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Abstract

In this research, we have proposed the linearization problem of second-order ordinary
differential equation under the generalized linearizing transformation. We found the necessary
form for reducing the second-order ordinary differential equation to simple linear equation.
We also obtained sufficient condition for making the above form to be linear. Further, the
procedure of linear transformation within the study is demonstrated in the explicit form.
Moreover, we apply the obtained linearization criteria to the interesting problems of nonlinear
ordinary differential equations and nonlinear partial differential equations, for examples the
parachute equation, the Painleve - Gambier XI equation, the equation for the variable
frequency oscillator, the one-dimensional nonpolynomial oscillator, the equation that can be
linearizable by point and Sundman transformations, the modified generalized Vakhnenko

equation.

Keyword : Linearization problem, generalized linearizing transformation, nonlinear second-

order ordinary differential equation
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1. Introduction

1.1. Introduction to the research problem and its significance

There has been major interest in the nonlinear problems, since most equations
are inherently nonlinear in nature. In general the nonlinear problems are very difficult
to solve explicitly. It is of interest to provide general criteria for the linearizability of
nonlinear ordinary differential equations, as they can then be reduced to easily solvable
equations. Therefore, the approach of investigating nonlinear ordinary differential equa-
tions via transforming to simpler ordinary differential equations becomes important and
has been quite plentiful in analysis of physical problems. This includes the classical lin-
earization problem of finding transformations that linearize a given ordinary differential
equation. The linearization problem has been studied in many aspects. A short review
can be found in {1, 2]. The tools commonly used for solving the linearization problem
are the transformations such as point transformation, contact transformation, reduction
ol order, differential substitution, generalized Sundman transformation etc. For this
research, we employ the extension of the generalized Sundman transformations.

1.2, Historical review
The lincarization problem for a second-order ordinary differential equation was
investigated with respect to a generalized Sundman transformation

X = F(t, %), dT = G(t,2)dt (1.1)

by Duarte et al. [3] earlier. They obtained the form of the linearizable equations and the
conditions which allow the second-order ordinary differential equation to be transformed
to the free particle equation. A characterization of these equations that can be linearized
by means of generalized Sundman transformations in terms of first integral and procedure
for construction of linearizing transtormations has been given by Muriel and Romero [4]-
In [5], Mustafa et al. gave a new characterization of linearizable equations in terms
of the coefficients of ordinary differential equation and one auxiliary function. In [6],
Nakpim and Meleshko pointed out that the solution ol the linearization problem for a
second-order ordinary differential equation via the generalized Sundman transformation
considered earlier by Duarte et al. using the Laguerre form is not complete.

In this work, we expose a more general transformation, ie. the-extension—of-the
generalized Sundman transformation

X = F(t,x), dT = G(t,z,2')dt. (1.2)

This transformation was studied in [7-9] where they designated the transformation as
the generalized linearizing transformation. They showed that this transformation can
be utilized to linearize a wider class of nonlinear ordinary differential equations and, in
particular, certain equations which cannot be linearized by the non-point and invertible
point transformations. If the function G in (1.2) is independent of the variable 2’ then
it becomes a non-point transformation (vide equation (1.1)). On the other hand, if G is
a differentiable function then it becomes an invertible point transformation. So, (1.2) is
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a unified transformation as it includes non-point and invertible point transformations as
special cases. An example of an equation which can be linearized by a transformation of
the form (1.2) is given in [8].

In [7], the Chandrasekar, Senthilvelan and Lakshmanan applied a particular class of
transformations (1.2), where the function G(t,®,2') is linear with respect to @’

They payed attention to the case where G is a polynomial function in z’ and in
particular where it is linear in 2’ with coeflicients which are arbitrary functions of ¢ and
z. To be specific, they focused here on the case

X =F(t,z), dT = (G1 (t,z) 2’ + G2 (t,z)) dt.
Notice that for the case Gy = 0, the generalized linearizing transformation becomes a
generalized Sundman transtormation, so that they assumed G1 # 0.
The authors of [7] obtained that any second-order linearizable ordinary differential

equation which can be mapped into the equation X" =0 via a generalized limearizing
transformation has to be of the form

o+ As(t, 2)a3 + Ag(t, 2)a? + A1t 2)z’ + Ao(t, ) = 0, (1.3)

and the functions A;'s (i = 0,1,2,3) are connected to the transform functions F and G
through the relations

A3 B (GlE’I:I N = Fa:Glz)/J\J)

Ay = (GyFyy +2G1Fyy — FoGap — FiGiz — FuGut) /M, (1.4)
Ay = (2GoFy + G1Fy — FoGop — F1Gay — F.G1)/ M, ’
AO - (Gtht ™ FtGZt)/]\l

with M = FEGQ -3 FtGl 7é 0.

They have analyzed a particular case of equation (1.3), namely, Az =0 and A3 =0
in equation (1.4). Complete analysis of the compadtibility of arising equations is given for
the case Fy # 0.

In this research, we will analyze, the linearized criteria for a general case of equation
(1.3) with the function in the case Fy = 0.

2. Formulation of the linearization theorems

2.1. Obtaining necessary condition of linearization
We begin with investigating the necessary conditions for linearization. We consider

the second-order ordinary differential equation

' = F(tuz) (2.1)
which can be transformed to a simplest linear equation

X'=0 (2.2)
under the generalized linearizing transformation

X= F(t=),

dT =[Gy (t,z) 2’ + G2 (t,2)] dt, (2.3)

where G1 # 0. So that we arrive at the following theorem.



8

Theorem 2.1. Any second-order ordinary differential equations (2.1) obtained from a
linear equation (2.2) by a generalized linearizing transformation (2.3) has to be the form

g+ As(t, 2)z’® + Ag(t, x)z’? + ALt 3)3’ + Ao(t,z) = 0, (2.4)
where
A3 :(—Fa:mGl + Fmle)/(FtGl - F3G2)a (25)
A2 =(_2Fta:G1 + FtGlm - meGZ + F:Z:G’lt + F:L'G2a:)/(FtG1 - F;,;Gz), (2.6)
Ay =(—2F;;,Ga — F3G1 + FiG1t + FyGas + FuGai)/(FG1 — FuG2), (2.7)
Ay =(—FG2 + F;G2)/(FiG1 — FuGa). (2.8)

Proof. Applying a generalized linearizing transformation (2.3), one obtains the following
transformations

D.F(t,z)
X'(T) = L
@ D, [[G:1(t, z)z" + Ga(t, z)]dt
_ Ft + ’LIFE
—G’lrc' + Gy
:P(t)m,wl),
Dy P
X" (T) = :
( ) Dy I[Gl(t, CL‘)(B’ + Gz(t,(l?)]dt
P+ P’ + Pz
R Glm' + Gy :
where
p =Ftt(G1:EI + Gz) — Ft(Gl.’BH + GltCDI + GZt)
X (G123’ + Ga)? /
P =th(G1£L‘I + Gz) - Ft(Glm.’III + GQ‘E)
i (Glflt’ + G2)2 t
P, =— M/_’
(Grz' + G2)?

and D; = % +' % +z" 5% +...is a total derivative. Substituting the resulting expression

in-linear-equation—(2-2);-we-get-the-equation—(2:4)-

2.2. Obtaining sufficient conditions of linearization and linearizing transformation

For obtaining sufficient conditions of linearizability of equation (2.4), one has to
solve the compatibility problem of the system of equations (2.5)-(2.8), considering it as
overdetermined system of partial differential equations for the functions F, G; and Go
with given coefficients 4; of equation (2.4).

The compatibility analysis depends on the value of F;. A complete study of all cases
is conbersome. Here a complete solution is given for the case where Fp = 0. For
convenience of calculations, we set G

2

G3=—GY—1.



So that system of equations (2.5)-(2.8) become

As =(— FaaG1 + FaGia)/(Gr(Fs — FuGs)), (2.9)
Ay =(=2F,G1 + FiG1g — FuaG1G3 + FuGri + F2G1.G3

+ FuG3:G1)/(G1(Fy — FoGs)), (2.10)
Ay =(—2F;;G1G3 — FG1 + FiG1s + F1G1:G3 + F1G3:G1

+ FpG1:G3 + FyG3:G1)/(G1(F; — FuGs)), (2.11)
Ap =(—F:G1G3 + F;G1;G3 + F;G3:G1)/(G1(F; — F3Gs)). (2.12)

According to the notation K = G1(FyGs — Fy), we define the derivative Fy as
Ft — (FEG1G3 i I()/Gl (213)

Solving equations (2.9)-(2.12) with respect to Fyq, Kz, K and Gy, one finds

Fop =(FGis + AsK) /Gy, (2.14)
Ko =(—FyG1:G1 + FyG1,G1Gs + FuGs. Gl +3G1. K
— AyGiK +343G1G3K)/(2Gy), (2.15)
Ky =(—F,G1,G1Gs + FyG1.G1G3 + F,G3,G3Gs + 4G K — G1,G3K
1+ 2G3.G1K — 2A,G1K + 34,G1G3 K — 3A3G1G3K)/(2Gy), (2.186)
G =G35Gs + Ao — A1G3 + A,G — A3G3. _ (2.17)

Comparing the mixed derivative (Kg): = (K¢)g, one obtains

Gase =(2A0c FyG3 — 241, FG3Gs 4+ 4A1,GIK — 2A5, G K
4 2450, FyG3G2 — 642,GAG3 K + 643,G3G3 K — 243, F,G3G3
+ 643, GPGEK + 4FG115G3G3 — 2F,G1:Gs + 3F, G3,G1
— 6F,G1;G1.G1Gs + 2F, GG, G2 — 2F, G141 G
+ 4Fy G AsG2Gs — 6F,G1: AsG2GE — 2F,G12.G1G3
+3F,G2,G1G3 — 2F,G10G5.G3Gs + 2F, G1,AGY
— 2F,G12A2G2GE + AF, G, A3GAGS — F,G3,GY — 2G11.G1 K
+ 3G 1:G1. K — G1pAoG1 K + 3G1:A3G1G3 K + 2G15:G1G3 K

~3G2 G35 K + G1,G3,G1 K + G1,42G1G3 K — 3G1,43G1G3K
— 5G3u AsGAK + 15G3, A3G2G3K + 6A0AsGIK
— 641 AsG3GsK + 642 AsGIGEK — 6A3GEIGEK) /(4GIK). (2.18)
Comparing the mixed derivatives (Fyz): = (Ft)ss and (Gaes)t = (G'at)sa, One arrives at
the equations
— 2A0u F2G + 241, F2G1Gs — 441, F,GAK + 2A FuGIK
— 2A2, F2GAGE + 60 FuG3G3 K — 4A5,GIK? — 645 FuG3Ga K
+ 8A5G2K? + 2A3, F2G4GS — 643, F,G3GEK + 4A3,G3GsK?
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— 4F2G14,G3Gs + 2F2C14,G3 — 3F2G2,G3 + 6F2G11G1.G1Gs

— 2F2G14G3, G + 2F2G1, A1 G3 — 4F2G1,A2GRGs + 6F2G11 AsG3 G
+ 2F2C14,G3G3 — 3F2G2,G1GE + 2F2G1,Gs. Gy Gs — 2F 2 G154 GY
+ 2F2G1, AaGRGE — AF2Gh, AsG3GS + F2G2,GY + 6F,G11.GI K

— 9F,G1:G1aG1 K + 3F,G1 AsGRK — 9F, G A3G2G 3K

— 6F;G120GIG3K + 9F,G%,.G1G3 K — 3F:G1.G3.GI K

— 3F,G13AsG3GsK + 9F,G1, A3G2GEK + 3F,G3, A2GS K

— OF, G35 AsG3GsK — 6F, AgAsG3K + 6F, A1 AsG3Ga K

— 6F, Ay A3G3G2K + 6F, A2G3G3K + 4G1, A3G1 K2 + 4G14,G1 K

— 6G2,K? — 4G1,A3G103K? + 8Ga, A3GIK? — 8A1 A3GEK?
+2A2G2 K? 4 445 A3G2G K? — 6ASGEGEK? =0, (2.19)

AA0ta FoGt + 4Ag FpG1oGS + 1240:AsGE K — 4 A40n FuG1Gs

— 8 A0geGRK + 2405 FyG1yG3 — 6A0c FiuG12G3G3 — 1840, FuG3.Gi

+ 8Ags FyA1GE — 16 A0y Fip A9 GG + 24 A0, Fr AsG1G) — 8Ap: A2GIK

+ 1240, AsG3G3 K — 44141, FuGEG3 + 8411, G K — 441, Fo G116

— 1241, AsG3G3 K + 44150 FoGGE 4 241, Fy G, G3Gs + 241, Fp G1:.G3 G3
1 1841, FyG3.GiGs — 4A1, Fy AgGr — 441, Fy A\GEGs + 1241, F, AxG1G3
— 2041, Fu A3GEGE — 841,G3,G K + 8A1,A1GEK — 8A1,42G3Gs K

+ 1241, A3GRGEK + 4451, F GG} — 8401, GG K — 4 A0 GSK

+ 845 F,G1iG3G s — 445 FG1, G362 — 2A42,G1iGlK + 2A2:G1.G1G3K

+ 240,G3,G3K — 4Ap A1 G2 K + 845, AsGIG3 K — 4 A2y GG

+ 4 Apge G3GEK — 6 A2, FyG1iGIGE + 242, FoG15GYGY — 1842, F;, G35, G163
+ 842 Fy AoGAGs — 8Agy Fy AsGAGY + 1640, Fy AsG1GS + 242,G1, GG K
— 245, G GEGEK + 1442,G3.G3G3 K — 1245, AgGEK + 4A2. A2 GG K
+ 843 FyG1,G3GE + 6A43,G11G2 G K — 643,G1.G2GAK — 6A3G3.G3G3K

+ 24A3 A0GRK — 1243, A1 GG K + 4 A3, FrG1GS — 4A3,.G3GIK

+ 1043, Fy G1sG3G3 — 643, FyG1,G3GS + 1843, FuGa: G1GY

— 1243, Fy AgGLG2 + 4 A3, Fy A1GAGS + 445, F, A,G1GS

— 12A3, Fy AsGLGS — 6A3,G1.G2GAK + 6A3,G1.GIG3K

— 1843,G3cG3GEK + 1243, A)G3G3 K — 4A3, A,GIGRK

+ 1245, A3G3GEK — 12F, G114 G3G2 — 36 F,G11:G1:G3G3

+ 36F,G110G12.G? G2 — 36 F,G110G3:G3G3 + 12F, G145 A0S

+ 12F, G110 A1 G3Gs — 36F, G115 A GG 4 60F, G115 As GG — 4F G GS



4 12F, G100eG3Gs + 18F2CG14:G1:G2 — 18F,G144G12G1Gs + 1855 G11:G3.G5
19F, G113t A1 G3 + 24F; G141t A2G3Gs — 36F; G AsG3GE — 15F,G3,Ga

+ 45FyG2,G14G1Ga — 2TF3G2,Ga, Gl + 18F, G2,A:G? — 36F,G3,A2G1G3
+ 5AF, G, A3G2GE + 18F,G11G102G1G3 — 45F: G1:G2,G1G3

4 54F, G1,G10C32G2Gs — 18F;G14G12AcG — 18F, G1:G1:A1G3G3

4 54F, G, GroA2G2GE — 90F,G1,G1,43G3 G5 — 9Fu Gu1G2,G3

4 18F,G1;Gap A1G? — 36F,G1,G3, A2G1Gs + 54F, GGy AsGEGS

+ 8F, G ApA2GS — 24F,G1:Ag AsG3Cs — 8F,G1 ALGS

4 2UF, Gy A Ao G3Gs — 24F; G A1 AsGE G — 24F, G AZGSGE

4 64F, G As A3 G3GE — 48F,G1:AJG3GS + 4F3 Gl GIGY

18F, G1paC1oG2C3 + 18F,G140G3.G1 G = 12F, G2 A0GE G

+19F, Grog AsGRG3 — 24F, Glo0AsGIGS + 15F,G1,G1Gy

— 2TF, G2, G3,G2 G} 4 18F, G}, AcG1Gs — 18F,G3, A G3GS

+ 36F,G2, AsG2GS + 9F,G12G3,G1Gs — 18F, G1oGasA0Gy

4 18F, G1,Cau A2 G3GE — 36F,G14G3:AsGi G + 8F; G2 A0A1GY

9AF, Gyp Ao A2 GG + 48F,G1, A0 AsGIG) — 8F: G A1 AsGEGS

+ 8F,Gro A2G3GE — 24F, G5 A2 A3GR Gy + 24F, G1.AZG3GS + 3F,G5,.GY
+ 8G1100G2C K + 10G145G1:G1 K — 26G115GraGr G K + 14G11,, GG K
— 4G5 A1 G2 K + 16G 145, AsGGa K — 36G10 A3sG2GEK — AG144.GLK

4 8G13 GG K — 4G AsGAK + 12G1 A3G1G3 K — 15G2,G1 K

4 5G2,AsG1 K - 15G2,A3G1 G K — 10G1:G120G1Gs K + 30G1;,G2,G3K
29G4, G10C3uC1 K + 8G1:G15A1G1K — 26G1:G1oA2G1G3 K

+ 54G1tG1$A3G1G§K + 8G1tG3wA2G%K — 24G1tG3mA3G§G3K
+ 6G1tAOA3G%I{ = 4G1tA1A2G%K + GGltAlAaG%G:;K + SGltAgGgG;;I(

[ W

_ 30G4, Az AsG2G2K + 3061 AZG2GEK = 4Gh42GIG5 K

11

418G 10pC12G1G3K — 14G145G3, GG K + 4G4 A0GEIK

— 8C0 AsGRGEK + 20G15:A3GIGEK — 15G3 G2K + 22G3,G3:G1G3 K
— 8G2,AgG1 K +13G1,A:G1GIK — 31G2, AsG1GAK — 3G1,G3,GIK

— 8G1,CauAsG2Gs K + 24G1,Ga, AsGIGE K + A4G1,AvA2GEK
18G5 A0 A3G2G3 K + 6G1,A1 AsGIGRK — 4G, AZGEGEK

+14G 1, As AsG2G3K — 18G1, AJGIG3 K + 3G, A.G3K

— 9G2,A3G3G3 K — 6G3, A0 AsGLK + 6G3, A1 AsGIG3 K

— 6Gap AsAsG3GEK + 6G3, ASGIGRK = 0.

(2.20)
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Case F, =0
Since F, = 0, then substituting it into F, in equation (2.14), one gets the condition

Ay =0. (2.21)
Comparing the mixed derivative (F}), = (Fz)¢, one obtains the derivative
Giz = A2G1 — 343G1G3 (2.22)
and this satisfies equation (2.19). Setting

A = — Ay + 2454,
Ao = — Ao — AogAg + Aoyt + Aze A1 — AggAg — Are — A1y

then, equation (2.20) becomes -
Gazhi + GzAah + A2 = 0. (2.23)

The compatibility analysis depends on the value of A;. A complete study of all cases is
given here.

2.2.1. Case \1 =0
From equation (2.23), one finds
Ay = 0. (2.24)

2.2.2. Case A\ #0
Equation (2.23) provides the derivative

Gaz = —(G3AaA1 + A2) /A1 (2.25)
Subtituting Gap into Gage in equation (2.18), one arrives atb the condition
Moo = (= A2 A2 4 Aigde +A3) /A1 (2.26)
Comparing the mixed derivaties (Gsz): = (Gat)s, one gets the condition

Xt = —(AgaA? — Aipho + AgAa)? + A1 di Az + A5)/ A1 (2.27)

Combining all derived results in the case I, = 0 the following theorems are proven.

Theorem 2.2. Sufficient conditions for equation (2.4) to be equivalent to a linear equa-
tion (2.2) via generalized linearizing transformation (2.8) with the function F = F(t) is
the equation (2.21) and the additional conditions are as follows.

(a) If \y = 0, then the condition is equation (2.24).

(b) If Ay # 0, then the conditions are equations (2.26) and (2.27).

Corollary 2.3. Provided that the sufficient conditions in Theorem 2.2 are satisfied, the
transformation (2.3) with the function F = F(t) mapping equation (2.4) to a linear
equation (2.2) is obtained by solving the computible system of equations :

(a) (2.13), (2.15), (2.16), (2.17), (2.18), and (2.22).

(b) (2.13), (2.15), (2.16), (2.17), (2.22), and (2.25).
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3. Some applications

3.1. Parachute equation

The idea of this application is based on a model for movement of a parachutist during
the air using Newton's II law is ) F' = ma. The motion of skydiver when the coefficient
of air resistance change between free-fall and the final steady state descent with the
parachute fully deployed. Consider the parachute equation [4], in the form

' —kz?+g=0, (3.1)

with initial conditions z(0) = 0 and z'(0) = 0.
g 2
Here k = E%HD—, where

o m is the mass of the body and parachute,
e pis the density of the fluid in which the body moves,

» C is the drag coefficient for the parachute
(1.5 for parabolic profile and 0.75 for flat),

. D is the effective diameter of the parachute.

It is an equation of the form (2.4) in Theorem 3.2 with the coefficients
A3 = 0,A2 = k,Al = O,Ag = _(],>\1 = 0,)\2 = 0.

One can check that these coefficients obey the conditions in Theorem 2.9. case (a). Thus,
equation (3.1) is linearizable via a generalized linearizing transformation. For finding the
functions F, Gy and G2 we have to solve equations in Corollary 2.3 case (a}, which
become

__K 3.2
Ft Gla ( )
K} = bK) (3.3)
o K(2Gyw + G1G3k), (3.4)
G1
Ga = g+ Gk, (3.5)
G3,,...‘ = 0, (3.6)
Gz = Gik. (3.7)
Irom equation (3.7), we have
Glm I
Gy =k

1
/—C—;:dGl —/]»diL
In Gy =kz + C(t)
G, =C(t)e*®.
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Choosing C1(t) = 1, one obtains
G1 = ekm.

From equations (3.5) and (3.6), there exists Gz = \/%z such that these equations are

hold. Then, let

G2 = \/%iekm.

$0,

From cquation (3.3), we have

K

T —
% =k
/}—dK—/kda:
e =
In K =kz + C(t)
K =Cz(t)ekm.

From equation (3.4), we have
K ;
ki i
o i
1
/EdK =/\/kgidt

In K =+/kgit + C(z)
K =Cs(z)eVFo®.

Choosing Ca(t) = eVF9% and Cs(z) = ek then
K — ekm+\/7a§it_

Thus, equation (3.2) becomes

S ekt
F =ﬁe\/@“ + Ca(z).
Choosing Cy(z) = 0, one gets
F :——i—e‘/k—-"“.

N

So that, one obtains the linearizing transformation

X = \/—%_ge‘/@“, dT = (eF"2' + \/%ie’”)dt. (3.8)



Hence, equation (3.1) is mapped by the transformation (3.8) into the linear equation
X" =o0. (3.9)
The general solution of equation (3.9) is

X =cT+cy, (3.10)

where ¢; and c; are arbitrary constants. Applying the generalized linearizing transfor-
mation (3.8) to equation (3.10), we obtain that the general solution of equation (3.1) is

( Vkgit
- git __ t
\/@6 aé(t) + ca,

where the funtion 7' = ¢(t) is a solution of the equation

T N
o (=’ + \/%z)e" .

3.2. Painlevé - Gambier XI equation

In [4], Koudahoun, Akande, Adjai, Kpomahou and Monsia considered the Painlevé -
Gambier XI equation

1:12

2"+ =— =0. (3.11)
T

They introduced a generalized singular differential equation of quadratic Liénard type
for study of exact classical and quantum mechanical solutions.

By using our obtained theorems, we get the results as follow. Equation (3.11) is an
equation of the form (2.4) in Theorem 2.1 with the coefficients

Ay =04, = %,Al =0,Ag=0,A; =0,Ap =0.

One can check that these coefficients obey the conditions in Theorem 2.2. case (a). Thus,
equation (3.11) is linearizable via a generalized linearizing transformation. For finding
the functions F, G; and G2 we have to solve equations in Corollary 2.3 case (a), which
become

K
, Fy=——, 3.12
- 612)
Ky = %, (3.13)
K(2G1t$ + G1G3)
— 3.14
Kt Glil; ) ( )
2
G =2, (3.15)
Gjs
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Gig = ﬂ (3.17)
z
Consider equation (3.17), we have
Giz 1

G1 Z
1 1
InG; =lnz +InC(t)
G, =Cy (t):c
Choosing Cy(t) = 1, one obtains

G1 =X.

TFrom equations (3.15) and (3.16), there exists G = 0 such that these equations are hold.
Then, let
G3=0

s0,

G2 = 0.
Consider equation (3.13),
1

Ky 1
K =z

1 1

InK =lnz+InC(t)

K =Cz(t)il).
Consider equation (3.14),
I{t =0

Choosing C3(t) = 1 and C3(Z) =7, them

Thus, equation (3.12) becomes

Choosing C4{z) =0, so
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So that, one obtains the linearizing transformation
X = —t, dT = zz'dt. (3.18)

Hence, equation (3.11) is mapped by the transformation (3.18) into the linear equation

12

x" =o0. (3.19)
The general solution ol equation (3.19) is
X=cT+c, (3.20)

where ¢; and co, are arbitrary constants. Applying the generalized linearizing transfor-
mation (3.18) to equation (3.20), we obtain that the general solution of equation (3.11)
is

—t = c16(t) + ca,

where the funtion T = ¢(t) is a solution of the equation

‘E =T .
3.3. Equation for the variable frequency oscillator

In 2013, Mastafa, Al-Dueik and Mara’beh [4] considered the ordinary differential for
the variable frequency oscillator

z" + 2z =0. (3.21)

They showed that this equation can be linearizable by genralized Sundman transforma-
tion

X = F(t,z), dT = G(t,z)dt, Fy # 0.
By using thier method, the solution of equation (3.21) is
erﬁ(%) = C1t + Co,
where erfi(z) = % No.. ¢v"dv is an imaginary error function and Cp,Cs are abitrary

constants.
By using our obtained theorems, we get the results as follow. Equation (3.21) is an

equation of the form (2.4) in Theorem 2.1 with the coefficients
As = 0,A2 = LL',Al = O,Ao = 0,/\1 = 0,/\2 =0.

One can check that these coefficients obey the conditions in Theorem 2.2. case (a). Thus,
equation (3.21) is linearizable via a generalized linearizing transformation. For finding
the functions F, G; and G2 we have to solve equations in Corollary 2.3 case (a), which
become

(3.22)

K, = 2K, (3.23)
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_ K(2G1: + G1Gsa)

K 3.24
t Gl ’ ( )
G3t = Ggil?, (325)
Gazs = —Gi, (3.26)
G1$ = Glfll. (3.27)
Consider equation (3.27), we have
. Gl:z: _
G1

1
/G_ldal —/:vda

-
In Gy = T C(t)
IZ
Gy =Ci(t)e’?.
Choosing C1(¢) = 1, one obtains

Gl =€ ?.

:o]"’n

From equations (3.25) and (3.26), there exists G = 0 such that these equations are hold.
Then, let

G3=0
80,
G2 =0.
Consider equation (3.23),
K,

T

7 =
/idf(— d
K = [adz
-
th:? +C1)

22
7

K =Cz (t)e

Cousider equation (3.24),

Ky =0
K =Cs(z).

22

Choosing Ca(t) = 1 and Cs(z) = e, then

Thus, equation (3.22) becomes
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F = —t+ Cy(z).
Choosing Cy(z) =0, so
F=-t.
So that, one obtains the linearizing transformation
X = —t, dT = T o'dt. (3.28)

Hence, equation (3.21) is mapped by the transformation (3.28) into the linear equation
X" =0. (3.29)
The general solution of equation (3.29) is

X =c1T +ca, (3.30)

where ¢, and ¢, are arbitrary constants. Applying the generalized linearizing transtor-
mation (3.28) to equation (3.30), we obtain that the general solution of equation (3.21)
is

—t = c19(t) + 2,
where the funtion T' = ¢(¢) is a solution of the equation

af _ Tl
7= }
3.4. The one-dimensional non-polynomial oscillator

In the note [4], Mathew and Lakshmanan presented a remarkable nonlinear system
that all its bounded periodic motions are simple harmonic. The system is a particle
obeying the highly nonlinear equation of motion

(14 Az¥)z” + (o — Ag'?)z =0, (3.31)

where A and « are arbitrary parameters.
It is an equation of the form (2.4) in Theorem 2.1 with the coefficients

AL - am

A3=0Ar= g A= 0,40 = 5 v
(Az? +1) (Az? +1)

A1 =0, = adz(—z? +2).

One can check that the condition (2.21) in Theorem 2.2. case (a) are satisfied. Now, the
condition (2.24) is satisfied when the following condition holds, that is,

adz(—Az? +2) =0.

Two cases arise, that are o = 0 and A = mz_z (Note that for : A = 0 equation (3.31) is
linear equation.)
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Here we consider only case oo = 0. In this case, the equation (3.31) takes the form
(14 Az?)z" —daz? = 0. (3.32)

The linearizing transformation is found by solving equations in Corollary 2.3 case (a),
which become

K

r--% (3.33)
K, = — (1/_\;17)1\12)’ (3.34)
- K(2G1t)\aé;1-(l-12f/1\tu ;)/\wGHGs), (3.35)
o (;\f&i), (3.36)

2L % : (3.37)

o = — (1/\f§;2)_ (3.38)

Cousider equation (3.38), we have

Gl:,; AT

G (1+x?)

1 pY4
/G_ldGl__/—_(l-h\xz)dw

InG; =- %ln (14 Xz?) +1nC(t)

C
< =_1—(t)T_
(14 Az?)=
Choosing C1 (¢t} = 1, we obtain
1
G=———.
: (1 3> /\:1:2)%

From equations (3.36) and (3.37); there exists G3 = 0 such that these equationsare trotd-

____Then, let

S
50,

G2 =0.
From equation (3.34), we have

K, Az

K~ (1+)a?)

1 Az
_— I( = — —_— A
/Kd /(1+Aw2)d“’
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InK =- %ln(l + Az?) + InC(t)

__ G
(1+A2?)7
So, equation (3.35) becomes
Kt :0
K =C’3(a:).
: 1 e N 1
Choosing C(t) = 1 and Cs(z) = RIS then
K=
(1+Az2)z
So, equation (3.33) becomes
F=-1
F = —t+Cy(z).
Choosing C4(z) = 0, we have
F=_4.

So that, one obtains the linearizing transformation

1 /

B2

Hence, equation (3.32) is mapped by the transformation (3.39) into the linear equation
X' =o0. (3.40)
The general solution of equation (3.40) is

X =c1T+ ¢, (3.41)

where c; and cq, are arbitrary constants. Applying the generalized linearizing transfor-

—mation (3:39) to-equation (3.41), we obtain that. the general solution ol equation (3.32)

is
-t =c1¢(t) + c2,

where the funtion T' = ¢(¢) is a solution of the equation

ar_ 1
TATER Ve,
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3.5. Equation that can be linearizable by point and Sundman transformations

Consider the nonlinear second-order ordinary differential equation
& + psata’? + pozra’ + pa* =0, (3.42)

where ks, ko, k1, pt1, ph2 and pg # 0 are arbitrary constants. The Lie criteria (4], showed
that the nonlinear equation (3.42) is linearizable by a point transformation if and only
if g3 =0and pg =0. In [4], Nakpim and Meleshko showed that the nonlinear equation
(3.42) is linearizable by a generalized Sundman transformation if and only if o # 0 and
u1=0.

By using our obtained theorems, we get the results as lollow. Equation (3.42) is an
equation of the form (2.4) in Theorem 2.1 with the coefficients

Ay =0, Ay = paat®, Ay = pga™, Ag= iz, Ay = kapazt?,

Ap = pRHR) o - FIHRO) 1y ok - 2 kT 4+ @M paks — 2252 2 ko,

Now, the conditions in Theorem 2.2. case (a) is satisfied when the following conditions
holds, that are,
kzuzzv’” =M
a®188) ) ok 4+ RS g gk + a® k2 + gF by — 2?2 pSker = 0.
Two cases arise.
Case 1: up =0and y; =0
In this case, the equation (3.42) takes the form

2" + pazta? = 0. (3.43)

The linearizing transformation is found by solving equations in Corollary 2.3 case (a),
which become

K

Fo=—2 (3.44)
K, = e K, (3.45)
PP ."u‘a" N

K, = K (261 + 3T G1G3) , (3,46)
Gi

Gy = paz’G3, (3.47)
., K3 (2.,

GS:L':L' = _M%&, (348)

Gl:z: = [.L3.’L‘k3G1. (349)

Consider equation (3.49), we have

Gie — 11z

Gy
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/a—l'dGl =/,LL3CL‘k3d.’B

ka+1
M3z
InG, =—+0C(t
non ks+1 + ()
1qeFatl

Gy =Ci(t)e FaF .

Choosing C1(t) = 1, one obtains

pgzk3t?
G =e Fa¥l

From equations (3.47) and (3.48), there exists G = 0 such that these equations are hold.
Then, let

Gs=0
50,
Gy = 0.
Consider equation (3.45)
Ke ks
r =H3aZ
1 3
/EdK=/p,3:v"3da:
ka+1
H3T
InK =
n o + C(2)
pgzk3tl

K =Cy(t)e a1
So, equation (3.46) becomes

K; =0
K =Cjs (1))

jugckatl

Choosing C3(t) = 1 and C3(z) =e k%7 then

K= e‘_‘ka;%a.
Thus, cquation (3.44) becomes
F=-1
F=—t+4Cyz).
Choosing Cy(z) =0, s0
F=—-1t

So that, one obtains the linearizing transformation

pamkaﬂ

X =—t, dT=¢ % z'dt. (3.50)
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Hence, equation (3.43) is mapped by the transformation (3.50) into the linear equation

"

X =0 (3.51)
The general solution of equation (3.51) is
X = 61T + ¢g, (352)

where ¢; and cg, are arbitrary constants. Applying the generalized linearizing transfor-
mation (3.50) to equation (3.52), we obtain that the general solution of equation (3.43)
is

—t= Cl¢(t) + ¢,

where the funtion T = ¢(t) is & solution of the equation

dt
where ks # —1.
For k‘3 =-1.
Consider equation (3.49), we have
Gl:c ZHE
Gl T

1 -

/—él_dGl —-/ o dz
InG, =puzIlnz + C(t)

Gl =Cs(t)$“3.

Choosing Cs(t) = 1, one obtains
G1 =zM3.

From equations (3.47) and (3.48), there exists G3 = 0 such that these equations are hold.
Then, let

G3=0
50,
G =0.
Consider equation (3.45)
Ks _ps
K =
1 M3
—dK = | 22
I dr / . dz

InI =uslnz + C(t)
K =Cs(t)z".



So, equation (3.46) becomes

K, =0 28 N 2565

K =C7 (ZII)

Choosing Cg(t) = 1 and Cr(z) = z#® then

K = z#3,
Thus, equation (3.44) becomes
F=-1
F=—t+ Cg(z).
Choosing Cg(z) =0, so
P=-1.

So that, one obtains the linearizing transformation
X = —t, dT = z"3a'dt. (3.53)

Hence, equation (3.42) is mapped by the transformation (3.53) into the linear equation

7"

X =0 (3.54)
The general solution of equation (3.54) is
X =T + ¢, (355)

where ¢; and ¢y, are arbitrary constants. Applying the generalized linearizing transtfor-
mation (3.53) to equation (3.55), we obtain that the general solution of equation (3.42)
is

—t= Cl¢(t) + ca,
where the funtion T' = ¢(¢) is a solution of the equation

aT

— =gz,

Case 2: kg =0 and u; =0
In this case, the equation (3.42) takes the form

g + pga®ia? + paz’ = 0. (3.56)

The linearizing transtormation is found by solving equations in Corollary 2.3 case (a),
which become

(3.57)

K, = Kpaz®s, (3.58)
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K(2G1; + paa™G1G3 — p12G1)

K, = 3 (3.59)
Gai = Ga(z™ Gaus — p2), (3.60)
Ggug = — LT, 361)
Gy = Gypaz™. (3.62)
Counsider equation (3.62), we have
le _us-’ﬂka

/ —dG, = / mmka dz

T 3
Gy = "]‘:’ 7 ST
Lkatl

Gl =Cl(t)e’_a‘?3_+1—

Choosing Ci(t) = 1, one obtains

uamk3+1
G1 =e k¥l

From equations (3.60) and (3.61), there exists Gg = 0 such that these equations are hold.
Then, let :

"G3=0
50,
G = 0.
Consider equation (3.58)
Ky
= —#aw
/ KdK /ygwk3d1
NSIE
InK = +C(t
" ks +1 )

cka+1

K Cz(t)e ka+1
So, equation (3.59) becomes

By
K

/ _KdK = - ,LL2t+ C(CC)
K =Cy(z)e *2t.

= — l2
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pgzFatl
Choosing Ca(t) = e #2t and Cs(z) = e =¥ then

k3
#3z
K = ¢ Fa¥T H2t,

Thus, equation (3.57) becomes
Ft = — e_“zt

eu2t
F =— + Cy(x).
Ha2

Choosing Cs(z) =0, so

eugt

M2 '

So that, one obtains the linearizing transformation

Lot ingkatl
X = eu AT = FFT gl (3.63)
2

Hence, equation (3.56) is mapped by the transformation (3.63) into the linear equation

"

e ) (3.64)

The general solution of equation (3.64) is
X =T + e, (3.65)
where ¢; and cg, are arbitrary constants. Applying the generalized linearizing translor-

mation (3.63) to equation (3.65), we obtain that the general solution of equation (3.56)
is

euzt
= c16(t) + c2,
2
where the funtion T = $(¢) is a solution of the equation
dT paakatl
— — e katl a;’,
dt
—where kg # =1 - —
For ’\73 = —1.
Consider equation (3.62), we have
Gla: =ﬂ
G]_ X

1 _ [ Hs
/ Gl dG1 = p dz
Gy =puslnz +C()



Gl =Cs(t)$l’l3.
Choosing Cs(t) = 1, one obtains

Gl =zM3,
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From equations (3.60) and (3.61), there exists G = 0 such that these equations are hold.

Then, let
G3=0
50,
G =0.
Consider equation (3.58)
Ky 25}

K o
1 _ [ s
/KdK——/ md:c

InK =p3lnz + C(t)

K =Cs(t)zHe.
So, equation (3.59) becomes

£ __

K Ha

1
/ f{—dK = — st + C(x)
K =Cr(z)e "t
Choosing Cg(t) = e #2t and Cr(z) = =3 then
K = ghset2t,
Thus, equation (3.57) becomes

Ft == Cuzt

ot
2k

F =—6,LL_2 + Cg(ilt)

Choosing Cs(z) = 0, so

6#275

H2
So that, one obtains the linearizing transformation

ehzt

X= , dT = g3/ dt.

H2

(3.66)
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Hence, equation (3.56) is mapped by the transformation (3.66) into the linear equation

"

x" =o. (3.67)
The general solution of equation (3.67) is
X = C1T + ¢a, ) (368)

where ¢; and cg, are arbitrary constants. Applying the generalized linearizing transfor-
mation (3.66) to equation (3.68), we obtain that the general solution of equation (3.56)

18
e.U-Zt

—H_'z_ - Cl¢(t) + ¢2,

where the funtion T' = $(t) is a solution of the equation

E — muam/,
Remark:
From theorem 2.2. case (b) equation (3.42) is linearizable if only if pz = 0.

9.6. Modified generalized Vakhnenko equation

In 2009, Ma, Li and Wang [4] considered a modified generalized Vakhunenko equation
(mGVE),

8, 9 | b \_ 0 7 ,
(")a:(@ U+ 5PU +pu)=0, D= 0t+u("):u’ (3.69)

where p, q, B are arbitrary non-zero constants.

To construct the exact solutions for mGVE is all important. Many studies have
been conducted. For examples, when p = B =0 and g =1, equation (3.69) is reduced
to well-known Vakhnenko equation (VE), which governs the nonlinear propagation of
high-frequency wave in a relaxing medium [4]-[4]. The VE has solition solutions [4].
When p = ¢ = 1 and j an arbitrary non-zero constant, equation (3.69) is reduced as
the generalized VE (GVE), in [4] it was shown that GVE has N-soliton solution. When
p = 2g and B an arbitrary non-zero constant, equation (3.69) has a loop-like, hump-like

and cusp-like soliton solutions [4]. In [4], it was shown that equation (3.69) has travelling

wave solution and single-soliton solution.
Consider a modified generalized Vakhnenko equation (3.69), we can rewrite it in the
lorm
Qupsy + 2[utgUse + Us(Ulzs + u2)] + 20 Ugs (3.70)
+2uud + puug + Bus + q(ue + ug) = 0. :

Of particular interest among solutions of equation (3.70) are travelling wave solutions:

u(t,z) = H(z — Dt),
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where D is a constant phase velocity and the argument z—Dt is a phase of the wave.
Substituting the representation of a solution into equation (3.70), one finds

2D2H’H”—2DH’(2HH”+H’2)+2H2H’H” (3.71)
+2HH’3+,)HH’+ﬁH’+q(—DH'+HH’) =0. ‘

By using the obtained theorems, we get the results as follow. Equation (3.71) is an
equation of the form in Theorem 2.1 with the coefficients

1 4 pH + B — gD+ qH
DO-H) 2(D? — 2DH + H?)’
AL = 0, = pD + B
From Theorem 2.2. case (a), equation (3.71) is linearizable if only if pD + 8 =0.

A3=0,A2= =0,A0=

3.7. Burgers’ equation

Burgers’ equation is obtained as a result ol combining nonlinear wave motion with
linear diffusion and is the simplest model for analyzing combined effect of nonlinear ad-
vection and diffusion. The presence of viscous term helps suppress the wave-breaking,
smooth out shock discontinuities, and hence we expect to obtain a well-behaved and
smooth solution. Moreover, in the inviscid limit, as the diffusion term becomes van-
ishingly small, the smooth viscous solutions converge non-uniformly to the appropriate
discontinuous shock wave, leading to an alternative mechanism for analyzing conser-
vative nonlinear dynamical processes. In 2016, A. Salih [4] considered the nonlinear
convection-diffusion equation

du du 8%u
ot TYoe "2

which is known as Burgers’ equation. This equation is balance between time evolution, :
nonlinearity, and diffusion. This is the simplest nonlinear model equation for diffusive
waves in fuid dynamics. Burgers (1948) first developed this equation primarily to throw
light on turbulence described by the interaction of two opposite effects of convection and
diffusion.

The term wuu, will have a shocking up offect that will cause waves to break and the
term vy, is a diffusion term like the one occurring in the heat equation.

Of particular interest among solutions of equation (3.72) are travelling wave solutions:

u(t,z) = H(z — Dt),

=0,u>0 (3.72)

S, SR

where D is a constant phase velocity and the argument z—Dt is a phase of the wave.
Substituting the representation of a solution into equation (3.72), one finds

—DH' + HH' —vH" =0, (3.73)
By using the obtained theorems, we get the results as [ollow. Equation (3.73) is an
equation of the form in Theorem 2.1 with the coefficients

g =0, Ay = 0, Ay = 21 1, _-b+H

One can check that these coefficients obey the condition in Theorem 2.2. case {b). Thus,
equation (3.73) is linearizable via a generalized linearizing {ransformation.
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4, Conclusion

In this research, the necessary condition which guarantee that the second-order ordi-
nary differential equation can be linearized by generalized linearizing transformation is
found in Theorem 2.1. Theorem 2.2 case (a) and case (b) are sufficient conditions for the
linearization problem, they are selected by the value of A1. A new algorithm for finding
linearizing transformation is summarized in Corollary 2.3. Finally, some applications are
provided to demonstrate our procedure.
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Linearizability of Nonlinear Second-Order Ordinary
Differential Equations by Using a Generalized
Linearizing Transformation

Prakrong Voraka, Supaporn Suksern, and Nontakan Donjiwprai

Abstract—In this paper, we have proposed the linearization
problem of second-order ordinary differential equation under
the generalized linearizing transformation. ‘We found the nec-
essary form for reducing the second-order ordinary differential
equation to simple linear equation. We also obtained sufficient
condition for making the above form to be linear. Further,
the procedure of linear transformation within the study is
demonstrated in the explicit form. Moreover, we apply the
obtained Hnearization criteria to the interesting problems
of nonlinear ordinary differential equations and nonlinear
partial differential equations, for examples the parachute
equation, the Painlevé - Gambier XI equation, the equation
for the variable frequency oscillator, the one-dimensional non-
polynomial oscillator, the equation that can be linearizable by
point and Sundman transformations, the modified generalized
Vakhnenko equation.

Index Terms—linearization problem, generalized lineariz-
ing transformation, nonlinear second-order ordinary differen-
tial equation.

I. Introduction

HE linearization problem is one of the important

branches in differential equation feld. A number
of mathematicians has been studying this branch con-
tintously until the present time. To discover theory for
finding new knowledge has shown to be a great benefit
for academic world and country development. Tt is known
that theories and new knowledge obtained from research
not only offer benefits to improve existing knowledge
within the branch itself, but also they can be applied
to other branches or fields and can be key fundamental
to develop basic science which is basic research to build
many other-new knowled ge This would be a fundamental

differential equations but the obtained solutions are just
the approximate solutions. However, the exact solution
is claimed to be more interesting because it can be used
to analyze the properties of the studied equations. One
of the methods used to determine the exact solutions
is to linearize the interested equation and find solutions
directly by fundamental method. The solutions obtained
from such linear equation are yet still solutions of initial
equation. By mentioned above, we are required to seek
for transformation in order to transform initial equation
to be linear equation.

There are a number of interesting transformations.
For example, in the case that the transformation con-
sists of derivative, we call it as tangent transforma-
tion, in the case that the transformation depends only
on independent and dependent variables, we call it
as point transformation and we will call the tangent
transformation which the independent and dependent
variables can be changed and involves the first deriva-
tive as contact transformation. In addition, another
type of transformation which its transformation set is
different from any mentioned above since there is a
nonlocal term T = [ G (t,z)dt, such transformation
is called generalized Sundman transformation. In this
paper, we use the generalized linearizing transformation
which is an extended transformation from generalized
Sundman transformation where the selected G function
is G (t,2,2).

Up to the present time, all researchers who study
the lincarization of second-order ordinary differential
equations via generalized linearizing transformation have

35

step to develop the country.

The linearization problem ‘is a-branch of study -that
can be applied widely in particular to the study involving
solving the equations. Most important physical problems
are in the form of nonlinear differential equations which
are normally difficult to solve and there are relatively
few method to find their exact solutions. Numerical
method therefore is often used to solve these nonlinear
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not covered all cases yet. Therefore, in this paper we
focus on the remaining cases that have not yet been
studied, which we also find that those cases can be
applied to solve several nonlinear equations in real-world
phenomenon.

A. Historical Review

From above facts as mentioned, the researcher would
like to give a brief background of this study. Since 19th
century the linearization problem of ordinary differen-
tial equation has attracted some interests from various
well-known mathematicians e.g. S. Lie and E. Cartan
etc. The first person who could solve the linearization
problem of ordinary differential equation is Lie [1]. Lie
could discover the standard form of every second-order
ordinary differential equation which could be reduced
the form to become linear equation via changing the

Volume 50, Issue 4: December 2020
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independent and dependent variables (or can be called
point transformation). Later, Liouville [2] and Tresse
[3] used the relative invariants of equivalence group
under point transformation to solve the equivalence of
second-order ordinary differential equations which can be
reduced from second-order nonlinear ordinary differential
equations to second-order linear ordinary differential
equations. Moreover, Lie discovered that every second-
order ordinary differential equation can be reduced to
second-order linear ordinary differential equation with-
out any conditions via contact transformation.

Having mentioned some methods above, there are yet
still other methods to solve linearization problem of
second-order ordinary differential equation. For example,
the method of Cartan [4], the reducing order method, the
differential substitution method etc.

Another transformation that is very interesting and
has not been mentioned yet is the generalized Sundman
transformation

X = F(t,z), dT = G(t, z)dt. (1)

Duarte, Moreira and Santos [5] used generalized Sund-
man transformation (o determine the conditions for
linearizing the second-order ordinary differential equa-
tion to be simple linear equation. In [6] Nakpim and
Meleshko demonstrated that the general linear equation
in the canonical form of Laguerre was not sufficient for
solving linearization problem via generalized Sundman
transformation. The canonical form of Laguerre could
only particularly be applied with point and contact
transformations. Therefore, in [6] they found the condi-
tions for linearizing the second-order ordinary differential
equation to be general linear equation.

In this paper, we extend the generalized Sundman
transformation which was studied before as shown in
[7]-[9]), where they called such a transformation in this
form as generalized linearizing transformation

X = F(t,z), dT = G(¢t,z,z')dt. (2)

They demonstrated that this transformation can be
used to linearize a more extensive class of nonlinear
standard differential equations including some equations

Notice that for the case Gy = 0, the generalized lin-
earizing transformation becomes a generalized Sundman
transformation, so that they assumed G # 0.

The authors of [7] obtained that any second-order
linearizable ordinary differential equation which can be
mapped into the equation X" = 0 via a generalized
limearizing transformation has to be of the form

" + Ag(t, 2)a" + Ag(t,2)2” + Ar(t,@)a’ (g
-|-A0(t,{17) =0,

and the functions A;’s (¢ = 0,1,2,3) are connected to
the transform functions F' and G through the relations

A3 = (GIF:M: - FazGlz)/]\/-[,

A2 = (G2Fzm + ZGIFmt - F:z:G2a: - FtGlm
—F,Gy) /M, (4)

Al = (2G2Fu + GiFy — FuGay — FiGao
-F,G1)/M,

Ao = (GoFy — FiGar)/M

with M = F,Go — FiGy 75 0.

They have analyzed a particular case of equation (3),
namely, As = 0 and Ay = 0 in equation (4). Complete
analysis of the compatibility of arising equations is given
for the case Fp # 0.

Therefore, in this paper we will apply the generalized
linearizing transformation with second-order ordinary
differential equation to complete the remaining cases
(F, = 0) which are different from the work by Chan-
drasckar and Lakshmanan [7].

II. Formulation of the Linearization Theorems
A. Obtaining Necessary Condition of Linearization
We begin with investigating the necessary conditions
for linearization. We consider the second-order ordinary
differential equation

1"

z = F(tz2) (5)

which can be transformed to a simplest linear equation
14 N
X =0 (6)

under the generalized linearizing transformation

X = F(t,IE),
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that can't be linearized by the non-point and-invertible
point transformations. In the case that the function

G in (2) does not depend on the variable z’ , then

it can be turned into a non-point transformation. If
G is a differentiable function, then it turns into an
invertible point transformation. In this way, (2) is a
unified transformation as it incorporates non-point and
invertible point transformations as extraordinary cases.
A case of an equation that can be linearized by a change
of the structure (2) is given in [8].

In [7], Chandrasekar, Senthilvelan and Lakshmanan
applied a particular class of transformations (2), where
the function G(¢,%,2') is linear with respect to z'.

They payed attention to the case where G is a
polynomial fuuction in 2’ and in particular where it is
linear in 2’ with coefficients which are arbitrary functions
of ¢t and z. To be specific, they focused here on the case

X =F(t,2), dT = (G1 (t,z) 2’ + G2 (¢,2)) dt.

{7\
N

dT =[Gy (t,z) 2" + G (t, z)}dt,

“where G # 0. So, we arrive at the following theorem.™ -

Theorem 2.1: Any second-order ordinary differential
equations (5) obtained from a linear equation (6) by a
generalized linearizing transformation (7) has to be the
form

e+ As(t, z)2"® + Ag(t, z)a? + A1 (¢, 2)z’
+Ap(t,z) = 0,

where

Az =(~FpeG1 + FG1g)/(FrG1 — FGa), (9)

Ay =(—2F1,G1 + FiG1g — FuaGa + FoGry
+ F,Gag)/ (FiG1 — FuGa),

Ay =(—2F,Ga — FyG1 + FiG1g + FiGo
+ FuGot) [(F:Gy — FG2),

Ay =(—FuGs + FyGay) [ (F:G1 — F,Ga).
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Proof. Applying a generalized linearizing transformation
(7), one obtains the following transformations

D,F
i f[GlflJ’ + Gz]dt
. Fy + o' Fy
_le' + Gq
=P(t,z,z'),
" D.P
X (T) —Dt f[Glilll + Gz]dt
_ P+ Pyz' + Py

X'(T) =5

Giz' + G2
where
P =Ftt(G11El + Gz) - Ft(Gl.’L‘” + G1t(l:/ + Gzt)
! (G2’ + G)? ’
P _ Fiu(Gra' + G3) — Fi(G1a7’ + Gag)
v (Gl.’L" + G2)2 ’
PT/ FtGl.’C”

- (Glilil + G2)2 !

and Dy = % + x'% + :1;”5%7 + ... is a total derivative.
Substituting the resulting expression into the linear
equation (6) we arrive at the necessary form (8), where
Ap, A1, Az and As are some functions of ¢ and z as
defined in system of equations (9)-(12).

B. Obtaining Sufficient Conditions of Linearization and
Linearizing Transformation

For obtaining sufficient conditions of linearizability of
equation (8), one has to solve the compatibility problem
of the system of equations (9)-(12), considering it as
overdetermined system of partial differential equations
for the functions F, G and G with given coefficients A;
of equation (8).

For convenience of calculations, we set

G

G3='G—l.

and Gjz;, one finds

Frp =(F3Gio + AsK) /G,
K, =(—F:G1:G1 + FpG1,G1G3 + FwGsmG%
4+ 3Gz K — AG1 K + 3A3G1G3K)/(2G1), (19)
K; =(—F;G1:G1G3 + FmleGng + FngmeGg
+ 4G K — Gi1:Gs K + 2G3,G1 K — 2A:G1 K

(18)

+34,G1GsK — 3A3G1G§I()/(2G1), (20)
Gt =G3:G3 + Ag — A1Gs + AzG% - A3Gg (21)
Comparing the mixed derivative (Kz): = (Kt)g, one

obtains

Gapn =(2A0: FaG? — 241, FuG3Gs + 4A1.G1K
— QA0 GAK + 245, FyG3GE — 6A2GIG K
+ 6A3G2G5K — 243, FyGIGY + 6A3,G1G3 K
+ 4F,C14.G2G3 — 2F,G1uG? + 3F:G5,Gh
— 6F,G1,G1,G1 Gy + 2FG1:G3.Gh
— 0F, G Ay GF + 4F,G11A2GIGs
— 6FuG1iAsGIGE — 2FG1as GGy
+3F,G},G:G3 — 2F,G1:G3:G3Gs
4 2F, Gy ApGE — 2F,Gig A GRGY
AR, Grp AsGEGE — FuG3,GE — 2G11sG1 K
4 3G1,G1.K — G A2G1K + 3G1:.A3G1G3 K
4 20120 G1Gs K — 3G2,G3K + G12G3,G1 K
© Gy AyGhGs K — 3G15A3G1G3K
5l AsGPE + 1503, AsGIGs K
1 6AgAsGEK — 641 A3G1GaK
4 6A,AsG2GEK — 6ARGEGEK) /(4GIK). (22)
The compatibility analysis depends on the value of

F,. A complete study of all cases is cumbersome. Here
a complete solution is given for the case where F = 0.

Case F, =0

Since F, = 0, then substituting it-into Fgg in equation
(18), one gets the condition
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So that system of equations (9)-(12) become

Ay =(—FpaG1 + FuG12)/(G1(Fy — F2G3)),
Ay =(—2F3,G1 + FyG1g — FuG1G3 + FoGu
+ FyG14Gs + FuG3:G1)/(G1(F; — FuGs)), (14)
A1 =(=2F;;G1G3 — FiGy + FiGit + FiG1.G3
+ FyG3:G1 + FoG1iG3

(13)

+ F,G31G1)/(G1(F; — F2G3)), (15)
Ay =(-F1:G1Gs + F;G1:G3
+ F,G3,G1)/(G1(F; — FuG3)). (16)

According to the notation K = G1(FuG3 — F}), we define
the derivative Fy as
F, = (F,G1G3 — K)/G1. (1)

Solving equations (13)-(16) with respect to F.., K., K;

Ag = 0. (23)
Comparing the mixed derivative (Fi)s = (Fy)e, one
obtains the derivative
Gy = AGy — 343G1G3 (24)
and this satisfies equation (Fiyg)t = (Fi)ze- Setting
A = — Ayg + 242,
Ay = — Aggs — Aoz Az + Ay + At A1 — Asg Ao
- A — Ath
then, equation (Gagzz): = (G3t)ze becomes
ng)\l + G3A2/\1 + )\2 = 0 (25)

The compatibility analysis depends on the value of Aj.
A complete study of all cases is given here.
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3.3.1. Case Ay =0
From equation (25), one finds the condition

Ay = 0. (26)

332 Case \;1 #0
Equation (25) provides the derivative

Gae = —(GsAa\ + A2)/ A1 (27)

Subtituting Gaz into Gagze in equation (22), one arrives
at the condition

o = (=AM + Argho + A3 /A1 (28)

Comparing the mixed derivaties (Gsg): = (Gst)s, One
gets the condition

Mgt = — (AosA? — AwAa + ApAgA2
4+ Aidi A+ /\%)//\1 (29)

Combining all derived results in the case I = 0 the
following theorems are proven.

Theorem 2.2: Sufficient conditions for equation (8) to
be equivalent to a linear equation (6) via generalized
linearizing transformation (7) with the function F =
F(t) is the equation (23) and the additional conditions
are as follows.

(a) If Ay =0, then the condition is equation (26).

(b) If A1 # 0, then the conditions are equations (28)
and (29).

Theorem 2.3: Provided that the sufficient conditions
in Theorem 2.2 are satisfied, the transformation (7) with
the function F = F(t) mapping equation (8) to a linear
equation (6) is obtained by solving the compatible system
of equations :

(a) (17), (19), (20), (21), (22), and (24).

(1) (17), (19), (20), (21), (24), and (27).

111. Some Applications

In this section we focus on finding some applications
which satisty Theorem 2.1, Theorem 2.2 and Theorem
2.3. The obtained results are as follows.

A. Parachute Equation
An application to this equation can be applied to a

model of motion for a parachutist by using Newton’s law

One can check that these coefficients obey the condi-
tions in Theorem 2.2. case (a). Thus, equation (30) is
linearizable via a generalized linearizing transformation.
For finding the functions F, G1 and G2 we have to solve
equations in Theorem 2.3 case (a), which become
F, = _é_( =kK, K;= M
1 )
GSt =g+ G3k, G3:z::c = 0 Glz = le

One can find the particular solution for equations in (31)

a
° G; = ek, G3-—\/_z, Gy = /Fie*®,

K= ekz+\/_g_zt \/E_e\/k—'zt

(31)

So that, one obtains the linearizing transformation
i ; g,
X= \/——Ee‘/@“, dT = ("2’ + \/gze’”)dt. (32)

Hence, equation (30) is mapped by the transformation
(32) into the linear equation

"

x" =o. (33)
The general solution of equation (33) is
X =T +co, (34)

where ¢; and ¢y are arbitrary constants. Applying the
generalized linearizing transformation (32) to equation
(34), we obtain that the general solution of equation
(30) is

7 /Bgit
R, = t) + ca,
r—kge c1¢(t) + 2

where the function 7' = $(¢) is a solution of the equation

ar g k:a:
i NI \/;)
B. Painlevé - Gambier XI Equation
In [11}, Koudahoun, Akande, Adjai, Kpomahou and
Monsia considered the Painlevé - Gambier XI equation
12
nw o, L
Z_=0. 35
o’ + — (35)
To investigate the exact classical and quantum me-
chanical solutions, they offered a generalized singular

38

Il which is 3_ F = ma. The movement of skydiver when
the coefficient of air opposition changes between free-fall
and the last consistent state drop with the parachute is
slowly conveyed.

Consider the parachute equation {10], in the form

" _ka'? 4+ g =0, (30)
with initial conditions 2(0) = 0 and z’(0) = 0.
Here k = M, where

« m is the mass of the body and parachute,
« pis the density of the fluid in which the body moves,
o Oy is the drag coefficient for the parachute
(1.5 for parabolic profile and 0.75 for flat),
« D is the effective diameter of the parachute.
Equation (30) is an equation of the form (8) in Theorem
2.1 with the coefficients

A3=0, Azzk, A1=0, A():g, /\1=0, /\2=0.

differential equation of quadratic Liemard type:

By using our obtained theorems, we get the results as
follow. Equation (35) is an equation of the form (8) in
Theorem 2.1 with the coellicients

1
A3=0, A2=;, Ay =0, Ay=0, A =0, Az =0.

One can check that these coefficients obey the condi-
tions in Theorem 2.2. case (a). Thus, equation (35) is
linearizable via a generalized linearizing transformation.
For finding the functions F', G1 and G, we have to solve
equations in Theorem 2.3 case (a), which become

F, = _L’ K, = K K = K(2G1:2+G1Gs)

) Giz ’ (36)

[eH G
Gat = 2%, Gazs = 4, G1o = .

One can find the particular solution for equations in (36)
as

G1=£E, G3=0, G2=0, K=a:, F = —t.
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So that, one obtains the linearizing transformation
X = —t, dT = za'dt. (37)

Hence, equation (35) is mapped by the transformation
(37) into the linear equation

X" =0 (38)
The general solution of equation (38) is
X = C]_T + C2, (39)

where ¢; and ¢p are arbitrary constants. Applying the
generalized linearizing transformation (37) to equation
(39), we obtain that the general solution of equation
(35) is
—t = Cld)(t) + C2,
where the function T = ¢(¢) is a solution of the equation
dT
dt
C. Equation for the Variable Frequency Oscillator
In 2013, Mastafa, Al-Dueik and Mara’beh {12] consid-

ered the ordinary differential for the variable frequency
oscillator

= a2z’

a" + za’ = 0. (40)

They showed that this equation can be linearizable by
generalized Sundman transformation.

By using our obtained theorems, we get the results as
follow. Equation (40) is an equation of the form (8) in
Theorem 2.1 with the coefficients

A3=0, A2=:L‘, A1=0, A0=0, /\120, )\2=0

One can check that these coefficients obey the condi-
tions in Theorem 2.2. case (a). Thus, equation (40) is
linearizable via a generalized linearizing transformation.
For finding the functions F, Gy and G5 we have to solve
equations in Theorem 2.3 case (a), which become

F = _.éil, K,=2K, K= L(ZE%GIM,

Ga; = Gl Gauw = —Gia, G = Gro

One can find the particular solution for equations in (41)
as

(41)

D. The One-Dimensional Non-Polynomial Oscillator

In the note [13], Mathew and Lakshmanan presented
a remarkable nonlinear system that all its bounded
periodic motions are simple harmonic. The system is a
particle obeying the highly nonlinear equation of motion

(14 Az?)a"” + (@ — Az'?)z =0, (45)

where A and « are arbitrary parameters.

By using our obtained theorems, we get the results as
follow. Equation (45) is an equation of the form (8) in
Theorem 2.1 with the coefficients

Az ox
_— A1 =0, A= 5
Owz+1) 71T 0T Da? 1)

AL =0, Ag = ada(—Az? +2).

A3=0, Ay =

One can check that the condition (23) in Theorem 2.2.
case (a) are satisfed. Now, the condition (26) is satisfied
when the following condition holds, that is,

adz(—Az? +2) = 0.

Two cases arise, that are o =0 and A = ;27 {Note that
for A = 0 equation (45) is linear equation.)

Here we consider only case @ = 0. In this case, the
equation (45) takes the form

(14 Az)z" \zz? = 0. (46)

The linearizing transformation is found by solving equa-
tions in Theorem 2.3 case (a), which become

Ft=—é_(1a K:E':_(li\;j\{ﬁZ)a
K, = K(2G1:\z*+2G1: —A5G1 G3)
t 1. G1(1+Ae?) : (47)
Gaf 22J250% N Y AGs(-dw +1)
(1+X222)? BT A+Xz2)2
Glm ol \zGy

BREERY DN

One can find the particular solution for equations in (47)
as

Gy = : _I,G3=0) G =0,
(1+N\z2)2
K=—1 _ F=-t
(1+Az2)2

So that, one obtains the linearizing transformation

X =—1

39

So that, one obtains the linearizing transformation
,‘:2
X=—t, dl =e7ddt. (42)

Hence, equation (40) is mapped by the transformation
(42) into the linear equation

X" =o0. (43)
The general solution of equation (43) is
X =cT+ecy, (44)

where ¢; and ¢y are arbitrary constants. Applying the
generalized linearizing transformation (42) to equation
(44), we obtain that the general solution of equation
(40) is

-t =c19(t) +c2,

where the function T’ = ¢(¢) is a solution of the equation

dat ‘

- dT = = dt (48)

Hence, equation (46) is mapped by the transformation
(48) into the linear equation

X" =o. (49)
The general solution of equation (49) is
X =aT +cs, (50)

where ¢; and ¢y are arbitrary constants. Applying the
generalized linearizing transformation (48) to equation
(50), we obtain that the general solution of equation
(46) is
—t=c1g(t) + 2,

where the function T = ¢(t) is a solution of the equation

dT 1 ,

—_— =

dt (1 + Xz?)2
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E. Equation That Can Be Linearizable by Point and
Sundman Transformations

Cousider the nonlinear second-order ordinary differen-
tial equation

(51)

where ks, ko, k1, 1, 42 and us # 0 are arbitrary con-
stants. The Lie criteria [1], showed that the nonlinear
equation (51) is linearizable by a point transtormation if
and only if gy = 0 and up = 0. In [6], Nakpim and
Meleshko showed that the nonlinear equation (51) is
linearizable by a generalized Sundman transformation
if and only if us # 0 and p; = 0.

By using our obtained theorems, we get the results as
follow. Equation (51) is an equation of the form (8) in
Theorem 2.1 with the coeflicients

As =0, Ay = paae, A; = paate,
Ay = /.I,lfl,‘kl, Al = kgugwkz,

2" + pzaFa’? + pga®ra’ + paFt =0,

Mg =atB1H89) ok @+ wFrRe) g kg
4 abt k2 aFrp ke — 2?22k,

Now, the conditions in Theorem 2.2. case (a) is satisfied
when the following conditions holds, that are,

kz,uzﬂtkz = 0,

alt1rks) g paks & + w®1%8) 4y g kg 4 k1 g 3
+akrp kg — 2?2 pkox = 0.
Two cases arise.
Case 1: pyp=0and pu; =0
In this case, the equation (51) takes the form
z” 4 uzaFa’? = 0. (52)

The linearizing transformation is found by solving equa-
tions in Theorem 2.3 case (a), which become

K= _'éi) Ky = N3mk3I{a

(56), we obtain that the general solution of equation
(52) is
—t=c1¢(t) + c2,

where the function T' = ¢(¢) is a solution of the equation

dT paaxh3t?!
- — ¢ kstt g
dt '

where kg # —1.

For k3 = -1, one can find the particular solution for
equations in (53) as
Gi=z", G3=0, Go =0, K=z", F=-t.

So that, one obtains the linearizing transformation

X = —t, dT = z"32'dt. (57)

Hence, equation (51) is mapped by the transformation
(57) into the linear equation

"

x" =o. (58)
The general solution of equation (58) is
X =T +ea, (59)

where ¢; and ¢y are arbitrary constants. Applying the
generalized linearizing transformation (57) to equation
(59), we obtain that the general solution of equation
(51) is
—t= Cl¢(t) + co,
where the funtion 7" = ¢(¢) is a solution of the equation
aT
dt
Case 2: ko =0and 3 =0
In this case, the equation (51) takes the form

= gh3g’.

@ 4 sz’ pez’ = 0. (60)

The linearizing transformation is found by solving equa-
tions in Theorem 2.3 case (a), which become

40

_ K(2Gis+pan™3G1G o ks 2
-Kt = (2C1e lgl L 3), G3t = U3 3G3) (53) Ft = _Gil’ Kz = K/,L3:Ek3,
kaz*3G ck3 -
Gagy = _ya_e%__a_, Gy = ,LL3.Tk3G1. o — K(2G1:+u3£G1G1G3 ltzGl), (()1)
. v ks Ny _ Qapskazts
One can iind the particular solution for equations in (53) Gt = 3\ X733 — [2), W3z = — . )

as

pgnkatt
Gi=e BT | G3=0, Ga=0,
;n =F3
K = e *stT =1

So that, one obtains the linearizing transformation

pgakatl

X =—t,dT=e &+ g'dt. (54)

Hence, equation (52) is mapped by the transformation
(54) into the linear equation

"

X =0 (55)
The general solution of equation (55) is
X =c1T + e, (56)

where ¢; and ¢y are arbitrary constants. Applying the
generalized linearizing transformation (54) to equation

Gig = Gl,u,3:1:k3.

One can find the particular solution for equations in (61)

as
pazhatl
G1 =e F3tT
k3
nax _
K — e % pat =

3 G3 = 0, Gy = 0,
Eugt
I

So that, one obtains the linearizing transformation

ghat jugrkstl

, dT =e k31 g/dt.

X = (62)

M2
Hence, equation (60} is mapped by the transformation
(62) into the linear equation

"

X" =o0. (63)
The general solution of equation (G3) is
X = ClT + Ca, (64)
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where ¢; and ¢y are arbitrary constants. Applying the
generalized linearizing transformation (62) to equation
(64), we obtain that the general solution of equation
(60) is

el—"Zt

— = Cl(b(t) + ca,

M2

where the function T = ¢(t) is a solution of the equation

dT pazkatl
. — g k3l .’L‘I,
dt
where kg # —1.
For ky = —1, one can find the particular solution for

equations in (61) as

G1=(L‘“'3, G3=0, G2=0,
— —pot eh2t
K = gphse~H2 ,

H2
So that, one obtains the linearizing transformation

e“2t
X =

, dT = Mz’ dt. (65)
12
Hence, equation (60) is mapped by the transformation
(65) into the linear equation
X" =o0. ~(66)
The general solution of equation (66) is
X =caT+cy, (67)

where ¢; and ¢y are arbitrary constants. Applying the
generalized linearizing transformation (65) to equation
(67), we obtain that the general solution of equation
(60) is :
euzt

I =c1é(t) + ez,

where the function 7' = ¢(t) is a solution of the equation
— = gty
dt ’

Remark 3.1: The conditions in Theorem 2.2. case (b)
are satisfied if only if p; = 0.

F. Modified Generalized Vakhnenko Equation

Consider a modified generalized Vakhnenko equation
(68), we can rewrite it in the form

Qptiyy + 2[ Uyt + Ut (Ul + u2)] + 2uuy,

+2uud + puug + Bug + g(ug + vug) = 0. (69)

Of particular interest among solutions of equation (69)
are travelling wave solutions:

u(t,2) = H(z — Dt),

where D is a constant phase velocity and the argument
z — Dt is a phase of the wave. Substituting the repre-
sentation of a solution into equation (69), one finds

oD?H'H" — 2DH'(2HH" + H")
+2H2H'H" + 2HH"® + pHH' + BH’ (70)
+q(-DH' + HH') = 0.

By using the obtained theorems, we get the results as
follow. Equation (70) is an cquation of the form in
Theorem 2.1 with the coeflicients
AI;I=07DA~2;—;_(—D_.1T)7 A1=0a
AO = 2(D;‘_—2[()IH1?'12)’ /\l - 07 /\2 - PD + ,B
From Theorem 2.2. case (), equation (70) is linearizable
it only it pD+ 3 =0.

G. Burgers’ Equation

Burgers’ equation is acquired because of the rela-
tionship between nonlinear wave movement and linear
diffusion. It is the model for the investigation of consol-
idated impact of nonlinear advection and diffusion. The
presence of the viscous term covers the wave-breaking,
smooth out stun discontinuities, and thus we wish to get
a tide and smooth solution. Also, as the dispersion term
twns out to be vanishingly small, the smooth viscous
solutions converge non-uniformly to the appropriate
discontinuous shock wave, causing to another system for
examining traditionalist nonlinear dynamical processes.

Consider the nonlinear convection-diffusion equation

ou  Ou  Ou

E+U%—UW20,U>O, (71)

which is known as Burgers’' equation. This equation

41

Tn 2009, Ma, Li and Wang [14] focus on—a modified
generalized Vakhnenko equation (mGVE),
0

., 1 B _ 0
ax(L u—l—Epu + Bu) +qLu =0, L—8t+u8m’

where p, g, 8 are arbitrary non-zero constants.

To develop the specific solutions for mGVE is exceed-
ingly significant. For models, when p = =0and ¢ =1,
equation (68) is reduced to notable Vakhnenko equation
(VE), which oversees the nonlinear engendering of high-
recurrence wave in a loosening up medium [15]-[17]. The
VE has solition solutions [17]. When p=¢ =1 and 8
an arbitrary non-zero constant, equation (68) is become
as the generalized VE (GVE), in [18] it was indicated
that GQVE has N-soliton solution. When p = 2¢ and j
is an arbitrary non-zero constant, equation (68) has a
loop-like, hinp-like and cusp-like soliton solutions [19].
In [20), it was appeared that equation (68) has travelling
wave solution and single-soliton solution.

(68)

balances between time advancement, nonlinearity, aid
dissernination. This is the nonlinear model equation for
diffusive waves in fluid dynamics. Burgers (1948) first
built up this equation basically to illuminate disturbance
depicted by the collaboration of two inverse impacts of
convection and dissemination.

The term wu, will have a stunning up impact that will
make waves break and the term vug; is a diffusion term
like the one appearing in the heat equation.

Of particular interest among solutions of equation (71)
are travelling wave solutions:

u(t,z) = H(z — Dt),

where D is a constant phase velocity and the argument
x — Dt is a phase of the wave. Substituting the repre-
sentation of a solution into equation (71), one finds

—~DH' + HH' —vH" = 0. (72)
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By using the obtained theorems, we get the results as
follow. Equation (72) is an equation of the form in
Theorem 2.1 with the coefficients

A3 =0,A; =0,4; = 2=£ 4, =0,
/\1=%,/\2=:D;%|ﬁ-

One can check that these coefficients obey the condi-
tion in Theorem 2.2. case (b). Thus, equation (72) is
linearizable via a generalized linearizing transformation.

IV. Conclusion

In this paper, the necessary condition which guarantee
that the second-order ordinary differential equation can
be linearized by generalized linearizing transformation
is found in Theorem 2.1. Theorem 2.2 case (a) and case
(b) are sufficient conditions for the linearization problem,
they are selected by the value of A;. A new algorithm
for finding linearizing transformation is summarized in
Theorem 2.3. Finally, some applications are provided to
demonstrate our procedure.
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