption of the PR model which is the derivative of the FR 

model, and the aid of GIS in Xishuangbanna Dai Prefecture, Yunnan Province, the 

People’s Republic of China, then develop a Web-based SDSS using the landslide 

susceptibility maps. This chapter explains the research methodology including the 

study area, data preparation, methods for processing and analyzing the data, and the 

results verification and development of the proposed platform. The overall research 

methodology is shown in Figure 4. 

 

 

Figure 4  The Overall Research Methodology 

 

3.2 Study Area 

 Xishuangbanna Prefecture, Yunnan Province, China, lies at (21°10′-22°40′N, 

99 ° 55 ′ -101 ° 50 ′ E), the harsh topography, fault lines, monsoon rains, and 

anthropogenic activity on unstable slopes make it one of the places that is prone to 
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landslides. The administrative region includes one county-level city-Jinghong and two 

counties-Menghai and Mengla, borders Myanmar to the southwest and Lao People’s 

Democratic Republic (Lao PDR) to the south (Cao et al., 2017) (Figure 5). The 

region features a mountain-valley topology, with the Hengduan Mountains running 

north-south, and mountains and hills cover around 95 percent of the area. The 

Lancang River (upper Mekong River) runs through the middle of Xishuangbanna, 

with more than 20 major tributaries, resulting in several river valleys and minor basins 

(Li et al., 2008). Xishuangbanna covers a total area of about 19,120 km2. According 

to the ASTER GDEM, the elevation ranges from 390 to 2,428 meters above sea level. 

The annual precipitation from 1,324 mm to 2,355 mm derived from 0.5°×0.5° Grid 

Dataset of Daily Precipitation over China (V2.0) of National Meteorological Science 

Data Center. The climate is tropical monsoon, with a dry season from November - 

April and a wet season from May - October. The average annual temperature is 20-

22.5 °C, over 90% of the precipitation in the rainy season (Xiao et al., 2019). Only 0.2 

percent of China's geographical area is covered by Xishuangbanna, yet it contains 16 

percent of the country's vascular flora, 22 percent of animals, and 36 percent of birds 

(JianhouZhang & MinCao, 1995).  

 

 

 

Figure 5  Study Area 



43 

 

 

          

 

Figure 6  The Southeast Asia Rubber Plantation Zone (a), and the 

Xishuangbanna Rubber Plantation Zone (b)  

 

Source:  Zhu et al., 2014 

 

 Since the release of reform and opening-up (1978) policy of the Chinese 

government, Xishuangbanna has experienced rapid urbanization and significant 

changes in land use (Cao et al., 2017), the spread of monoculture rubber plantations 

accounts for the primary liability (Xu et al., 2014), the area of monoculture rubber 

plantations has increased to 22% (424,000 ha) of the total land cover in 2010 (Hemati 

et al., 2020; Zhang et al., 2019), and increased by more than 12-times from 1976 to 

2015 (Cao et al., 2017), which has resulted in broad land-use change and led to 

prominent degradation of the local environment (Min et al., 2019). China is a net 

importer of rubber, accounting for 30% of all rubber consumption worldwide 

(Sarathchandra et al., 2021). Xishuangbanna is one of the hot spots with rich 

biodiversity, but with the increasing demand for rubber and other economic crops, the 

region has resulted in severe deforestation and has become China's second-largest 

natural rubber-planting base (Li et al., 2008), though, as shown in Figure 6, The 

rubber trees are planted in a 2 m x 10 m grid, resulting in 500 trees per hectare in 

Xishuangbanna, which is the highest concentration of rubber plantations in China and 

South Asia (Zhu et al., 2014). Rubber plantations have limited carbon storage 
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compared to the natural forest ecosystems they are replacing; therefore, their rapid 

development could have serious consequences. Furthermore, in recent decades, 

Xishuangbanna has experienced massive urbanization, with the urban population and 

GDP per capita growing from roughly 50 thousand and 347 RMB in 1978 to 483 

thousand and 26,507 RMB in 2014 (Cao et al., 2017). 

 

3.2 Data Preparation 

 In all versions of LSM, the construction of a landslide inventory map has 

been regarded as the most important and initial phase. Landslides are thought to be 

influenced by LCFs, and future landslides will take place under the same 

circumstances as earlier landslides (Abedini & Tulabi, 2018; Lee & Talib, 2005; 

Nohani et al., 2019; Rasyid et al., 2016; Youssef et al., 2014). As a result, the 

landslide inventory map is crucial for determining the quantitative spatial correlations 

between relevant causative factors and landslide sites. These maps may also be used 

to forecast future landslides using historical landslide data.  

 In addition, collecting all available data as well as the construction of a 

spatial database in the study area are also indispensable. This need for accurate data 

collection and preservation in databases is widely recognized, but choosing those 

different factors is surely one of the most difficult tasks. There are no common criteria 

or rules for this, as a result, the local environment of the study area and the data 

availability must be considered while selecting criteria. Some researchers claim 

that data collection and processing costs account for 70-80% of the total, including 

review and updating (Aleotti & Chowdhury, 1999; Marsala et al., 2019).  

 According to the time range statistics from the literature review (Table 3), of 

the 52 previous studies, only Pradhan (2010) has used the same time range of 

landslide inventory and precipitation data. Sur et al. (2020), Youssef et al. (2014), 

Shahabi et al. (2014), Mind’je et al. (2019), and Intarawichian and Dasananda (2011) 

used a very big data difference regarding the aforementioned time range. For other 

studies, the time range is not complete or has not been provided. Some have not 

considered the precipitation as a landslide conditioning factor for their study area. 

Zhang et al. (2016) decided not to use the precipitation data because it has been 

proved that not corresponding to the past landslide distribution. Due to the limitation 
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of the data availability, the LSA in this study does not consider the impact of climate 

change. Instead, a long-term trend of the landslide distribution density and annual 

precipitation extracted from a long-term time range precipitation data of the study are 

considered. 

 

Table 3 Time Range Statistics of Data Adopted from Literature Review 

Author (year) Landslide 

inventory 

data time 

range 

Landslide 

inventory 

data 

duration 

Precipitation 

data time rage 

Precipitation 

data duration 

Remarks 

Pradhan (2010) 1981 - 2004 23 years 1981-2004 23 years Landsat image 

in April 

2004 was used 

Sur et al. (2020) 2001 - 2017 16 years 1947 - 2017 60 years  

Youssef et al. 

(2014) 

2005 - 2015 10 years 1960 - 2013 53 years  

Shahabi et al. 

(2014) 

2008 - 2011 3 years 1980 - 2010 30 years  

Mind’je et al. 

(2019) 

June - 

September 

2018 

3 months 1990 - 2017 27 years  

Intarawichian 

and Dasananda 

(2011) 

2003 - 2007 4 years 2000 - 2010 10 years  

Meena et al. 

(2019) 

April - June 

2015 

2 months Not specified Not specified  

Pirasteh and Li 

(2017) 

2009 - 2016 7 years Not used Not used  

Hung et al. 

(2015) 

2010 - 2011 1 year Not used Not used  

Zhang et al. 

(2020) 

June, 2010 1 month Not used Not used  

Rasyid et al. 

(2016) 

2004 - 2014 10 years Not used Not used  

Huang et al. 

(2018) 

2015 1 years Not used Not used Landsat image 

on July 03, 

2013, was used 

Zhang et al. 

(2016) 

Up to 2014 Not specified Not used Not used Precipitation 

not 

corresponding 
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Landslide inventory is the detailed record of the location and features 

of historical landslides (Hervás, 2013). In LSM, some researchers argue that, of all the 

data maps, the landslide inventory map (LIM) is the most important since it provides 

information into the location of historical landslide occurrences and also their failure 

processes (Persichillo et al., 2016; Zhang et al., 2020). Besides, a LIM has been 

frequently used for validating the accuracy of the model (Milevski et al., 2019). In the 

form of points or polygons, the LIM depicts the spatial distribution of landslides 

(Arabameri et al., 2020). In this study, the landslides inventory is prepared in points 

based on its availability. There are currently no standard processes for selecting 

training and testing samples; nonetheless, the training and testing samples should be 

distinct from one another. According to previous studies, 70:30 ratio and random 

sampling techniques are the most employed approaches (Laila Fayez et al., 2018; 

Mahalingam et al., 2016; Pourghasemi et al., 2013), hence, a 70:30 ratio was chosen 

by using the random sampling method in this study. 

214 landslide inventory points data derived from Resource and 

Environment Science and Data Center of China (RESDC) (http://www.resdc.cn) has 

been adopted in this study, of which, Jinghong city, Menghai, and Mengla county 

accounts for 52, 92, and 70, respectively. The landslide inventory has been randomly 

divided into two parts, i.e., 150 points (70%) as the training and the remaining 64 

points (30%) as the verification datasets, see the statistical number (sample) in Table 

4.  

 

Table 4  The Landslide Inventory and the Randomly Divided Training, 

Verification Datasets 

Region Landslide 

inventory points 

Training points 

(70%)  

Verification points 

(30%) 

Xishuangbanna 214 150 64 

Jinghong 52 34 18 

Menghai 92 67 25 

Mengla 70 49 21 
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As an essential part of both the generation of single factor maps and the 

final landslide susceptibility maps, the data sources are required and prepared as 

shown in Table 5. The Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) Global Digital Elevation Model Version 3 (GDEM 003) was 

released on August 5, 2019, while the first version of the ASTER GDEM, released in 

June 2009. The improved GDEM V3 adds additional stereo-pairs, improving 

coverage and reducing the occurrence of artifacts, which shows significant 

improvements over the previous release. The refined production algorithm provides 

improved spatial resolution, increased horizontal and vertical accuracy. Thus, GDEM 

V3 was selected as the digital elevation model (DEM) of the study. All types of 

original data formats need to be unitized into the same cell size resolution raster data 

type using ArcGIS, in this study, an accuracy of 30m × 30m is selected, and all data 

layers are projected into the reference coordinate system of 

WGS84_3_degree_Gauss_Kruger_CM_102E. 

 

Table 5  Data Type and Sources 

Layer Format Resolution Data source 

Elevation .tif 30m × 30m 

 ASTER GDEM V3 

(https://earthexplorer.usgs.gov/) 

Slope angle .tif 30m × 30m 

Slope aspect .tif 30m × 30m 

Curvature .tif 30m × 30m 

TWI .tif 30m × 30m 

SPI .tif 30m × 30m 

Distance to 

rivers 

.shp 

(polyline) 

- Water Bureau of Xishuangbanna Prefecture 

Distance to 

roads 

.shp 

(polyline) 

- OpenStreetMap 

(https://www.openstreetmap.org) 

Distance to 

faults 

.jpg - Seismic Active Fault Survey Data Center of 

China (http://www.activefault-

datacenter.cn/) 

Precipitation .txt 0.5° × 0.5° Meteorological Science Data Center of 

China (http://data.cma.cn/) 

NDVI .tif 30m × 30m Landsat 8 OLI/TIRS Level-2 Data Products 

(https://earthexplorer.usgs.gov/) 

LULC .tif 30m × 30m National Geomatics Center of China 

(NGCC) (http://www.globallandcover.com/) 
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Layer Format Resolution Data source 

Lithology .jpg - OSGeo China Center 

(https://www.osgeo.cn/) 

Soil texture .shp 

(polygon) 

- Chinese Soil Database 

(http://vdb3.soil.csdb.cn/)  
RPD .tif 30m × 30m (Need to study) 

 

3.3 Method 

 The LSA process in the current study uses FR methods, combined with GIS 

as well as RS techniques. Two assumptions of principal are employed in the study, 

one is that the landslides conditioning factors (LCFs) for future landslides will stay 

the same as they were in the past (Milevski et al., 2019). Another possibility is that 

future landslides will occur in the same environmental conditions as previous ones 

(Abedini & Tulabi, 2018; Nohani et al., 2019; Youssef et al., 2014). Consequently, 

analysis of the spatial variation of landslides inventory in the area, as well as the 

classification of each LCF layer and the relationships between them provide important 

information in predicting future landslides. Rather than landslide hazard assessment 

(LHA), a landslide susceptibility assessment (LSA) is to be done in this study which 

considers only the spatial likelihood of future landslides occurrence. All the spatial 

source data preparation, storage, homogenizing, and the calculation of landslide 

susceptibility index (Index), the mapping of landslide susceptibility is conducted by 

using ArcGIS. The verification of the results is done by using the ROC which 

evaluates the quality by analyzing the area under the curve (AUC) values, the ArcGIS 

add-in namely Arc-SDM is adopted for calculation of AUC values. The overall 

methodology can be divided into 3 parts including the identification of landslide 

conditioning factors (LCFs) for the study area, landslide susceptibility mapping 

(LSM) with adopting the selected LCFs, and design and development of Web-based 

Spatial Decision Support System for Landslide in Xishuangbanna, China, using the 

outcomes of the LSA. 

The objective of the study is to assess the area prone to landslides for 

the study area by the means of LSM, however, the precondition is all the LCF layers 

are getting readily prepared before inputting them into the model. Based on the local 
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peculiarities of the study area, for LSA, at least three aspects fo factors must be 

input in GIS analysis: topography, land use, and lithology (Milevski et al., 2019). 

However, for the LCFs, there are no predefined criteria for selection (Sur et al., 2020). 

For this study 14 LCFs are preliminarily picked based on the 52 pieces of literature 

(Table 2), which are mainly related to geological (Soil texture, Distance to faults, and 

Lithology), hydrological (Distance to rivers and Precipitation), geomorphological 

(Slope angle, Curvature, Slope aspect, Elevation, TWI, and SPI), and anthropogenic 

factors (LULC, NDVI, Distance to roads) that can lead to slope instabilities (Meena et 

al., 2019). Though, the rationality and helpfulness of each factor in LSA for the study 

area need to be identified. The identification process is designed as following steps: 

a) Generating 1 LSM using FR model with inputting all the 14 LCF 

layers and the landslide training dataset, then calculate the AUC value for generated 

LSM; 

b) Generating 14 LSMs using FR model by adopting one-at-a-time 

sensitivity analysis method (remove each of the 14 LCF layers in turn from the 

whole), then calculate the AUC value for each single factor map by inputting the 

landslide training dataset; 

c) Based on the theory that at least three aspects of factors including 

topography, lithology, and land use must be input in GIS analysis for LSM (Milevski 

et al., 2019), the slope angle, lithology, and LULC are selected as the minimum factor 

group to generate the LSM, together with inputting the landslide training dataset using 

FR model, then calculate its AUC value; 

d) Based on the minimum factor group, each of the other 11 LCFs 

will be added into the group in turn, adopting one-at-a-time sensitivity analysis 

method and using the FR model to generate the 11 LSMs, together with inputting the 

landslide training dataset, then calculate the AUC values for each LSM; 

e) Analyze the AUC values of all generated LSMs to determine 

whether the participation of each factor helps to increase the AUC value. Only if the 

factor shows a prominent positive effect in improving the AUC value, this factor will 

be kept as a member of the final LCF group for the study area. Conversely, if the 

factor plays a negative role or has no prominent effect on the AUC value, this factor 

will be removed from the final LCF group. 
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  Finally, the identified LCF group will be set as the effective landslide 

conditioning factors for this study. See the workflow of the identification process in 

Figure 7.  

 

 

Figure 7  Landslide Conditioning Factors (LCFs) Identification Workflow 

 

The general LSM process of the study is shown in Figure 8, of which, 

landslide inventory dataset is used in both LSM processes of 27 individual scenarios 

and the final identified factor case as the necessary input data for calculating FR value 

and AUC value, while landslide inventory verification dataset is only used to verify 

the final landslide susceptibility map. 
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Figure 8  General Landslide Susceptibility Mapping (LSM) Process of the Study 

 

3.3.2.1 Factor Classification 

Each of the LCFs must be classified into categorical susceptibility 

classifications for visual interpretation of LSMs. Quantiles, equal intervals, standard 

deviations, and natural breaks are some of the classification methods available 

(Youssef et al., 2014). However, there is also no widely accepted consensus on the 

optimal method for categorizing each factor into subclasses. The most commonly 

utilized techniques are natural breaks and quantile categorization (Milevski et al., 

2019). Natural breaks is an approach for determining the appropriate organization of 

values into distinct groups that has been widely employed, particularly by planners  

(Rasyid et al., 2016). The variance between categories is maximized, while the 

variance within classifications is minimized, using this method. In this study, each 

LCF is to be subdivided into different classifications using the natural breaks 

classification method, to adapt to the variety of data sources and scale differences, and 

to effectively illustrate its role in the occurrence mechanism of landslides, except for 

the one that has unique classifications itself. 
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3.3.2.2 Landslide Susceptibility Mapping with Identified Factors 

The detailed process of LSM after getting the identified LCFs is shown 

in Figure 9, and the process (all steps have proceeded in ArcGIS) is as follows: 

a) Classify all the identified LCFs (including RPD) layers using the 

natural breaks method; 

b) Generating LSMs using FR model with all the classified LCF 

layers, as well as the landslide training dataset, then calculate the FR value for each 

classification of each LCF using Equation 1, then convert the FR values to RF values 

using Equation 2; 

c) Reclassify all the LCFs layers by assigning the corresponding 

calculated RF value for each classification of each LCF; 

d) Calculate the PR value for each LCF using Equation 3; 

e) Calculate the LSI using Equation 4; 

f) Generating the final LSMs in ArcGIS with the LSI values. 

 

 

 

Figure 9  Final Landslide Susceptibility Mapping Workflow 

 

3.3.2.3 Frequency Ratio (FR) Calculation 

The FR value is calculated by using Equation 1 (defined in Chapter 

II). 

3.3.2.4 Relative Frequency (RF) Calculation 

The RF value is calculated by using Equation 2 (defined in Chapter 

II). 
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3.3.2.5 Predictor rate (PR) Calculation 

The PR value is calculated by using Equation 3 (defined in Chapter 

II). 

3.3.2.6 Landslide Susceptibility Map (LSM) Generation 

Before generating the LSM, LSI needs to be calculated first, which is 

calculated by using Equation 4 (see in Chapter II). Then the LSI value for 

interpretation with the assistance of ArcGIS function, namely “Raster Calculator” was 

used to produce all the final LSMs. 

3.3.3.7 Mapping Results Verification 

The LSMs constructed by FR model are to be verified by comparing 

the AUC values of the final LSMs with inputting the landslide inventory data. The 

AUC approach is used to evaluate the prediction quality of the model. The AUC value 

of inputting the landslide inventory training dataset and the verification dataset 

represent the success rate and prediction rate of the model respectively, and the results 

are to be plotted in the form of a graphic.  

Figure 10 shows the design of the proposed Web-based SDSS for 

Landslide in Xishuangbanna, China, which aims to present the outcomes of the study. 

There are in total 14 landslide conditioning factors which are obtained from the 

literature review at first. By analyzing the corresponding relationship between 

landslide inventory training data and each factor, Finally, several factors will be kept 

as the dominant landslide conditioning factors for Xishuangbanna, China. 

Hypertext Markup Language (HTML) is a typical choice for the 

development of websites, web pages and web-based applications. Business 

stakeholders, project management and program developers prefer HTML over other 

alternative program development options due to its advantageous characteristics. A 

few of the notable advantages of HTML are ‘it is lightweight in structure‘, ‘it is easy 

to learn and use’, ‘it is an open-source program that can be used for free of cost’, ‘it is 

supported in all kinds of browsers’, ‘effortless to create and edit’, ‘easy to integrate 

with other programming languages, ‘allows to accommodate changes at any time as 

required for the requirements’, etc. (Goyal, 2022). As a static language, however, one 

of the limitations of the HTML is it cannot produce dynamic output alone, while 
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Hypertext Preprocessor (PHP) can make up the shortage which is initially designed to 

create dynamic web pages. Moreover, PHP also has other advantages including “great 

synergy with HTML”, “many available specialists”, “a large base of reference and 

educational materials”, “better loading speed of websites”, “more options for database 

connectivity”, “a large collection of open-source addons”, “inexpensive website 

hosting”, “excellent flexibility and combinability”, “various benefits provided by 

cloud solutions”. PHP allows connection to almost any type of database but the most 

common one is MySQL, because it is free and effective (Roznovsky, 2022). Baidu 

Map JavaScript API is a set of application programming interface written by 

JavaScript language which can help users build a rich and interactive map application 

on the website. It supports PC and mobile browser-based map application 

development and supports HTML5 features of map development. Moreover, it is free 

of charge, the utilization times of the interface are unlimited (Baidu, 2022). 

Considering the advantages described above, HTML, PHP, MySQL, and Baidu Map 

JavaScript API are selected as the programing language and tools for the development 

of the proposed Web-based SDSS for current study. 

The system can reappear the process of our landslide susceptibility 

assessment for Xishuangbanna and help decision-makers to identify the landslide 

susceptibility level of a specific location, which can be used as effective decision-

making supporting tool, as well as providing a contemplable way of making better use 

of the conventional LSA outcomes for future researchers. As is shown in Figure 10, 

the system is designed to include the following 5 modules: 

a) General - Consists of location identification, program introduction, 

data type and resource, methodology, and about us pages; 

b) Single Layer Maps - Present landslide inventory distribution on 

each of the landslide conditioning factor classification maps; 

c) Remove Factor Scenarios - Present factor weight & AUC value of 

the case of adopting all 14 factors, and the cases of removing one factor from the 14 

factors in turn; 

d) Add Factor Scenarios - Present factor weight & AUC value of the 

case of adopting 3 minimum factors (Slope Angle, Lithology and Land Use & Land 

Cover (LULC)), and the cases of adding one factor into the 3 factors in turn; 
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e) Final Results - Present AUC value compare of both cases of 

removing and adding factor except for the obligatory 3 minimum factors (Slope 

Angle, Lithology and LULC), factor weight value for the final 7 factors, the final 

Landslide Susceptibility Mapping result, the result for township level and the 

susceptibility statistic data of each township. 

 

 

 

Figure 10  Design of Web-based SDSS for LSA in Xishuangbanna, China 



 
 

CHAPTER IV 

 

RESULTS AND DISCUSSION 

 

In this chapter, the results and discussion under the topic of Landslide 

Susceptibility Assessment and Development of the Web-based Spatial Decision 

Support System for Landslide in Xishuangbanna, China, concerning the research 

objectives, set in Chapter I is illustrated, which is produced using ArcGIS and 

Microsoft Excel. 

4.1 Results 

4.1.1.1 Slope Angle 

As the most frequently used LCF in LSA, the slope angle is selected in 

this study and the map data was obtained from the ASTER GDEM with resolution 30 

m × 30 m and the values are divided into 7 classifications adopting the natural breaks 

classification method: 0 - 8°, 8 - 14°, 14 - 20°, 20 - 26°, 26 - 32°, 32 - 38°, and ＞38°. 

The landslide inventory distribution in each classification and the area percentage of 

each classification is shown in Table 5, and the classification overlapping map with 

landslide inventory can be seen in Figure 13 (a). 

4.1.1.2 Distance to River 

The Lancang River is the biggest river in the study area, but there are 

also a huge number of smaller rivers and their branches. The distance to rivers was 

considered in the current study. To analyze the impact of rivers on the slopes, five 

river buffer types were devised, which are 0 m - 50 m, 50 m - 100 m, 100 m - 150 m, 

150 m - 200 m, and ＞  200 m. The landslide inventory distribution in each 

classification and the area percentage of each classification is shown in Table 5, and 

the classification overlapping map with landslide inventory is shown in Figure 13 (b). 

4.1.1.3 Slope Aspect 

In LSA, the slope aspect is considered as a possible conditioning factor 

and is adopted in the study and also generated from ASTER GDEM under nine 

directional classifications, using the natural breaks classification method, i.e., flat (-
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1°), north (337.5° - 360°, 0° - 22.5°), northeast (22.5° - 67.5°), east (67.5° - 112.5°), 

southeast (112.5°-  157.5°), south (157.5° - 202.5°), southwest (202.5° - 247.5°), west 

(247.5° - 292.5°), and northwest (292.5° - 337.5°). The landslide inventory 

distribution in each classification and the area percentage of each classification are 

shown in Table 5, and the classification overlapping map with landslide inventory is 

shown in Figure 13 (c). 

4.1.1.4 Lithology 

The lithology map was digitalized from the image file which is a non-

georeferenced map obtained from OSGeo China Center. Since the map is in Chinese 

language and the petrographic classification is also in the Chinese method, to avoid 

inaccurate translation, in the current study, the original 16 classification units are 

depicted as Group A - Group P. The landslide inventory distribution in each 

classification and the area percentage of each classification is shown in Table 5, and 

the classification overlapping map with landslide inventory is shown in Figure 13 (d). 

4.1.1.5 Land Use and Land Cover (LULC) 

The land use source data was obtained from the National Geomatics 

Center of China, which has 7 classifications in the study area, which are Cultivated 

Land, Forest, Grass Land, Shrubland, Wetland, Water Body. The landslide inventory 

distribution in each classification and the area percentage of each classification are 

shown in Table 5, and the classification overlapping map with landslide inventory 

can be seen in Figure 13 (e). 

4.1.1.6 Distance to Fault 

Because there are geological faults in the study area, we must consider 

the distance to faults when conducting LSA. The faults buffer classifications were 

defined as < 500 m, 1000 m - 2000 m, 2000 m - 3000 m, 3000 m - 4000 m, and ＞ 

4000 m. The landslide inventory distribution in each classification and the area 

percentage of each classification are shown in Table 5, and the classification 

overlapping map with landslide inventory can be seen in Figure 13 (f). 

4.1.1.7 Distance to Road 

The study area has experienced rapid urbanization, including the 

expansion of the transport network, so it is reasonable to take the road system into 

account for LSA. Five different buffer zones were generated using ArcGIS: < 50 m, 
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50 m - 100 m, 100 m - 150 m, 150 m - 200 m, and ＞ 200 m. The landslide inventory 

distribution in each classification and the area percentage of each classification are 

shown in Table 5, and the classification overlapping map with landslide inventory 

can be seen in Figure 14 (a). 

4.1.1.8 Curvature 

The curvature value is used to assess the landslide susceptibility in the 

study area, which represents the morphology of the topography. The curvature map is 

also generated from ASTER GDEM and is divided into 3 categories adopting the 

natural breaks classification method, which are Concave (-1 to -0.01), Flat (-0.01 to 

0.01), and Convex (0.01 to 1). The landslide inventory distribution in each 

classification and the area percentage of each classification is shown in Table 5, and 

the classification overlapping map with landslide inventory can be seen in Figure 14 

(b). 

4.1.1.9 Elevation 

The elevation map is derived from the ASTER GDEM with resolution 

30 ×30 m ranges from 390 m to 2428 m in the study area, of which, about 95% is 

mountains and hills area, thus the elevation plays an significant role in LSA. Its values 

were classified into seven classifications using the natural breaks classification 

method, which are ＜ 1450 m, 1450 - 1580 m, 1580 - 1720 m, 1720 - 1840 m, 1840 - 

1970 m, 1970 - 2140 m, and ＞ 2140 m. The landslide inventory distribution in each 

classification and the area percentage of each classification are shown in Table 5, and 

the classification overlapping map with landslide inventory is shown in Figure 14 (c). 

4.1.1.10 Precipitation 

As a tropical rainforest area, there is abundant rainfall for the study 

area, of which the annual precipitation data derived from Meteorological Science Data 

Center of China (2001 - 2020) are processed and converted into map form using both 

Microsoft Excel and ArcGIS, the values range from 1324 mm to 2355 mm. The 

precipitation map is classified into seven classifications using the natural breaks 

classification method, ＜1450 mm, 1450 mm - 1580 mm, 1580 mm - 1720 mm, 1720 

mm - 1840 mm, 1840 mm - 1970 mm, 1970 mm - 2140 mm, and＞2140 mm. The 

landslide inventory distribution in each classification and the area percentage of each 
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classification are shown in Table 5, and the classification overlapping map with 

landslide inventory can be seen in Figure 14 (d). 

4.1.1.11 Normalized Difference Vegetation Index (NDVI) 

In this study, the NDVI was obtained from the satellite images using 

the Raster Calculator tool in ArcGIS, and it is also considered in preparing LSMs. The 

NDVI values vary from 0.18 to 0.34, and NDVI map is classified into five 

classifications using natural breaks classification method: ＜0.18, 0.18 - 0.24, 0.24 - 

0.29, 0.29 - 0.34, and ＞ 0.34. The landslide inventory distribution in each 

classification and the area percentage of each classification are shown in Table 5, and 

the classification overlapping map with landslide inventory is shown in Figure 14 (e). 

4.1.1.12 Soil Texture 

The soil type data is obtained from the Chinese Soil Database, which 

has the composition percentage of clay, sand, and silt. It was converted into 5 new 

classifications using the United States Department of Agriculture (USDA) Textural 

Soil Classification method, the reference classification criteria are shown in Figure 

11. The new classifications are Clay (C), Sandy Clay Loam (SCL), Sandy Loam (SL), 

Clay Loam (CL), Sandy Silt Loam (SZL). The landslide inventory distribution in each 

classification and the area percentage of each classification are shown in Table 5, and 

the classification overlapping map with landslide inventory is shown in Figure 14 (f). 

 

 

Figure 11  USDA Soil Texture Triangle 

 

Source: University, 2022 
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4.1.1.13 Topographic Wetness Index (TWI) 

The topographic wetness index (TWI) is calculated from the ASTER 

GDEM, using the equation defined by (Beven & Kirkby, 1979): 

 

𝑇𝑊𝐼 = 𝑙𝑛 (
𝛼

𝑡𝑎𝑛 𝛽
)                                                      (5) 

 

Where, the 𝛼 is the cumulative upslope area draining through a point 

(per unit contour length), and 𝑡𝑎𝑛 𝛽 is the slope angle at the point. The TWI was 

classified into 5 classifications using the natural breaks classification method: ＜4.87, 

4.87 - 5.95, 5.95 - 7.35, 7.35 - 9.19, ＞9.19. The landslide inventory distribution in 

each classification and the area percentage of each classification are shown in Table 

5, and the classification overlapping map with landslide inventory is shown in Figure 

15 (a). 

4.1.1.14 Stream Power Index (SPI) 

The stream power index (SPI) is calculated from the ASTER GDEM, 

using the equation defined by (Moore et al., 1991): 

 

𝑆𝑃𝐼 = 𝐴𝑠 ∗ 𝑡𝑎𝑛 𝑏                                                     (6) 

 

Where, the 𝐴𝑠  is the specific catchment volume, and 𝑏  is the local 

slope gradient measured in degrees. it is categorized into 5 classifications adopting the 

natural breaks classification method: ＜604, 604 – 2,719, 2719 – 7,250, 7,250 – 

16,615, ＞16,615. The landslide inventory distribution in each classification and the 

area percentage of each classification are shown in Table 5, and the classification 

overlapping map with landslide inventory can be seen in Figure 15 (b). 

4.1.1.15 Rubber Plantation Density (RPD) 

When comparing the landslide inventory mapping result (Figure 12 

(a)) and the RPD map (Figure 12 (b)), there is no corresponding relationship was 

found between RPD and landslide occurrence. According to Figure 12 (b), rubber is 

mainly planted in the lower elevation areas, while Figure 12 (a) shows higher 

elevation areas have more density of landslide inventory. Furthermore, other LCFs 
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like LULC and NDVI can also reflect some of the characteristics of RPD, thus, RPD 

is excluded as the final LCF for the study area in this study. 

 

  

 

Figure 12  Landslide Inventory Mapping Result (a), and the Rubber Plantation 

Zone Map (b) (Zhu et al., 2014) in Xishuangbanna 

 

Table 5  Landslide Inventory Distribution in Each Classification and the Area 

Percentage of Each Classification of LCFs 

 

Factor Name Classification 
Landslide 

Number 

Landslide 

Percentage 

Cell 

Number 

Cell 

Percentage 

Slope Angle 

0 - 8° 25 16.67% 2941342 13.84% 

0 - 14° 33 22.00% 4388988 20.65% 

14 - 20° 43 28.67% 5093316 23.97% 

20 - 26° 30 20.00% 4367099 20.55% 

26 - 32° 14 9.33% 2696373 12.69% 

32 - 38° 5 3.33% 1214940 5.72% 

＞38° 0 0.00% 549441 2.59% 

Total 150   21251499   

Distance to 

River 

0 - 50 m 7 4.67% 762667 3.59% 

50 - 100 m 11 7.33% 727464 3.42% 

100 - 150 m 12 8.00% 704566 3.32% 

150 - 200 m 9 6.00% 696511 3.28% 

＞200 m 111 74.00% 18360291 86.40% 

a 
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Factor Name Classification 
Landslide 

Number 

Landslide 

Percentage 

Cell 

Number 

Cell 

Percentage 

Total 150   21251499   

Slope Aspect 

Flat (-1) 0 0.00% 2198 0.01% 

North (0-22.5)  7 4.67% 1406262 6.62% 

Northeast  

(22.5-67.5)  

24 
16.00% 2718311 12.79% 

East (67.5-112.5) 22 14.67% 2443558 11.50% 

Southeast  

(112.5-157.5)  

15 
10.00% 2640620 12.43% 

South  

(157.5-202.5)  

28 
18.67% 2725823 12.83% 

Southwest (202.5-

247.5)  

18 
12.00% 2744525 12.91% 

West  

(247.5-292.5)  

11 
7.33% 2500976 11.77% 

Northwest (292.5-

337.5)  

17 
11.33% 2721415 12.81% 

North  

(337.5-360)  

8 
5.33% 1347811 6.34% 

Total 150   21251499   

Lithology 

Group A 2 1.33% 131953 0.62% 

Group B 0 0.00% 261852 1.23% 

Group C 0 0.00% 75795 0.36% 

Group D 26 17.33% 1793320 8.44% 

Group E 31 20.67% 3886269 18.29% 

Group F 4 2.67% 366959 1.73% 

Group G 1 0.67% 456903 2.15% 

Group H 23 15.33% 3128825 14.72% 

Group I 2 1.33% 229426 1.08% 

Group J 22 14.67% 1976289 9.30% 

Group K 1 0.67% 318798 1.50% 

Group L 2 1.33% 67910 0.32% 

Group M 5 3.33% 986135 4.64% 

Group N 13 8.67% 5378662 25.31% 

Group O 3 2.00% 492355 2.32% 

Group P 15 10.00% 1700048 8.00% 

Total 150   21251499   

LULC 

Cultivated Land 67 44.67% 6451623 30.36% 

Forest 23 15.33% 12789079 60.18% 

Grass Land 19 12.67% 1481998 6.97% 

Shrubland 2 1.33% 170810 0.80% 

Wetland 0 0.00% 145 0.00% 

Water Body 0 0.00% 92733 0.44% 
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Factor Name Classification 
Landslide 

Number 

Landslide 

Percentage 

Cell 

Number 

Cell 

Percentage 

Artificial Surfaces 39 26.00% 265111 1.25% 

Total 150   21251499   

Distance to 

Fault 

＜ 500 m 3 2.00% 224543 1.06% 

500 - 1000 m 6 4.00% 231876 1.09% 

1000 - 2000 m 4 2.67% 485537 2.28% 

2000 - 3000 m 2 1.33% 518667 2.44% 

3000 - 4000 m 1 0.67% 534888 2.52% 

＞4000 m 134 89.33% 19255988 90.61% 

Total 150   21251499   

Distance to 

Road 

0 - 50 m 23 15.33% 464644 2.19% 

50 - 100 m 10 6.67% 396250 1.86% 

100 - 150 m 9 6.00% 359069 1.69% 

150 - 200 m 4 2.67% 334974 1.58% 

＞200 m 104 69.33% 19696562 92.68% 

Total 150   21251499   

Curvature 

Concave 70 46.67% 10348291 48.69% 

Flat 8 5.33% 719618 3.39% 

Convex 72 48.00% 10183590 47.92% 

Total 150  21251499  

Elevation 

＜ 760 m 40 26.67% 3069266 14.44% 

760 - 940 m 33 22.00% 3869986 18.21% 

940 - 1110 m 19 12.67% 4310576 20.28% 

1110 - 1280 m 18 12.00% 4380191 20.61% 

1280 - 1470 m 11 7.33% 2911115 13.70% 

1470 - 1710 m 19 12.67% 1871642 8.81% 

＞ 1710 m 10 6.67% 838723 3.95% 

Total 150   21251499   

Precipitation 

＜1450 mm 25 16.67% 2916117 13.72% 

1450 - 1580 mm 64 42.67% 7294495 34.32% 

1580 - 1720 mm 12 8.00% 3251553 15.30% 

1720 - 1840 mm 28 18.67% 3196994 15.04% 

1840 - 1970 mm 7 4.67% 2092719 9.85% 

1970 - 2140 mm 10 6.67% 1694585 7.97% 

＞2140 mm 4 2.67% 805036 3.79% 

Total 150   21251499   

NDVI 

＜0.18 28 18.67% 1029888 4.85% 

0.18 - 0.24 50 33.33% 2509425 11.81% 

0.24 - 0.29 38 25.33% 5335626 25.11% 

0.29 - 0.34 23 15.33% 7852472 36.95% 
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Factor Name Classification 
Landslide 

Number 

Landslide 

Percentage 

Cell 

Number 

Cell 

Percentage 

＞0.34 11 7.33% 4524088 21.29% 

SUM 150   21251499   

Soil Texture 

Clay 80 53.33% 14163039 66.64% 

Sandy Clay Loam 10 6.67% 1543497 7.26% 

Sandy Loam 9 6.00% 1367611 6.44% 

Clay Loam 51 34.00% 4127426 19.42% 

Sandy Silt Loam 0 0.00% 49926 0.23% 

Total 150   21251499   

TWI 

＜4.87 36 24.00% 5964104 28.06% 

4.87 - 5.95 51 34.00% 7813447 36.77% 

5.95 - 7.35 29 19.33% 4554354 21.43% 

7.35 - 9.19 23 15.33% 2041958 9.61% 

＞9.19 11 7.33% 877636 4.13% 

Total 150   21251499   

SPI 

＜604 141 94.00% 20541781 96.66% 

604 - 2719 9 6.00% 600703 2.83% 

2719 - 7250 0 0.00% 91739 0.43% 

7250 - 16615 0 0.00% 15396 0.07% 

＞16615 0 0.00% 1880 0.01% 

Total 150   21251499   
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Figure 13  Maps of Landslide Inventory Distribution in the Classification of 

Slope Angle (a), Distance to River (b), Slope Aspect (c), Lithology (d), Land Use 

and Land Cover (LULC) (e), and Distance to Fault (f) 

 

a b c d f e 
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Figure 14  Maps of Landslide Inventory Distribution in the Classification of 

Distance to Road (a), Curvature (b), Elevation (c), Precipitation (d), Normalized 

Differential Vegetation Index (NDVI) (e), and Soil Texture (f). 

 

 

 

b a 

c d 

f e 
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Figure 15  Maps of Landslide Inventory Distribution in the Classification of 

Topographic Position Index (TWI) (a) and Stream Power Index (b) 

 

4.1.2.1 Frequency Ratio Value Results 

Based on the data of landslide inventory training points distribution 

percentage in each classification, and the area percentage of each classification of 

each factor, using Equation 1 which is defined in Chapter II, the FR value of each 

classification of each factor is calculated using ArcGIS, the calculation results are 

shown in Table 6. As is described in Chapter II, A FR value of 1 indicates that this 

classification has a landslide density proportional to the area of the classification in 

the map; a value greater than 1 reveals a higher correlation, while a value smaller than 

1 reveals a lower correlation region and vice versa. 

4.1.2.2 Relative Frequency Value Results 

Based on the FR values above, the FR value of each classification of 

each factor is normalized into RF values using Equation 2 which is defined in 

Chapter II, the normalization results can be seen in Table 6. 

Figure 16 illustrates the landslide number and the curve of its 

percentage in each classification of each factor, the curve of area percentage of each 

classification, and the RF value of the corresponding classification of each factor. 

a

a 

b 



68 

 

 

Figure 19-21 shows the Maps of Relative Frequency (RF) value for each 

classification of each factor, relatively. 

4.1.2.3 Predictor Rate Value Results 

Based on the RF values above, the PR value of each factor can be 

calculated using Equation 3 which is defined in Chapter II, the PR calculation 

results are shown in Table 6. 

Furthermore, according to the methodology of the study set in 

CHAPTER III, besides the case of all 14 factors are adopted, there are also other 14 

cases that remove one factor in turn from the whole, as well as the case of adopting 

the minimum 3 factors (Slope Angle, Lithology and LULC) group, and the other 11 

cases of adding other 11 factors into the minimum factor group in turn.  The PR 

values may vary when different factors are adopted according to Equation 3 which is 

defined in Chapter II.  The PR values of all cases are shown in Table 7 and Table 8, 

and the bar charts of PR values of adopting all 14 factors and removing one factor in 

turn cases can be seen in Figure 22, and that of adopting 3 minimum factors and 

adding one factor in turn cases can be seen in Figure 23.  

According to Equation 3 which is defined in Chapter II, the 

minimum value of (𝑅𝐹𝑚𝑎𝑥 − 𝑅𝐹𝑚𝑖𝑛) of all LCFs has a deterministic role on the PR 

value of each LCF. The minimum value of (𝑅𝐹𝑚𝑎𝑥 − 𝑅𝐹𝑚𝑖𝑛)  for the case of 

adopting all 14 LCFs is that of Precipitation, which means the cases that as long as 

Precipitation is adopted, the PR value of each LCF remains the same as the case of all 

14 LCFs are adopted. For the only case that when Precipitation is absent, the PR value 

of each LCF also can be seen in Table 7. For the cases of adding one LCF into the 3 

minimum LCFs in turn, only if the case of the added LCF has the less value of 

(𝑅𝐹𝑚𝑎𝑥 − 𝑅𝐹𝑚𝑖𝑛) than Slope Angle, Lithology, and LULC, the PR value of each 

LCF will be different with the case of when only the 3 minimum LCFs are adopted. 

The PR values of each adding LCF case can be seen in Table 8. 
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Table 6  Frequency Ratio and Relative Frequency Value for Each Classification 

of Each Factor, and Predictor Rate Value for Each Factor 

 

Factor Name Classification FR Value RF Value PR Value 

Slope Angle 0 - 8° 1.20 21 1.70 

0 - 14° 1.07 19 

14 - 20° 1.20 21 

20 - 26° 0.97 17 

26 - 32° 0.74 13 

32 - 38° 0.58 10 

＞38° 0.00 0 

Distance to River 0 - 50 m 1.30 15 1.48 

50 - 100 m 2.14 25 

100 - 150 m 2.41 28 

150 - 200 m 1.83 21 

＞200 m 0.86 10 

Slope Aspect Flat (-1) 0.00 0 1.35 

North (0-22.5) 0.71 8 

Northeast (22.5-67.5) 1.25 14 

East (67.5-112.5) 1.28 15 

Southeast (112.5-157.5) 0.80 9 

South (157.5-202.5) 1.46 17 

Southwest (202.5-247.5) 0.93 11 

West (247.5-292.5) 0.62 7 

Northwest (292.5-337.5) 0.89 10 

North (337.5-360) 0.84 10 

Lithology Group A 2.15 11 1.80 

Group B 0.00 0 

Group C 0.00 0 

Group D 2.05 11 

Group E 1.13 6 

Group F 1.54 8 

Group G 0.31 2 

Group H 1.04 6 

Group I 1.24 7 

Group J 1.58 8 

Group K 0.44 2 

Group L 4.17 22 

Group M 0.72 4 

Group N 0.34 2 

Group O 0.86 5 



70 

 

 

Factor Name Classification FR Value RF Value PR Value 

Group P 1.25 7 

LULC Cultivated Land 1.47 6 6.49 

Forest 0.25 1 

Grass Land 1.82 7 

Shrubland 1.66 6 

Wetland 0.00 0 

Water Body  0.00 0 

Artificial Surfaces 20.84 80 

Distance to Fault ＜ 500 m 1.89 22 3.24 

500 - 1000 m 3.67 43 

1000 - 2000 m 1.17 14 

2000 - 3000 m 0.55 6 

3000 - 4000 m 0.26 3 

＞ 4000 m 0.99 12 

Distance to Road 0 - 50 m 7.01 42 3.06 

50 - 100 m 3.58 22 

100 - 150 m 3.55 21 

150 - 200 m 1.69 10 

＞200 m 0.75 5 

Curvature Concave 0.96 27 1.41 

Flat 1.58 45 

Convex 1.00 28 

Elevation ＜ 760 m 1.85 23 1.34 

760 - 940 m 1.21 15 

940 - 1110 m 0.62 8 

1110 - 1280 m 0.58 7 

1280 - 1470 m 0.54 7 

1470 - 1710 m 1.44 18 

＞ 1710 m 1.69 21 

Precipitation ＜1450 mm 1.21 19 1.00 

1450 - 1580 mm 1.24 20 

1580 - 1720 mm 0.52 8 

1720 - 1840 mm 1.24 20 

1840 - 1970 mm 0.47 8 

1970 - 2140 mm 0.84 13 

＞2140 mm 0.70 11 

NDVI ＜0.18 3.85 46 3.37 

0.18 - 0.24 2.82 33 

0.24 - 0.29 1.01 12 

0.29 - 0.34 0.41 5 

＞0.34 0.34 4 
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Factor Name Classification FR Value RF Value PR Value 

Soil Texture Clay 0.80 18 3.23 

Sandy Clay Loam 0.92 21 

Sandy Loam 0.93 21 

Clay Loam 1.75 40 

Sandy Silt Loam 0.00 0 

TWI ＜4.87 0.86 14 1.23 

4.87 - 5.95 0.92 15 

5.95 - 7.35 0.90 15 

7.35 - 9.19 1.60 26 

＞9.19 1.78 29 

SPI ＜604 0.97 31 5.56 

604 - 2719 2.12 69 

2719 - 7250 0.00 0 

7250 - 16615 0.00 0 

＞16615 0.00 0 
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Figure 16  Landslide Number and Percentage in Each Classification, Area 

Percentage and RF Value of Each Classification of Slope Angle (a), Distance to 

River (b), Slope Aspect, Lithology (c), LULC, and Distance to Fault (d) 

 

 

a 

 

b 
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d 
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Figure 17  Landslide Number and Percentage in Each Classification, Area 

Percentage, and RF Value of Each Classification of Distance to Road (a), 

Curvature (b), NDVI (c), Elevation (d), Precipitation (e), and Soil Texture (f) 

 

a 

 

b 

c 

 

d 

 

e 
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Figure 18. Landslide Number and Percentage in Each Classification, Area 

Percentage, and RF Value of Each Classification of TWI (a) and SPI (b) 

 

 

 

 

Figure 19  Maps of Relative Frequency (RF) Value for Each Classification of 

Slope Angle (a), Distance to River (b), Slope Aspect (c), and Lithology (d) 

a 

 

b 

 

a 

 

b 

c d 
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Figure 20  Single Layer Maps of Relative Frequency (RF) Value for Each 

Classification of LULC (a), Distance to Fault (b), Distance to Road, Curvature 

(c), Elevation (e), and Precipitation (f) 

 

 

 

a b 

c d 

e f 
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Figure 21  Single Layer Maps of Relative Frequency (RF) Value for Each 

Classification (a) of NDVI (b), Soil Texture (c), TWI, and SPI (d)

a b 

c d 
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4.1.3.1 Landslide Susceptibility Mapping (LSM) Results for Cases of 

Inputting All 14 Factors and Removing Factor in Turn 

Based on the RF values of each classification of each LCF and the PR 

value for each LCF of all designed cases, the LSI of each case is calculated using 

Equation 2 which is defined in Chapter II, Then LSM is conducted using ArcGIS 

based on each LSI. LSM results of cases of inputting all 14 factors, removing Slope 

Angle, removing Distance to River, and removing Slope Aspect from the 14 factors 

are shown in Figure 24. 

 

 
 

Figure 24  Landslide Susceptibility Mapping (LSM) Results for the Case of 

Inputting All 14 Factors (a), Removing Slope Angle (b), Removing Distance to 

River (c), and Removing Slope Aspect (d) from the 14 Factors 

b 

 

a 

 

c 

 

d 
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The LSM results of cases of removing Lithology, removing LULC, 

removing Distance to Fault, removing Distance to Road, removing Curvature, and 

removing Elevation from the 14 factors are shown in Figure 25. 

 

 
 

Figure 25  Landslide Susceptibility Mapping (LSM) Results for the Case of 

Removing Lithology (a), Removing LULC (b) Removing Distance to Fault (c), 

Removing Distance to Road (d), Removing Curvature (e), and Removing 

Elevation (f) from the 14 Factors 

b 

 

a 

 

d 
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The LSM results of cases of removing Precipitation, removing NDVI, 

removing Soil Texture, removing TWI, and removing SPI from the 14 factors are 

shown in Figure 26. 

 

 

 

 

 

Figure 26 Landslide Susceptibility Mapping (LSM) Results for the Case of 

Removing Precipitation (a), Removing NDVI (b), Removing Soil Texture (c), 

Removing TWI (d), and Removing SPI (e) from the 14 Factors 

e 

d c 

a 
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The area percentage of very low, low, moderate, high, very high, and 

high landslide susceptibility levels of inputting all 14-factor case and removing factor 

cases, and their area percentage variation of High and Very High level is shown in 

Table 9.  

In this study, we focus on the variation of High and Very High levels 

between cases of removing one LCF in turn from the whole and the case of adopting 

all 14 LCFs. The case of removing LULC shows a significant variation with area 

percentage of High-level landslide susceptibility increased 6.79% and Very High-

level increased 2.01%, the case of removing Distance to Road shows the second 

significant variation with area percentage of High-level landslide susceptibility 

decreased 0.38% and Very High-level increased 0.38%, while cases of removing 

Slope Angle, removing Distance to River, removing Slope Aspect, removing 

Lithology, removing Distance to Fault, removing Elevation, removing NDVI, 

removing Soil Texture, and removing SPI have only slight area percentage variation 

of High and Very High-level landslide susceptibility, with variation values ranging 

from 0.01% to 0.04%. Cases of removing Curvature, removing Precipitation, and 

removing TWI show no area percentage variation for High and Very High-level 

landslide susceptibility. 

 

Table 9 The Area Percentage of Each Landslide Susceptibility Level of Inputting 

all 14-Factor Case and Removing Factor Cases, and the Area Percentage 

Variation of High and Very High Level 

 

 Very 

Low 
Low Moderate High 

Very 

High 

“High” 

Variation 

“Very High” 

Variation 

14 Factors 47.50% 36.75% 14.34% 0.66% 0.58% 0.00% 0.00% 

Remove Slope 

Angle 
47.67% 36.72% 14.37% 0.64% 0.60% -0.02% 0.02% 

Remove Distance 

to River 
47.97% 36.77% 14.02% 0.62% 0.62% -0.04% 0.04% 

Remove Slope 

Aspect 
47.85% 36.66% 14.25% 0.64% 0.60% -0.02% 0.02% 

Remove Lithology 48.32% 36.25% 14.19% 0.63% 0.61% -0.03% 0.03% 

Remove 

Curvature 
47.67% 36.79% 14.30% 0.66% 0.58% 0.00% 0.00% 

Remove LULC 36.24% 35.86% 17.86% 7.45% 2.59% 6.79% 2.01% 
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 Very 

Low 
Low Moderate High 

Very 

High 

“High” 

Variation 

“Very High” 

Variation 

Remove Distance 

to Fault 
47.51% 37.54% 13.71% 0.63% 0.61% -0.03% 0.03% 

Remove Distance 

to Road 
47.93% 33.00% 17.84% 0.28% 0.96% -0.38% 0.38% 

Remove Elevation 49.37% 35.55% 13.84% 0.64% 0.59% -0.02% 0.01% 

Remove 

Precipitation 
48.15% 36.73% 13.88% 0.66% 0.58% 0.00% 0.00% 

Remove NDVI 51.88% 39.69% 7.20% 0.68% 0.56% 0.02% -0.02% 

Remove Soil 

Texture 
50.10% 33.57% 15.08% 0.63% 0.61% -0.03% 0.03% 

Remove SPI 48.53% 36.87% 13.51% 0.64% 0.60% -0.02% 0.02% 

Remove TWI 47.80% 36.75% 14.21% 0.66% 0.58% 0.00% 0.00% 

 

4.1.3.2 Area Under the Curve (AUC) values for Cases of Inputting All 14 

Factors and Removing Factor in Turn 

The AUC values for cases of inputting all 14 LCFs and removing one 

LCF in turn are shown in Table 10, and the curve chart of each case can be seen in 

Figure 27 - 29. Figure 30 shows the Area Under the Curve (AUC) value compared 

between the case of inputting all 14 LCFs and the cases of removing 14 factors in 

turn. 

 

Table 10  Area Under the Curve (AUC) Values for Cases of Inputting All 14 

LCFs and Removing One LCF in Turn 

Input AUC value AUC variation 

14 Factors 85.40% 0.00% 

Remove Slope Angle 85.40% 0.00% 

Remove Distance to River 85.30% -0.10% 

Remove Slope Aspect 85.30% -0.10% 

Remove Lithology 84.50% -0.90% 

Remove LULC 80.50% -4.90% 

Remove Distance to Fault 85.10% -0.30% 

Remove Distance to Road 84.50% -0.90% 

Remove Curvature 85.30% -0.10% 

Remove Elevation 85.10% -0.30% 

Remove Precipitation 85.30% -0.10% 

Remove NDVI 84.70% -0.70% 

Remove Soil Texture 85.20% -0.20% 

Remove TWI 85.40% 0.00% 

Remove SPI 86.30% 0.90% 



85 

 

 

 

   

   

   

 

Figure 27  AUC Results for Cases of Inputting All 14 LCFs (a), Removing Slope 

Angle (b), Removing Distance to River (c), Removing Slope Aspect (d), 

Removing Lithology (e), and Removing LULC (f) from the 14 LCFs 

 

e 

d c 

b a 

f 
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Figure 28  AUC Results for the Case of Removing Distance to Fault (a), 

Removing Distance to Road (b), Removing Curvature (c), Removing Elevation 

(d), Removing Precipitation (e), and Removing NDVI (f) from the 14 LCFs 

d c 

f e 

b a 
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Figure 29  AUC Results for the Case of Removing Soil Texture (a), Removing 

TWI (b), and Removing SPI (c) from the 14 LCFs. 

 

  

 

Figure 30  Area Under the Curve (AUC) Value Comparison Between the Case of 

Inputting All 14 LCFs and Cases of Removing Other 14 Factors in Turn 

d c 

e 



88 

 

 

 

Generally, the greater the AUC value, the better the prediction quality 

of the LSM model. According to the AUC variation values between cases of 

removing one LCF and cases of adopting all 14 LCFs, removing LULC causes the 

AUC value of the LSM to decrease by 4.9%, which is the highest AUC value change 

of the cases of removing factor. It means LULC has a significant role in improving 

the LSM model. The cases of removing Lithology and removing Distance to Road 

have the second-highest AUC variation value which equals to 0.9%, the case of 

removing NDVI has the third-highest AUC variation value 0f 0.7%, the case of 

removing elevation has an AUC variation value of 0.3%, the case of removing Soil 

Texture has an AUC variation value of 0.2%, the cases of removing Distance to 

River, removing Slope Aspect, removing Curvature, and removing Precipitation have 

an AUC variation value of 0.1%. Cases of removing Slope Angle and removing TWI 

do not cause the AUC value change. When removing SPI from the 14 LCFs, the AUC 

value increased 0.9%, which means SPI has a negative effect in improving the LSM 

model quality. 

4.1.3.3 Landslide Susceptibility Mapping (LSM) Results for Cases of 

Inputting 3 Minimum Factors and Adding Factor in Turn 

LSM results of cases of inputting 3 minimum factors (slope angle, 

lithology, and LULC) only, adding Distance to River, adding Slope Aspect, adding 

Distance to Fault, adding Distance to Road, and adding Curvature into the 3-factor 

group are shown in Figure 31. 
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Figure 31  Landslide Susceptibility Mapping (LSM) Results for the Case of 

Inputting 3 Minimum Factors (a), Adding Distance to River Into the 3-Factor 

Group (b), Adding Slope Aspect (c), Adding Distance to Fault (d), Adding 

Distance to Road (e), and Adding Curvature (f) to the 3-Factor Group 

 

f 

 

e 

 

b 

 

a 

 

d 
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LSM results of cases of adding Elevation, adding Precipitation, adding 

NDVI, adding Soil Texture, adding Curvature, adding Elevation, adding Precipitation, 

adding TWI, and adding SPI into the 3-factor group are shown in Figure 32. 

 

 

 

Figure 32  Landslide Susceptibility Mapping (LSM) Results for the Case of 

Adding Elevation (a), Adding Precipitation (b), Adding NDVI (c), Adding Soil 

Texture (d), Adding SPI (e), and Adding TWI (f) to the 3-Factor Group 

b 

 

a 

 

c d 

 

f e 
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The area percentage of very low, low, moderate, high, very high, and 

high landslide susceptibility level of inputting 3 minimum factors case and adding 

factor cases, and their area percentage variation of High and Very High level is shown 

in Table 11.  

In this study, we focus on the variation of High and Very High levels 

between cases of adding one LCF in turn to the 3 minimum factors and the case of 

adopting 3 minimum LCFs (slope angle, lithology, and LULC) only. The cases of 

adding Distance to fault shows the most significant variation with area percentage of 

High-level landslide susceptibility increased 0.80% and Very High-level decreased 

0.8%, the case of adding Distance to Road shows the second significant variation with 

area percentage of High-level landslide susceptibility increased 0.48% and Very 

High-level decreased 0.48%, the cases of adding Elevation and adding NDVI also 

show a prominent variation with the area percentage of the former increased 0.23% in 

High and decreased 0.23% in Very High landslide susceptibility level, the later 

decreased 0.24% in High and increased 0.23% in Very High landslide susceptibility 

level. While cases of adding Slope Aspect, adding Precipitation, adding Soil Texture, 

adding TWI, and adding SPI have only slight area percentage variation of High and 

Very High-level landslide susceptibility, with variation values less than 0.10%. Cases 

of adding Distance to River, adding Curvature have no area percentage variation for 

High and Very High-level landslide susceptibility. 

 

Table 11  The Area Percentage of Each Landslide Susceptibility Level of 

Inputting 3 Minimum Factors (Slope Angle, Lithology, and LULC) 

Case and Adding Factor Cases, and Their Area Percentage 

Variation of High and Very High Level 

 
 Very Low Low Moderate High Very High “High” Variation “Very High” Variation 

3 Factors 15.70% 44.79% 38.27% 0.40% 0.84% 0.00% 0.00% 

Add Distance to River 59.91% 14.89% 23.97% 0.40% 0.84% 0.00% 0.00% 

Add Slope Aspect 60.50% 19.98% 18.30% 0.31% 0.93% -0.09% 0.09% 

Add Curvature 60.43% 20.42% 17.92% 0.40% 0.84% 0.00% 0.00% 

Add Distance to Fault 58.38% 32.01% 8.37% 1.20% 0.04% 0.80% -0.80% 

Add Distance to Road 58.62% 36.05% 4.09% 0.88% 0.36% 0.48% -0.48% 

Add Elevation 59.48% 18.17% 21.12% 0.63% 0.61% 0.23% -0.23% 



92 

 

 

 

 Very Low Low Moderate High Very High “High” Variation “Very High” Variation 

Add Precipitation 60.48% 19.42% 18.86% 0.41% 0.83% 0.01% -0.01% 

Add NDVI 54.88% 32.61% 11.27% 0.16% 1.07% -0.24% 0.23% 

Add Soil Texture 55.34% 22.57% 20.87% 0.46% 0.78% 0.06% -0.06% 

Add SPI 22.33% 36.45% 39.83% 0.40% 0.83% 0.00% -0.01% 

Add TWI 60.05% 19.75% 18.96% 0.37% 0.87% -0.03% 0.03% 

 

4.1.3.4 Area Under the Curve (AUC) Values for Cases of Inputting 3 

Minimum Factors and Adding Factor in Turn 

The AUC values for cases of inputting 3 minimum factors and adding 

other 11 factors in turn, are shown in Table 12, and the plots of each case can be seen 

in Figure 33 - 34. Figure 35 shows the Area Under the Curve (AUC) value 

comparison between the case of inputting 3 minimum LCFs and the casse of adding 

other 11 factors in turn. 

 

Table 12  Area Under the Curve (AUC) Values for Cases of Inputting All 14 

Factors and Removing Factors in Turn 

 

Input AUC value AUC variation 

3 Factors 82.70% 0.00% 

Add Distance to River 82.90% 0.20% 

Add Slope Aspect 82.90% 0.20% 

Add Distance to Fault 83.40% 0.70% 

Add Distance to Road 84.50% 1.80% 

Add Curvature 83.00% 0.30% 

Add Elevation 83.60% 0.90% 

Add Precipitation 83.00% 0.30% 

Add NDVI 83.70% 1.00% 

Add Soil Texture 83.00% 0.30% 

Add TWI 82.90% 0.20% 

Add SPI 81.60% -1.10% 
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Figure 33  AUC Results for the Case of Inputting 3 Minimum LCFs (a), Adding 

Distance to River (b), Adding Slope Aspect (c), Adding Distance to Fault (d), 

Adding Distance to Road (e), and Adding Curvature (f) to the 3 Minimum LCFs. 

 

f e 

d c 

a b 



94 

 

 

 

  

  

  

 

Figure 34  AUC Results for the Case of Adding Elevation (a), Adding 

Precipitation (b), Adding NDVI (c), Adding Soil Texture (d), Adding TWI (e), 

and Adding SPI (f) to the 3 Minimum LCFs 

b a 

d c f e 

c d 
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Figure 35  AUC Value Comparison Between the Case of Inputting 3 Minimum 

LCFs and Case of Adding Other 11 Factors in Turn 

 

According to the AUC variation values between cases of adding the 11 

LCFs in turn, and the case of adopting 3 minimum LCFs only, adding Distance to 

Road causes the AUC value of the LSM to increase by 1.8%, which is the highest 

AUC value change of the cases of removing factor. It means Distance to Road has a 

significant role in improving the perdition quality of the LSM model. The cases of 

adding NDVI, adding Elevation, and adding Distance to Fault have the second-

highest AUC variation value of 1.00%, 0.90%, and 0.70%, respectively. Moreover, 

the cases of adding Distance to River, adding Slope Aspect, adding Curvature, adding 

Precipitation, and adding TWI cause only AUC value variation less than or equal to 

0.3%. The cases of removing Slope Angle and removing TWI do not cause the AUC 

value change. When adding SPI to the 3 minimum LCFs, the AUC value decreased 

1.10%, which means SPI has a negative effect in improving the LSM model quality, 

which is consistent with the case of removing SPI from the 14 LCFs. 

4.1.3.5 Area Under the Curve (AUC) Value Variation for Both Removing 

and Adding Single Factor Cases 

Based on the principle that at least 3 aspects of factors must be input in 

GIS analysis, including lithology, topography, and land use for LSA (Milevski et al., 



96 

 

 

 

2019), Slope Angle, Lithology and LULC are confirmed to be included as the final 

LCFs. Figure 36 shows the Area Under the Curve (AUC) value variation of other 11 

LCFs of both removing and adding Distance to River, Aspect, Fault, Distance to 

Road, Curvature, Elevation, Precipitation, NDVI, Soil Texture, TWI, and SPI. 

According to Figure 36, the AUC value decreased when SPI is 

involved and increased when SPI is absent, which means SPI shows a negative effect 

in improving the prediction quality of the LSM model. TWI does not cause an AUC 

value change when it is removed from the participating LCFs. Other processes of both 

when the LCF is included or excluded, all show positive effects in improving the 

prediction quality of the LSM model. Of which, Distance to Road, NDVI, Elevation, 

and Distance to Fault cause the greatest AUC values to change in both factor involved 

and absent cases, which causing the AUC value variation greater than or equal to 

0.3%, while other LCFs cause up to 0.2% of that in factor absent cases and causing 

the AUC value variation greater than or equal to 0.7%, while other LCFs cause up to 

0.3% in factor involved cases. 

 

 

 

Figure 36  AUC Value Variation of Both Removing and Adding Distance to 

River, Aspect, Fault, Distance to Road, Curvature, Elevation, Precipitation, 

NDVI, Soil Texture, TWI, and SPI 
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4.1.4.1 Final Factors Selection Results 

Based on the above analysis, 7 LCFs including Slope Angle, Lithology, 

LULC, Distance to Road, NDVI, Elevation, and Distance to Fault are selected as the 

final LCFs for the study area. 

4.1.4.2 Predictor Rate (PR) Value for Final Factors 

The PR values of the final 7 LCFs including Slope Angle, Lithology, 

LULC, Distance to Road, NDVI, Elevation, and Distance to Fault are calculated with 

the same process in Section 4.1.2.3 and the PR calculation results are shown in Table 

13, and the corresponding bar chart can be seen in Figure 37. PR value represents the 

weighting value of LCFs, according to the PR values, LULC shows the greatest 

importance and Elevation shows the least importance on affecting the landslide 

occurrence using the FR modeling method, for the study area. 

 

Table 13  Predict Rate (PR) Values for Final 7 LCFs 

 

LCF name PR value 

LULC 4.84 

NDVI 2.51 

Distance to Fault 2.41 

Distance to Road 2.28 

Lithology 1.34 

Slope Angle 1.26 

Elevation 1.00 
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Figure 37  PR Value for Final 7 Landslide Conditioning Factors (LCFs) 

 

4.1.4.3 Landslide Susceptibility Mapping (LSM) Results with Final 

Landslide Conditioning Factors (LCFs) 

Based on the RF values of each classification (remain the same as in 

Table 6) of each LCF and the PR value for each LCF from Table 13, the Landslide 

Susceptibility Index (LSI) of inputting the 7 final LCFs is calculated using Equation 

2 which is defined in Chapter II, Then LSM is conducted using ArcGIS based on the 

LSI. The final LSM result for county-level and the 5-level of landslide susceptibility 

proportion including Very Low, Low, Moderate, High, and Very High levels are 

shown in Figure 38 (a) and (b) respectively. The proportion of landslide 

susceptibility for county-level and township-level administrative division can be seen 

in Table 14 and Table 15 respectively, the area bar chart of each landslide 

susceptibility level for county-level administrative division can be seen in Figure 38 

(c). The final LSM result for township-level and the 5-level of landslide susceptibility 

proportion including Very Low, Low, Moderate, High, and Very High can be seen in 

Figure 39. The area bar chart of each landslide susceptibility level for township-level 

administrative division can be seen in Figure 40. 
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4.1.4.4  Landslide Susceptibility Mapping (LSM) Result Verification 

Validation is an indispensable step to verify the predictive capabilities 

of the landslide susceptibility mapping production, the prediction model has no 

scientific evidence without validation  (Wu et al., 2016). Landslide susceptibility 

maps constructed with the final 7 LCFs were validated by calculating the success rate 

and prediction rate of which the AUC value is calculated with the landslide inventory 

training data and the verification data respectively. The result is shown in Figure 41. 

  

  

 

Figure 41  AUC Results of the Final Landslide Susceptibility Mapping Result 

with Inputting Both Landslide Inventory Training and Verification Data 

 

Figure 42 shows the Location Identification page of the “General” 

module which is also the default page of the system. On this page, the decision-

makers/users are allowed to view the map for the study area, and decision-

makers/users can select the map type between street and satellite map as they like by 

clicking the top right of the map. The raster data of the final landslide susceptibility 

map has been digitalized and the High and Very High-level susceptibility data have 

been extracted and imported to the map. As is shown in Figure 43, the red polygons 

in the map represent the Very High-level, and the orange color represents the High-
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level landslide susceptibility areas. When decision-makers/users click on each of the 

polygons, the marker of the location that is clicked will be added to the map, and there 

will be an information window showing the coordinate of the clicked point, and the 

location is in High or Very High-level of landslide susceptibility area.  
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Figure 44 shows the Program Introduction page of the “General” 

module. This page presents the background of the system, the process of the study, 

and the components of each module of the system. 

Figure 45 is the Data Type and Source page of the “General” module. 

This page shows the data format, resolution, data source and the producing time of 

each single factor layer of the study. 

Figure 46 is the Methodology page of the “General” module. This 

page shows the Landslide Conditioning Factor identification workflow, final 

Landslide Susceptibility Mapping workflow, and Design of Web-based Spatial 

Decision Support System for Landslide Susceptibility Assessment in Xishuangbanna, 

China. As well as the details of the equations used in the study. 

Figure 47 is the About Us page of the “General” module. This page 

shows the technique background, the recommendations, and the copyright of the 

platform. Besides, the contact information of the admins is also shown in this page. 

Figure 48 is the Slope Angle Layer overlaps with landslide inventory 

data sample page of “Single Layer” module. There are in total 14 different pages 

representing the different single factor layers of the study respectively. 

Figure 49 is the Factor Weight & AUC Value page of the “Remove 

Factor” module. This page shows the factor weight and AUC value comparison of the 

inputting the 14 full factors case and removing each of the 14 factors from the whole 

cases. 

Figure 50 is the Landslide Susceptibility Mapping result sample page 

of inputting all the 14 factors of the “Remove Factor” module. This page shows the 

landslide susceptibility map of inputting the 14 full factors, the AUC curve of the 

map, and the percentage of each landslide susceptibility level. 

Figure 51 is the Factor Weight & AUC Value page of “Add Factor” 

module. This page shows the factor weight and AUC value comparison of the 

inputting the 3 minimum factors case and adding each of the other 11 factors to the 3 

factors. 

Figure 52 is the Landslide Susceptibility Mapping result sample page 

of inputting 3 minimum factors of “Add Factor” module. This page shows the 
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landslide susceptibility map of inputting the 3 minimum factors, the AUC curve of the 

map, and the percentage of each landslide susceptibility level. 

Figure 53 is the page of AUC Value Compare of both cases of 

removing and adding factor except for the obligatory 3 minimum factors (Slope 

Angle, Lithology, and LULC) of the “Final Results” module. 

Figure 54 is the page of Factor Weight Value for the final 7 factors of 

the “Final Results” module. 

Figure 55 and Figure 56 are the page of the Landslide Susceptibility 

Mapping result of inputting the final 7 factors for county level and township level 

respectively, from the “Final Results” module.  

Figure 57 is the page of statistic chart of Landslide Susceptibility 

Mapping result for township level of inputting final 7 factors of “Final Results” 

module. 
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4.2 Discussion 

As one of the most frequently used methods in LSA studies, the FR 

model was selected to assess the landslide susceptibility for Xishuangbanna 

Prefecture, Yunnan Province, China on a regional scale for the first time. Then a 

Web-based SDSS for LSA for the study area was developed. Generally, the study can 

be divided into 3 sections, the first section is the landslide conditioning factors 

identification for the study area. The second section is mapping the final landslide 

susceptibility for the study area by adopting the final 7 selected LCFs. The last step is 

developing the Web-based SDSS for the study area using the outcomes of the study. 

In the landslide conditioning factors identification section, 14 most 

frequently used factors are extracted from a comprehensive literature review (52 

studies) firstly, with setting the threshold utilization frequency of 21% out of the 52 

studies. Then the parameters of each factor have been classified into different groups 

using the most frequently used-natural breaks classification method, except for the 

ones that have unique classifications themselves. Then the FR values were calculated 

by overlaying the landslide inventory training data with every single classified layer.  

According to the FR values, for Slope Angle, classifications of 0 - 8°, 0 

- 14°, and 14 - 20° show a higher correlation with landslide occurrence, while 

classifications of 20 - 26°, 26 - 32°, 32 - 38° shows a lower correlation. No historical 

landslides were found in the classification of > 38°, which is consistent with the 

conclusion that in almost vertical conditions, landslides are rare or absent. The lack of 

debris accumulation and soil development are the reasons for the areas under theses 

topographic conditions (Abbaszadeh Shahri et al., 2019; Gómez & Kavzoglu, 2005).  

For Distance to River, classifications of < 50m, 50 - 100m, 100 - 150m, 

and 150 – 200m show a higher correlation with landslide occurrence of which FR 

values are greater than 1, and classifications of 50 - 100m and 100 - 150m show 

higher correlation than other two with FR value greater than 2. Classification of > 

200m shows a lower correlation which represents less landslide occurrence possibility 

for places that are too far away from rivers. This is generally consistent with the 

conclusion of - areas with a shorter distance to rivers has relatively more likelihood of 
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landslide formation than areas located far away (El Jazouli et al., 2019; Nohani et al., 

2019; Sur et al., 2020; Wu et al., 2016; Youssef et al., 2014).  

For Slope Aspect, according to the literature, although it has an 

important role in conditioning landslide occurrence, there is no consensus that have 

been reached regarding the relationship between them (Youssef et al., 2014). 

According to the FR values, classifications of Northeast (22.5-67.5), East (67.5-

112.5), and South (157.5-202.5) show a higher correlation with landslide occurrence 

of which FR values are greater than 1, while there are no historical landslides were 

found in the flat areas of which classification is Flat (-1). Other classifications show a 

lower correlation that FR values less than 1.  

For Lithology, the classification of Group L shows a relatively higher 

correlation with landslide occurrence with a FR value greater than 4. Classifications 

of Group A and Group D show the second higher correlation with a FR value greater 

than 2. Classifications of Group E, Group F, Group H, Group I, Group J, and Group P 

show the third higher correlation, while classifications of Group G, Group K, Group 

M, Group N, and Group O show the lower correlation with FR value less than 1. No 

landslides were found in the classification of Group B and Group C.  

For LULC, the classification of Artificial Surfaces has a much higher 

FR value of 20.84 compared with other higher landslide correlation classifications 

such as Cultivated Land (1.47), Grass Land (1.82), and Shrubland (1.66). Forest 

shows a relatively lower correlation of 0.25. No historical landslides were found in 

Wetland and Water Body.  

For Distance to Fault, classification of 500 - 1000m shows the highest 

FR value of 3.67 while classifications of < 500m and 1000m - 2000m also show a 

higher correlation with landslide occurrence but the FR values are less than 2. 

Classifications of 2000 - 3000m and 3000 - 4000m have FR value of 0.55 and 0.26 

respectively, which mean a lower correlation with landslide occurrence. Classification 

of > 4000m has a FR value of 0.99 which is close to 1, which means this classification 

has a landslides density proportionally to the area of the classification. Generally, the 

FR values represent the conclusion that distance close to the geological faults often 

leads to high landslide susceptibility  (Abedini & Tulabi, 2018; El Jazouli et al., 2019; 
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Le et al., 2021; Nohani et al., 2019; Shano et al., 2021; Wu et al., 2016; Youssef et al., 

2014).  

For Distance to Road, classification of 0 - 50m shows the highest 

correlation with landslide occurrence with the FR value of 7.01, while classifications 

of 50 - 100m and 100 - 150m show the second highest correlation with FR values of 

3.58 and 3.55 respectively. Classification of 150 - 200m also shows a higher 

correlation but its FR value is less than 2. The classification of > 200m has a FR value 

of less than 1, which means a lower correlation with landslide occurrence. Generally, 

the FR results are consistent with the conclusion of the nearer the distance to the road 

system, the higher the risk of landslide hazards (Le et al., 2021; Nohani et al., 2019; 

Sur et al., 2020; Wu et al., 2016; Youssef et al., 2014).  

For Curvature, classification of Flat has a FR value equals to 1.58 

which means a higher correlation with the occurrence of landslides, while 

classifications of Convex and Concave have FR value of 1.00 and 0.96 respectively, 

which shows curvature has not an obvious influence on the occurrence of landslides 

in the study area.   

For Elevation, the lowest and highest two classifications of elevation 

which are ＜ 760m, between 760 - 940m, between 1470 - 1710m, and＞1710m have 

FR values greater than 1, which show these classifications have a higher correlation 

with landslide occurrence, while the classifications of elevation within 940m - 1470m 

have lower correlation with their FR values less than 1. For Precipitation, 

classifications of annual precipitation＜1450mm, between 1450 - 1580mm, and 1720 

- 1840 mm show a higher correlation with landslide occurrence, but with only a bit 

greater FR value than 1. Classifications of annual precipitation between 1580 - 

1720mm, 1840 - 1970mm, 1970 - 2140mm and ＞2140mm show a lower correlation 

with landslide occurrence with FR values less than 1. However, according to the FR 

values, Precipitation does not show a strong effect on influencing landslide 

occurrence in the study area.  

For NDVI, classifications of NDVI value＜0.18 and between 0.18 - 

0.24 show a higher correlation with landslide occurrence with FR values of 3.85 and 

2.82 respectively. Classifications of NDVI values between 0.29 - 0.34 and ＞0.34 
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show a lower correlation with FR values of 0.41 and 0.34. Classification of NDVI 

value between 0.24 - 0.29 shows its landslides density proportionally to the area of the 

classification. This is consistent with the conclusion that NDVI values close to -1 

reveal that the bare earth surface is lack of vegetation, while a value close to +1 means 

a healthier and higher coverage of vegetation (Abbaszadeh Shahri et al., 2019; Nohani 

et al., 2019; Sur et al., 2020; Wu et al., 2016; Youssef et al., 2014).  

For Soil Texture, the classification of Clay Loam shows a higher 

correlation with the occurrence of landslides with a FR value of 1.75, while 

classifications of Clay, Sandy Clay Loam, and Sandy Loam show a lower correlation 

with FR values of 0.80, 0.82, and 0.93, respectively. No historical landslides were 

found in the classification of Sandy Silt Loam.  

For TWI, according to the FR values, generally, the greater TWI value 

has the higher FR value. Classifications of the TWI value that is less than 7.35 show a 

lower correlation with landslide occurrence while classifications of the TWI value 

greater than 7.35 show a higher correlation.  

For SPI, the classification of SPI value＜604 shows it has landslides 

density proportionally to the area of the classification with a FR value of 0.97 which 

is close to 1. Classification of SPI value 604 – 2,719 shows a higher correlation with 

landslide occurrence with a FR value of 2.12.  No historical landslides were found in 

the other 3 classifications that SPI values are greater than 2,719.  

RPD has not been kept as the final LCF for no corresponding 

relationship was found with landslide occurrence. 

To meet the “integer only” inputting requirement of the reclassification 

function of ArcGIS, all FR values have been normalized into RF values. 27 scenarios 

were designed including one inputting the 14 full factors and fourteen removing one 

factor from the whole in turn, and one inputting 3 minimum factors (Slope Angle, 

Lithology and LULC) and eleven adding other factors into the minimum group in 

turn, to generate the landslide susceptibility maps, then calculate and compare the 

AUC value of each scenario. The mandatory factors including Slope Angle, 

Lithology, and LULC are directly included in the final LCFs group. The bar chart in 

Figure 36 shows the other 11 factors’ influence in increasing or decreasing the AUC 

value when the factor is participating or absent, the result shows 7 factors including 
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Distance to Road, NDVI, Elevation, and Distance to Fault have a distinctly positive 

effect on AUC value variation compared with other factors, while SPI has a negative 

effect.  

Finally, 7 factors including Slope Angle, Lithology, LULC, Distance to 

Road, NDVI, Elevation, and Distance to Fault have been selected as the final 

landslide conditioning factors for the study area. In the landslide susceptibility 

mapping with the final LCFs section, according to the PR value for each factor 

(Figure 37), LULC has the most dominant effect with landslide occurrence with PR 

value greater than 4, NDVI, Distance to Fault, and Distance to Road show the second 

level of that with PR value greater than 2 and smaller than 3, while Lithology, Slope 

Angle, and Elevation show the least effect with PR value between 1 – 2. According to 

the mapping result in Figure 38, overall, about 51.97%, 32.57%,14.22%, 0.65% and 

0.59% of the total area have Very Low, Low, Moderate, High, and Very High levels 

of landslide susceptibility respectively. Of which, there are 52.24 km2, 30.26 km2, and 

30.34 km2 of the 0.59% (112.84 km2) Very High landslide susceptibility level areas 

are located in Jing Hong City, Meng Hai County, and Meng La County respectively. 

There are 55.84 km2, 37.09 km2, and 31.39 km2 of the 0.65% (124.32 km2) High 

landslide susceptibility levels are in the aforesaid regions respectively. For the 

township level, both the High and Very High landslide susceptibility level areas are 

distributed in every township except for Meng Wang Xiang as is presented in Table 

15 and Figure 40. Of which, the area from high to low, the top 5 townships including 

Ga Sa Zhen, Meng Hai Zhen, Jing Hong Gong Ye Yuan Qu, Meng La Zhen, and 

Meng Long Zhen are located in Very High landslide susceptibility level region with 

the area of 16.48 km2, 11.20 km2, 9.93 km2, 9.11 km2, and 7.36 km2 respectively. The 

area from high to low, the top 5 townships including Ga Sa Zhen, Meng La Zhen, 

Meng Hai Zhen, Meng Long Zhen, and Meng Zhe Zhen are located in High landslide 

susceptibility level region with the area of 11.55 km2, 9.55 km2, 8.98 km2, 8.54 km2, 

and 7.07 km2 respectively. The AUC value obtained with inputting training and 

verification data is 85.8% and 84.0% respectively, it is shown that the model adopted 

obtained a very good result for LSM in the study area. 
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As a decision support system, the location identification function of the 

General module is the core function of the Web-based SDSS, which can be used to 

support the decision-making processes which may strongly rely on the landslide 

susceptibility distribution status such as disaster prevention fund allocation plan, 

landslide monitoring system installation site selection, early warning system 

installation site selection, land use planning, infrastructure construction site selection, 

etc. As is shown in Figure 42, only High and Very High-level landslide susceptibility 

data have been extracted from the final landslide susceptibility map and digitalized 

and imported to the Web-based SDSS. This is because the Baidu Map JavaScript 

Application Programming Interface (API) has not been able to support importing 

“.kml”, “.shp”, or other vector formats of data yet. Currently, every compositive point 

of the polygons needs to be stored with text format, which enlarges the data size to a 

great extent, with only inputting the aforesaid two-level data, it already takes more 

than 15 seconds to load the Location Identification page, and cause response delay of 

the map. Though Google Map JavaScript API support importing vector files directly 

and can solve these problems, due to political issue, Google Map products are banned 

to use in China. Nevertheless, the proposed Web-based SDSS provides a new way of 

making better use of the landslide susceptibility assessment outcomes. 

 



 
 

CHAPTER V 

 

CONCLUSION AND RECOMMENDATION 

 

5.1 Conclusion 

 The objective of the study is to assess the landslide susceptibility of 

Xishuangbanna, China, then develop a Web-based SDSS using the outcomes of the 

LSA. As one of the most popular landslide susceptibility assessment methods, the FR 

model is selected as the assessing tool in this study. There is not a consensus on the 

selection process of the landslide conditioning factors for a specific area, the decisive 

factors may completely be different from one area to another. The study, therefore, 

summarized 14 most frequently used factors which are Slope Angle, Distance to 

River, Slope Aspect, Lithology, LULC, Distance to Fault, Distance to Road, 

Curvature, Elevation, Precipitation, NDVI, Soil Texture, TWI and SPI from a 

comprehensive literature review first. Then 27 scenarios including one case of 

inputting all the 14 factors and 14 cases of removing one of the 14 factors from the 

whole in turn, one case of inputting 3 minimum factors (Slope Angle, Lithology and 

LULC) and 11 cases of adding one of the other factors to the 3 minimum, are 

designed to generate the landslide susceptibility maps of the 27 scenarios with 

inputting landslide inventory training data. Then the AUC value of each map is 

calculated using the extension of ESRI’s ArcGIS namely Arc – SDM, to evaluate 

whether when a specific factor is participating and absent, how positive or negative 

effect it has in influencing the model quality. Finally, 7 factors including 3 obligatory 

factors (Slope Angle, Lithology and LULC), Distance to Road, NDVI, Elevation, and 

Distance to fault are identified to be the most positive factors in improving the model 

quality and are selected as the final landslide conditioning factors for the study area. 

Final Landslide Susceptibility Mapping is done based on the final factors, the AUC 

values of both with inputting the landslide inventory training data (success rate) and 

verification data (prediction rate) show the model of the study obtained a very good 

result. Finally, the outcomes of the landslide susceptibility assessment process 

including study theory, data sources, factor weight tables and charts, single layer 
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maps, 15 LSMs of full and removing factor scenarios, 12 LSMs of minimum and 

adding factor scenarios, the final LSM, and all the AUC values of all LSMs have been 

utilized to develop the Web-based SDSS for LSA in the study area.  

 The study’s actual benefits in real-world can be summarized as follows: 

a) It can make up the missing of the regional scale of LSA product for the 

study area; 

b) 14 mostly used factors are extracted from a comprehensive literature 

review, which can be used as a useful reference by other researchers; 

c) The scenarios design that adopting or excluding a specific possible 

landslide conditioning factor, then calculate their AUC values and analyze their 

positive or negative affect, can be used as a thinkable method when identifying the 

landslide conditioning factors for other study areas; 

d) The Web-based SDSS starts a new way of thinking which has a broad 

potential for further development and provides a constructive way of making better 

use of the landslide susceptibility assessment outcomes, which not only can be used as 

an effective decision-making support tool but also can be used as a significative 

reference for other researchers; 

e) The proposed Web-based SDSS not only applicable for landslide 

susceptibility assessment outcomes, but also for assessment outcomes of other types 

of disasters such as flood hazard assessment which is also based on GIS data. 

 

5.2 Recommendations 

 The insufficiency and the future works of the study may include: 

a) The FR model is based on landslide inventory rather than experts’ 

opinion; thus, the quality of the landslide data is fatal. However, the landslide 

inventory obtained from the Resource and Environment Science and Data Center of 

China (RESDC) may need to be further verified (e.g., filed investigation and data 

refining). Moreover, the comparison with other models that are based on experts’ 

opinions such as the AHP method also can be helpful and can be one of the future 

works; 

b) The accuracy of the precipitation data the study used is less than 

30m*30m resolution, which is the finest data we can obtain for the moment. Although 
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finally precipitation has not been included as one of the most decisive landslide 

conditioning factors for the study area, a reconsideration might be necessary when 

more accurate precipitation data is available in the future; 

c) The proposed Web-based SDSS that uses landslide susceptibility 

assessment outcomes opened a new window for making better use of the existing 

data. However, as a decision support system, the development level of the decision 

support part in this study is still relatively low, extension of other decision support 

modules can be set as one of the goals in the future; 

d) Baidu map JavaScript API is one of the most popular tools for 

developing Web-based map system, however, it has some limitations. For example, it 

has not been able to support importing vector files (“.shp”, “.kml”) yet. The main 

displaying language is Chinese, which may cause inconvenience to the decision 

makers or experts who do not understand Chinese in understanding the labels in the 

map. Adopting Google Map JavaScript API can be an effective way of boosting the 

performance of the system, as well as improving the human-computer interaction 

experience. Which can be the prioritized consideration when the study area is not in 

China. 
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