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Abstract: The Lucas sequence is an integer sequence defined
similarly to the Fibonacci sequence and the Pell sequence.
There has been studied continuously about the reciprocal

sums derived from the Fibonacci sequence, the Pell

sequence, and the Lucas sequence. These results are

beautiful in the involving fields. Recently, there has been

found the interesting results for the partial finite sum of
the reciprocals of the even and odd terms in the Fibonacci
sequence and the Pell sequence. In this research, we aim

to find the exact formula for the partial finite sum of the
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reciprocals of the even and odd terms in the Lucas

sequence.

Lucas numbers, reciprocal, finite sum,

even and odd terms
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1. Abstract

The Lucas sequence is an integer sequence defined similarly to the Fibonacci
sequence and the Pell sequence. There has been studied continuously about the
reciprocal sums derived from the Fibonacci sequence, the Pell sequence, and the
Lucas sequence. These results are beautiful in the involving fields. Recently, there
has been found the interesting results for the partial finite sum of the reciprocals
of the even and odd terms in the Fibonacci sequence and the Pell sequence. In
this research, we aim to find the exact formula for the partial finite sum of the

reciprocals of the even and odd terms in the Lucas sequence.

2. Executive summary
2.1 Introduction to research
The Fibonacci numbers are named after Italian mathematician, Leonardo of
Pisa, later known as Fibonacci. They are the numbers derived from an integer
sequence called the Fibonacci sequence such that begin with 0 and 1, and the
number after that is the sum of the two previous terms. That is,
F,=0, F=1,and F,=F_+F _,forn>2.

The Fibonacci numbers are 0,1, 1, 2,3, 5, 8,13, 21, 34, 55, 89, 144, .... Fibonacci

numbers-are-strongly retated-to-the-golden-ratio-and-appearofterrin mathematics————
The Pell numbers are defined by
F,=0, A=1,and B,=2P_ +P_, for n>2.

They are 0,1, 2, 5,12, 29, 70, 169, 408, 985, 2378, 5741, 13860, ...
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The Lucas numbers are named after the mathematician Francois Edouard
Anatole Lucas. Each Lucas number is defined to be the sum of its two previous
terms, as follows.

L,=2,L=l,and L =L _ +L

n

L, forn=2.

This is like the Fibonacci numbers, except the starting value. The Lucas numbers

are 2,1,3,4,7,11,18, 29,47, 76,123, ....

2.2 Literature review

The reciprocal sums of the Fibonacci numbers are studied in 2009 by Ohtsuka
and Nakamura [5].

Theorem 1. For all positive integers n=>2,
i 1Y _|F,-F_,, if niseven, M
raril i \E,—F_ -1, if nisodd,

where |_0J denotes the floor function.

Later, in 2015, Wang and Wen [6] extend Theorem 1 to the finite partial sums.

Theorem 2. (i) For all positive integers n=4,

SN, (2)

n

2n 1 0\

L

(i) For all positive integers m>3 and n=2,
i 1Y | F-E, if nis even, 3)
e FE,—-F_ -1, if nisodd.
Wang and Zhang [7] investigated more about the reciprocal sums of the

Fibonacci numbers with even and odd indexes.
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Theorem 3. For any positive integers m and n,

%’: 1 )| | o= B if m=2and n>3, @
o Foy - E,-F, -1 ifm23and nz1.

Theorem 4. For all integers n>1 and m > 2,

-1
[Z 1 j =Fyp =By (5)

k=n F;k—l

Recently, in 2017, Choo [1, 2] has found some interesting results about the
reciprocal sum of the Pell numbers and the Lucas numbers.

Theorem 5. For all positive integers m and n. We have

w1\ B -F if n>2 with nis even and m 2 2n, ©
—~p | | |\B-P, -1 if n21 withnisodd and m>3n.

Theorem 6. For all positive integers m and n. We have

Ki 1 J—IJ { {L,, -L ,, if n=>3 with nis odd and m = 2n, -

i L, L —L, -1, if n=4 with nis even and m23n.

It can be seen that the results (3), (6), and (7) are similar and in the same
direction. So, it is natural to ask whether there are the same phenomenal for other

sums? This motivated Janphaisaeng and Sookcharoenpinyo to investigate the partial

finite sums for the reciprocal of the Pell numbers with even and odd indexes.

Theorem 7. For any positive integers m and n,

i 1 )| | B~ Py if m=2and n23, ®
i B, - P,—-P,,-1, if m23and n>1.
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Theorem 8. For all integers n>2 and m>2,

-1
mn o
(Z j = P2n—1 - ‘P2n—3' (9)

k=n P2k—1

2.3 Objectives

The results (8) and (9) are good and closed to those of the Fibonacci numbers
as we expected. These results show the beauty in mathematics. So, we are
interested in finding exact formula for the partial finite sum of the even-indexed
and the odd-indexed reciprocal Lucas numbers. We hope to see results that are
similar to those of the Fibonacci and the Pell numbers. As a consequence, we can
guess formulas for the reciprocal sums of the Pell numbers, the Lucas numbers,

and the other related numbers from those of the Fibonacci numbers.

3. Results and discussion

We begin this section with some identities involving the Lucas numbers that

will be used in the proof of our main theorems. They are similar to identities of the

Fibonacci-numbers-and-the-Pell-numbers:
Lemma 9. For any positive integer n=1, we have

L-L_L, =5-1)". (10)
Proof. We proceed by induction on #. It is clearly true for n=1. Assuming the

result holds for any positive integer k. We have
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Li+1 — L Ly, =Ly (Lk +L, ) - L, (Lk+l +1L, )
=LyyLy + Ly Ly, — Ly Ly, — Li
=LiyL, — Li
— _5 (—l)k—l
=5(-1)".
This completes the induction on n. N
Lemma 10. For any positive integer n>2, we have
2-1,,L,.,=5-1)"" (11)
Proof. By the definition of the Lucas numbers and Lemma 9, we obtain that

Li - Ln—2Ln+2 - (Ln—l —- Ln—2 )2 = Ln—2 (Ln+1 + Ln)

= L:rzl~l + 2Ln—an—Z + Li—Z - Ln—ZLn+1 N Ln—2Ln
s Li—l +2L, L, ,+ Li~2 =11/ = (Ln +L,, ) -L,, (Ln—l + Ln—2)
= Lft—l i Ln—ZLn

=5(-1)"".

Lemma 11. For any positive integers a>1 and b>1, we have

LrL+Lr. L. =L +L (12)

a+1 a+b a+b+2 *

Proof. Let a>1 be a positive integer. We proceed by induction on b21. For

b=1, we have

+ La+1

a+1

= (La+2 + La+1 ) + La+l
=L

a+3

LL+L,L=L+3L, =(L,+L,,)+L

+ La+1

Let k£ be any positive integer. Assume that the equation (12) holds for any positive

integer b<k. We get
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LLyy+LyyLy,=L, (Lk +L,, ) +L,, (Lk+1 + Lk)

= LaLk + LaLk—l + La+1Lk+1 + La+1Lk
= (LaLk + L, Ly ) + (LaLk—l + La+1Lk)
= (La+k + La+k+2) + (La+k—1 + La+k+l)

= (La+k—l + La+k ) + (La+k+1 + La+k+2)
=L ,+L

a+k a+k+3*
This completes the mathematical induction on 5. .
Now, we are ready to prove the case of even term.

Theorem 12. For all positive integers m=>2 and n22, we have

-
mnl
N e (13)

"
Proof. Equation (13) is equivalent to L, —L,, , < [ZLj <L, —L, ,+1,0r

k=n 2k

1 DA - PR\, (14)
LG-z +1 k=n sz LG iy LG-z

L,

By elementary calculation we derive that, for k£ >1,

1 \ 5 1
sz - sz-z +1 sz L2k+2 T sz +1
— sz (L2k+2 B sz + 1) S (sz — sz-z + 1)(L2k+2 . sz + 1) - sz (sz B sz—z + 1)

Ly, (L2k =Ly o+ 1)(L2/wz =L, +1)

=J2 o7 I £ T _

2k "T2R-272k+2 C T2k-2 TTOk+2

i
- sz (sz - sz—z + 1)(sz+2 - sz + 1).

By Lemma 10, we get

1 1 1 -5 (_1)2k_1 + Ly g = Ly —1

Ly—Ly,+1 Ly, Ly,—L,+1 L, (sz —Ly .+ 1)(sz+2 =Ly, + 1)
— 4+ Ly p— Loier )
sz (sz - sz—z + 1)(L2k+2 - sz + 1)
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By summing both sides from n to mn, we get

1 _ S _ 1 — f“ 4+ sz—z — L2k+2 ]
LG - LG-z +1 k=n sz L2mn+2 - L2mn +1 k=n sz (sz - sz—z + 1)(sz+2 - sz + 1)
Then
”Zm: 1 — 1 _ 1 + f“ Lopy =Ly p—4
k=n sz LG - LG—z +1 L2mn+2 - L2mn +1 k=n sz (sz - sz—z + 1)(L2k+2 - sz + 1)

1 1 L2n+2 — LG—z -4
> — + .
L2n - L2n—2 + 1 L2mn+2 - L2mn + 1 L2n (L2n - L2n—2 + 1)(L2n+2 - L2n + ]')

Since n22, L, >L,=4. Therefore, L, =L, +L, ,>L, ,+4. It follows
that L,,.,—L,, ,—42L,,.,—L,, =L,, - Then

(L2n+2 - L2n—2 . 4)(L2mn+2 - L + 1) 2 L2n+l (L2mn+2 N L + 1)

2mn 2mn

= 2n+1 (L2mn+l = 1)
) L2n+l (L4n+1 " 1)
>L, L

2n+1""4n+1

=Ly, (L4n + L4n—-1)
> L2n+1 (L4n + L4n—2 )

By Lemma 11, we get that L,, +L,, , > L, L, .Since L, ,>L,=3,we get

(L2n+2 - L2n—2 - 4)(1’2mn+2 o L + 1) > L

2mn 2n+]L2nL2n

=L,,uly, (L2n—l + LG—z)

2n+1

2 L2n+1L2n (L2n—l + 3)

= L2n+1L2nL2n s 3L2n+1L2n

[ S

> L2n+lL2nL2n—l + L2nL2n—1 + L

2n+1L2n + L2n
=L, (L2n+1L2n—l + Ly, + Ly + 1)
+1)

= LZn (LZn—l + 1)(L2n+l
=L,, (LG =L, ,+ 1)(L2n+2 =L, + 1)-

2n+1

L2n+2 — LG-z —4 1
> . Hence,
LG (LG - LG—z + 1)(L2n+2 - LG + 1) Lz L,,,+1

2mn

It follows that

mn+2
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> ! > L (15)
k=n L2k L2n - L2n—2 +1

On the other hand, by elementary calculation and Lemma 10, we derive

that, for k=1,

1 _ 1 — 1 — _Lik + L2k—2L2k+2
sz - sz—z sz L2k+2 - sz sz (sz - sz—2 )(L2k+2 - sz)
5
- sz (sz - sz-z )(L2k+2 - sz)
> 0.

Summing both sides from n to mn, we get

L —lL _le L 1L >0,
9| 2n-2

n k=n 2k 2mn+2 ~ 2mn
which implies that

; o ! — ! < ! . (16)

k=n sz Lz _LG-z Lz

n mnt2 LZmn L2n ) )

Finally, combining (16) and (15), we obtain (13) as desired. u
Before proving the case of odd term, we need some help from the following
lemmas.

Lemma 13. For any positive integer n=1, we have

LG + L2n+2 =L,,L

n+1""n+2

L L . (17)

Proof. Setting a=n—1and b=n+1 in Lemma 11, we get

L2n + L2n+2 = Ln—lL + L L

n+1 n"—n+2
= Ln—l (Ln+2 - Ln) + LnLn+2
= Ln—an+2 - Ln—an + L.L

n—n+2
= (Ln—] + Ln )Ln+2 - Ln~an
=L L

nl 2 T Ln—an'
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Lemma 14. Let a and b be two integers with a>b>0. If n>a, then

L L Ln+bLn—b—l = (_1)"_a La+b+]La—b + 2(_1)"—‘”1 L2a+1 . (18)

wa“n-a-1"—
Proof. We proceed by induction on n. For n=a+1, we have

L

2a+] - La+b+lLa—b = (_1)1 La+b+1La—b + 2(_1)2 L

Ly—L,,.L,,=2L

a+b+1""a-b 2a+] 2a+1"

Assume that the result holds for any integer n>a. Applying Lemma 11 twice and
using the induction hypothesis, we get

LyvanLno = LusiiLos =(LyvariLoa ¥ LovaLnor ) = LuvsiLos — Ly

n+a+l""n-a n+b+1""n-b n+a+! nt+a~"n-a-1 n+b+1""n-b n+a“'n-a-1
7 L2n+l + L2n—l 77 Ln+b+1Ln—b " Ln+aLn—a—l
3 (Ln+b+an—b + Ln+bLn—b-—l ) 1 Ln+b+1Ln-—b - Ln+aLn—a—1
=L, Ly sy~ Lyoliy o
= (_l)n_a+1 La+b+lLa—b + 2(_1)n_a+2 L2a+1 g
which completes the mathematical induction on 7. L

Theorem 15. For all positive integers n= 6, we have

2n 1 -l
Z L = L2n-—1 N L2n—3 . (19)

k=n H2j—1

Proof. We must show that

1 <« 1 1

< < . (20)
'L')n_l _Lon_z +1 k%;L’)l(_] L'; 1 _Lo.. 3

=

By elementary calculation and Lemma 10, we derive that, for k> 2,
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| 1 1

Loy — sz—s +1 L2k—l L2k+l =Ly +1
Ly sLopn — Lék—l Ly 3= Ly —1
L2k—l (L2k—1 - sz—3 + l)(L2k+1 - L2k—1 + 1)
_ =5 (_1)21‘_2 + sz—s — L2k+1 -1
B Ly (LZk-l - sz-s + 1)(L2k+l - L2k—1 +1)
sz—a — L2k+1 -6
L2k—l (L2k—l - sz—3 + 1)(sz+1 - L2k—1 + 1) .

Summing both sides from n to 2n gives

1 - 22 1 1
L2n—l - LG-3 +1 k=n L2k—1 L4n+l = L4n—-] +1
& sz-a N L2k+l -6
k=n L2k—1 (L2k—l - sz—a <y 1)(L2k+l - sz-1 + 1)

Then
& 1 1 = 1
k=n L2k—l LG-l X LG—s + L4n+l - L4n—1 +1
+ 2Zn L2k+1 N~ sz-a +6
k=n L2k—1 (L2k—1 ' sz—3 + 1)(L2k+1 ri LZk—l A 1)
1 1 1
> — + .
L2n—1 - L2n—3 4l L4n+l - L4n—1 +1 L2n—1 (‘L2n+l 0 L2n—1 + 1)
By Lemma 11, we get
‘L4n+1 —Ly, +1=L,,+ I= L4n—1 + L4n—3 +1
=L, L, +L,, Ly, +1
= L2n—l (LG + LG—z ) +1
= LG—l (L2n+l - L2n—l + LG—z ) +1
> L2n—l (L2n+l _L2n—l + 1)'
Therefore,
2n
> L 1 : (21)
k=n L2k—1 LG-l - LG—3 +1
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On the other hand, by elementary calculation and Lemma 9, we derive that,

for k=2,

1 - 1 - 1 — L2k—3L2k+l — Lik—l
L2k—l - sz—3 L2k—1 L2k+1 - LZIc—-l L2k—1 (LZk—] - L2k—3)(L2k+l - ‘L2k—1)
) _5 (_1)2k—2
B Ly (LZk—l - L2k—3)(L2k+1 - L2k—l)
: -5
) L2k—l (L2k—] - L2k—3)(L2k+1 - L2k—1).

(22)

Summing both sides from 7 to 2n gives

-1 &1 1 -5
L2n—1 - LG-s k=n L2k—1 L4n+1 - L4n—l k=n L2k—l (sz—] [ L2k—3)(L2k+1 - L2k—1)

3

which implies that

21 l 1 1 2n 5

— — + *
k=n L2k—1 LZn-—I _Lzu—s L4n+1 —L4n—1 k=n sz—1 (sz—l _sz—S)(szH 'sz—l)

We know that L, ,=L, .+L, (=2L, +L, ,=3L, +2L, .25L, ;. By

replacing # by 2n—1 in Lemma 13, we get
5(L4n+l Ly, )LG-x =5L,, Ly, 5 < Lyyly,

= (L2nL2n+l . L2n—2L2n—l - L4n—2)L2n—4
SL2nL2n+1L2n 4 _LG 2L2.u. 1L2n 4

- N SN

Setting a=2 and b=0, and replacing n by 2n—1 in Lemma 14, we get
2n-3 2n-2
Lynlyys—LyyiLy,y = (_1) LL, + 2(_1) Ly =—(4)(3) +2(11) =10.

(23)

Setting a=1 and =0, and replacing n by 2rn—1 in Lemma 14, we get
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2n-2

Ly Ly, s— Ly Ly y = (-1 LL +2(-1)"" L, =3-2(4)=3-8="-5.

(24)

~ Then from (23) and (24), we obtain

5 (L4n+1 e )LG-s <L, (L2n—1L2n—2 + 10) - (LZnL2n—3 +5 )LG-4

=Ly LyiLyys t+ 10L,, - L,, Ly, 5Ly, 4 = 5L, 4

Since n=6, L, ,2L,=76 and L,, , > L, =47. Therefore,

n-3 — 2n—-4 =
5(‘L4n+l - L4n—1 )LZn—S < LZnLZn—lLZn—Z + ]‘OLZn - 1OLZn - 5L2n—4

< L2nL2n—lL2n—2
= (L2n+l w L2n—l)L2n.-1 (L,,_l - Ln—3)‘

S(L, ..—L
(4"” 4”‘1) Pe L . Therefore,

It follows that
L2n—1 (LG-1 = LG-a )(L2n+1 - LG-l) LG—s

& 5(I’4n+1 B L4n—l) < 22” 5(L4"+1 % L4”‘1)
k=n L2k-1 (L2k—l - L2k—3)(L2k+I T L2k—l) k=n L2n~1 (L2n—l 3\ L2n—3)(L2n+1 - L2n—l)
2n 1
<
k=n L2n—8
_n+l
L2n—8
<lI.
) 2n 5 1
This means z : < . Then we get
k=n L2k—1 (L2k—1 iy sz—z )(L2k+1 e L2k—l) L4n+1 - L4n—-1 ‘
%2‘ L < L (25)
k=n sz—l LG-l - LG-a
Finally, combining (25) and (11), we obtain (20) as desired. |

Theorem 16. For all positive integers m=3 and n=2, we have

-1
mn o
=L .—L .—1. (26)
[(; Lz/‘_]J J 2n-1 2n-3




Proof. We have to show that

mn

S S b S
L2n—l - LG-3 k=n L2k—l LG-l - LG-a -1

dninvoaya

20 NA. 2565

From equation (22), summing both sides from n to mn yields

N b U 1 _ =5
L2n—1 - LG-3 k=n L2k—] Lz L k=n L2k—1 (sz—l - L2k—3)(L2k+l - L2k—l) ’

mn+l — 2mn-1

which implies that

mn 1 1 1 mn 5
= - +

; L2k—l L2n—l - LG-3 L2mn+1 - L2mn—l kz=r; L2k—l (L2k—l - sz—s )(L2k+l - L2k—l )
o1 ! A 5

L2n—1 - LG-s L2mn+1 ) L2mn—l L2n-1 (L2n—1 - L2n—3)(L2n+1 - L2n—1).

Since m 23, applying Lemma 11 twice we get

5(L2mn+l y L2mn—1) 7 5L2mn > 4L6n
= 2L4nL2n—l
2 L2nL2n—1L2n—l
% L2nL2n—1L2n—2 = (‘L2n+1 » L2n—l )L2n—l (L2n—l - L2n—3)'
Then we get : 2 ! . Therefore,
L2n—1 (LZn—l N L2n—3 )(L2n+1 — L2n~1) L2mn+1 i L2mn—l
! > ¢ : (28)

k=n L2k—1 LG—l — LG-3

On the other hand, by elementary calculation and Lemma 10, we derive

that, for k=2,
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1 1 1

L2k—1 — Ly -1 L2k—1 L2k+1 - L2k-l -1
L2k—3L2k+l - Lik—l - sz—3 + L2k+l -1
L2k—1 (L2k—1 - sz-s - 1)(L2k+l o L2k—l - 1)
— = (“1)2k_2 — Ly s+ Ly —1
B Lo (L2k—l —Lys - 1)(L2k+1 Ly, - 1)
— Ly =Ly 5=6
Ly (LZk—l — Ly 53— 1)(sz+1 — Ly~ 1) .

Since
L2k+l - sz—z =L, + L2k—1 + L2k—2 = L2k—1 = sz + sz-z = L4 + Lz =7+3=10>6,

1 /4R 1 50,

sz—] Ir sz—s s L2k—1 L2k+l e L2k~1 A\

Summing both sides from »n to mn yields

mn

1 _231 q. 1 A\
LG-l - LG—z - L L 1

k=n 2k-1 2mm+l — F2mn-l T
which implies that

! ! _ ! < ! L (29)

<
k=n L2k—1 L2n—1 - ‘L2n—3 = 1 L2mn+1 - L2mn-—l - 1 L2n—l Wy L2n—-3 _1

Finally, combining (29) and (28), we obtain (27) as desired. u

Furthermore, letting m tends to infinity in Theorem 12 and Theorem 16, we

obtain the infinite sums as followings.

Corollary 17. For any positive integer n= 2, we have

-1
= 1
~| |=L,-L,,. (30)
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Corollary 18. For any positive integer n=2, we have

-1
[Z 1 J =Ly, — Ly, ;-1 (31)

k=n L2k—l

5. Conclusion

We can see that our results are slightly different from those of the Fibonacci
numbers and the Pell numbers. Our formula for the even term, equation (13), looks
like the formula for the odd term of the Fibonacci numbers, equation (5), and the
Pell numbers, equation (9), whereas our formula for the odd term, equations (19)
and (26), looks like the formula for the even term of the Fibonacci numbers (4), and
the Pell numbers, equation (7). The reason may be the starting value. The Fibonacci
numbers and the Pell numbers begin with the same value 0 and 1, but the Lucas

numbers begin with 2 and 1. Therefore, we obtain the different results.
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