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ABSTRACT

Project Code: R2563C019

Project Title: A new forward-backward penalty scheme for solving monotone
inclusion problems

Researcher: Associate Professor Dr. Kasamsuk Ungchittrakool

Project Period: November 15, 2019 — November 14, 2020

In this project, we establish a new Mann-type method combining both inertial terms
and errors to find a fixed point of a nonexpansive mapping in a Hilbert space. We show strong
convergence of the iterate under some appropriate assumptions in order to find a solution to
an investigative fixed point problem. For the virtue of the main theorem, it can be applied to.
an approximately zero point of the sum of three monotone operators. We compare the
convergent performance of our proposed method, the Mann-type olgorithm without both
inertial terms and errors, and the Halpern-type algorithm in convex minimization problem with
the constraint of a non-zero asymmetric linear transformation. Finally, we illustrate the
functionality of the algorithm through numerical experiments addressing image restoration

problems.

Keywords: inertial method, Mann-type algorithm, forward-backward algorithm, monotone

inclusion problem, nonexpansive mapping



CHAPTER 1
EXECUTIVE SUMMARY

In this project, we proposed a new Mann-type method combining both inertial terms and errors
to solve the fixed point problem for a nonexpansive mapping. We also prove the strong convergence
of the proposed algorithm under some sufficient conditions of involved parameters.

Let a nonexpansive mapping T' from H into itself be such that Fix(T) # @. We propose the
following algorithm.

29,21 € C,
(Algorithm 1) ( y, = zp + On(@n — Tp—1), (1)
Tt = OnYn + an(T0nyn — 0nYn) + En,
for all n > 1, where (8,)r>0 C [0,6] with 8 € [0,1), (@n)n>0 and (6,)n>0 are sequences in (0,1] and
(€n)n>0 is a sequence in H.

Assumption 1 Let (a,)n>0 and (6,),50 be sequences in (0,1] and let (e,)n>0 be a sequence in
H. Assume the conditions are verifiable, as follows.

1. l,ﬁi{if on >0 and EnZl lan — ap_1| < +o0,

2. lim 6,=1, ano(l — ) = 400 and ZnZl |0 — dn—1| < Fo00,

n—-+co
8. Yon>ollenll < +oo.

Theorem 2 Let T : H — H be a nonexpansive mapping such that Fix(T) # 0 and let (zp)n>0
be generated by Algorithm 1. Let (6,)n>0 be a sequence in [0,0] with § € [0,1) such that
Yoot Onllzn — @n—1|| < 4oco. Suppose Assumption 1 holds. Then, the sequence (Tn)n>0 strongly
converges t0 ©* 1= Projp 1) (0).

We also apply results to approximate the solutions of the monotone inclusion problems.
Let C be a nonempty closed convex subset of 7. The indicator function is defined by

0, ifz eC,
bc(z) = {

+ oo, otherwige,
for all z € H. We consider the monotone inclusion problem as follows:
find x € H such that 0 € Az + Bz + Cb, (2)

where A : H — 2" and B : H — 2" are maximal monotone operators and C : H — H is a
d-cocoercive operator with § > 0. We assume that zer(4 + B + C') # (. We propose the following
algorithm for solving the problem (2).

Un = Tp + Op(Tn — mn—l):

Yn = J[LB (571‘171):

Zpn = JuA (2yn — bpay — Ncyn):
Tpy1 = OnGn + an(Zn — Yn) + En,

for all n > 1, where 20,21 € H, p € (0,26), (Bn)n>1 C [0,6] with # € [0,1), and (0o )n>0 and
(6n)n>0 are sequences in (0,1] and (g,)n>0 is a sequence in H.

Furthermore, we also provided a numerical example to compare the proposed algorithm with
other algorithms in the convex minimization problem. Finally, we use our method to solve image
restoration problems.

For the suggestion on this research area in the future, it might be possible to put (and/or add)
the new position of the inertial term(s) in the considered algorithm together with changing the
controlling scalars in order to improve the numerical performance.

(Algorithm 2) (3)



CHAPTER II
CONTENTS OF RESEARCH

In this project, we obtain one publication that published in the international journal as the
following:

1

Natthaphon Artsawang and Kasamsuk Ungchittrakool (2020). Inertial Mann-type algorithm for
a nonexpansive mapping to solve monotone inclusion and image restoration problems. Symumetry.
12, 750: 17 pages (IST Impact Factor 2020 : 2.645)

Let H be a real Hilbert space with an inner product and corresponding norm which is denoted
by the notations (,-) and || - || = 1/(:, ), respectively. Let T : H — H be a nonexpansive mapping,
that is, |7z — Ty| < ||z — vl for all &,y € H. Given C a nonempty closed convex subset of H. The
set of all fixed points of the operator T' is denoted by Fix(T) := {z € H : Te = z}. The metric
projection of H onto C, proje : H — C is defined by projq(z) = arg mineec ||z — ¢|| for all z € H,
see more detail in [1] and the references therein.

Problem: the fixed point problem for the mapping 1" generally denote as,

find & € H such that z = Tz,

Recently, Bot et al. [2] proposed a new Mann-type algorithm (MTA) to solve the fixed point
problem for a nonexpansive mapping and proved strong convergence of the iterate without using
viscosity and projection method under some control conditions of parameters sequences. Their
algorithm was defined by ‘

(MTA) @pe1 = (1 — an)on®n +onT0pa,, Yn =1, (1.1

where 2, € H and (@ )n>0, (6x)n>0 are sequences in (0,1].

Polyak [3] firstly proposed an inertial extrapolation as an acceleration process to solve the smooth
convex minimization problem. An inertial algorithm is a two-step iterative method and the next
iterate is defined by making use of the previous two iterates. It is well known that combining an
inertial term in an algorithm can accelerate the speed of convergence of the sequence generated by
the algorithm. Subsequently, there are many authors who are interested in studying the inertial-
type algorithm. By using the concept of the inertial method, the technique of Halpern method and
error terms, Shehu et al. [5] introduced an algorithm for solving a fixed point of a nonexpansive
mapping which was defined as follows:

®o, %1 € H,
Yn = Tp + Hn('bn - wn~1)a (12)
Tpy1 = Qplp + Inn + YnTYn + €n,

for all n > 1, where (8,)n>0 C [0,6] with 8 € [0,1), (@n)n>0, (6n)nzo and (vn)n3z0 are sequences in
(0,1] and {en)n>0 is a sequence in H.

Being motivated by the above facts, we intend to accelerate the speed of convergence by avoiding
the viscosity concept, hence, we propose a Mann-type method combining both inertial terms and
errors for finding a fixed point of a nonexpansive mapping in a Hilbert space.

Let a nonexpansive mapping T' from H into itself be such that Fix(T") # @. We propose the
following algorithm.



To, 21 € C)
(Algorithm 1) Yn = Tp + en(mn - :L'n——l)a (13)
Tp41 = 671.3/11 + 0-'11(T5nyn - 5nyn) + €En,

for all n > 1, where (8,)n>0 C [0, 6] with 8 € [0,1), (@n)n>0 and (6n)n>0 are sequences in (0, 1] and
(en)n>o0 Is a sequence in H.

On the other hand, for the set of all zeros of the sum of three monotone operators A, B,C' as
the following

find @ € H such that 0 € Az + Bz + Cux, (1.4)

where A, B, C are maximal monotone operators on a Hilbert space H and C' is §-cocoercive with
parameter 6. The problem (1.4) was considered by Davis and Yin [6] and it can be reformulated to -
the fixed point problem for nonexpansive mappings. Therefore, it is interesting to study the fixed
point problem in order to apply for solving the zeros problem of maximal monotone operators.

For the applications, we can formulate the main problem, that is, the fixed point problem in
order to apply in the case of finding a zero point of the sum of three maximal monotone op-
erators. Furthermore, the convergence behavior between the algorithms that obtained from the
Algorithm 1 are illustrated by some numerical experiment,.

Assumption 1.1. Let {a)n>0 and (8n)n>0 be sequences in (0,1] and let (en)n>0 be a sequence in
H. Assume the conditions are verifiable, as follows.

1. liminf o, > 0 and Y, 5, |an — an_1| < 400,
= +00 =

2. 1i1}_1 Sn=1,5 (1 =8,) =400 and ), |0n — Sp—1] < o0,
n—-+00 < =

3. ZTLZU HgnH < +co.

We have verified Assumption 1.1 as shown in the following remark.
Z

Remark 1.2. Let z€ H. We set §, =1~ #5, ay, = % - G—Ji—g)g and €, = 3 for alln > 0.
It’s easy to see that the Assumption 1.1 is satisfied. :

2 Main results

Lemma 2.1. Let T : H — H be a nonexpansive mapping such that Fix(T) # § and let (Tn)n>o
be generated by Algorithm 1. Let (8,)n>0 be a sequence in [0,0] with § € [0,1) such that
Zn21 Onlln — Tn-1]| < +o0. Suppose Assumption 1.1 holds. Then (@n)n>0 s bounded.

Theorem 2.2. Let T : H — H be a nonexpansive mapping such that Fix(T) # 0 and let
(&n)n>o0 be generated by Algorithm 1. Let (0,)n>0 be @ sequence in [0,0] with 8 € [0,1) such
that Y., 51 Onllen — @n-1]l < +oo. Suppose Assumption 1.1 holds. Then, the sequence (Tn)n>0
strongly converges to &* 1= Projpi.(r) (0).

3 Applications

Let C be a nonempty closed convex subset of H. The indicator function is defined by

0, ifa eC,
+ 00, otherwise,



for all z € H. We consider the monotone inclusion problem as follows:
find & € H such that 0 € Az 4+ Bz + Cu, (3.1

where 4 + H — 2% and B : H — 2H are maximal monotone operators and C : H — H is a
S§-cocoercive operator with § > 0. We assume that zer(A + B + C) # 0. We propose the following
algorithm for solving the problem (3.1).

ay = Ty + Opl@n — To-1),

Yn = JuB (5n.an);

Zp = JuA (2'3/11 — Opan — #C'yn),
Tp41 = OnGn + Qn (zn - yn) + €n,

for all n > 1, where mo,x1 € H, p € (0,28), (0n)n>1 C [0,6] with 6 € [0,1), and (an)nx0 and
(8n)r>0 are sequences in (0, 1] and (€z)n>0 is & sequence in H.

(Algorithm 2) (3.2)

Theorem 3.1. Let A, B : H — 2™ be two mazimal monotone operators and C : H — H be §-
cocoercive with & > 0. Suppose that zer(A + B + C) # 0. Let (On)n>1 e a sequence in [0,0] with
0 e0,1) and i€ (0,26). Let (zn)n>0, Un)nz1 and (2n)n>1 be generated by Algorithm 2. Assume
that the Assumption 1.1 holds and ), <, Onll@n — a1l < +oo. Then the Jollowing stalements are
true:
1. (@n)n>o strongly converges to x* = projFix(T) (0), where
T = Jya o (2Jup — Id — pCo Jyp) + Id — Jyup for some p > 0.

2. (Yu)u>1 and (za)n>1 strongly converge to J,p(c*) € zer(A+ B+ C).
Using similar arguments as in Theorem 3.1 and set Bx = 0 for all # € H , it yields the following
results.
Corollary 3.2. Let A:H — 2" be a maximal monotone operator and C : H — H a §-cocoercive
operator with § > 0 and zer(A + C) # 0. Let p € (0,26) and (z,).>0 be generated by the following
iterative scheme
T,y € H,
Y = Tp + 0'”(:011 o wn—l)> (33)
Tnt1 = (1 — an)‘snyn + Qn Jp,A((Snyn 3 ﬂCényn) + En,
for alln > 1, where (0n)n>1 € [0,6] with 6 € [0,1), and (ap)aso and (0,)n>0 are sequences in (0,1]
and (g,)n>0 is a sequence in H. Assume that the Assumption 1.1 holds und ZnZl OnllTn —zp-1ll <

+00.
Then, the sequence (Tn)n>0 strongly converges to a point Proj ey a+c) (0).

Using similar arguments as in Theorem 3.1 and set Bz = 0 for all # € H , we can prove the
following results.

Corollary 3.3. Let A: H — 2™ be a mazimal monotone operator and C : H — H a §-cocoercive
operator with § > 0 and zer(A + C) # 0. Let € (0,26) and (zn)n>0 be generated by the following
iterative scheme
zg, 21 € H,
Yn = Tn + Op(@Tn — Tn-1), (34)
Tp41 = (1 - Q’n)(snyn + anJ;LA(‘S'nyn - I'LC(Snyn) +€n,
Jor alln > 1, where (6,)n>1 C [0,60] with 6 € [0,1), and (@ )uzo and (3,)n>0 are sequences in 0,1)
and (€n)n>0 s a sequence in ‘M. Assume that the Assumption 1.1 holds and 32, 5 OnllTn —Ta-1] <

+0c0.
Then, the sequence (T )n>0 strongly converges Lo a point Proj e a+c)(0)-



4 Numerical experiments

To illustrate the behavior of the proposed iterative method, we provide a numerical example in a
convex minimization problem and compare the convergence performance of the proposed algorithm
with some algorithms in the literature. Moreover, we also employ our algorithm in the context of
image restoration problems. All the experiments are implemented in MATLAB R2016b running on
a MacBook Air 13-inch, Barly 2017 with a 1.8 GHz Intel Core i5 processor and 8 GB 1600 MHz
DDR3 memory.

4.1 Convex Minimization Problems

In this subsection, we present some comparisons among Algorithm 2, MTA, and Shehu et al.
algorithm (1.2) ([5, Algorothm 3.1]) in convex minimization problem.

Example 4.1. Let f: R® — R be defied by f(z) = ||z]: for all 2 € R®, g : R — R be defined by
indicator function g(z) = dw () with W := {z : Az = b} for all z € R®, where A : R* — R!is a
non-zero linear transformation, b € R! and s > I and h: R® — R be defied by h(z) = 1||z||3 for all
2 € R®, Since s > [, we get that A is an asymmetric transformation. Finding the solution of the
following problem:

minimize |z||1 + dw(z) + %“'L“%

subject to z € R?, (4.1)
The problem (4.1) can be written in the form of the problem (3.1) as:

find & € R® such that 0 € d||z||; + 90w (z) + Vh(z), (4.2)

where A = 9|| - |l1, B = ddw (-) and C = Vh().
In this setting, we have J,as,, (2) = v + AT(AAT)71(b — Az),

Juoyp: (&) = (max{0,1 — ﬁl—]}ml’ max{0,1 — l—gz—‘}wg, ymax{0,1 — Hl%l}ms),

and Vh(z) = z, where o = (21,22,..,,2°) € R,

We begin with the problem by random vectors z,zg,21 € R* and b € R’ and matrix A € R,
Next, we compare the Algorithm 2 performance with two remained performance. The parameters
that are used in our algorithm are chosen as follows: oy =1 — (Tj—g)—g, o =1— %_Fz, En = (m,

and

{1 1 - :
5y o —
_ min { IR CH Ryl Pa——— “m"_mngl”} , if @y # 2py,

(4.3)

n
% otherwise.

We choose a, = H%’ G = Yo = Tnlrﬂ and e, = ¢, for the algorithm of Shehu et al. (1.2) in [5].
We obtain the CPU times (seconds) and the number of iterations by using the stopping criteria :
“yn - '!/n—-l“ < 1074,



Table 1: Comparison: Algorithm 2, MTA and Shehu et al. Alg. (1.2)

(I,s) Algorithm 2 MTA Shehu et al. Alg. (1.2)
’ CPU Time (s) Iterations CPU Time (s) Iterations CPU Time (s) Iterations
(20,700) 0.0218 7 0.0428 278 0.0756 626
(20,800) 0.0189 7 0.0914 350 ¢ 0.1745 796
(20,7000) 0.0302 7 1.7751 1273 0.0977 53
{20,8000) 0.0308 6 1.2419 1290 . 0.0671 54
{200,7000) 0.0365 3 1.9452 8568 4.6538 2028
(200,8000) 0.0406 7 2.5115 977 0.1425 53
(500,7000) 0.0403 7 4.1647 892 8.3620 1956
(500,8000) 0.0548 8 4.3239 813 9.0929 1835
(1000,7000) 0.0703 7 6.7954 786 14.1693 1751
(1000,8000) 0.0728 7 7.8302 825 16.3752 1784
(3000,7000) 0.1597 7 18.0559 779 | 44.8129 1940
(3000,8000) 0.1763 7 22.3514 841 49.6872 1891
(100,80000) 0.1376 8 26.6863 1489 - 1.5926 94
(1000,80000) 0.6949 8 344.7048 3289 9.4181 93

In table 1 we present a comparison among the numerical results of Algorithm 2, MTA, and
Shehu et al. Algorithm (1.2) in different sizes of matrix A. The smallest number of iterations is
generated by Algorithm 2 for all different sizes of matrix A. Moreover, Algorithm 2 requires the
least CPU computation time to reach the optimality tolerance for all cases.

Ho o Shaty ol et Alg
ST
10 - = 10 - . .
I8 fa! 10" 0! w? 10° ! 16 T int
Nurmnber of itermdions {0} Humbsr of derations ()
(a) Case: (1,5} = (100, 80, 000) (b) Case: ({, ) = (300, 7000)

Figure 1: Illustration the behavior of ||yn — yn-1]| for Algorithm 2, MTA, and Shehu et al. Alg.
(1.2)

Figure 1 shows the behavior of |lyx —yx—1| for Algorithm 2, MTA, and Shehu et al. Algorithm
(1.2) in two different choices of (I, s). We can observe that by using our algorithm the behavior of
the red line Algorithm 2 is the best performance.

4.2 TImage Restoration Problems

In this subsection, we apply the proposed algorithm, image restoration problems, which involves
deblurring and denoising images. We consider the degradation model that represents an actual
image restoration problems or through the least useful mathematical abstractions thereof.

y=Ha+w, (4.4)

where y, H, z and w represent the degraded image, degradation operator or blurring operator,
original image and noise operator, respectively.



The reconstructed image is obtained by solving the following regularized least-squares problem
. f1 2
min | [ Ho ~ yl} + p(@) b, (45)

where p > 0 is the regularization parameter and ¢() is the regularization functional. Well-known
regularization functional that is used to remove noise in the restoration problem is the {1 norm,
which is called Tikhonov regularization [7]. The problem (4.5) can be written in the form of the
following problem as:

1
find 2 € argmin {-Z-HH'L —yli3 + ,u“%”l} , (4.6)

TERF

where y is the degraded image and H is a bounded linear operator. Note that problem (4.6) is
a spacial case of problem (1.4) by setting A = 0f(\), B = 0, and C' = VL(:) where f(z) = |lz|
and L{z) = 3| Hz — y||3. This setting we have that C(z) = VL(z) = H*(Hz — y), where H* is a
transpose of . We begin the problem by choosing images and degrade them by random noise and
different types of blurring. The random noise in this study is provided by Gaussian white noise of
zero mean and 0. 001 variance. We solve the problem (4.6) by using our algorithm in Corollary 3.3.
We set o), = 1 — (7”_1)2, 0, =1— 100}1+1, u=0.001, &, =0 and 0, is defined as (4.3).

We compare our proposed algorithm with the inertial Mann-type algorithm that was introduced -
by Kitkuan et al [4]. In Kitkuan et al. Algonthm ([4, Algorithm in Theorem 3.1]), we choose

=Op, O = 723, A = 0.001 and A(z) = 35 Llal|2. We assess the quality of the reconstructed
nnage by using the signal to noise ratio (SNR) for monochrome images which is defined by

SNR(n) = 20logy, —mg,
le —@nll3
where z and @,, denote the original and the restored image at iteration n, respectively.
For colour images, we estimate the quality of the reconstructed image by using the normalized

colour difference (NCD) [8] which is defined by

2 f 2 T 2
Tits e ¢ n))? o+ (g = ui(m)? + (08 — i ()
¥
2 o \2 o \2
Tk ¢ PP+ ()2 (0f,
whele i, 7 are indices of the sample position, N, M characterize an image size and Lg ;, u;, v7; and

L; j(n), uij(n), v;;(n) are values of the perceived lightness and two representatives of chrominance
related to the original and the restored image at iteration n, respectively.

NCD(n) =
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Figure 2: Figure (a) shows the original image ’camera man’, figure (b) shows the images degraded
by average blur and random noise (Gaussian noise) and figure (c), (d), (e) show the reconstructed
image by using Weiner filter, Kitkuan et al. algorithm, and our algorithm (3.4)., respectively.

Figure 3: Figure (a) shows the original image ’Artsawang’, figure (b) shows the images degraded by
Gaussian blur and random noise (Gaussian noise) and figure (c), (d), (e) show the reconstructed
image by using Weiner filter, Kitkuan et al. algorithm, and our algorithm (3.4)., respectively.
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Figure 4: Figure (a) shows the original image 'Mandxil’, figure (b) shows the images degraded by
motion blur and random noise (Gaussian noise) and figure (c), (d), (e) show the reconstructed
image by using Weiner filter, Kitkuan et al. algorithm, and our algorithm (3.4)., respectively.
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Figure 5. (a) The behavior of SNR for two algorithms in Figure 2d,e; (b) the behavior of NCD for two
algorithms in Figure 3d,e; and (c) the behavior of NCD for two algorithms in Figure 4d,e.
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Figure 6. (a,b) The behavior of NCD in motion blur and different different salt and pepper noise from
0% to 10%.

Table 2. The performance of the normalized color difference (NCD) in two images.

The Normalized Color Difference (NCD).

Kitlkuan et al.’s Algorithm Our Algorithm in Equation (19)
n  Artsawang Image Mandril Image Artsawang Image  Mandril Image
1 0.99803 0.99842 0.99663 0.99731
50 0.99660 0.99730 0.99659 0.99727
100 0.99661 0.99729 0.99658 0.99726
200 0.99660 0.99728 0.99658 0.99726
300 0.99659 0.99727 0.99658 0.99726
400 0.99659 0.99727 0.99658 0.99726

10



5

Conclusion

In this project, we proposed a new Mann-type method combining both inertial terms and errors to
solve the fixed point problem for a nonexpansive mapping. We also prove the strong convergence
of the proposed algorithm under some sufficient conditions of involved parameters. We also apply
results to approximate the solutions of the monotone inclusion problems. Furthermore, we also
provided a numerical example to compare the proposed algorithm with other algorithms in the
convex minimization problem. Finally, we use our method to solve image restoration problems.
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Abstract: In this article, we establish a new Mann-type method combining both inertial terms
and errors to find a fixed point of a nonexpansive mapping in a Hilbert space. We show strong
convergence of the iterate under some appropriate assumptions in order to find a solution to an
investigative fixed point problem. For the virtue of the main theorem, it can be applied to an
approximately zero point of the sum of three monotone operators. We compare the convergent
performance of our proposed method, the Mann-type algorithm without both inertial terms and
errors, and the Halpern-type algorithm in convex minimization problem with the constraint of a
non-zero asymmetric linear transformation. Finally, we illustrate the functionality of the algorithm
through numerical experiments addressing image restoration problems.

Keywords: inertial method; Mann-type algorithm; monotone inclusion problem; nonexpansive mapping

MSC: 47H04; 47H10; 65K05; 90C25

1. Introduction

Throughout this article, 7 is defined as a real Hilbert space with an inner product and
corresponding norm which is denoted by the notations (-,-) and [{- || = +/(,-), respectively.
Let T : H — H be a nonexpansive mapping, that is, |Tx — Ty|| < ||x — y|| for all x,y € H. Given
C a nonempty closed convex subset of 7. The set of all fixed points of the operator T is denoted
by Fix(T) = {x € H : Tx = x}. The metric projection of # onto C, proj; : H — C is defined by
projc(x) = argmincec ||x — cf| for all x € H (see more detail in [1] and the references therein).

Problem: The fixed point problem for the mapping T is generally denoted as,

find x € ‘H such that x = Tx.

Many problems in the real world, such as optimal control problems, economic modelings,
variational analysis, game theory, data analysis, etc. can be formed into the fixed point problem of
nonexpansive mappings (see Bagiror et al.’s book [2] for more applications and recent developments).
A solution of the fixed point problem for nonexpansive mappings was approximated by the iterative
method which was introduced by Mann [3]. In addition, the "Mann Iteration" stated that

Xp41 = &pXy + (1- “n)Txn/ Vn 21, )

where x; € H and (&,),>1 is a real sequence in [0, 1]. The weak convergent result of the iterative
sequence (x,),>1 was obtained under control condition that },>1 an(l — ay) = +oo (see [4,5]).

Symimetry 2020, 12, 750; doi:10.3390/sym12050750 www.mdpi.com/journal/symmetry
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To obtain the strong convergence for the fixed point solutions of nonexpansive mappings, one of
the most important methods to solve the fixed point problem for a nonexpansive mapping was
introduced by Halpern [6]:

Xpp1 =gl + (1 —wy)Txy, Vn>1, )

where xy,u € H and (#y),>1 is a real sequence in [0, 1]. In direction to study and improve this algorithm
in Equation (2), many results have been presented (see [7~14]). In 2000, Moudafi [15] proposed iterative
- method which involved the concept of viscosity to solve strong convergence of the iterate. Moreover,
many authors are interested in studying and developing Moudafi’s algorithm. The several methods
that are in reference to this study are reviewed in the next extensively (see, for example, [7,16-20]).
Recently, Bot et al. [21] proposed a new Mann-type algorithm (MTA) to solve the fixed point problem
for a nonexpansive mapping and proved strong convergence of the iterate without using viscosity
and projection method under some control conditions of parameters sequences. Their algorithm is
defined by
(MTA) Xyl = (1 = “)1)511x11 +ayTopxy, Vn>1,

where x1 € H and ()20, (81)u>0 are sequences in (0, 1].

Polyak [22] firstly proposed an inertial extrapolation as an acceleration process to solve the smooth
convex minimization problem. An inertial algorithm is a two-step iterative method and the next iterate
is defined by making use of the previous two iterates. It is well known that combining an inertial term
in an algorithm can accelerate the speed of convergence of the sequence generated by the algorithm.
Subsequently, there are many authors who are interested in studying the inertial-type algorithm.
We refer interested readers to [23-31] for more information. In 2015, Combettes and Yamada [32]
presented a new Mann algorithm combining error term for solving a common fixed point of averaged
nonexpansive mappings in a Hilbert space. By using the concept of the inertial method, the technique
of Halpern method, and error terms, Shehu et al. [33] introduced an algorithm for solving a fixed point
of a nonexpansive mapping, which is defined as follows:

x0,x1 € H,
Yn = Xy + 6n(xn - xn—l)/ (3)
X4l = &nXo + Suyn + YnTyn + ey,

foralln > 1, where (6,),>0 C [0,6] with 0 € [0,1), (an)n>0, (0i) =0 and (77,) >0 are sequences in
(0,1] and (e,,) >0 is a sequence in H.

Being motivated by the above facts, we intend to accelerate the speed of convergence by avoiding
the viscosity concept, hence, we propose a Mann-type method combining both inertial terms and
errors for finding a fixed point of a nonexpansive mapping in a Hilbert space.

Let a nonexpansive mapping T from # into itself be such that Fix(T) # @. We propose the
following algorithm.

Xp, X1 € C/
(Algorithm 1) ¢y, = x, + 0y (xy — x,_1),
Xpq1 = OnlYn + l\'n(T‘snl/n - 511]/11) + &p,

foralln > 1, where (6,),>0 C [0,6] with 6 € [0,1), (ay)us0 and (8n)n>0 are sequences in (0,1} and
(€1)u>0 is a sequence in H.
On the other hand, for the set of all zeros of the sum of three monotone operators A, B, C as
the following
find x € H such that 0 € Ax + Bx + Cx, 4)
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where A, B, C are maximal monotone operators on a Hilbert space H and C is -cocoercive w1th
parameter . The problem in Equation (4) was considered by Davis and Yin [34] and it can be

reformulated to the fixed point problem for nonexpansive mappings. Therefore, it is interesting o

study the fixed point problem in order to apply for solving the zeros problem of maximal monotone
operators.

For the applications, we can formulate the main problem, that is, the fixed point problem in
order to apply in the case of finding a zero point of the sum of three maximal monotone operators.
Furthermore, the convergence behavior between the algorithms obtained from Algorithm 1 are
illustrated by some numerical experiment.

2. Preliminaries

This section gathers the results in real Hilbert spaces that are useful for this study, e.g.,

convergence analysis.

Lemma 1. [20] Let H be a real Hilbert space. The conditions are verifiable, as follows.
L lx—yll> = x> = Iyll* — 2{x — v, y) forall x,y € H,

Hx+jl|2 < ||xl? +2{x +y,y) forall x,y € H,
3 rx+ (U —=r)yl? = rllxl®> + (1 - )HJHZ —r(1=r)|lx —y|* forall r € [0,1) and x,y € H.

Lemma 2. [14,35] Let (a,)u>1 and (pn) u>0 be sequences of nonnegative real numbers and satisfy the inequality
apq1 < (1 i 511)ﬂn + Uy + €y Vn >0,

where 0 < &, < 1forall n > 0. Assume that Y y>q €n < +o0. Then, the following statemnent hold:

1. If pu < by (where ¢ > 0), then (ay )p>1 is bounded.
2. IfLu»00n = ccand limsup, , {—;'—’ < 0, then the sequence (a, )n>0 converges to 0,

Lemma 3, [1] Let T be a nonexpansive operator from H into itself. Let (%) >0 be a sequence in H and -

x € H such that x, — xasn = +oo (i.e., (Xy)y>o converges weakly to x) and xy — Txy — Oasn — +oo
(ie., (xn — Txy)n>0 converges strongly to 0). Then, x € Fix(T).

Assumption 1. Let (wy )50 and (6,),50 be sequences in (0,1] and let (e,),>0 be a sequence in H. Assune
the conditions are verifinble, as follows.

%%I_gljpf“n > Oand En>1 |“N — &y 1] < oo,

lim ¢, =1, Zn>0( - 5") = -0 and 2"21 |§n - 5,,_1‘ < +oo,

H—3+00

ZnZO “ﬁ'nH < 0.

We have verified Assumption 1, as shown in the following remark.

Remark 1. Let z € H. Weset 6, = 1 — n+2, Xy = % — (75}3—)—1 and &, = (,—HrzT)gfor all n > 0. It is easy to
see that Assumption 1 is satisfied.

3. Main Results

This section discusses the convergence analysis of the proposed algorithm, beginning with given -

boundedness of our algorithm, as in the following lemma.

Lemma4. Let T : H — H be a nonexpansive mapping such that Fix(T) # @ and let (xn)n>0 be generated
by Algorithm 1, Let (8,),0 be a sequence in [0,0] with 6 € [0,1) such that L5102 — xu—1]| < +oo.
Suppose Assumption 1 holds. Then, (xu)uxo is bounded.

"(v,,

UNY

Hﬁ;é?
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Proof. Let n € N and a sequence (z;),>1 be defined by
Zyt1 = Oz + N;i(T5112n - 511211) + ey,

By nonexpansiveness of T, we have

”xn+1 - Zn+1” = ” (1 - “11)511 (]/n - Zn) + “11(T511}/n - T5nZn)“
< (1 - “n)‘sn ”]/n - Zn” + “}1511“]/11 - Zn”
= 5;1“}/;1 - Zn“

il

(Sn”xn ~ Zn + Qtz(xn - xn»l)”
511Hxn - Zn“ + 6,6y ”xn - xn—l”
5;1“xn - Zn“ + enuxn - xn~1“- ®)

FANIRVAN

By applying Lemma 2, we have nl_i)l_li‘_loo |s = 2]} = 0.
Next, we expect that (z,),>1 is bounded. Let x* € Fix(T). It follows that

zis1 = ¥ < 0uzn + ey (Topzy — Snzu + €4 — Ll
< (1= an)llduzn — 27| + aullTouzn — x*|| + llen|
< iGuzn — x| + fleal)
= [10n(zn = x*) + (80 — D)™ + [Jeu]|
< Oullzn = 2+ (1= 8) " || + llea].- (6)

Notice that }°,5q €, < +oc0. We can apply Lemma 2 to obtain that (2, ),>1 is bounded. Seeing that

nl_i)r_{_l |4 — zu|| = 0 and (z,),51 is bounded, we get that (x4)n>0 is bounded. [
L > >

Theorem 1. Let T : H — H be a nonexpansive mapping such that Fix(T) # @ and let (xy)y>0 be generated
by Algorithm 1. Let (6,:)u>0 be a sequence in [0,0] with 6 € [0, 1) such that ¥y~ Oy ||xn — Xp—1]| < +oo.
Suppose Assumption 1 holds. Then, the sequence (x,)y0 strongly converges to x* := PrOjgix(7) (0).

Proof. From Lemma 4, we have (x,),>0 is bounded. Moreover, (Yu)u>1 is also bounded. Let x* :=
PrOjgi(7)(0). Then, x* € Fix(T). By using Lemma ! and Equation (2), we get that

U8y = 1P = 16 (g — %)+ (60 = 1)1
= lln =" P 2801 = 80) (g = )+ (1= 8,2 P
< Gulln =2 + 0 (0 = 20— (1= 8) (200", = ) + (1= 6,) [x° )
< Sulln — x| + 28, (B (xu — Xp_1), Y — x7)
(1= 00) (260(=x" g0 = %) + (1= 8 |°]12) %)

By using Lemma 1 and the nonexpansiveness of T, we have

“x;1+1 - x*”z = ”5”}/'1 + “n(TlSn}/n — Spin) +en — x*HZ
= 11 = @) Gy — x*) + an (Tuyn — x*) + e |?
SN = ) (Buyn — x7) + an(Touyn — x> + 2{en, 2yg1 — x*)
= (1= an)6nyn — x*|* + || TOnyn — 2*||% — (1 — ) I T6nyu — Suyu2
+2{en, Xyy1 — x*)
S .
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Combining Equations (7) and (8), we obtain that

s — 17 < 8l — 3°1 4 (L ) (280 (= — )+ (1 82) )
428, {0n (X — Xn—1)s Yn — X*) + 2(en, Xyq1 — X7)
< Bullxn — 2P+ (1 - 6u) (2511<‘“X*r3/n =)+ (1= dn)[|x* “2)
+28ullyn — * || (Bull (¥n — xu—1)11) + 2]l xn41 — 2" (llenl])- ©)

Next, we claim that ||x,41 — %] — 0as #n — +oo. By the boundedness of a sequence (¥ )ux1
and the nonexpansiveness of T, we have '

N1 = Xull = 10wy + € (Tonyn — Suyn) + & — (Sn—1Ymy + &y (Toy—1Yn—1 = Su—1Yu—1) +€n-1)ll
<N — an) (Guyn — Su—1Yu—1) + (&n = #y-1)8p-1Yu-1]
+ len (Touyn — Tou—1Yu—1) + (&n ~ &y 1) T0y—1yu—1ll + llen — en—a]
< NGuyn — Sum1yu—1 ]+ len = @[ (0u-1ym—1l + 1T8u-1yu-11) + llew — en-all
< N6y — Sy—ayu-all + lan — an-1|C1 + llen — €n-alls (10)

where C; > 0. After that, we consider the term ||6,, — 8,_1Yy—1] in the inequality in
Equation (10).
Let us consider,

61yn — Su—1Yn—1ll = ||6n (Y — Yn—1) + (60 — Sp—1)Yn-1ll
< Gullyn — Yu-rll + 160 — Su—1|(lyn-1ll)
< Sullxn — xu_tll 4 Gubulfxn ~ Xp—1|| + onOp-1llxn—1 — Xn-2l]
+ 180 = Su—1l(Ulyn—1ll)
< 5u”xn - xn—l” + 9,,”.\‘,, - xn—l“ & 9n—1”xn—1 | xn~2“
+ [0 — 6n-1|C2, 11)

where C; > 0. Combining Equations (10) and (11), we get that

“xn—}-l - xn” < 5n“xn - xn~1|| + enuxn - xn—l“ + 9:1—1“%—1 = xn~2“ + Mn - “n—llcl
+ ‘511 -~ 5,,_1IC2 = “EM - 8n—l“- (12)

By applying Lemma 2 and Assumption 1, we can conclude that ||x,+1 — x,|| — 0 as# — +o0.
In the following, we prove that || T6,yy — duyfu|| — 0 as n — +oo. We observe that

I T8nyn — Onynll = I TOuyn — Xut1 + X1 — Sufull
<N Tonyn — xnall + xn1 — Snyull
= || (1 = an)(T8uyn — Suyn) — enll +1(1 = ) xn41 + SuXus1 — Syl
< (L= a)||Tnyu — Suynll + lleull + (1 = Su)lur1ll + Sulluss — vl
= (1 — )| Tuyn — Onynll + llenll + (1 = Su)lxnsall + Sullxuss — xull
+ Oubn || xn — Xn-1 [ (13)

It follows that

1
”T(Sn]/n - 5:1]/11” < o~ (“311” + (1 - 5,,)Hx,,+1|l + ”xn+1 - xn“ + 610 “xn - xn~1”) . (14)

1t
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Since lir_lr_l l%1+1 — x|l = 0 and the properties of the sequences involved, we can conclude that
H— 400

im ||T8uyn — Suyull = 0.

- N0
To show that the sequence (xy),>0 strongly converges to x*, it is sufficient to prove that

lim sup(—x*, y, — x*) <0. (15)
H—y+co
On the other hand, assume that the inequality in Equation (15) does not hold. Then, there exist a
real number k > 0 and a subsequence (i, )i>1 such that

(=x* Yy, —x*) > k>0Vi>1

For (yu)y>1 bounded on a Hilbert space H, we can find a subsequence of (,),>1 that weakly
converges to a point i & #. Without loss of generality, we can assume that 1/, — y as i — o0, Therefore,
0<k< lim (—x%yu —x*) = (=x*,y — x%). (16)
=400 ]
Notice that ’1}-i)rf Oy = 1. Wegetd,y,, — yasi — oo, Applying Lemma 3, we obtain that
o

y € Fix(T). With this, we have (—x*,y — x*) < 0, which is a contradiction. Hence, the inequality in
Equation (15) is verified. It follows that

lim sup (26, (—", yu = 1) + (1 o) l"112) <.

n—r+co

Using Lemma 2 and Equation (%), we can conclude that 1_1)1:1‘_1 Xy = x". Based on what is described
n (e8]

above, the proof is complete. [J

Remark 2. The assumption of the sequence (0,,)y>0 in Theorem 1 is verified, if we choose 6, such that

0 <0, <8, where
Gy = {mm {9’ x,,—c.\l',,_lﬂ } o if X # xn,

0, otherwise,

and Yoy s ¢y < +-co.

4, Applications

This section is devoted to discussing the applications of the algorithm proposed in this paper in
the monotone inclusion problems.

The operator K : #{ — H is called a monotone if it satisfies (Kx — Ky, x — y) > 0 forall x,y € A
and is said to be é-cocoercive with § > 0 if there exists a positive real number § such that (Kx —
Ky,x —y) > O||[Kx — Kyl||* for all x,y € H. The set of all zeros of the operator K is denoted by
zer(K) :={z € H:0=K(z)}.

Let L be a set-valued operator on # and its graph be denoted by gra(L) := {(x,u) € H x H :
u € Lx}. The operator L is called maximal monotone if there exists no proper monotone extension of the
graph of L. The operator L is said to be p-strongly nonotone with p > 0if (x — y,u — v) > p||x — y||? for
all (x,u), (y,v) € gra(L).

The resolvent of the operator L is denoted by Ji, : H — 2" which is defined by Jp = (Id + L)1
where Id is the identity operator on H. Furthermore, J; is a single-valued operator when L is a maximal
monotone operator.
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Let C be a nonempty closed convex subset of 7. The indicator function is defined by

0, ifxedl,
dc(x) = {

+ o0, otherwise,
for all x € H. We consider the monotone inclusion problem as follows:
find x € H such that 0 € Ax + Bx + Cx, (17)

where A : H — 2" and B : H — 2% are maximal monotone operators and C : H — H is a §-cocoercive
operator with § > 0. We assume that zer(A + B + C) # @. We propose the following algorithm for
solving the problem in Equation (17).

Ay = Xn +9n(xn - xn—l)/

Un= ]]lB(éilall)r

Zn = ];4/1(2%1 — Opan — 1Cy n)/
X1 = Oy + “n(zn . _/n) + &y,

(Algorithm 2)

foralln > 1, where xg, x1 € H, p € (0,26), (84)y>1 C [0,6] with § € [0,1), and (20) >0 and (6n)n>0
are sequences in (0,1] and (g;),>0 is a sequence in H.
The above iterative scheme can be rewritten as

Xp+1 = Onfln + &y UyA S (2];13 —Id - uCs ]}lB) +1d— ];th](5:1“11) +éen
= Opay + Dt,,(Té,,ﬂ,, T (5;1[111) -+ €y

where xo,x1 € H, 4y i= %, + 0, (xy — ;1) and
L= ];IAO(ZIyB_Id”VCO]yB)‘FId_I;IB- (18)

The following proposition is the important tool for verifying the convergence of Algorithm 2
(see Proposition 2.1 in [34])

Proposition 1. Let Ty, Ty : H — H be two firmly nonexpansive operators and C be a 6-cocoercive operator

with 6 > 0. Let ji € (0,28). Then, operator T := Id — T + Ty o (2To — Id — pC o Ty) is a-averaged with

coefficient o 1= ZEZE—,: <1

In particular, the following inequality holds for all z,w € H
1Tz Towo|]? < |z — w]l? - Q_‘;_“ln(rd _ T)z— (1d - T)w|%
The following lemma is a characterization of zer(A + B +C).

Lemma 5. Lemma 2.2 in [34] Let A : . — 2% and B : H — 2" be maximal monotone operators and -
C : H — H be a 5-cocoercive operator with § > 0. Suppose that zer(A 4 B + C) # ©. Then,

zer(A+ B+ C) = J,3(Fix(T)),
where T := Jya 0 (2Jup — Id — pCo Jug) + Id — Jup with pp > 0.

Remark 3.

1. Ifweset Cx = 0 for all x € M in Lemma 5, zer(A + B) = Jus(Fix(T)), where T := Jyp 0 (2JuB —
Id) 4 1d — J,p with pu > 0.
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2. Ifwe set Bx = 0 for all x € H in Lemma 5, zex(A + C) = Fix(T), where T := Jua o (Id = uC) with
>0

Theorem 2. Let A,B : H — 2™ be two maximal monotone operators and C : H — H be S-cocoercive
with 6 > 0. Suppose that zex(A + B+ C) # @. Let (6y)y>1 be a sequence in [0,6)] with 0 € [0,1) and
p € (0,26). Let (Xu)nz0, (Yn)up1 and (zu)y>1 be generated by Algorvithm 2. Assume that Assumption 1
holds and ), 51 0|y — X,-1|| < +oco. Then, the following statements are true:

1. (xn)u>o strongly converges to x* = PrOjpiy 1y (0), where
T:=Jyao (2Jup — Id — uCo Jyg) + Id — ], for some y > 0.
2. (Yn)u>1 and (z4)y>1 strongly converge to Jup(x*) € zer(A+B+C).

Proof. Equation (1): Let (x;),»0 be generated by Algorithm 2. Then, the iterative method can be
rewritten as

Xpg1 = Oplty + “)I(T(snﬂn i (Snan)

- where xg, X1 € H, 4y := % + 0y (% — xy_1) and T 1= Jua© (2Jyp —Id —puCo Jup) +1d — Ju.
By applying Proposition 1, we get T is nonexpansive.
On the other hand, by Lemma 5, we obtain that

JuB(Fix(T)) = zer(A+B+C) £ Q.

It means that Fix(T) # @. By applying Theorem 1, we have the sequence (x;) n>0 strongly
converges to X* := projg;,(r)(0) as 1 — -co.

Equation (2): The sequences (a,),>0 as Algorithm 2, and we obtain that 4, — x* as 11 — o0,
Since Jp is continuous, we have y, — J,5(x*) € zer(A + B + C). From the last line of Algorithm 2,
we get that ,IETOO lzn — yul| = 0. This proof is complete, [

Using similar arguments as in Theorem 2 and set Cx = 0 for all x € H, we can prove the
following results.

Corollary 1. Let A, B : H — 27 be two maximal monotone operators and zer(A + B) be a nonempty set.
We consider the following algorithmn:

Ay = Xy + Grl(xn - X,,_l),

Yn = ]yB(énﬂn)/

Zy = Jua (2yn — Suan),

Xpg1 = Oplty + oty (Zn - ]/n) + &y,

(Vn = 1)

where xo,%1 € H, p € (0,26), (64)nx>1 C [0,6] with 6 € [0,1), and (&n)uz0 and (6,)n>0 are sequences in
(0,1] and (en)uso is a sequence in H. Assume that Assumption 1 holds and Y1 Onllxn — xy_1]| < +o0.
Then, the following statements hold:

1. (xu)uxo0 strongly converges to x* := PI0j gy a0 (s~ Id)+1d~Jp) (0) for some u > 0.
2. (yu)ux1 and (zn)n>1 strongly converge to J,5(x*) € zer(A + B).

Proof. It follows from the proof of Theorem 2. [J

Using similar arguments as in Theorem 2 and setting Bx = 0 for all x € H , we can prove the
following results,
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Corollary 2. Let A : H — 2™ be a maximal monotone operator and C : H — H a 5-cocoercive operator with
5> 0and zer(A +C) # @. Let p € (0,28) and (xy)uxo be generated by the following iterative scheme

xo, X1 € H,
Yn = X+ en(«\'n - xn—l)/ (19)
Xp1 = (1 - “n)‘sn}/n + “lJyA((Sn]/n - }‘C511]/11) + &n,

forall n > 1, where (8,),>1 € [0,0] with 0 € [0,1), and (ay)u>0 and (6x)nx0 are sequences in (0,1] and
(en)u>0 is a sequence in H. Assume that Assumption 1 holds and Lyy»1 0nl|2n — Xy—1]| < 4o0.
Then, the sequence (xy )0 strongly converges to a point proj e a4.c)(0).

5. Numerical Experiments

To illustrate the behavior of the proposed iterative method, we provide a numerical example in a
convex minimization problem and compare the convergence performance of the proposed algorithm
with some algorithms in the literature. Moreover, we also employed our algorithm in the context of
image restoration problems. All the experiments were implemented in MATLAB R2016b running
on a MacBook Air 13-inch, Early 2017 with a 1.8 GHz Intel Core i5 processor and 8 GB 1600 MHz
DDR3 memory.

5.1, Convex Minimization Problenis

In this subsection, we present some comparisons among Algorithm 2, MTA, and Shehu etal.’s
algorithm in Equation (3) (Algorithm 3.1 in [33]) in convex minimization problem.

Example 1. Let f : R® — Rbe defied by f(x) = ||x[|1 forall x € R?, g : R® — R be defined by indicator
function g(x) = dw(x) with W := {x : Ax = b} forall x € R®, where A : R® — R is a non-zero linear
transformation, b € R' and s > J; and h : R® — R be defined by h(x) = }||x||3 for all x € R®. Since
s > 1, we get that A is an asymmetric transformation. Find the solution of the following problem:

o Ik
minimize ||x]|; + éw(x) + 5“\7“%

subject to x € R®. (20)
The problem in Equation (20) can be written in the form of the problem in Equation (17) as:
find x € R® such that 0 € 9]jx||1 + 96w (x) + Vh(x), (21)

where A = 9|| - |3, B =9w(-) and C = V().
In this setting, we have J;;35, (x) = x + AT(AAT)"1(b - Ax),

! ! !
],,a”.lh(x) = (max{0,1— T;Tl}xl,max{o,l - l—;z-l}xz, ..,max{0,1— I%T}xS)’

and Vh(x) = x, where x = (x1,22%,...,x%) € R®.
We begin with the problem by random vectors z, xg, x; € R® and b € R’ and matrix A € R/*S.
Next, we compare the performance of Algorithm 2 with two remained performance. The parameters
: : . — 1 — 1 —
that are used in our algorithm are chosen as follows: &), =1 — (T O =1— 3 &n = (1-0—(2)’—1)—2-, and

. 1 1 .
min< 5, ——mp—— if x X
{2/ ('1+1)2ll'\‘::-x,,_1|| } ’ : 7& n-ls

Oy = (22)

, otherwise.

N
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We choose a,, = ﬁ—lﬁ, Sy =n = ﬂnlﬁj and e, = ¢, for Shehu et al.’s algorithm in Equation (3)
in [33]. We obtain the CPU times (seconds) and the number of iterations by using the stopping criteria :
lyn —yn—all < 1074

In Table 1, we present a comparison among the numerical results of Algorithm 2, MTA, and
Shehu et al.’s algorithm in Equation (3) in different sizes of matrix A. The smallest number of iterations
is generated by Algorithim 2 for all sizes of matrix A. Moreover, Algorithm 2 requires the least CPU
computation time to reach the optimality tolerance for all cases.

Table 1. Comparison: Algorithm 2, MTA and Shehu et al.’s algorithm in Equation (3).

(I,s) Algorithun 2 AMTA Shehu et al/’s Algorithm Equation (3)
CPU Time (s)  Iterations CPU Time (s)  Iterations CPU Time (s) Iterations
(20,700) 0.0218 7 0.0428 278 0.0756 626
(20,800) 0.0189 7 0.0914 350 0.1745 796
(20,7000) 0.0302 7 1.7751 1273 0.0977 53
(20,8000) 0.0308 6 1.2419 1290 + 0.0671 54
(200,7000) 0.0365 8 1.9452 858 4.6538 2028
(200,8000) 0.0406 7 25115 977 0.1425 53
(500,7000) 0.0403 7 41647 892 8.3620 1956
(500,8000) 0.0548 8 4.3239 813 9.0929 1835
(1000,7000) 0.0703 7l 6.7954 786 14,1693 1751
(1000,8000) 0.0728 (A 7.8302 825 163752 1784
(3000,7000) 0.1597 7 18.0559 779 448129 1940
(3000,8000) 0.1763 7 22.3514 841 49.6872 1891
(100,80,000) 0.1376 8 26,6863 1489 1.5926 94
(1000,80,000) 0.6949 8 344.7048 3289 94181 93

Figure 1 shows the behavior of [|yx — 11|l for Algorithm 2, MTA, and Shehu et al.’s algorithm in
Equation (3) in two different choices of (/,5). We can observe that by using our algorithm the behavior
of the red line, and Algorithm 2 has the best performance.

10%= : 107 . T -
\ g Algorithm2 3 /’*»7-*; =3 Algorithmz
= MTA e MTA

100 ¥ ey Shehuetal Alg, | 10° <is~ Shehu etal Alg.
102 # 10
= =

10 104} o R

10»5 L i L ’0«6 " L L

10° 10’ 10° 10° 10t 10° 10 0% 10° 10
Number of iterations (n} Number of iterations (n)
(a) Case: (I,s) = (100, 80, 000) (b) Case: (I,s) = (500,7000)

Figure 1. [llustration the behavior of |[yy ~ y,-1 /| for Algorithm 2, M1A, and Shehu et al.’s algorithm
in Equation (3).

5.2, Image Restoration Problems

In this subsection, we apply the proposed algorithm, image restoration problems, which involves
deblurring and denoising images. We consider the degradation model that represents an actual image
restoration problems or through the least useful mathematical abstractions thereof.

y=Hx+w, (23)
where 1, H, x and w represent the degraded image, degradation operator, or blurring operator;

original image; and noise operator, respectively.
The reconstructed image is obtained by solving the following regularized least-squares problem

e { 3103~ 13-+ g}, 2
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where p > 0 is the regularization parameter and ¢(-) is the regularization functional. A well-known
regularization function used to remove noise in the restoration problem is the /; norm, which is called
Tikhonov regularization [36]. The problem in Equation (24) can be written in the form of the following
problem as:
find x € argmm{-nm— Juz+;¢||xn]} (25)
xeRK
where y is the degraded image and H is a bounded linear operator. Note that problem in Equation (25)
is a spacial case of the problem in Equation (4) by setting A = 9f(-), B =0, and C = VL(:) where
f(x) = ||*|ls and L(x) = %||Hx — y||3. This setting we have that C(x) = VL(x) = H*(Hx — y), where
H* is a transpose of H. We begin the problem by choosing images and degrade them by random
noise and different types of blurring. The random noise in this study is provided by Gaussian white
noise of zero mean and 0.001 variance. We solve the problem in Equation (225) by using our algorithm
in Corollary 2. We setay = 1 — m, Oy = 1— m, p = 0.001, g, = 0and 8, is defined as
Equation (22).

We compare our proposed algorithm with the inertial Mann-type algorithm that was introduced
by Kitkuan et al [30]. In Kitkuan et al.’s algorithm (Algorithm in Theorem 3.1 in [30]), we choose
Cu = Oy, &y = n+1' Ay =0.001, and h(x) = 35 }]v[lz We assess the quality of the reconstructed image
by using the signal to noise ratio (SNR) for monochrome images, which is defined by

SNR(n) = 201og;, B I ”YZ B
where x and x, denote the original and the restored image at iteration , respectively.

For color images, we estimate the quality of the reconstructed image by using the normalized
color difference (NCD) [37] which is defined by

T, T, ¢(L° L ]
Pl 1\/ )2 () + (v))? '

NCD(n) =

where i, j are indices of the sample position, N, M characterize an image size and L? b ug i oF f and
Lij(n), uij(n), v j(n) are values of the perceived lightness and two representatives of chrominance
related to the original and the restored image at iteration 7, respectively. We generated the noised
model in order to obviously see the differences between degraded and original figure as follows.
Figure 2 firstly shows the original image, Secondly, the degraded image was corrupted by average blur
(size 20 by 20) and Gaussian noise (zero mean and 0.001 variance). We randomly selected parameters
which visibly showed the differences sharpness level and. Lastly, reconstructed images are shown.
Figure 3 firstly shows the original image. Secondly, the degraded image was corrupted by Gaussian .
blur (size 20 by 20 with the standard deviation 20) and Gaussian noise (zero mean and 0.001 variance).
With this point, we found that any adjustment of the standard deviation as much as small might
not shown the difference between degraded and original figure. Lastly, reconstructed images are
shown. Figure 4 firstly shows the original image. Secondly, the degraded image was corrupted by
motion blur (the linear motion of a camera by 30 pixels with an angle of 60 degrees) and Gaussian
noise (zero mean and 0.001 variance). We randomly selected parameters which visibly showed the
differences sharpness level. Lastly, reconstructed images are shown. The comparisons between our
proposed algorithm in Equation (19) and Kitkuan et al.’s algorithm (Algorithm in Theorem 3.1 in [30])
in image restoration problems are presented in Figure 5 and Table 2. Furthermore, we also present the
comparison of Kitkuan et al.’s algorithm (Algorithm in Theorem 3.1 in [30]), our algorithm, and the
well-known technique for image restoration which is Weiner filtering (WF) [38,39]. Figure 6 presents
the comparative results of two degradation images ‘Artsawang’ and ‘Mandril’ corrupted by motion
blur and different salt and pepper noise from 0% to 10%.
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(a) camera man

(b) average blur and random noise (c) Weiner Filtering

(d) Kitkuan et al.’s algorithm (e) our algorithm

Figure 2. (a) The original image ‘camera man’; (b) the images degraded by average blur and random
noise (Gaussian noise); and (c—e) the reconstructed image by using Weiner filter, Kitkuan et al.’s
algorithm, and our algorithm in Equation (19), respectively.
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(a) Artsawang

(d) Kitkuan et al.’s algorithm (e) our algorithm

Figure 3. (a) The original image ‘Artsawang’; (b) the images degraded by Gaussian blur and random
noise (Gaussian noise); and (c-e) the reconstructed image by using Weiner filter, Kitkuan et al.’s
algorithm, and our algorithm in Equation (19), respectively.
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(b) motion blur and random noise (¢) Weiner Filtering

(d) Kitkuan et al.’s algorithm (e) our algorithlﬁ

Figure 4. (a) The original image ‘Mandril’; (b) the images degraded by motion blur and random noise
(Gaussian noise); and (c-e) the reconstructed image by using Weiner filter, Kitkuan et al.’s algorithm,
and our algorithm in Equation (19), respectively.
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Figure 5. (a) The behavior of SNR for two algorithms in Figure 2d,e; (b) the behavior of NCD for two
algorithms in Figure 3d,e; and (c) the behavior of NCD for two algorithms in Figure 4d,e.
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Figure 6. (a,b) The behavior of NCD in motion blur and different different salt and pepper noise from
0% to 10%.

Table 2. The performance of the normalized color difference (NCD) in two images.

The Normalized Color Difference (NCD).

Kitkuan et al.’s Algorithm Our Algorithm in Equation (19)
n  Artsawang Image Mandril Image Artsawang Image Mandril Image
1 0.99803 0.99842 0.99663 0.99731
50 0.99660 0.99730 0.99659 0.99727
100 0.99661 0.99729 0.99658 0.99726
200 0.99660 0.99728 0.99658 0.99726
300 0.99659 0.99727 0.99658 0.99726

400 0.99659 0.99727 0.99658 0.99726
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6. Conclusions

In this paper, we propose a new Mann-type method combining both inertial terms and errors to
solve the fixed point problem for a nonexpansive mapping. We also prove the strong convergence
of the proposed algorithin under some sufficient conditions of involved parameters. We also apply
results to approximate the solutions of the monotone inclusion problems. Furthermore, we also
provide a numerical example to compare the proposed algorithm with other algorithms in the convex
minimization problem. Finally, we use our method to solve image restoration problems.
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