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ABSTRACT

Rhynchostylis retusa (L.) Blume is a popular and scarce orchid species with
attractive flowers arranged in a racemose cluster. To study this flower’s complex floral
perianth formation, MADS-box genes that play an important role in flower
morphogenesis were investigated. Four B-class DEF-like MADS-box genes (RrDEF1,
RrDEF2, RrDEF3, and RrDEF4) and two E-class AGL6-like MADS-box genes
(RrAGL6-1 and RrAGL6-2) were identified, and their expression was characterized by
gRT-PCR. These genes were expressed in every developmental stage of reproductive
organs but not in the vegetative leaves, except for RrDEF2. Most of these genes
revealed similar expression patterns in stage 3 and mature flowers. Higher RrDEF1 and
RrAGL6-1 expression was detected in the sepals and petals rather than the lips, while
RrDEF3, RrDEF4, and RrAGL6-2 were highly expressed in the lips but exhibited low
expression in the sepals. RrDEF3 was also strongly expressed in petals. These gene
expression patterns supported current profiles involving sepal/petal/lip determination,
with RrDEF1 and RrAGL6-1 promoting sepal/petal formation, while RrDEF3,
RrDEF4, and RrAGL6-2 promoted lip formation. Our findings support revised ‘orchid
code’ and ‘perianth code’ hypotheses in which floral organs are regulated by combined
levels of expression from each clade of DEF-like genes and AGL6-like genes. These
four RrDEF and two RrAGL6 genes promote and enrich our knowledge and

understanding concerning the floral development of orchids.
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CHAPTER 1

INTRODUCTION

Background

Orchidaceae is one of the largest flowering plant families with extremely
diverse and specialized floral morphology (Aceto & Gaudio, 2011). Orchid flowers
consist of three sepals in the outermost whorl, while the petals in the second whorl
include two similar lateral sepals and one modified shape which called lip or labellum,
with the stamen and pistil fused together as the column in the innermost whorl. Orchids
follow a basic morphology, but peloric mutants still occur in floral organs (Bateman &
Rudall, 2006b; Mondragon-Palomino & Theissen, 2009; Rudall & Bateman, 2002).

Rhynchostylis retusa (L.), also called foxtail orchid, is a monopodial and
epiphytic orchid species with beautiful inflorescent flowers arranged in a racemose
cluster. Its unique fragrance makes this orchid species more attractive and valuable
(Parab & Sellappan, 2008). Four species in the genus Rhynchostylis are endemic to
Southeast Asian countries, and three are found in Thailand (Anuttato, Boonruangrod,
Kongsamai, & Chanprame, 2017). The R. retusa species is in high demand and often
featured in orchid competitions. Many studies have indicated that the flower structure
has continuously diverged from wild types. However, studies of orchid genetic
backgrounds are not common in Thailand.

Molecular genetic mechanisms relating to flower morphology have been
extensively studied for more than 20 years in the two core eudicot model plants
Arabidopsis thaliana and Antirrhinum majus, and the established ABCDE flower
development model (Theissen et al., 2000; TheiRen, Melzer, & Rimpler, 2016; Theillen
& Saedler, 2001). In this model, each flower organ identity is determined by a
combination of ABCDE class genes: sepal formation is specified by a combination of
A- and E-class genes; petal formation is specified by A-, B-, and E-class genes; the
stamen is specified by B-, C-, and E-class genes; the carpel is specified by C- and E-
class genes; and the ovule is specified by D- and E-class genes. Most of these floral
homeotic genes belong to the MIKC type in a superclade of MADS-box genes, which



encode the MADS-box transcription factors. The conserved MIKC domain structure
includes a highly conserved MADS (M) domain, intervening (I) domain, keratin-like
(K) domain, and the most varied C-terminal (C) domain. Functions of genes in distinct
clades of the ABCDE model are different (Becker & Theil3en, 2003). Many ABCDE
class genes have been isolated and characterized in orchids. In particular, the class B
MADS-box genes are essential for identifying the development of petals and stamens.
There are two major lineages: APETALA3 (AP3)/DEFICIENS (DEF) and PISTILLATA
(P1)/GLOBOSA (GLO) (different names from the loci of A. thaliana and A. majus,
respectively)(Aceto & Gaudio, 2011). Several B-class genes have been isolated and
characterized in orchids, including Cymbidium spp., Dendrobium spp., Erycina pusilla,
Oncidium ‘Gower Ramsey’, Phalaenopsis spp., and Habenaria radiata (Hsu et al.,
2015; Kim et al., 2007; Lin et al., 2016; Mitoma et al., 2019; Pan, Tsai, & Chen, 2017;
Sirisawat, Ezura, Fukuda, Kounosu, & Handa, 2010; Sirisawat, Fukuda, Ezura, &
Handa, 2009; Tsai, Kuoh, Chuang, Chen, & Chen, 2004; Xiang et al., 2018; Xu, Teo,
Zhou, Kumar, & Yu, 2006).

To better explain the tepal development in orchids, a revised ‘orchid code’
hypothesis, as a combinatorial different expression profile of the four DEF-like genes,
is proposed. This hypothesis suggests that the inner lateral tepals (petals) are specified
by the high level of clade 1 and 2 and the low level of clade 3 and 4 DEF-like genes.
By contrast, the lip formation requires a low level of clade 1 and 2 and a high level of
clade 3 and 4 DEF-like genes (Mondragdn-Palomino & Theissen, 2011). Accordingly,
the formation of higher MADS-box protein complexes determines orchid tepal
morphogenesis. Recently, the Perianth (P) code model has been proposed to validate
perianth formation in orchids by manipulating the expression between different
AP3(DEF)/AGL6 homolog complexes. The heteromeric sepal/petal (SP) complex
(OAP3-1/OAGL6-1/OAGL6-1/OPI) determined sepal/petal formation, while the lip
(L) complex (OAP3-2/0AGL6-2/0AGL6-2/0OPI) is exclusively required for lip
formation (Hsu et al., 2015).

Molecular studies on the orchid MADS-box genes have strongly enhanced
understanding of flower development mechanisms over the past decade. However,
questions remain regarding the evolution and diversification of flower morphology in

orchids (Aceto & Gaudio, 2011). Various floral organ identity genes can explain many



orchid perianth formations; however, some have evolved independently. Further
extensive study on the genes and analysis of their expressions in many orchids is still
required. To better understand perianth development of R. retusa at the molecular level,
the floral organ identity genes in the B-class and E-class of four DEF-like genes and
two AGL6-like genes, respectively, were isolated, and their phylogenetic relationships
and proposed expression profiles in the wild type were studied. This research aimed to
increase the understanding of expression patterns and predict the cause of variations or
speciation of R. retusa.

Statements of the problem

According to the background described above, the following problems has
been stated as below.

1. Does R. retusa contain DEF-like and AGL6-like genes?

2. How is the relationship between DEF-like and AGL6-like genes from R. retusa
and other homologs?

3. How are the expression levels of DEF-like and AGL6-like genes in different

developmental stages of flower buds and in each floral organs?

Purposes of the study
The statement of problems described above lead to the purpose of this study:
1. Toisolate DEF-like and AGL6-like genes from R. retusa.
2. To reconstruct the phylogenetic tree of DEF-like and AGL6-like genes of
R. retusa between their homologs.
3. To analyze the expression level of DEF-like and AGL6-like genes in

different developmental stages of flower buds and in each floral organs of R. retusa.

Significance of the study

1. This study provides the sequences and expression profiles of the floral
organ identity genes in R. retusa.

2. This initial research data unlocks and enrich knowledge and understanding

the floral development of an orchid.



Scopes of the study

This study focused on the fundamental profile of floral organ identity genes
form R. retusa including B- and E-class MADS-box genes; DEF-like and AGL6-like
respectively. The nucleotide sequence of DEF-like and AGL6-like genes from flower
buds will be cloned and sequenced. After that, the 3’ rapid amplification cDNA ends
(3'RACE) were performed, cloned and sequenced. This results in the partial coding
sequences. Finally, the expression level was analyzed using gqPCR in different
developmental stages and each floral organ; sepals, petals, lip and column.

Hypothesis

In last 40 years from the first MADS-box gene isolated, several orchid MADS-
box genes have been isolated and characterized rapidly. According to the floral
morphological transition in many orchids, all efforts lead to study about class B and E
MADS-box genes especially from Epidendroideae subfamily which is the largest ones
in Orchid family. Currently, several instances of B-and E-class MADS-box genes in
orchids were summarized in “orchid code” and “perianth code” which is the complex
pattern of genes involving the perianth formation. These evidences lead this study
hypothesis as:

1. Partial sequence of DEF-like and AGLG6-like genes are isolated from R. retusa

2. The DEF-like and AGL6-like genes sequence alignment and phylogenetic

tree involve with other orchid homologs and represent their relationship.
3. The expression pattern of DEF-like and AGL6-like genes explain the

perianth formation regarding orchid code and perianth code.



CHAPTER 11

LITERATURE REVIEWS

Orchid flowers

Overview
Flower or the reproductive organ of the angiosperm is the most complicated and

the most recent in plant lineage diversification which bring flowering plant separate
from other land plant (Alvarez-Buylla et al., 2010). The basic morphological structure
frequently consists of four types of organs including sepals, petals, stamen and carpel
which are arranged in whorl, from whorl 1 to 4 respectively (Figure 1). Understanding
how distinct organs have possessed their features has been investigated for
decades(Causier, Schwarz-Sommer, & Davies, 2010; Coen & Meyerowitz, 1991;
Weigel & Meyerowitz, 1994).

Orchidaceae is one of the largest families of angiosperm. There are
approximately 30000 species distributing in five subfamilies; Apostasioideae,
Cypridioideae, Vanilloideae, Orchidoideae and Epidendroideae (Aceto & Gaudio,
2011). The orchid flowers have greatly diversified and occupied complex and unique
floral morphology which has fascinated the researcher for a long time (Mondragon-
Palomino, 2013). Typically, the orchids showed zygomorphic or bilateral symmetry
and in first two whorls of the orchid perianth have tepals which is almost identical
petaloid organs surrounding the two inner whorl of reproductive organs. The outermost
whorl consists of three outer tepals (also termed as ‘sepals’). The second whorl consists
of three inner tepals (also termed as ‘petals’). One of the inner tepal, the median one
distinctively differentiated from other two as lip or labellum. The innermost male and
female in orchid flowers are fused into a single unit of reproductive organ called
‘gynostemium’ or ‘column’. The abaxial orientation (the lowermost side) of lip is
interesting because this organ homologous to the adaxial tepal (the uppermost side) in
other monocots flower. The term ‘resupination’ was used to described this phenomenon
which occurred in 180° rotations during orchid flowers development and turned the lip
to the bottom position by torsion of the ovary/pedicel. These key innovations facilitated

the co-evolution between orchids and pollinators leading to extend species diversity by



the adaptive radiation (Bateman & Rudall, 2006a; Dressler, 1993; Mondragon-
Palomino & Theif3en, 2008; Mondragon-Palomino & Theissen, 2009)

Sepal

Petal

Stamen

Column

Arabidopis thaliana

Outer tepal/Sepal

Inner tepal/Petal

Column/Gynostemium

|

Lip/Labellum
Phalaenopsis aphrodite

Figure 1 Schematic diagrams of Arabidopsis thaliana and Phalaenopsis
aphrodite representing the morphology of basic of flower and

orchid flower.
Source: modified from Alvarez-Buylla et al. (2010); Kanno (2016); Mondragén-
Palomino (2013)

The orchid floral homeotic variants

Since late 19" century, Bateman and Rudall suggested the floral terata or
phenotypic variant categorization in orchid flowers (Figure 2). There are six types of
spontaneous and culture mutants which had been investigated for 25 years in field
observation including three types of peloria; type A to C and three types of
pseudopeloria; type A to C. The terms ‘peloria’ and ‘pseudopeloria’ depend on the
wholly and partially transition of bilateral symmetry to radial symmetry respectively.
Except to type A pseudopeloria mutant, all of the rest were homeosis or

homeoheterotopy, the organs are either at least partial or complete replacement.



Firstly, type A peloria, both lateral petals are replaced by lip-like organs. These
mutant occurred frequently from somaclonal variation in tissue culture. However, there
were also 25% of British native orchids that were spontaneously occurred in nature; for
example, Ophrys insectifera L., Phalaenopsis equetris and Cymbidium goringii. In type
B peloria, the phenotype of lip was replaced by lateral petal. The frequency of this type
was less common than type A peloria and there was reported in Phragmipedium
lindenii, Ophrys fuciflora and Ophrys araneola Rchb. For type C peloria, all second
whorl petals were replaced by sepal-like organs. The possible candidate of this type is
in genus Thelymitra including T. cucculata and T. formosa Consequently, the perianth
of peloria type achieved a radial or actinomorphic symmetry rather than bilateral or
zygomorphic symmetry. In type B pseudopeloria, the lip transformed to sepal but other
organs were consistent. The Platanthera chlorantha was exemplified for this category.
For type C pseudopeloria, both lateral petals were replaced by sepal. The relevant
species is Epidendrum pseudoepidendrum (Mondragon-Palomino & Theissen, 2009).

Distinctively from other five categories of perianth transition, type A
pseudopeloria is better involve in heterochrony than heterotopy. The temporal change
in expression which is better or less expression affect the structure gets larger (termed
as peramorphic heterochrony) or smaller (termed as paedomorphic heterochrony)
respectively. The example candidates of this type are Epipactis phyllanthes var.
phyllanthes and Nigritella austriaca which are categorized as paedomorphic
heterochrony. In addition, the existence of transformation has two kind of gradient
evidences. First, the event occurred in the same whorl, another one is shifted between
two whorls. If the sepals from outer first whorl are shifted toward inner second whorl,
will termed acropetal homeosis. In contrast, the second whorl organs are shifted to first
whorl position or the pollinaria have existed in labellum or lateral petal, termed
basipetal homeosis. Interestingly, all five fundamental types of homeosis are acropetal
homeosis. Thus, Type D pseudopeloria is extra-categorized the transformation of outer
tepal to lateral inner petal which is basipetal homeosis; for example, Cattleya alvaroana
(Bateman & Rudall, 2006a; Mondragdn-Palomino & Theissen, 2009; Rudall &
Bateman, 2002).



Phalaenopsis equetris  Ophrys fuciflora Thelymitra formosa

type A type B

Nigritella austriaca  Platanthera chlorantha  Epidendrum pseudoepidendrum

Figure 2 Diagrams of orchid floral homeotic variants. Normal flower at
the center, Type A-C of peloria and pseudopeloria were indicated
and the examples of each type were represent.
Source: modified from Bateman and Rudall (2006a); Mondragén-Palomino and
Theissen (2009); Rudall and Bateman (2002)



The driving forces of orchid flowers diversification

According to the orchid flowers providing the most diversity and many key
innovations, to approach what are the causation of evolutionary novelties is always one
of the most challenge for researcher. A frequently explanation is ultimate causes and
proximate causes (Mondragon-Palomino & Theissen, 2009). The ultimate causes in
morphological change refer to the attraction of flowers to the specific pollinators that
means focusing on the real reason or the evolutionary forces effect to the new traits.
However, the proximate causes are more informative which explain the term of the
mechanism or the biological function. In evolutionary development genetic field
(Evodevotics), the change in developmental process, especially the developmental
control genes was assumed to be a major perspective of the change in floral morphology
evolution (Mondragén-Palomino & Theil3en, 2008; Theissen et al., 2000).

The developmental control genes are able to rise their varieties by generating
genes paralogs from gene or genome duplication which resulted in the same function.
The gene duplication is generally investigated in most species. According to lacking of
selective pressure or evolutionary pressure to preserve both of duplicate genes, the
frequent evolutionary fate will usually distinguish one of the copies to loss of function;
non-functionalization. However, in neo-functionalization and sub-functionalization is
essential matter of genetic novelty that innovate traits in evolution (Figure 3). The neo-
functionalization is one of two copies of developmental control genes continuously
functions correct and another one copy is free from selective pressure and generate the
new and different function, this is an exciting event that lead to organs uncommon
position and organ substitution; heterotopy and homeosis respectively. In addition, the
sub-functionalization or duplication-degeneration-complementation model occurred
when both copies are equally mutated in different cis-regulatory elements. Thus, the
paralogous descendants possess the divided of original function; easily called job
sharing fate. Neither of duplicated genes is able to lost or achieve novel function, this
means it is neutral process without beneficial effect. However, in pleiotropic ancestral
gene which can exhibit two functions, one function has changed without influencing to
another. This situation permits the specialize adaptation of phenotypes and lets an
adaptive benefit. Eventually, according to orchid peloria and pseudopeloria, these

mutation was also the results from shift and loss of target genes such as the change in
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recognition of DNA binding domain of transcription factors to their cis-regulatory

elements of target genes(Mondragon-Palomino & Theil3en, 2008).

Gene with 4 different functions

Subfunctionalization Neo-functionalization Nonfunctionalization

Figure 3 The gene duplication fate in evolution

Rhyncostylis retusa

Rhynchostylis retusa is in tribe Vandeae, sub tribe Aeridinae and genus
Rhynchostylis which is a small genus consisting of three species, R. retusa, R. gigantea
and R. coelestis reported as endemic in Southeast Asian countries, such as Thailand,
Laos, and Myanmar (Anuttato et al., 2017). Rhynchostylis retusa or commonly known
as foxtail orchid. The name “Rhyncostylis” is derived from the Greek rhycos (“beak”)
and stylis (“column”), it means the shape of beaked column exhibiting in this genus.
Rhynchostylis retusa inflorescence is densely pendant raceme, consisting of more than
100 magenta-spotted white flowers and spicy smell. The plant has a short, stout,
creeping stem, blunt leave apex and blooms on an axillary pendant to 60 cm in May to
June. It is high value and demand in orchid market.
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There are variations in floral organ phenotype of R. retusa but they have not
been reported or studied before; lip-loss and tri-lip. However, these two variants were
found by authors and it was not available to study. This was very unfortunately because
the tri-lip variants interestingly possessed lip-like structure in both ventral sepals that
is basipetal homeosis which is the shifted of inner whorl to outer whorl (Figure 4). Thus,
to better understand perianth development of the orchids at the molecular level, this
study will identify the floral organ identity genes, B-class (DEF-like) and E-class
(AGL6-like) in wild type, characterize and construct the phylogenetic tree to investigate
the extensive evolution coupled with previous model. Furthermore, Thailand is a
natural habitat for several diverse species of orchids which is high economic value floral
species and one of the most leading exporters of tropical orchids. Although many
interesting resource of specimen, the research about the floral homeotic genes have
been scarcely studied. Thus, this would be the initial research to unlock the further
study in many orchids in Thailand. Our results will be of interest to a broader context

of researchers worldwide.

Figure 4 The comparison of Rhynchostylis retusa flower between wild type
(a) and tri-lip (b)
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MADS-box genes

Introduction

The MADS-box genes encode the MADS-domain family of transcription
factors. The term “MADS” was derived from first four founding family members;
MINICHROMOSOME MAINTENANCE 1 (MCM1) from Saccharomyces cerevisiae,
AGAMOUS (AG) from A. thaliana, DEFICIENS (DEF) from Antirrhinum majus and
SERUM RESPOSE FACTOR (SRF) from Homo sapiens. The first MADS-box gene
was isolated from S. cerevisiae; ARG80 but that moment it did not fascinate and
represent as the large or essential transcription factor class. In addition, ARG80 was
assumed to correlate with the MCM1 gene, so it was neglected to be part of the acronym
(Gramzow & Theissen, 2010; Theil’en & Gramzow, 2016).

The most recent data indicated that MADS-box genes originated from one
region of topoisomerases IIA subunit A sequence (TOPOIIA-A) (Figure 5a).
Topoisomerases typically function in the process of replication, transcription and
recombination of DNA level and also the compaction and segregation of chromosome
level. Forterre, Gribaldo, Gadelle, and Serre (2007) declared the phylogeny of
prokaryotic and eukaryotic TOPOIIA-A which was only one gene existing in all
eukaryotic species. Thus, this indicated that the duplication of one ancestral TOPOIIA-
A gene in lineage and generated the most recent common ancestor (MRCA) of extant
eukaryotes. Then, the another evolution of the ancestral TOPOIIA-A led for the
ancestral MADS domain and the duplication of ancestral MADS domain led two major
type including the SRF-like and MYOCYTE ENHANCER FACTOR 2 (MEF2)-like
gene (termed as Type | and type Il MADS-box gene respectively) in approximately 1.5
billion years ago (BYA) (Forterre et al., 2007; Gramzow, Ritz, & Theissen, 2010;
Gramzow & Theissen, 2010). In contrast to the wide range distribution of MADS-box
gene in eukaryotic species and biological process, the number of genes in protists,
animals and fungi quite low but remarkably high in plant lineage. The MADS-domain
transcription factor involved in all major aspect of algae (charophyte) and land plants
(Embryophytes) including bryophytes (liverworts, hornworts, mosses), lycophytes,
lycophytes, monilophytes (fern and its allies) gymnosperm and angiosperm. Thus,

some clades of MADS-box genes have the origin and diversification point closely
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correlated to the origin of evolutionary innovation point of seeds, flowers and fruits
(Becker & TheilRen, 2003).

Common

Ancestral ancestor of MRCA of
prokaryote extant extant
eukaryotes eukaryotes

)

(@ g

MEF2-like
MADS

approx. 1.5 BYA
Type | Type Il
MADS MADS
YR FEEN IR (7 N0 A e
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Figure 5 (a) The origin of two major MADS-domain by gene duplication in
ancestral prokaryote TOPOIIA-A. (b) Two type of MADS-domain

structure. Orange represents in DNA binding region, blue indicates
a role in protein-protein interaction and purple represents
transactivation region.

Source: Gramzow et al. (2010); Gramzow and Theissen (2010)

Structure and functions

There are 3-10% of all genes in genome of eukaryote encoding transcription
factors. Transcription factors protein normally influence the process of gene
transcription by binding to the regions of genome. The transcription factors contain
DNA-binding domains that involve in specific sequence recognition of the regulated
promoter regions (Gonzalez, 2016; Gramzow & Theissen, 2010). Then, the activation
or repression will achieve depending on the protein-protein interaction with other
transcription factor components or the interaction with chromatin-modifying enzyme
which regulate directly through the genome accessibility. The different of DNA-
binding domain structure and interaction is caused by alpha helix and beta sheet
adoption. The same and closer of family or type of DNA-binding domains which have

same structure tend to have more specificity of DNA sequence dimerization. So, the
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diversification in DNA-binding specificity of gene in same family become interesting
because the change in DNA-binding domain sequence can gain the novel character of
DNA-binding domain and generate the evolution (Gonzalez, 2016).

The structure of MADS-box gene encoding MADS-domain protein consists of
approximately 174 nucleotides long or 58 amino acids. According to the three-
dimension structure of MADS domain in plant still not be available, the structure of
MADS domain binding to DNA from SRF, MCM1 and MEF2 were isolated using X-
ray crystallization (Figure 6a). According to the greatly conserved sequence, this could
assume that plant MADS-box domain has similar structure. The X-ray crystallography
reveal that the dimerization of MADS-domain recognizing to consensus DNA sequence
CC(A/T)eGG termed CArG box (CC-A-rich-GGG-box). The CArG motif are short,
variable and ubiquitous in genome so it is very tough to predict the target genes using
only this motif and it still unclear about how MADS-domain reach specifically to target
gene (Gramzow & Theissen, 2010). The folding of MADS-domain beginning from N-
terminus at 14" amino acid followed by a long amphipathic of a-helix and two p-strands
(Figure 6b). The long antiparallel of a-helices structure is encoded from the central part
of the MADS-domain and interestingly N-terminal stretch extensively interact with
minor groove of the DNA. The narrow minor groove is recognized by the conserved
arginine (R) position 2 side chain. This involves in specific sequence DNA binding
mechanism through shape recognition. Above the coil of a-helices, there is a four-
stranded antiparallel of B-sheet which is encoded by the C-terminal of MADS-domain.
Thus, the MADS domain is categorized in beta-Scaffold factors with minor groove
contacts superclass of transcription factors (Gramzow & Theissen, 2010; Theilen &
Gramzow, 2016).

The half of N-terminus of MADS-domain is essential for DNA binding, but the
half of C-terminus is required for dimerization to build the homo- or heterodimers or
multimers not just single polypeptides. The localization of MADS-domain proteins is
assumed to restricted in nucleus because it contains the nuclear localization signal
(NLS) motif (KR[K/R]X4KK) at position 22-30 (Figure 6b) which facilitate in
transportation of transcription factor from cytoplasm (where the translation occurred)

to nucleus (where the main function occurred) (TheiBen & Gramzow, 2016).
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Figure 6 (a) the crystal structure of Human SRF MADS-domain binding to
DNA. DNA is shown in grey ball-and-stick structure while the dimers
of two MADS domain units were represented by red and blue color.
The spring-like and arrow ribbons represented the a-helix and two -
strands. (b) The sequence logo showed summarization of amino acids
based on 867 plant MADS domain sequences (Type | and II); the
stack of letters indicated the conservation and the height of letters
referred the frequency of amino acid in that position. The NLS
underlined as the nuclear localization signal conserved sequence.

Source: Gramzow and Theissen (2010); Theil3en and Gramzow (2016)

Types of plant MADS-box genes

From two major type of MADS-box genes that have been mentioned earlier;
type | and type Il of plant were orthologous to SRF-like and MEF2-like genes
respectively (Figure 5b). Type | MADS-box genes contain one or two exons, but type
Il MADS-box genes have approximately seven exons. Type | and II MADS-box genes
also could be distinguished by their evolutionary rate which type I MADS-box genes
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have a faster rate of gene birth and death and experienced more duplication fate than
type Il MADS-box genes (Bemer, Gordon, Weterings, & Angenent, 2010; Nam et al.,
2004). Consequently, type | genes gave rise into three groups: Ma; M and My
depending on their conserved region and variable of C-terminus (Gramzow & Theissen,
2010). Type I gene is like the ‘dark matter of the MADSs universe’. It has been studied
for long time but only genes from A. thaliana were found and characterized. The briefly
results revealed that plant type I control the plant ‘female side’ including female
gametophyte, embryo and seed development.

In this study, the type Il MADS-box genes are notably focused because it widely
known as the floral organ identity genes which encoded the highly conserved domain
structure called ‘MIKC-type’ (Figure 7a). The structure of MIKC-type MADS-box
genes consist of the most highly conserved MADS (M) domain which is the main factor
for DNA-binding and also dimerization, intervening (1) domain which constitute in
determining the specificity of DNA dimerization, Keratin-like (K) domain which
mainly form protein-protein interaction and the most variable C-terminal (C) domain
which involve in transcriptional activation and the multimeric formation respectively.

The different of Type | and Il MADS-box genes in plant from animal and fungi,
SRF-like and MEF2-like genes respectively, is the represent of K domain. Moreover,
it is also the criteria to separate type I and type Il. K-domain protein has approximately
70 amino acids length and is encoded from three exons; K1, K2 and K3 subdomain
which characterized by a heptad repeat ([abcdefg]n). The position ‘a’ and ‘d’ are usually
hydrophobic amino acid; especially leucine, form amphipathic a-helices and lead to
coiled coils structure that is look alike keratin so that why its name keratin-like but not
even homolog (Kaufmann, Melzer, & TheiRen, 2005). Thus, it is required in protein-
protein interaction or multimeric complex formation. In case of class B protein
(extensively described later), DNA binding heterodimer require mostly K1 and some
K2. In addition, K2 and K3 involve in higher complex multimerization (Kaufmann et
al., 2005). The essential of K-domain can describe through the absence of C-domain of
SEP3 in A. thaliana but present of K3 subdomain could still perform mutimerization.
The X-ray crystal structure of the K-domain (Figure 7b) was first and recently
performed in SEP3 which showed the coiled coil of a-helices and revealed that K-

domain involving in dimerization and tetramer formation. The tetramers of MIKC-
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MADS domain proteins are able to bind to two different CArG boxes by looping two
DNA binding sites (Puranik et al., 2014; Theilen & Gramzow, 2016).
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Figure 7 (a) A schematic structure of type 11 MIKC-MADS protein
(APETALAZ3); the number above indicated the amino acid
position and the dot triangles showed the intron position. (b) the
X-ray crystal structure of K domain tetramer from SEP3 (A.
thaliana).

Source: modified from Kaufmann et al. (2005); TheiRRen et al. (2016)

The type Il MIKC-MADS domain are further distinguished into two type
including MIKCE® (classic) and MIKC* which different in the length and the exon
numbers encoding I-domain. The MIKC® have shorter and only one or two exons of |-
domain protein, whereas MIKC* proteins possess longer sequence and encoded by four

or five exons. The MIKC* genes are much like type | MADS groups because of their
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function and absence of the K-domain. MIKC*-group was found in various of land
plants. Especially only in ferns and seed plants, two different clades of MIKC* (P and
S clade) which excepted in bryophyte and lycophyte were identified and had interacted
to form heterodimers. Then, these dimers mostly bound to different type of CArG box
that behave conversely to MIKC® protein dimers. In addition, MIKC* transcription
factors are required for the male gametophyte, proper pollen maturation and
germination.

Previously, the chlorophyte lineage including green algae; Ostreococcus tauri
and Ostreococcus lucimarinus contain just one MADS-box gene lacking of K-domain
and probably have type I MADS-box domain (Figure 8). However, the MIKC-MADS
domain was discovered in charophytes which is the most basal of streptophytes (Group
of charophytes an embryphytes), this referred that the K-domain has occurred since
more than 700 million years ago (MYA) in the extant streptophytes lineage. Then, this
ancestral MIKC-MADS domain duplicated and led MIKC* and MIKC?® in the lineage
of extant land plants more than 450 MYA which was predicted from the of gene
characterization in moss Physcomitrella patens, the most basal species of land plants
which is currently available. This suggested that at least one of each types of MIKC
already occurred in the last common ancestor of mosses and vascular plants (Becker &
TheilRen, 2003; Gramzow & Theissen, 2010; Theilen & Gramzow, 2016).

The MIKC® MADS-box genes are rather focused because they contribute to
wide range of flowering developmental processes and become clearer and clearer
(Theissen et al., 2000). The MIKC®-type genes represent a monophyletic clade which
can be further subdivided into ancient clade or ‘gene subfamilies’. The Arabidopsis
MADS-box genes early provided the member of well-characterized gene subfamilies
including; AG-like, AGL2-like, AGL6-like, AGL15-like, AGL17-like, DEF-like, GLO-
like, FLC-like, GGM13-like, SQUA-like, STMADS11-like and TM3-like genes. The
eight of AG-like, AGL6-like, AGL12-like, DEF-like, GLO-like, GGM13-like,
STMADSL11-like and TM3-like genes existed in the most recent common ancestor of
angiosperms and gymnosperms (seed plants) about 300 MYA but AGL2-like, AGL17-
like, and SQUA-like genes occurred already in the most recent ancestor of monocots
and eudiocots about 200 MYA. In addition, only AGL15-like and FLC-like genes were
reported solely in Brassicaceae (Becker & Thei3en, 2003).
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Figure 8 The phylogenetic tree of MADS box gene based on whole genome
sequence data. The numbers on branch indicated the numbers of

MADS box genes in genome. The purple and green arrow showed
the major genetic changes and morphological innovation
respectively.

Source: Gramzow and Theissen (2010)

Floral organ identity

Introduction

The developmental control genes are genes which significantly involve in
developmental processes. The change in developmental control genes will affect the
organ identity and formation. The developmental control genes were usually in
multigene families encoding transcription factor (Theissen et al., 2000). One of the best
paradigm is the homeobox genes, which marks the beginning of new era of evodevotics
involves with body pattern determination of animal. The first homeotic mutation was

found in Drosophila in early 1915 including bithorax mutants and Antennapedia
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mutants. Thus, the striking parallels between the Homeobox in animal and the floral
homeotic genes which almost encode MADS-box protein (Gehring, 1992; Ng &
Yanofsky, 2001; Theissen et al., 2000).

In angiosperm, there are “ANITA” clades which is the earliest branch and sister
to all angiosperm species, including Amborellaceae and Nymphaeaceae (Water lilies).
Except to the ANITA group, the angiosperms are termed ‘“‘euangiosperm/core
angiosperm” that consist of the magnoliid complex, the monocots, the Chloranthaceae,
and the eudicots (almost 75% of all angiosperms). In eudicots group further achieved
Ranunculales clade (lower eudicots) that sister to all the rest eudicots; termed “core
eudicots” (higher eudicots). Two great important clades in core eudicots are the rosids
and asterids that distinguished in 70 MY A. One family within the rosids is Brassicaceae
or the cabbage family, including model plant; A. thaliana. For asterids, another model
plant A. majus is represented for this group in Lamiales clades and followed by the
Solanales clade that comprise of Petunia hybrid, Lycopersicon esculentum and
Solanum tuberosum; petunia, tomato and potato respectively. According to the earliest
APG |V system, the phylogenetic tree of angiosperms is represented below (Figure 9).

ABC model

The floral homeotic changes were studied in early 1990s, based on two model
plants, Arabidopsis thaliana and Antirrhinum majus. Both of these species received the
floral mutants that affected the organ identity in particular whorls (Figure 10). The wild
type flower organs structure is sepal/petal/stamen/carpel; arranged from whorl 1 to
whorl 4. However, three classes of floral homeotic mutant gained the organ defects.
The mutant in apetalal (apl) apetala2 (ap2) gene from Arabidopsis and ovulata (ov)
gene from Antirrhinum altered the floral organ identity into leafy or
carpel/stamen/stamen/carpel; A-function mutants. The mutant in Arabidopsis apetala3
(apetalal3) and pistillata (pi) genes from Antirrhinum deficiens (def) and globosa (glo)
caused sepal/sepal/carpel/carpel; B-function mutants. Finally, the mutant in agamous (ag)
and plena (ple) from Arabidopsis and Antirrhinum respectively defected the floral
whorl into sepal/petal/petal/sepal or petal; C-function mutants. In addition, the mutant
of all three functional classes (triple mutant) caused the transition of flower to leaves.
These phenotypic mutations led the elegant model that classify the floral identity gens

into to 3 functional classes, called classical “ABC model”. This model had contained
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in many modern biology textbooks. Except to apetala2, all genes in ABC model shared
the conserved homolog to type Il MIKC type MADS-box proteins. Then, lots of ABC
model genes were isolated from various species in the middle of 1990s (Causier et al.,
2010; Coen & Meyerowitz, 1991; Weigel & Meyerowitz, 1994). This indicated that
MADS-box transcription factions play as a key regulator in plant developmental

processes.
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Figure 9 The simplified phylogenetic tree of Angiosperm based on earliest
APG IV
Source: Byng et al. (2018)

ABCDE model

According to Johann Wolfgang Goethe had proposed the theory in 1790, he
suggested that floral organs are modified from vegetative leaves referred that the
expression of floral homeotic genes in vegetative tissue are able to converse into flower-
like structure. However, the only co-expression of B-class or C-class expression in
ABC model do not sufficiently change the vegetative organs to floral organs. So, this

means the ABC model required the function that determine the organ identity. From the
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MIKC MADS-box proteins that were mentioned before, the MADS-box protein-
protein interaction, DNA dimerization and hetero-dimerization, involved in promoting
floral organ identity (Causier et al., 2010). The DEF/GLO dimer and SQUAMOSA
(SQUA) are the first MIKC MADS-box proteins interaction using C-domain to gain
the multimeric complex (Causier et al., 2010; Theif3en et al., 2016; TheiRen & Saedler,
2001).

Arabidopsis thaliana Antirrhinum maj

B

Wid type (D ERED

Se Pe St Ca
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Clash mutint

Se  Se Ca Ca

Class A mutant

Class C mutant

Class ABC triple
mutant

Figure 10 The classical ABC model and the floral homeotic mutant in Class A, B, C
and triple ABC functions affecting in A. thaliana and A. majus phenotypes.
Source: modified from Causier et al. (2010); Coen and Meyerowitz (1991); Weigel
and Meyerowitz (1994)

Consequently, other novel floral mutants were studied and expanded the ABC
model to ABCDE model (Figure 10). D-class function was suggested to combine with
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C-class and specify ovule identity. However, the E-class was remarkably interesting for
ABC model. The E-class function first found in tomato and petunia, TM5 and FBP2
genes (Angenent, Franken, Busscher, Weiss, & van Tunen, 1994; Ferrario, Immink,
Shchennikova, Busscher-Lange, & Angenent, 2003; Pnueli, Hareven, Broday, Hurwitz,
& Lifschitz, 1994). Then, these two genes were isolated from A. thaliana including
SEPALLATA 1 (SEP1), SEP2 and SEP3. These three genes mutant (seplsep2sep3)
shared characters to silenced tm5 and fbp2. The triple mutant of SEP phenotype is the
replacement of sepal in every whorl, same as B- and C-function double mutant. The
ectopic expression of SEP genes had not efficiency to change vegetative organs but the
co-expression of A-, B-functional class and SEP sufficiently altered the rosette leaves
to petaloid structure. These results indicated that SEP expression is sufficient to provide
the floral identity. The ability of conversion from vegetative leaves to floral organs
confirmed the theory of Johann Wolfgang Goethe which had predicted more than 200
years ago. With the function of SEPs proteins mediating the protein-protein interaction,
SEPs form and stabilize the higher-order complexes between MADS-box proteins, this
will further suggest that it plays an important role in other developmental processes
regulation (Causier et al., 2010; Weigel & Meyerowitz, 1994).

The floral quartet model

The ABCDE model is the gene-based data. The further studies in protein-
protein interaction of MIKC-MADS box proteins that form higher complex (tetrameric
complex) required the protein-based experiment. The integration of MIKC MADS-box
gene-based and encoded proteins information provided the new model for floral organ
identity determination termed “Floral quartet model” (Theien & Saedler, 2001)
(Figure 11). The Floral quartet model was first introduced in 1999 when Egea-Cortines
and team characterized DEF, GLO and SQUA from A. majus forming in tetramer (DEF-
GLO-SQUA-SQUA) including DEF-GLO heterodimer and SQUA-SQUA homodimer
(Egea-Cortines, Saedler, & Sommer, 1999). The Floral quartet complex formation also
comprises SEP that was mentioned earlier to complete ABC model. The other complex
had been investigated, AP3-PI-AG-SEP complex and AP3-PI-AP1-AP1 complex were
important in stamen-like and petaloid structure respectively. For class D, the
SHATTERPROF (SHP) and SEEDSTICK (STK) proteins had the mutant phenotype
(shplshp2stk triple mutant) same as partial loss of SEP gene also form multimeric
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complex with SEP3 using yeast three-hybrid assay. These indicated that class D also
included in Floral quartet model involving in ovule development.

This process of protein interaction impact on specificity of target genes. The
important of tetramers or quartets is when only one protein of complex loss, the rest of
protein will be disabled that brought evolutionary achievement to keep many
paralogous MIKC-type genes proposed to control floral organ during seed plant
evolution (Theissen et al., 2000; Theifl3en et al., 2016; TheilRen & Saedler, 2001).
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Figure 11 The classical ABC model, the ABCDE model and the floral quartet

model was represented.

Source: modified from Coen and Meyerowitz (1991); TheiRRen et al. (2016)
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The deep regulatory mechanism of MADS-box transcription factor

According to MADS domain protein in animals and fungi efficiently bind
CArG-box, the plant MIKC-MADS domain proteins binding with CArG motif in target
genes were also investigated using various methods including Random binding site
selection, Chromatin immunoprecipitation (ChIP), Transcriptional induction system,
Electrophoretic mobility shift assay and in silico binding search. This found that the
MIKC-MADS transcription factors bind to thousands of sites in the Arabidopsis
genome and those sites strongly conserved as CArG-box sequence (S. de Folter &
Angenent, 2006).

There were two type of target gene of MIKC-MADS transcription factors, ABC
genes and non-ABC genes. The ABC target genes defined as the floral organ identity
genes. For example, the SHATTERPROOF genes (SHP), SHP1 and SHP2, these D-
class MADS-box genes were identified as the target genes for class C MADS

transcription factor, AG protein and specify for carpels.

The another type is non-ABC genes. These genes involved generally in cellular
maintenance. For example, NAC-LIKE ACTIVATED BY AP3/PI (NAP) was identified
as the target gene for DEF/GLO complex and have roles in cell division and cell
expansion during petal and stamen development (B-class function) (Alvarez-Buylla et
al., 2010; S. de Folter & Angenent, 2006).

These example shown that plant MADS domain have ‘“autoregulation”
mechanism (Figure 12). The auto-regulatory loop consists of negative feedback loop
and positive feedback loop. The positive feedback loop found in B- and C-class MADS
domain and described in two examples above. In addition, both DEF/GLO and AP3/PI
from A. majus and A. thaliana respectively was also identified as direct target that bind
to their own promoter controlling themselves. For the negative feedback loop, this
mechanism switches off the gene expression that especially depends on the interaction
of proteins between floral induction (Flowering) and floral organ formation. The floral
induction protein; SUPPRESSOR OF CONSTANS 1 (SOC1), AGAMOUS-LIKE 24
(AGL24) and SHORT VEGETATIVE PHASE (SVP) form the heterodimer with floral
organ identity; AG, SEP1/2/3, SHP1/2. Therefore, the gene expression involving in
flowering was negatively suppressed by these heterodimers. Furthermore, both floral
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induction and floral organ formation form the regulatory network with flowering time
regulation (Figure 13); APETALA 1 (AP1) and FRUITFULL (FUL) to determine early
and late flowering function (S. de Folter & Angenent, 2006; Stefan de Folter et al.,
2005).
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Figure 12 The autoregulation of MIKC-MADS domain.
Source: modified from S. de Folter and Angenent (2006)
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Figure 13 The flower induction and flower formation network
Source: Stefan de Folter et al. (2005)

The story of MADS-transcription factors story has not finished yet. According
to the nature of transcription factors always requires the specific DNA sequences of
target genes. So, the questions that have been obscure are “How MADS-domain protein
acquire target gene specificity” and “What is the mechanism behind the activation and
repression of target gene expression?

The limitation to achieved the specificity including two major causes. Firstly,
The CArG-box alone is not enough reason to gain the specificity of MIKC-MADS
transcription factor because this binding site was shared ubiquitously over thousand
times in A. thaliana genome. Second is in approximately 45 types of MIKC-MADS
protein possess the most highly conserved MADS-domain (M) from |-, K- and C-
domain. This indicated that the DNA binding efficiency of MIKC-MADS protein will
relatively have same specificity.

Consequently, in the most recent study took much effort in chromatin structure
in the context of chromatin remodeling and chromatin modifying factors (Figure 14).
These processes interacted with MIKC-MADS proteins. For example, the H3K27me3
was removed the methyl group in RELATIVE OF EARLY FLOWERING 6 (REF6)
and SEP3 promoter by demethylase from AP1, the SEP3 subsequently activated. This
resulted in AP1 and SEP3 bind to the enhancer site during the early of flower
development and modify the chromatin accessibility. This defined the role of AP1 and
SEP3 complex as the “Pioneer transcription factor”, means the ability of transcription
factors to bind the inaccessible of nucleosome-associated sites by eliminating host
nucleosome and open the chromatin and allow the “Non-pioneer transcription factor”
to access.

This brought the interesting to clarify floral quartet complexes function.
According to AP1 and SEP protein act as pioneer transcription factor, they facilitate the
invasion of nucleosomal DNA during floral quartet complex formation by ejecting host
nucleosome and replacing by floral quartet tetramer. The most efficiency of pioneer
transcription factor could eject the nucleosome is the gap between pioneer transcription
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factor and the binding site up to 74 bp. This supported by the length of CArG-box region
which has known as the binding site before.

The nucleosome structure is octamer which consist of 2 copies of H2A, H2B,
H3 and H4 histones. Thus, the half-nucleosome (H2A-H2B-H3-H4) is one copy and
similar to floral quartet complex/tetramers. This hypothesized the “nucleosome
mimicry” model of floral quartet function (Figure 15). The similarity of floral quartet
tetramer at CArG box and half-nucleosome structure and sequence would represent the
specificity and help to allow or prohibit the chromatin accessibility through triggering
chromatin modifying enzyme; histone acetyl transferases (HATS) and histone methyl
transferase (HMT). For example, the floral quartet complex and histone-modifying
factors facilitate the replacement of host histone (H2A and H3) by modified histone
((H2A.Z and H3.3). Then, the chromatin was remodeled by HAT and led the acetylated
nucleosome that linked to transcriptional activation associated with less densely

compact of euchromatin.
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The important of DEF-like and AGL6-like in floral organ specification

DEF-like subfamily

According to ABC model, two genes, DEF-like and GLO-like genes, are specify
for petals and stamen in A. majus. Their orthologs in A. thanlina, AP3 and PI, have
similar functions. Both of these genes has been found in angiosperm and gymnosperm,
indicating that B-class genes have existed more than 300 MYA. Thus, the border
ancestral functions may include separating male reproductive organ from female
reproductive organ in gymnosperms followed by petal identity in angiosperms (Becker
& TheiRen, 2003). This B-class genes lineage was further investigated how petal
independently achieved their unique morphology, DEF-like and GLO-like genes were

characterized in lower eudicots, core eudicots and magnolid dicots. The results shown
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the conserved sequences which could distinguish DEF- and GLO-like gene from other
MADS-box genes. In K box, the DEF homologs shared the conserved sequence
(H/Q)YEXM in the position of residues 85 to 89. For GLO homologs possessed the
conserved KHEXL in residues 88 to 92 of the K box.

In addition, in the C-teriminus also identified the notably conserved motif
(Figure 16). In GLO homologs, the consensus sequence of MPFXFRVQPXQPNLQE
was diagnosed and termed “PI motif”. Furthermore, for DEF lineage, two core dicots
DEF orhologs, TM6 and PD2 from Lycopersicon esculentum and Solanum tuberosum
(tomato and potato respectively) were previously found. However, there were another
genes othologous to DEF lineage, STDEF (S. tuberosum) and LeAP3 (L. esculentum).
Then, the lower eudicot and magnolid species group was compared to the core eudicots
group. The distinctively difference between two groups was considered. In core
eudicots, they shared the consensus sequence D(L/I)TTFALLE, termed as “euAP3
motif” which located in C-teriminus. For the lower eudicots and magnolid group, the
conserved sequence in C-terminal region was absolutely different as YGXHDLRLA,
termed as “paleoAP3 motif”.

Moreover, paleoAP3 motif perfectly aligned in SILKY-1 (Zea mays), PtAP3-1/-
2 (Pachysandra terminalis), TM6 (L. esculentum), PD2 (S. tuberosum) even slightly
diverged but still recognized. Interestingly, these genes represented the monocots and
core eudicots. However, the paleoAP3 lower conserved in Pteridophytes (ferns), CRM
genes. These suggested that Pteridophytes had diverged from the embryophytes (Land
plants) approximately 400 MYA.
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Figure 16 The consensus sequence in C-terminus indicating Pl motif, PI
motif-derived and euAP3 motif
Source: Kramer, Dorit, and Irish (1998)

Consequently, the other conserved region FXFRLQPSQPNL was found almost
in DEF lineage proteins which greatly similar to PI motif, so termed as “PI motif-

derived”. The degree of PI motif-derived conserve the PI motif sequence is different in
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species, TM6 and PD2 possess the most conserved level of PI motif among core eudicot
DEF genes and the most divergent of Pl motif is belong to RAD1 and RAD2 from
Rumex acetosa. Thus, the TM6 lineage was first suggested, the member of this clades
include CMB2 from Dianthus caryophyllus (same subclass to R. acetosa) and AsAP3
from Argyroxiphium sanwicense (Asteridae subclass) which shared the synapomorphic
characters over Pl-derived motif including amino acid Met, Gly Lys and Val in position
69, 118, 147 and 211 respectively. The euAP3 lineage also shared the synapmorphic
sequence include Leu, His Leu, Asn and lle in position 54, 55, 72, 148 and 150
respectively. The lower eudicots and magnolids represented truly paleoAP3 motif, as
paleoAP3 lineage. In addition, the evolutionary rate of DEF/GLO lineage is faster than
other MADS-box genes around 20-40% (Purugganan, Rounsley, Schmidt, & Yanofsky,
1995). This data supported the important of B-class genes that the changes in B
functions will directly affect the independent diversification of floral morphology in
core eudicots, lower eudicots, magnolid dicots and monocots.

The phylogenetic relationship between B-class genes was analyzed and
suggested that there were two duplication events occurred (Figure 17). Because of all
of flowering plants have both DEF- and GLO-like genes, that means the first
duplication generated two lineage of DEF and GLO lineage before the diversification
of angiosperms. With the highly conserved of PI motif and lost paleoAP3 motif of GLO
lineage (PI lineage), this may achieve their lineage through single clade. However, the
DEF lineage (AP3 lineage) had another duplication event occurred before the
diversification of core eudicots. The absence of euAP3 motif in lower eudicots and
magnolids and only presence in core eudicots, the production of second duplication
event subsequently have distinguished euAP3 lineage and TM6 lineage from palecAP3
lineage after the diversification of Buxaceae or before the major subclasses of core

eudicots emerged (Kramer et al., 1998).
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Figure 17 The B-class gene lineage duplication events along with land plants
diversification
Source: Kramer et al. (1998)

AGL6-like subfamily
According to floral quartet model, the E function became interesting because it

interacts with ABC proteins and specify floral organ identity. The AGL6-like subfamily is
one of the ancient group and interestingly sister clade to AGL2 (SEP) and SQUA;
AGL2/AGL6/SQUA superclade. In addition, the FLOWERING LOCUS C (FLC) is the key
regulator gene in vernalization in grasses and eudicots also belong to this group.

Thus, AGL6 protein might form multimeric complex and gain the E-functions. However,
only AGL6-like was found in gymnosperm. This indicated that not only AGL2-like and
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SQUA-like but also AGL6-like existed in common ancestor of extant seed plants. Moreover,
the absence of AGL2-like and SQUA-like hypothesized that AGL6-like gene in gymnosperm
is the basal lineage of angiosperms.

In gymnosperm, DAL1 and DAL14 from Picea abies are in AGL6 subfamily. The
PrMADS2 and PrMADS3 from Pinus radiata orthologous to DAL14 and DAL respectively.
The PrMADS2 and DAL14 orthologs are presented in only male and female reproductive
organs but the PrMADS3 and DAL1 are found in both reproductive organs and vegetative
organs. In contrast, the GGM9 and GGM11 from Gnetum gnemon that were DAL1 and
DAL14 orthologs respectively were expressed only in male and female reproductive organs.
In core eudicots, the AGL6-like genes were divided into two group, AGL6-like group and
euAGLS6 group. The AGL6-like group highly expressed only vegetative organ but euAGL6
group expressed in both floral organ and sometimes in vegetative tissue.

In Oryza sativa (rice) AGL6-like gene, OSMADS6 or MOSAIC FLORAL ORGANS1
(MFO1) is expressed in floral meristem especially in first, second and fourth whorl and the
OsMADS6 form tetrameric complex with OSMADS2-OsmADS16 and OsMADS4-
OsMADS16 heterodimer to determine the second whorl identity. According to investigate
grasses AGLS6, two highly conserved in C-terminal region of AGL6-like genes had found,
AGL6-I and AGL6-1I motif. The AGL6-1 and AGL6-1l sequence is DCEPTLQIGY and
ENNFMLGWVL respectively. This similar to SEP | and SEP Il motif in AGL2 lineage.
Thus, the functions could be predicted as the transcriptional activation in floral quartet
complex.

The phylogenetic relationship of AGL6-like shown that there were 4 clades of AGL6-
like genes in monocots, AGL6-1 to AGL6-1V (Figure 18). The orchids AGL6 genes were
found in AGL6-111 and AGL6-IV. The genome sequence of Phalaenopsis equetris found
three Phalaenopsis AGL6 genes and suggested the expansion of diversified class B, C, D
MADS-box genes including AGL2, AG, DEF and AGL6 might involve in the origin of orchid
evolutionary novelties or the unique morphology achievement of orchid flower. This
supported with the expression profiles that distinctively represented spatial pattern; PaAGL6-
1 (flower specific), PaAGL6-1 (lip specific), PaAG-2 and PaAG-3 (column specific) and
PaAG-4 (pedicel specific).
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Source: Dreni and Zhang (2016)

The orchid MADS-box genes

Along the diversification of Orchid family led the questions concerning the
evolution since the 19" century. The origin of labellum and gynostemium are great
interesting. More than 20 years ago after the finding that floral organ identity specified
by the interaction between MADS-domain transcription factors. The first MADS-box
gene was isolated from orchid is oml from Aranda “Deborah” which was first
considered as FBP2 (Petunia hybrida) homologs from sequence but the expression
patterns were different. After more MADS-box genes were characterized and
reconstructed the phylogenetic tree, the om1 was verified as SEPALLATAS3-like gene
and orthologs to DOMADS and DcOSEP1 (Zahn et al., 2005).

According peloric tetara have been reported in spontaneous and cultured
orchids, it is essential to identify the genetically organization of orchids flower through
MADS-box genes isolation, expression pattern analysis and developmental pathway to
specify each organ. The first generation research of expression comparison between
wild type and peloric mutant was in Oncidium Gower Ramsey, Phalaenopsis equetris
Dendrobium crumenatum and Habenaria radiata using only B-class MADS-box genes
(Hsu & Yang, 2002; Tsai et al., 2004; Xu et al., 2006). In the last two decades, isolation
and characterization of in class B (DEF-like) and class E (AGL6-like) MADS-box
genes from various orchids occurred at faster pace. Except to Apostasioideae which
was the most initially diverging group, did not possess accurate lip organs and species
poor, there were investigated widespread in all subfamilies of orchid family (Figure 19)
including Vanilloideae, Cypripedioideae, Orchidoideae and Epidendroideae which
indicated in Table 1. Most of them were focused on perianth speciation and led the
genetic model for conserved identities of different orchid flower organs.

Orchid code model

Orchid code originated from the question “How the orchids got their lip?”. This
question has provoked the scientists to find the answer. Based on the developmental
genetic basic behind the morphological diversity, the most recent expression pattern
data of OMADS3, PeMADS2, PeMADS5, DcOAP3A and HrDEF, the orchid code
suggested the combination of B-class MADS-box genes determining specific floral
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organ identity (Figure 20). The expression of DEF-like clade 1 and 2 expressed in outer
tepals (sepals). The expression of DEF-like clade 1, 2 and 3 expressed in inner tepals
(petals). The expression of DEF-like clade 3 and 4 expressed in lip. This hypothesized
that clade 1 and 2 expressed in all tepals, the distinction between outer tepals and inner
tepals depend on the expression of clade 3 and the identity of lip structure is specified
by the expression of clade 4. This study additionally suggested that the orchid might
diverged from lily-like flower and differentiated during two round of gene/genome
duplication that occurred before the separation of Vanilloideae from higher orchids.
The emergence of clade 3 and 4 was in first duplication event to distinguish inner from
outer tepals. Then, the second duplication provided clade 4 to distinguish lip from inner
tepals. These supported by the Apostasioideae representing the intermediate state which

have not achieved lip structure yet.
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Figure 19 The phylogenetic tree of subfamily in Orchidaceae family. The Hyposis
villosa from Hypoxidaceae represented as the closest clade of the
orchids.

Source: Mondragon-Palomino and TheiRen (2008)
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Figure 20 The orchid code and the hypothesis of the orchid perianth origin.
Source: Mondragon-Palomino and TheiRen (2008)

Table 1 Recent Class B and E MADS-box genes characterized in Orchidaceae

Species Genes Class/Clade References

OMADS3 Class B/DEF/Clade 2 Hsu and Yang (2002)

OMADSS5 Class B/DEF/Clade 1 Chang et al. (2010)

OMADS9 Class B/ DEF/Clade 3
Chang, Chiu, Wu, and

Oncidium “Gower Yang (2009); (Hsu,

OMADS1 Class E/AGL6/Clade 2

Ramsey” Huang, Chou, & Yang,
(Epidendroideae) 2003)
OMADS7 Class E/AGL6/Clade 1 Chang et al. (2009)

OncAP3-1 Class B/DEF/Clade 1
OncAP3-2 Class B/DEF/Clade 3
OncAP3-3 Class B/ DEF/Clade 4
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Species Genes Class/Clade References
OncAP3-4 Class B/DEF/Clade 2
OAP3-1 Renamed from OMADS3
OAP3-2 Renamed from OMADS3
OAGL6-1 | Renamed from OMADS3
OAGL6-2 | Renamed from OMADS3
VaAP3-1 Class B/DEF/Clade 1
Vanilla pilifera GalAP3-1 Class B/DEF/Clade 1
(Vanilloideae) GalAP3-2 Class B/DEF/Clade 3
GalAP3-3 Class B/ DEF/Clade 4
Paphiopedilum PaphPe Class B/DEF/Clade 1
Macabre PaphAP3-1 Class B/DEF/Clade 3
(Cypripedioideae) PaphAP3-2 | Class B/ DEF/Clade 4
Anoectochilus
forn?osa_lnus AfAP3-1 Class B/DEF/Clade 1 (Pan et al., 2011)
(Orchidoideae)
Habenaria petelotii Hsu etal. (2015)
(Orchidoideae) HpAP3-1 Class B/DEF/Clade 1
Liparis distans LdAP3-1 Class B/DEF/Clade 1
(Epidendroideae) LdAP3-2 Class B/DEF/Clade 3
Phaius tankervilleae PtAP3-1 Class B/DEF/Clade 1
(Epidendroideae) PtAP3-2 Class B/DEF/Clade 3
PtAP3-3 Class B/ DEF/Clade 4
Brassavola nodosa BnAP3-1 Class B/DEF/Clade 4
(Epidendroideae) BnAP3-2 Class B/DEF/Clade 1
BnAP3-3 Class B/ DEF/Clade 3
Dendrobium Spring DenAP3-1 Class B/DEF/Clade 1
Jewel DenAP3-2 Class B/DEF/Clade 3
(Epidendroideae) DenAP3-3 Class B/ DEF/Clade 4
Phalaenopsis PeMADS2 Class B/DEF/Clade 1
equestris PeMADS3 Class B/DEF/Clade 3 Tsai et al. (2004)
(Epidendroideae) PeMADS4 Class B/ DEF/Clade 4 '
PeMADS5 Class B/DEF/Clade 2
Dendrobium DcOAP3A Class B/DEF/Clade 1
(E;B“::]Z’;iti‘g;‘ae) DCOAP3B | Class B/DEF/Clade 3 Xuetal. (2006)
Dendrobium moniliforme DMAP3A Class B/DEF/Clade 1 Sirisawat et al. (2010)
(Epidendroideae) DMAP3B Class B/DEF/Clade 3 Sirisawat et al. (2009)
DMMADS4 Class B/ DEF/Clade 4 '
Vanilla planifolia VaplaDEF1 Class B/DEF/Clade 1
(Vanilloideae) VaplaDEF2 Class B/DEF/Clade 4
VaplaDEF3 Class B/DEF/Clade 3
Phragripedium PhlonDEF1 Class B/DEF/Clade 2
longifolium PhlonDEF2 Class B/DEF/Clade 1 Mondragon-Palomino
(Cypripedioideae) PhlonDEF3 Class B/DEF/Clade 3 and Theissen (2011)
PhlonDEF4 Class B/DEF/Clade 4
Phalaenapsis hyb PeMADS2 Class B/DEF/Clade 1
“Athens” ) PeMADS3 Class B/DEF/Clade 3
(Epidendroideae) PeMADS4 Class B/ DEF/Clade 4

PeMADSS

Class B/DEF/Clade 2
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Species Genes Class/Clade References
PaAP3-1 Class B/DEF/Clade 1
Phalaenopsis PaAP3-2 Class B/DEF/Clade 2
Aphrodite PaAP3-3 Class B/ DEF/Clade 4
(Epidendroideae) PaAP3-4 Class B/DEF/Clade 3
PaAGL6-1 Class E/AGL6/Clade 2
PaAGL6-2 Class E/AGL6/Clade 1
HrDEF Class B/DEF/Clade 3
HrDEF-C1 Class B/DEF/Clade 1
R HrDEF-C2 Class B/DEF/Clade 2 .
et [WDEECo | s iDEFOe 3| 7 (00,
HrDEF-C4 Class B/DEF/Clade 4
HrAGL6-1 Class E/AGL6/Clade 1
HrAGL6-2 Class E/AGL6/Clade 2
EpMADS13 Class B/DEF/Clade 1
EpMADS14 Class B/DEF/Clade 2
Erycina pusilla EpMADS15 Class B/DEF/Clade 3 .
(Epiydendr%ideae) EPMADS3 | Class E/AGL6/Clade 1 Linetal. (2016)
EpMADS4 Class E/AGL6/Clade 3
EpMADS5 Class E/AGL6/Clade 2
CgDEF1 Class B/DEF/Clade 1
CgDEF2 Class B/DEF/Clade 2
Cymbidililn a%érilgil CgDEF3 Class B/DEF/Clade 3 _
(Epidendroideae) CgDEF4 Class B/DEF/Clade 4 Xiang et al. (2018)
CgAGL6-1 Class E/AGL6/Cladel
CgAGL6-2 Class E/AGL6/Clade3
CgAGL6-3 Class E/AGL6/Clade2

The revised “orchid code” model

The expression data to generated orchid code limited only in Orchidoideae and
Epidendroideae which is the most recently evolved subfamily. However, the other two
subfamily remain vague. Thus, to understand precisely about orchid flower identity,
Vanilloideae and Cypripedioideae were extensively studied. The DEF-like genes were
characterized from Vanilla planifolia and Phragmidpedium longifolium, represented
Vanilloidea and Cypripedioideae subfamily. In addition, the comparison of expression
pattern of DEF- and GLO-like genes between wild type and peloric mutant from
Phalaenopsis hybrid ‘Athens’ (Epidendroideae) had also been performed. The results
indicated that the expression of DEF-like genes clade 1 and 2 with the absent expression
of clade 3 and 4 specify for outer tepals. For lateral inner tepals, they required the higher
level expression of clade 3 and 4 with the lower level expression of clade 1 and 2. In
addition, both of the lower or absent of DEF-like genes clade 1 and 2 and the notably
high level of clade 3 and 4 will determine the lip identity (Figure 21).
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Upon the perianth determination, all four clades of DEF-like genes also
represented in reproductive organs, clade 3 and 4 were observed in column which are
higher in gynostemium than ovary. However, the expression pattern of clade 1 and 2 of
DEF-like genes in reproductive organs depended on species and developmental stages.
Moreover, the clade 1 and 2 genes are relative lower than clade 3 and 4 genes in
reproductive organs.

Additionally, these three subfamilies diverged around 70 MYA but the
expression pattern relatively conserved and four DEF paralogs functions are correlated,
this shown that these genes existed for long time and these genes still keep the regular
mechanism of upstream factors after the duplication not depending on the downstream
that will affect in B-class target genes and have no change in floral organ identity
(Mondragén-Palomino & TheilRen, 2008; Mondragon-Palomino & Theissen, 2011).
This refining model, the revised “orchid code” model is proposed the combination of
different levels of four DEF-like genes that distinctively differ from previous orchid

code model that simply refer only the gene expression through “on” or “off” activities.

( The orchid code modelj

Inner

Outer |ateral
tepals tepals Labellum
(OT) (ILT) (L)

[ The revised orchid code model J

Clade 1

Clade 2

Clade 3

Clade 4

Inner

Outer lateral
tepals tepals Labellum
(om (ILT) (L)

3

Clade 1

Clade 2

Clade 3

Clade 4
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Figure 21 The comparison of previous orchid code model and the revised
orchid code model

Source: Mondragdn-Palomino and Theissen (2011)

The perianth code model

The perianth code model (P-code model) is the most recent and complete model
that describe the orchid perianth formation at the moment (Figure 22). The origin of
this model was from the expression examination in Oncidium orchids. Particularly in
Oncidium Gower Ramsey, the OPI (GLO-like gene) expressed generally in all perianth
organs. The OAP3-1 and OAGL6-1 genes, DEF-like gene clade 1 and AGL6-like gene
clade 1 respectively both highly expressed in sepals and petals but loss in lip. However,
the OAP3-2, or DEF-like gene clade 3 are notably detected in petals and lip.
Additionally, the OAGL6-2, or AGL6-like gene clade 2 only expressed in lip and some
in lateral sepals. Consequently, the perianth code was proposed the heteromeric
complex of DEF and AGL6 homologs determine the perianth formation including
sepal/petal (SP) complex and lip (L) complex. The SP complex consist of OAP3-
1/OAGL6-1/OAGL6-1/0OPI specify for sepal/petal organs. The L complex consist of
OAP3-2/0AGL6-2/0AGL6-2/0OPI. In perianth code, OPI form ubiquitously in all
perianth and only specifically apply for perianth not in stamen or carpel formation. This
model could generally refer in other orchids that the SP complex is DEF-1/AGLG6-
1/AGL6-1/GLO and the L complex is DEF-3/AGL6-2/AGL6-2/GLO.

The competition between sepal/petal (SP) complex and lip (L) complex is
similar to the balance. The presence of SP complex and loss L complex will promote
sepal/petal development. Conversely, the presence of L complex and loss of SP
complex will promote lip development (F). The coexistence and co-absence of SP and
L complex will turn the balance into middle and generate the intermediate structures.
For example, the GRtrip mutant of O. Gower Ramsey has only expression of L complex
(OAP3-2/0AGL6-2) and loss of SP complex (OAP3-1) resulted in the full
transformation of petals to lip-like structure. The x Beallara Eurosta (Bllra) shown the
mutant type (Bllra-Trip) that received the sepal/petal-lip intermediate structure

effecting from the coexistence of SP and L complex. The co-absence also causes the
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transformation of petal to sepal/petal like lip intermediate structure in mutant of

Psychopsis papilio.

( Perianth code model j
; Sepal/petal
o '
AP3-2/16-2 AP3-1/L6-1
L ! 5P
Pl
[ The competition in P code balance j Example
L o SP
@% % Lip
d. 2 lﬁ. full ransformation
TRl OF

Sepal/petal

l l 0. Gower Ramsey O. Gower Ramsey

Wild ty GRir
Lip development Sepal/petal development Ok ) S

Example

| Intermdeiate formation
(Coexistence)

L SP
TE AP3
((3!96 Wi)) ((c @ .I)) =
x Belleara Eurostar x Belleara Eurostar
3 a (Wild type) (Brlla-Trip)
Coexistence Co-absence

!

Intermediate structure development

Intermdeiate formation
(Co-absence)

Psychopsis papilio Psychopsis papilio
(Wild type) (Oc mutant)

Figure 22 Perianth code model
Source: modified from Hsu et al. (2015)
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The regulation of P code complexes was suggested from performing
fluorescence resonance energy transfer (FRET). The physical protein interaction has
different efficiency to localize to nucleus and switch on the “Lip program” (Figure 23).
The L complex had evolved to promote the lip program but the SP complex conversely
suppress Lip program and promote sepal/petal formation. This hypothesis supported by
virus-induced gene silencing in OAGL6-2; OAGL6-2 VIG. The results shown the
suppression in L function, the reduced size of lip and the existence of green sepal/petal
sector on lip organ were occurred. The homodimer of each OAGL6-1 and OAGL6-2
were formed without OPI protein and localize to nucleus and the heterodimers of
OAP3-1/0OPI and OAP3-2/0OPI1 were formed and localized to nucleus. This suggested
the higher heterotetrameric complexes, following floral quartet complex consist of one
AP3, one Pl and two E class protein in controlling petal development, SP tetramer
(OAP3-1/OAGL6-1/0OAGL6-1/0OPI) switching off the Lip program and L complex
(OAP3-2/0AGL6-2/0AGL6-2/OPI) switching on the Lip program.

The P code model clarify the perspective of orchid perianth diversity. The SP
complex (Pl/euAP3/E-class) initially maintain in petal formation of eudicots. Then, SP
complex (Pl/paleoAP3/AGL6-like) extend to all perianth and replace sepals with
petaloid structure in monocots. In orchid family, except to Apostasioideae, the P code
hypothesis also investigated in four subfamilies. The L complex is the novel genes from
second gene/genome duplication. This event occurred after the first duplication of SP
complex. Thus, the variation of lip in most orchid species is distinct lip organs and the
intermediate structure, resulting from loss of SP complex and the coexistence of SP and

L complex respectively (Hsu et al., 2015).
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Figure 23 The summary of P code complexes regulation
Source: modified from Hsu et al. (2015)
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CHAPTER 111

RESEARCH METHODOLOGY

Plant materials

Rhynchostylis retusa plants used in this study were grown in an experimental
nursery at the Department of Biology, Faculty of Science, Naresuan University,
Phitsanulok, Thailand. Different developmental stages of R. retusa flowers from 1-4
(stage 1: 0.5 cm; stage 2: 1.0 cm; stage 3: 1.5 cm; stage 4: mature) and various organs
of the flowers at stage 3 and 4 (mature) including sepals, petals, lips, columns. From
stage 1 to stage 4 approximately took 15 days. In addition, leaves were also collected

and represented as vegetative organs (Figure 24).

Stage 1 Stage 2 Stage 3
(0.5 cm) (1.0 cm) (1.5 cm)

Mature

Figure 24 Morphology of R. retusa wild type flower. (a) Developmental stages 1-4

(stage 1: 0.5 cm; stage 2: 1.0 cm; stage 3: 1.5 cm; stage 4: mature),
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(b) Racemose cluster of R. retusa inflorescence, and (c) Dissected flower

organs including sepals, petals, lip and column.

Chemicals and instruments

Chemicals
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TRIzol™ reagent (Thermo Fisher Scientific, USA)

DNase | (Thermo Scientific, USA)

RevertAid First Strand cDNA synthesis kit (Thermo Scientific, USA)
Phusion™ High-Fidelity DNA polymerase (Thermo Scientific, USA)
iTag Plus DNA polymerase (iNtRON Biotechnology, USA)

Thermo Scientific GeneJET gel extraction kit (Thermo Scientific, USA)
CloneJET PCR cloning kit (Thermo Scientific, USA)

Eschericia coli strain DH5a

Plasmid miniPREP kit (PureDirex, Taiwan)

. SensiFAST SYBR No-ROX kit (Bioline, USA)

. SOB medium

. SOC medium

. 2X YT medium

. 100 mg/ml Ampicillin
. 2M D(+)Glucose

. 1M MgSO4

. 1M MgCl>

. 1M CaCl;

Nuclease-free water

. Autoclaved distilled water
. 1X TAE buffer
. 75% ethanol

Liquid nitrogen

Chloroform

. Agarose

Ethidium bromide (EtBr)

. 6X DNA Loading Dye
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29.

100 bp DNA ladder
1 Kb DNA ladder

Instruments

© 0o N o g bk~ wbhPE
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Mortar and pestle

Pipette and Tip

Microcentrifuge tube (0.2 mL and 1.5 mL)
Centrifuge tube (15 mL and 50 mL)

Test tube

Petri dish

Erlenmeyer flask

Breaker

Cylinder

. Syringe

. Syringe filter

. Centrifuge

. Vortex

. Incubator shaker

. Electrophoresis set

. Microwave Oven

. Autoclave/ High pressure steam sterilizer
. Incubator

. Water bath

Heat box

. UV box
. Biometra TAdvance Thermal Cycler (AnalytikJena, Germany)

Nabi-UV/Vis Nano Spectrophotometer (Laborimpex, Belgium)
CFX connect real-time PCR detection system (BIO-RAD, USA)
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RNA extraction

Total RNA from all four developmental stages flower buds, flower organs and
leave was extracted by TRIzol™ reagent (Thermo Fisher Scientific, USA) according
to manufacturer’ protocol.

1. 100 mg of tissue were cleaned and wiped before grinding with liquid
nitrogen in mortar

2. Add 1000 puL of TRIzol™ Reagent to the fine sample

3. Incubated for 5 minutes to permit complete dissociation of the
nucleoproteins complex

4. Added 200 pL of chloroform per 1000 pL of TRIzol™ Reagent used for lysis

5. Incubated for 5 minutes

6. Centrifuge the sample for 15 minutes at 12000 rpm at 4°C

7. Transferred the colorless upper aqueous phase to new tube (Avoid transferring
any of the interphase or organic layer into the pipette when removing the aqueous phase.)

8. Added 500 L of isopropanol to the aqueous phase and mixed by gently inverting

9. Incubated overnight at -20°C

10. Centrifuged for 15 minutes at 12,000 rpm at 4°C

11. Total RNA precipitate forms a white gel-like pellet at the bottom of the
tube. Discarded the supernatant with a micropipettor

12. Resuspended the pellet in 1000 pL of 75% ethanol

13. Vortexed the sample briefly, then centrifuged for 5 minutes at 7500 rpm at 4°C.

14. Discarded the supernatant with a micropipettor

15. Air dried the RNA pellet

16. Incubated in a water bath or heat block set at 55°C for 10 minutes

17. Stored the RNA at —80°C until proceeding to downstream applications

18. Determined for its amount and purity by a Nabi-UV/Vis Nano Spectrophotometer
(Laborimpex, Belgium) using absorbance at 260 and 280 nm

19. The integrity of the RNA samples was evaluated on 1% (w/v) agarose

TAE gel electrophoresis stained with ethidium bromide (EtBr).

RNA analysis
The total extracted RNA was determined the amount and purity by Nabi-
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UV/Vis Nano Spectrophotometer (Laborimpex, Belgium) using the absorbance at 260
and 280 nm. In addition, the integrity of RNA samples was evaluated on 1% (w/v)
agarose TAE gel electrophoresis stained with Ethidium bromide (EtBr). The total RNA
was migrated and represented the 28S and 18S rRNA of eukaryote samples. The ratio
of 28S:18S should be 2:1 for good indication of the intact RNA.
First strand cDNA synthesis

The total RNA samples from R. retusa were used as template to generate first
strand cDNA in a reverse transcription reaction. Firstly, DNA in RNA sample was
removed. Total RNA (3000 ng) was treated with DNase | (Thermo Scientific, USA)
following the manufacturer’s protocol. Then, eleven microliters of DNased-treated
RNA were immediately reverse transcripted with RevertAid First Strand cDNA
synthesis kit (Thermo Scientific, USA) using PO19HA adapter primer (5°-
GACTCGTGACGACATCGATTTTTTTTTTTTTTTTT -3’) according to the

manufacturer’s protocol.
1. Genomic DNA from RNA was removed by adding the following reagents

into a sterile, nuclease free tube on ice in the indicated order

Total RNA 1ug
10X Reaction Buffer with MgCl; 1pL
DNase I, RNase-free 1uL (1 V)
Water, nuclease-free to 10 pL

2. Incubated at 37°C for 30 minutes

3. Added 1 pL 50 mM EDTA and incubated at 65°C for 10 minutes

4. The cDNA synthesis was performed by Thermo Scientific RevertAid First
Strand cDNA Synthesis Kit (Thermo Scientific, USA)

5. Added the following reagents into a sterile, nuclease-free tube on ice in the

indicated order

Total RNA 0.1-5 ug
Oligo (dT)1s Primer/ PO19HA adapter primer 1uL
Water, nuclease-free To 12 puL

6. Incubated at 65 °C for 5 minutes
7. Chilled on ice, spun down and placed tube back on ice

8. Added the following components in the indicated order
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5X Reaction Buffer 4 uL
RiboLock RNase Inhibitor (20U/uL) 1 uL
10 mM dNTP Mix 2 uL
RevertAid M-MuLV RT (200 U/uL) 1uL
Total volume 20 ul

9. Mixed gently and centrifuged briefly

10. Incubated at 42°C for 60 minutes

11. Terminated the reaction by heating at 70°C for 10 minutes

12. Directly used in PCR applications or stored at -20°C for less than one

week. For longer storage, -70°C is recommended.

PCR amplification of partial sequence of DEF-like and AGLG6-like genes

The degenerate primers were designed base on the nucleotide sequence of AGL6 —like
and DEF-like genes in orchids specifically targeting the MADS and K domain. The first strand
cDNA for partial AGL6-like and DEF-like genes isolation were synthesized from stage 3
flower buds. The PCR amplification was performed using iTaq Plus DNA polymerase
(iINtRON Biotechnology, USA) with specific primers. Gene specific primer for RrDEF-1,
RrDEF-3 and RrDEF-4 was S-HrDEF primer pair (5’- AACTGCGYGGTCTTGAGCAAA
-3”and 5’- AYYADGCRAGRCKDAGATCCTG-3’). A RrDEF-2 was amplified with DEF-
2 primer pair (5-ATGGGGAGAGGGAAGGTAGAGATAA-3’and 5’-
GAACTACTTTCTGCACAATTGGC-3%). A RrAGL6-1 was amplified with OrchidAGL6-1
primer pair (5’- CTGAAGAGGATTGAGAAC-3’ and 5’- GCATCCACCCAAGCATAA-
3’). Finally, a RrAGL6-2 was amplified with AGL6-2 primer pair (5'-
AGGCAAAAGAGGACGCAGATA-3’ and 5’-GTTCTGTGTCCATGTTACTTGAA-3").
PCR reactions were prepared in nuclease-free tube and set up on ice and followed the steps
below.

1. Added the following components in the indicated order

Nuclease-free water to 20 pL
10X iTaqg MgCl: free buffer 2 uL
25 mM MgCl; 2 uL

10 mM dNTPs 0.4 puL
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10 uM forward primer 0.4 uL
10 UM reverse primer 0.4 uL
Template cONA 2 uL
iTag™ DNA polymerase (5 U/uL) 0.15L

2. The components were mixed and spun down. The thermal cycling was
performed in Biometra TAdvance Thermal Cycler (AnalytikJena, Germany) and

programed as follow

Initial denaturation 94°C  for 3 minutes

Denaturation 94°C  for 30 seconds

Annealing 54°C  for 30 seconds 35 cycles
Extension 72°C  for 30 seconds

Final extension 72°C  for 5 minutes

Hold A4°0) 0

3. Evaluated the amplified products on 1.5% (w/v) agarose TAE gel
electrophoresis stained with ethidium bromide (EtBr)

3’-Rapid amplification of cDNA ends (3’'RACE)

The 3'-rapid amplification of cDNA ends (3-RACE) is a procedure for
amplification of nucleic acid sequences from cDNA which synthesized from adapter
primer and utilized the poly (A) region by anchored PCR using gene specific primers
that anneal to known sequence with a primer that attaches to an adapter sequence,
PO18HA (5'- GACTCGTGACGACATCG-3)).

The gene specific primers for DEF-like and AGL6-like was obtained from
previous amplified sequence and designed in the conjunction. Thus, the forward
primers were provided the specific sequence to get 3’ ends of each genes. For RrDEF-
1, RrDEF-2, RrDEF-3, RrDEF-4, RrAGL6-1 and RrAGL6-2, the primers were
qRrDEF-1 (5>~ AGCACAAGGGAAACTTACCGC-3°), qRrDEF-2(5’-AGGAAGGG
GGAGAATCTGGA-3’), (RrDEF-3 (5°CTCTCAAGAAACCCACAGGAAC-3"),
qRrDEF-4 (5~ CTCTCAAGAAACACACCGAAAC-3’), gRrAGL6-1 (5’-
CGTCAACTTGGAGAGATCAATAAG-3") and gRrAGL6-2 (5’-GTTGGACCAG
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ATGGAAGAGC-3’) respectively. The PCR amplification were performed using
Phusion™ High-Fidelity DNA polymerase (Thermo Scientific, USA). The reaction
component was performed following the steps below.

1. PCR reactions were prepared in nuclease-free tube and set up on ice. Added

the following components in the indicated order

Nuclease-free water to 20 pL
5X Phusion™ HF buffer 4 uL
10 mM dNTPs 0.4 pL
10 uM forward primer 0.4 puL
10 uM adapter primer (P018HA) 0.4 puL
Template cODNA 2 UL
Phusion™ High-Fidelity DNA polymerase 0.2 uL

2. The components were mixed and spun down. The thermal cycling was
performed in Biometra TAdvance Thermal Cycler (AnalytikJena, Germany) and

programed as follow

Initial denaturation 98°C  for 30 seconds

Denaturation 98°C  for 10 seconds

Annealing 54°C  for 30 seconds 35 cycles
Extension 72°C  for 30 seconds

Final extension 72°C  for 5 minutes

Hold 4°C o

3. Evaluated the amplified products on 1.5% (w/v) agarose TAE gel

electrophoresis stained with ethidium bromide (EtBr)

Gel purification

The gel purification was performed using Thermo Scientific GeneJET gel
extraction kit (Thermo Scientific, USA) following the manufacturer’ protocol.

1. The target PCR product fragment was excised from 1.5% agarose gel TAE
electrophoresis stained with EtBr

2. Excised gel slice containing the desire fragment using a clean scalpel or razor blade.

3. Pre-weighed 1.5 mL tube, placed the gel slice into the tube and weighed.

Then, record the weight of the gel slice.
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Added 1:1 volume of Binding Buffer to the gel slice (volume: weight)
Incubated at 60 °C for 10 min in heat box until the gel slice is completely dissolved
Mixed by inversion and vortexed briefly

Transferred up to 800 pL of the mixture to column (with collection tube)
Centrifuged at 12000 rpm for 1 minute

© o N o g &

Discarded the flow-through and placed the column back into the collection tube

10. Added 700 pL of Wash Buffer into the column

11. Centrifuged at 12000 rpm for 1 minute

12. Discarded the flow-through and placed the column back into the collection tube

13. Centrifuged the empty column at 12000 rpm for 1 minute to completely
remove residual wash buffer

14. Transferred the column into new nuclease-free 1.5 mL tube

15. Added nuclease-free water to the center of the column membrane

16. Waited for 15 minutes and centrifuged at 12000 rpm for 1 minute

17. Discarded the column, collected the flow-through and evaluated the purified products
on 1.5% (wi/v) agarose TAE gel electrophoresis stained with ethidium bromide (EtBr)

18. Stored at -20°C

Gene cloning

Construction of a recombinant DNA

The purified PCR products were first ligated into the pJET1.2/blunt cloning
vector using CloneJET PCR cloning kit (Thermo Scientific, USA). This vector system
contains a lethal gene that is interrupted by ligation. Therefore, only cells with
recombinant plasmids are able to propagate (Figure 25). The reaction component was
added following the steps below.

1. Ligation reactions were prepared in nuclease-free tube and set up on ice.

Added the following components in the indicated order

2X Reaction Buffer 10 uL
purified PCR product 1uL
Water, nuclease-free Upto 17 pL

DNA Blunting Enzyme 1pL
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Total 18 uL
2. Vortexed briefly and spun down
Incubated the mixture at 70°C for 5 min and chilled on ice

4. Added the following components

pJET1.2/blunt Cloning Vector (50 ng/uL) 1L
T4 DNA Ligase 1uL
Total volume 20 pL

5. Vortexed briefly and spun down
6. Incubated at room temperature (22°C) for 5 minutes

7. Used the ligation mixture directly for transformation or stored at -20°C

Figure 25 Map of pJET1.2/blunt cloning vector (Thermo Scientific, USA)
Source: CloneJET PCR cloning kit” manufacture protocol (Thermo Scientific, USA)

Preparation of competent cells

1. Streaked the Escherichia coli strain DH5a on the 2X YT plate and
incubated at 37 °C for 16-20 hours

2. Aliquoted 2 mL of 50 mL SOB medium (added MgSOa4and MgCl>)
into 15 mL centrifuge tube

3. Picked asingle colony from plate and transferred it into 3 mL of SOB medium

4. Incubated cells at 37 °C with vigorous shaking at 200 rpm for 16-18 hours
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on a incubator shaker
5. Transferred 0.5 mL of the grown cells to residual 47 mL of SOB medium
and Incubated cells at 37 °C with vigorous shaking at 200 rpm for 2-3 hours
6. Transferred cells aseptically to 50 mL centrifuge tube and leaved on ice for 30 minutes
7. Centrifuged cells at 3000 rpm at 4 °C for 10 minutes and discarded the supernatant
8. Resuspended the cell pellet in 10 mL of 100 mM CaCl; and chilled on ice
9. Centrifuged cells at 3000 rpm at 4 °C for 10 minutes and discarded the supernatant
10. Added 1 mL of 200 mM CaCl: to dissolve the cell pellet and aliquoted 0.2 mL of
competent cells into 1.5 mL microcentrifuge tube

11. Stored in ice for immediately transformation

Transformation of plasmid DNA into E. coli using the heat shock method
1. Added 7 pL of ligation mixture to competent cell tube and gently mixed
by pipetting
2. Chilled on ice for 30 minutes
3. Heated shock at 42 °C for 1 minutes and immediately placed on ice for
5 minutes
4. Added 800 mL of SOC broth and incubated at 37 °C with vigorous
shaking
at 200 rpm for 1 hour
5. Centrifuged at 3000 rpm for 10 minutes and discarded 700 pL of
supernatant
6. Mixed the cell by pipetting and spread 50-100 pL of mixture on 2X YT
agar plate (added Ampicillin)

7. Incubated at 37 °C overnight and selected the colonies to check insertion

Colony PCR
1. For screening the colonies with the presence of an insert, the white
colonies
were picked by a sterile toothpick or pipette tip into 20 uL of 2X YT broth and waited
for 1 minutes

2. The PCR amplification were performed using iTaq Plus DNA polymerase



(iNtRON Biotechnology, USA).
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3. PCR reactions were prepared in nuclease-free tube and set up on ice. Added

the following components in the indicated order

Nuclease-free water

10X iTaq MgCl: free buffer
25 mM MgCl,

10 mM dNTPs

10 pM pJET1.2/Fw

10 uM pJET1.2/Rv

Colony mixture

iTag™ DNA polymerase (5 U/uL)
4. The components were mixed and spun down. The thermal cycling was

to 20 pL

2 UL
2 UL
0.4 pL
0.4 pL
0.4 uL
2 UL

0.15 pL

performed in Biometra TAdvance Thermal Cycler (AnalytikJena, Germany) and

programed as follow

Initial denaturation 94°C
Denaturation 94°C
Annealing 60°C
Extension 72°C
Final extension 72°C
Hold il

for 3 minutes
for 30 seconds
for 30 seconds
for 30 seconds
for 5 minutes

o0

30 cycles

5. Evaluated the amplified products on 1.5% (w/v) agarose TAE gel

electrophoresis stained with ethidium bromide (EtBr)

6. The correct size products were selected to inoculate by pipetting 2 pL of

colony mixture to 2 mL of 2X YT broth

7. Incubated at 37°C with vigorous shaking at 200 rpm for 16-18 hours

Plasmid extraction

1. The inserted E. coli cells were harvested by transferred the bacterial culture

to microcentifuge tube

2. The pelleted bacterial cells were extracted by Plasmid miniPREP kit

(PureDirex, Taiwan) following the manufacturer’ protocol.

3. Transferred bacterial culture to a 1.5 mL microcentrifuge tube
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4. Centrifuged at 12000 rpm for 1 minutes and discarded the supernatant

5. Added 200 pL of the Buffer S1 (added RNase A) to resuspend the bacterial cell pellet

6. Added 200 pL of the Buffer S2 and mix thoroughly by inverting the tube 10
times (Do not vortex)

7. Chilled at the room temperature for 2 minutes or until the lysate is homologous

8. Added 300 L of the Buffer S3 and mixed immediately and inverted
thoroughly 10 times (Do not vortex)

9. Centrifuged at 12000 rpm for 3 minutes

10. Pipetted the supernatant to column (with collection tube)

11. Centrifuged at 12000 rpm for 30 seconds, discarded the flow-through and
placed the column back to the collection tube

12. Added 400 pL of the Buffered W1 into the column

13. Centrifuged at 12000 rpm for 30 seconds, discarded the flow-through and
placed the column back to the collection tube

14. Added 600 pL of the Buffered W2 (added Ethanol) into the column

15. Centrifuged at 12000 rpm for 30 seconds, discarded the flow-through and
placed the column back to the collection tube

16. Centrifuged at 12000 rpm for 2 minutes to remove the residual Buffer W2

17. To elute DNA, placed the PM column in a clean 1.5 ml microcentrifuge tube

18. Added 50-200 pL of the nuclease-free water to the center of each column,
let it stand for 15 minutes, and centrifuged at 12000 rpm for 2 minutes

19. Discarded the column, collected the flow-through and evaluated the

purified products on 1.5% (w/v) agarose TAE gel electrophoresis stained
with ethidium bromide (EtBr)

Sequence data analysis

The extracted plasmid was sent to Macrogen Co., LTD (Korea) to sequence. All
sequencing reactions contained the standard pJET1.2 sequencing primer. Raw DNA
sequence data were edited with GeneStudio™ software (GeneStudio, Inc, USA) to
remove vector and poly A sequences as well as poor quality data. The multiple sequence
alignment was aligned by the ClustalW (EMBL-EBI, UK). The amino acid sequences
were generated using EMBOSS Transeq translates nucleic acid sequences (EMBL-EBI,
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UK). Each sequences were compared with National Center for Biotechnology
Information (NCBI) database. The phylogenetic analysis of DEF- and AGL6-like gene
nucleotide sequences were constructed by maximum-likelihood tree with 1000
bootstrap replicates in MEGA 7.0.26 (Kumar et al., 2015)

Expression analysis

RNA extraction

Total RNA was isolated from different developmental stages of R. retusa
flower buds from stages 1-4 and sepals, petals, lip and column from stage 3 and 4 by
TRIzol™ reagent (Thermo Fisher Scientific, USA) according to manufacturer’
protocol followed previous section.

cDNA synthesis

1. The cDNA synthesis was performed by ReverTra Ace™ gqPCR RT
master mix with gDNA remover (TOYOBO, Japan)

2. Prepared the 4xDN master mix and gDNA remover mixture by adding
a1 in 50 volumes of gDNA remover to 4xDN master mix (This mixture can be stored
at -20°C for at least 3 months)

3. Genomic DNA from RNA was removed by adding the following

reagents into a sterile, nuclease free tube on ice in the indicated order

4x DN master mix 2 ul
RNA template 0.5pg-0.5ug
Nuclease-free Water To 8 uL

4. Incubated at 37°C for 5 minutes
5. Prepared the reverse transcription solution by adding the following reagents

Reaction mixture from 11.2.4. 8 uL
5x RT Master Mix Il 2 ulL
Total 10 pL

6. Incubated at 37°C for 15 minutes
7. Incubated at 98°C for 5 minutes
8. Stored at 4°C or -20°C until use in RT-PCR and Real-time PCR.

Reverse transcription PCR (RT-PCR)
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1. to examine the expression patterns of RrDEF-1, RrDEF-2, RrDEF-3,
RrDEF-4, RrAGL6-1 and RrAGL6-2. The primers of eukaryotic translation elongation
factor 1A (eEF1A) was used as reference gene for internal control.

2. PCR reactions were performed using iTaq Plus DNA polymerase
(iNtRON Biotechnology, USA) and prepared in nuclease-free tube and set up on ice.

Added the following components in the indicated order

Nuclease-free water to 20 pL
10X iTaq MgCl: free buffer 2 uL
25 mM MgCl; 2 uL
10 mM dNTPs 0.4 puL
10 uM forward primer 0.4 pL
10 uM reverse primer 0.4 pL
Template cONA 2 uL
iTag™ DNA polymerase (5 U/pL) 0.15L

3. The components were mixed and spun down. The thermal cycling was
performed in Biometra TAdvance Thermal Cycler (Analytiklena, Germany) and
programed as follow

Initial denaturation 94°C for 3 minutes

Denaturation 94°C  for 30 seconds

Annealing 54°C  for 30 seconds 35 cycles
Extension 72°C  for 30 seconds

Final extension 72°C  for 5 minutes

Hold 4°C ©

4. Evaluated the amplified products on 1.5% (w/v) agarose TAE gel

electrophoresis stained with ethidium bromide (EtBr)

Quantitative real-time PCR

1. The quantitative real-time PCR (gPCR) of cDNA were performed using
2X SensiFAST SYBR No-ROX kit (Bioline, USA) and prepared in nuclease-free tube
and set up on ice. Added the following components in the indicated orderly

Nuclease-free water to 20 pL



2x SensiFAST SYBR® No-ROX Mix
10 uM forward primer

10 uM reverse primer
Template cDNA
2. The components were mixed and spun down. The thermal cycling was
performed in in the CFX connect real-time PCR detection system (BIO-RAD, USA)
and programed as follow

Initial denaturation 94°C

Denaturation 94°C
Annealing 54°C
Extension 72°C
Melting curve 60-95°C

for 30 seconds
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10 pL
0.8 uL
0.8 puL
Upto 8.4 uL

for 5 minutes

for 30 seconds

35 cycles

for 30 seconds

3. All gPCR experiments were performed in triplicate and the results were

analyzed using the comparative Ct method (2-24* method)

Table 2 List of oligonucleotide sequences

Primer name Sequence (5’ —> 3') Application
S-HrDEF/Fw AACTGCGYGGTCTTGAGCAAA DEF-specific primer
S-HrDEF/Rv AYYADGCRAGRCKDAGATCCTG DEF-specific primer
DEF-2/Fw ATGGGGAGAGGGAAGGTAGAGATAA DEF-2-specific primer
DEF-2/Rv GAACTACTTTCTGCACAATTGGC DEF-2-specific primer

OrchidAGL6-1/Fw
OrchidAGL6-1/Rv
AGL6-2/Fw
AGL6-2/Rv
PO18HA

PO19HA

eEF1A/Fw
eEF1A/Rv
gqRrAGL6-1/Fw
gRrAGL6-1/Rv
gRrAGL6-2/Fw

CTGAAGAGGATTGAGAAC
GCATCCACCCAAGCATAA
AGGCAAAAGAGGACGCAGATA
GTTCTGTGTCCATGTTACTTGAA
GACTCGTGACGACATCG
GACTCGTGACGACATCGATTTTT
TTTTTTTTTTTT
TAAGTCTGTTGAGATGCACC
CTGGCCAGGGTGGTTCATGAT
CGTCAACTTGGAGAGATCAATAAG
TGAATTCGAGTGGTAAGGGTGC
GTTGGACCAGATGGAAGAGC

AGL6-1-specific primer
AGL6-1-specific primer
AGL6-2-specific primer
AGL6-2-specific primer
Adapter primer

Adapter primer

Reference gene primer

Reference gene primer

Real time PCR/3'RACE for RrAGL6-1 gene
Real time PCR for RrAGL6-1 gene

Real time PCR/3'RACE for RrAGL6-2 gene
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Primer name

Sequence (5' —3)

Application

gRrAGL6-2/Rv
gqRrDEF-C1/Fw
gRrDEF-C1/Rv
gRrDEF-C2/Fw
gRrDEF-C2/Rv
gqRrDEF-C3/Fw
gRrDEF-C3/Rv
gRrDEF-C4/Fw
gqRrDEF-C4/Rv
pJET1.2/Fw

pJET1.2/Rv

GCTTCTGGGGCCAATATTGATA
AGCACAAGGGAAACTTACCGC
CAACCCTAAAGGAAAACATCTGAG
AGGAAGGGGGAGAATCTGGA
CAGAGAAAGTATCATGTGATCGC
CTCTCAAGAAACCCACAGGAAC
GCTTGGTTGGGACGAAATGAAT
CTCTCAAGAAACACACCGAAAC
CGGAAGGCATACATGTGAGAC
CGACTCACTATAGGGAGAGCGGC
AAGAACATCGATTTTCCATGGCAG

Real time PCR for RrAGL6-2 gene

Real time PCR/3'RACE for RrDEF-C1 gene
Real time PCR for RrDEF-C1 gene

Real time PCR/3'RACE for RrDEF-C2 gene
Real time PCR for RrDEF-C2 gene

Real time PCR/3'RACE for RrDEF-C3 gene
Real time PCR for RrDEF-C3 gene

Real time PCR/3'RACE for RrDEF-C4 gene
Real time PCR for RrDEF-C4 gene
Colony PCR/sequencing primer

Colony PCR/sequencing primer
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CHAPTER IV

RESULTS AND DISCUSSION

RNA extraction

Total RNA was extracted from whole flower bud from stage 1-3 and mature
flower of R. retusa, dissected flower organs at stage 3 and mature flower including
sepals, petals, lips, columns and leaves. The purity of extracted total RNA was
evaluated by Nabi-UV/Vis Nano Spectrophotometer (Table 3). The ratios of Azso/2s0
were approximately 2.0. These indicated that there were significant low contamination
of proteins or polysaccharide. The ratios of Azeo230 Were constantly <2.0, these were
lower than expected which may had been contaminated of contaminant which absorbed
at 230 nm including TRIzol™ reagent which is phenol based solution. The integrity of
total RNA samples was analyzed on 1.5% (w/v) agarose TAE gel electrophoresis
stained with EtBr (Figure 26). The results showed that most of them had clear 28S and
18S rRNA bands with ratio 2:1 of 28S:18S rRNA and low degradation.

Table 3 Purity of total RNA from R. retusa using spectrophotometer

Samples oD Ratio Concentration
Acso  Aogo A0 Agsozeo  Azeoi230 (ng/ul)
Flower buds stage 1 30.60 1541 18.66 1.99 1.64 1224
Flower buds stage 2 18.03 9.09  10.61 1.98 1.70 721
Flower buds stage3 7.37  3.96 8.99 1.86 0.82 295
Mature flowers 16,53 841  10.33 1.97 1.60 661
Flower bud stage 3
organs
Sepal 11.83 6.18 6.88 1.91 1.72 473.2
Petal 343 184 8.17 1.87 0.42 137.3
Lip 18.17 8.89  18.93 2.04 0.96 726.9
Column 22.27 1214  20.62 1.83 1.08 890.9
Mature flower organs
Sepal 19.23 946  11.25 2.03 1.71 769.3
Petal 753 394 4.25 1.91 1.77 301.2
Lip 1424  7.43 8.79 1.92 1.62 569.7
Column 2281 1186 19.50 1.92 1.17 912.2

Vegetative organ
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Leave (L) 3.534 2.019 5.556 1.75 0.64 141.4

Stage 1
Stage 2
Stage 3
Mature
Leaves

@ 0)  m

1000 bp—

500bp —

Stage 3
< [~ =] [~ o —_
(c) 2 5 & S 8 § & 3
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Figure 26 Assessment of RNA integrity by agarose gel electrophoresis stained
with EtBr. Total RNA from stagel-3 whole bud and mature flower.
(b) Total RNA from leaves. (c) Total RNA from dissected flower

organs; sepals, petals, lips and columns from stage3 and mature
flowers.

First partial sequences of DEF-like and AGL6-like genes from R. retusa
1. PCR amplification
To isolate DEF-like and AGL6-like MADS-box genes from R. retusa, the
degenerated primers were used to obtain partial sequences of cDNA. The whole floral
bud cDNA was amplified using primers specific to DEF-like and AGL6-like genes. S-
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HrDEF forward primer and S-HrDEF reverse primer is specific for DEF-like genes.
The expected amplification size was approximately 350 bp (Figure 27a). OrchidAGL6-
1 forward and reverse primer was specific for AGL6-like genes. The expected
amplification size was approximately 700 bp (Figure 27b). The specific product sizes
were obtained. In addition, the DEF2 and AGL6-2 forward and reverse primers were
separately designed for DEF-like clade 2 and AGL6-like clade 2 genes respectively.
The DEF2/FW and DEF2/RV primer was designed from DEF-like clade 2 orthologs in
O. ‘Gower’ Ramsey (OMADS3; accession number AY196350.1), P. equetris
(PeMADSS; accession number Y378148.1) and C. goeringii (CgDEF2; accession
number KX347446.1) which generated the approximately band size as 600 bp (Figure
27c¢). In addition, for AGL6-like clade2, the specific primers were designed from
orthologous AGLG6-like clade 2 in C. goeringii (CgAGL6-3; accession number
KUO058679) and E. pusilla (EpMADSS5; accession number KJ002730) name as AGL6-
2/[FW and AGL6-2/RV primers corresponding with the size as 200 bp (Figure 27d).
The purified PCR products were ligated into the pJET1.2/blunt cloning vector using
CloneJET PCR cloning kit (Thermo Scientific, USA) and randomly selected clones to

sequence and compare to the NCBI sequence database.

&
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(a) (b) (©) (d)

Figure 27 The PCR amplification of first partial sequences of DEF-like and
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AGLG6-like from R. retusa by agarose gel electrophoresis stained with
EtBr; (a) primer S-HrDEF, (b) Primer OrchidAGL6-1, (c) Primer
DEF-2 and (d) Primer AGL6-2

2. Sequence analysis
The raw sequence data (abi) were received from Macrogen Co., LTD

(Korea). The DNA sequences from each colony were edited and aligned using
GeneStudio™ software (GeneStudio, Inc, USA) and the ClustalWw (EMBL-EBI, UK)
respectively. The colony sequences from S-HrDEF primer were arranged into 3 clades
of DEF-like genes (clade 1, 3 and 4) representing in APPENDIX B Figure 50-52. The
consensus sequence alignment indicated that S-HrDEF degenerated primers producing
DEF-like clade 1, clade 3 and clade 4 in R. retusa and the products had size 330, 312
and 318 bp respectively (Figure 28). The DEF2/FW and DEF2/RV primers generated
DEF-like clade 2 which had size 721 bp (Figure 29). The OrchidAGL6-1 also produced
the expected PCR product size as 706 bp and for AGL6-like clade 2 genes, AGL6-2/FW
and AGL6-2/RV primer produced the target sequence as size 205 bp (Figure 30). All
the sequences were confirmed with BLAST® results which compared to NCBI database
(APPENDIX B Table 5-10).

>Consensus_S-HrDEF_DEF1

AACTGCGCGGTCTTGAGCAAACTTTGGAAGAGTCTCTGAGAATTGTTAGGCATAGAAAGTATCATGTGAT
CGCCACACAAACTGACACTTACAAGAAAAAGCTTARAAGCACAAGGGAAACTTACCGCGCTCTAATACAT
GAACTGGATATGAAAGAGGAGAATCCGAACTACGGTTTTAATGTGGAAAGCCATAGTAGAATTTATGARAA
ATTCAATTCCAATGGTGAATGAGTGCCCTCAGATGTTTTCCTTTAGGGTTGTTCATCCAAATCAGCCCAA
TCTGCTTGGCTTAGGTTATGAATCACAGGATCTTAGCCTCGCCTAATAAT

>Consensus_S-HrDEF_DEF3

AACTGCGCGGTCTTGAGCAAAATATGGACGAGGCCCTAAAGCTTGTAAGGAATCGAAAGTATCACGTCAT
CAGCACGCAGACAGATACCTTCAAAARAARAGTTGAAAAACTCTCAAGAAACCCARAGGAACTTACTACGG
GAGCTGGARACTGAGCATGCCGTCTACTATGTGGATGATGATCCAAACAACTATGATGGCGCGCTTGCAC
TTGGARAATGGGGCTTCCTACTTGTATTCATTTCGTACCCAACCAAGCCAGCCAAACCTTCRAAGGAGTGGG
ATATGTCCCTCAGGATCTTCGTCTCGCCTAAT

>Consensus_S-HrDEF_DEF4
AACTGCGCGGTCTTGAGCAAAACATCGACGAGGCATTGAAGCTAGTACGAAATAGAAAATATCATGTAAT
CAGTACTCAAACGGACACCTACAAGAAGAAGCTGAAGAACTCTCAAGARAACACACCGAAACTTAATGCAC
GAACTGGAAATCGTTGAGGACCACCCAGTCTTTGGGTACCACGAGGATTCAAGCAATTATGAGGGCGTTC
TTGCTCTCGCARATGATGGGTCTCACATGTATGCCTTCCGAGTGCAACCCAACCAACCARAATCTTCATGG
AATGGGATATGGCTCCCAGGATCTCCGCCTCGCCTGAT
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Figure 28 The consensus sequences from colonies sequencing using S-HrDEF

degenerated primer

>Consensus_DEF-2FwRv
AGAAGATAGAGAATCCAACAAGCAGGCAAGTAACGTATTCAAAGAGGCGACTTGGGATCAT
GAAGAAGGCCGAGGAACTCACAGTGCTCTGCGACGCTCAACTCTCACTCATCATCTTCTCC
GGCTCCGGCAAGTTAGCTGATTTCTGCAGCCCTTCCACAGAGTAAACTCTGTTCTCATCCC
CTTTTCTTTTTCTGCTCAAACACCAATTACTTCATGCAATCTTTTGGCAGCGTTAAAGATA
TATTTGAGAGGTATCAAAAAGTTACCGGAATTGATATATGGGATGCGCAACATCAGAGAAT
GCAGAACACTCTGAAGAATCTCAGGGAGACTAATGGTAATCTTCAGAAGGAGATAAGGTGG
GTTTGAATTTGGGGGATTGGGCTTGATTGTCTGATGAGGTTAAGAGAAGGTGTTGTGGTTa
TGCAGGCAGAGGAAGGGGGAGAAT CTGGAAGGGTTGAGCTTTAAAGAGCTGCGCGGTCTTG
AGCAAARATTGGAGGAGTCCATGAAGATTGTTCGGCAGAGAAAGTATCATGTGATCGCTAC
GCAAACAGATACTTACAGGAAAAAGCTCAGAAGCAGCAGACAAATATACACTGCCCTAACG
CATGAACTGAAGCTCGAAAAAGAGAGTCAACTGTGCAGTTTGGTCGCAGAAGATCTTAGCG
GCATCTACAGCAGCTTGAATCTCAATGGCARATCAGCAGCACCAGAGTGG

Figure 29 The consensus sequences from colonies sequencing using DEF2/FW
and DEF2/RV primer

>Consensus_OrchidAGLE-1
CTCARAGAGGATTGAGAACAAGATCALATCGCCAGGTGACCTTCTCCAAGCGCAGGAATGGCCTCCTCARRRAGGT
TTATGAGCTTTCTGTTCTCTGTGATGCCGAGGTCGCCCTCATCATCTTCTCARAGCCGAGGCAAGCTCTATGAAT
TCGGCAGTGCTGGCACTTGCARAR A CACTGGARCGATATCAACGTACCTGCTACAGTTCTCARGCTGCCRAATCCC
GTAGATCGTGAAACACAGAGCTGGTATCAAGAAGTATCCARAATTGAAGGCARAGTTCGATTCATTACARACGCTC
CCACAGGRAATTTACTTGGAGAGGATCTTGGACCCTTGRAACGTGRAAGGAATTACAGCAGTTGGAGCGGCAACTTG
AATCTGCTTTATCGCAGGCCAGGCARAGARAGACACARATAATGCTGGATCARATGGAGGAGCTACGTARLAAG
GRAACGTCAACTTGGAGAGATCAATAAGCAGCTARRAATGAAGCTTGAGGCTGGTGGTGGCTCTCTTAGGCTTAT
CCARGGCTCATGGEATTCTGATGCGGCGGTGEGTTGAAGGCAATGCGTTCCARAATGCACCCTTACCACTCGAATT
CATTGGAATGCGAGCCAACTCTACATATAGGGTATCACCAGTTTGTTCCTCCAGARACTGTAATTCCCAGARCC
CCTGGTGTAGAGRATAATAATTTTATGCTTGGATGGATGC

>Consensus_AGL6-2
AGGCARARAGAAGGACGCAAATATGTTGGACCAGATGGARAGAGCTARAGARAAAGGAACGCCACCTCGGTGATAT

TAACRAAGCAGCTTARACATAAGCTTGGGGCAGATGGTGGATCGATGAGAGCTCTCCARAGTTCCTGGCGGCCTG
CTTCTGGGGCCAATATTGATACTTTTCGTAATCATTCRAAGTAACATGGACACAGARC

Figure 30 The consensus sequences from colony sequencing using
OrchidAGL6-1 and AGL6-2 primer.

The 3'-Rapid amplification of cDNA ends of DEF-like and AGL6-like genes from
R. retusa

1. Physical map of primers



69

The synthesized cDNA from total RNA of R. retusa flower buds was used as a
template to amplify the fragment of DEF-like and AGL6-like genes. The primer maps
were shown in figure 31 and figure 32 for DEF-like and AGL6-like genes respectively.
For DEF-like gene, two pairs of primer including S-HrDEF/Fw and S-HrDE/Rv primer
and DEF2/Fw and DEF2/Rv primer were used to isolate middle sequence of DEF-like
clade 1, 2, 3 and 4 genes. Then, gRrDEF-C1, gRrDEF-C2, gRrDEF-C3, and gRrDEF-
C4 forward primer were designed to amplified 3’ end of mMRNA with PO18HA primer
(Figure 31). For AGL6-like gene, two pairs of primer including OAGL6-1/Fw and
OAGL6-1/Rv primer and OAGL6-2/Fw and OAGL6-2/Rv primer were amplify middle
sequence of AGL6-like and 3' RACE primers, QRrAGL6-1/Fw and qRrAGL6-2/Fw were
further designed for 3’ end of AGL6-like clade 1 and 2 gene respectively (Figure 32).

100 200 300 400 500 600 700 800 900 1000

eI EE 1 [ [ | # |

STOP

PAUDS2 S-HrDEF/Fw =346 bp S-HrDEF/Rv
PeMADS3
PeMADSS qRIDEF-C1,-C3.-C4/Fw = 400-500 bp PO18HA
—> <
DEF2/Fw ~ 600 bp DEF2/Fw
—> —
qRIDEF-C2/Fw =400-500 bp PO1SHA
 — <—

Figure 31 The physical map of primer using in DEF-like genes isolation in R. retusa
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OAGLG6-2/Fw = 218bp OAGLG6-2/Rv
.
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Figure 32 The physical map of primer using in AGL6-like genes isolation in R. retusa

2. PCR amplification
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To isolate 3' ends of DEF-like and AGL6-like MADS-box genes from R. retusa,
the forward primers were design from the first partial sequences. The whole floral bud
cDNA which are synthesized by PO19HA adapter primer was amplified using with
PO18HA primers. The expected amplification size for DEF-like and AGL6-like were
approximately 500 and 600 respectively (Figure 31 and 32). The amplified products
were validated using 1.5% agarose gel electrophoresis stained with EtBr (Figure 33 and
34). The results showed that all of 3’RACE products were able to amplify except to
AGL6-like clade 1.
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Figure 33 The 3'RACE products of DEF-like from R. retusa were validated by
agarose gel electrophoresis stained with EtBr; (a) DEF clade 1, (b)
DEF clade 2 (c) DEF clade 3 and (d) DEF clade 4
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Figure 34 The 3’'RACE products of AGL6-like from R. retusa were validated by
agarose gel electrophoresis stained with EtBr; (a) AGL6-like clade 1,
(b) AGL6-like clade 2

3. Sequence analysis

The raw sequence data (abi) were received from Macrogen Co., LTD (Korea).
The DNA sequences from each colony were edited and aligned using GeneStudio™
software (GeneStudio, Inc, USA) and the ClustalW (EMBL-EBI, UK) respectively.
The consensus sequence alignments from each gene led the partial coding sequences of
DEF-like and AGL6-like genes in R. retusa (Figure 35 and 36) and were confirmed
with BLAST® results which compared to NCBI database (APPENDIX B Table 11-16).
The length of RrDEF1, RrDEF2, RrDEF3, RrDEF4, RrAGL6-1 and RrAGL6-2 are
length 466, 829, 429, 538, 670 and 630 respectively.



>RrDEF1

CTTTGGAAGAGTCTCTGAGAATTGTTAGGCATAGAAAGTATCATGTGATCGCCACACARACTGACACTTA
CAAGAAAAAGCTTAAAAGCACAAGGGAAACTTACCGCGCTCTAATACATGAACTGGATATGAAAGAGGAG
AATCCGAACTACGGTTTTAATGTGGAAAGCCATAGTAGAATTTATGAAAATTCAATTCCAATGGTGAATG
AGTGCCCTCAGATGTTTTCCTTTAGGGTTGTTCATCCAAATCAGCCCAATCTGCTTGGCTTAGGTTATGA
ATCACAGGATCTTAGCCTCGCCTAATAATCAGTAATATTATAAAAGTTTGGTTTTATTGTATTTTTATTA
TATGTTTGARACTTTAGAGTTATGAGATGGGTGATCTATTCAGAGAAAACTGTCCTTTATTTAGATTTTT
CAGTGTTTCCTCTTCAAGTTCGGTGAAATTGTTTGATGTTTTTTCG

>RrDEF2

AGAAGATAGAGAATCCAACAAGCAGGCAAGTAACGTATTCAAAGAGGCGACTTGGGATCATGAAGAAGGC
CGAGGAACTCACAGTGCTCTGCGACGCTCAACTCTCACTCATCATCTTCTCCGGCTCCGGCAAGTTAGCT
GATTTCTGCAGCCCTTCCACAGACGTTAAAGATATATTTGAGAGGTATCAAAAAGTTACCGGAATTGATA
TATGGGATGCGCAACATCAGAGAATGCAGAACACTCTGAAGAATCTCAGGGAGACTAATGGTAATCTTCA
GAAGGAGATAAGGCAGAGGAAGGGGGAGAATCTGGAAGGGTTGAGCTTTAAAGAGCTGCGCGGTCTTGAG
CAARAATTGGAGGAGTCCATGAAGATTGTTCGGCAGAGAAAGTATCATGTGATCGCTACGCAAACAGATA
CTTACAGGAAARAAGCTCAGAAGCAGCAGACAAATATACACTGCCCTAACGCATGAACTGAAGCTCGAAAA
AGAGAGTCAACTGTGCAGTTTGGTCGCAGAAGATCTTAGCGGCATCTACAGCAGCTTGAATCTCAATGGC
ARAATCAGCAGCACCAGAGTGGGCCAAATGTGCAGAAAGTAGTTCATGAGTGTCATGAGTTTGGCTTTGAT
TGACCTGCAATTTCTATTACTTGTGTTATAATGTGGATTGGGTTTCATGGCTTAACATCATAGCCTTGTT
TAAACTATTTTTTTGTGCAATGGTTAAGTTTTGGTCTTAATAGTATTGCAATAAGTTTTTGAGATATATA
AGGGGCAGTTGTAATCACACGTGCAATGTTCAAATATTTTGAATATTTAACAARACGGC

>RrDEF3

ATATGGACGAGGCCCTAAAGCTTGTAAGGAATCGAAAGTATCACGTCATCAGCACGCAGACAGATACCTT
CAARAARAAAGTTGARAAACTCTCAAGAAACCCAAAGGAACTTACTACGGGAGCTGGARACTGAGCATGCC
GTCTACTATGTGGATGATGATCCARACAACTATGATGGCGCGCTTGCACTTGGARATGGGGCTTCCTACT
TGTATTCATTTCGTACCCAACCAAGCCAGCCAAACCTTCAAGGAGTGGGATATGTCCCTCAGGATCTTCG
TCTCGCCTAATCTTTTATTATCTGCATGCCAACTGCTTAATTATTTATGTATGGAGCTTCATCTTTGACT
TGTTCTGATGTTCTTACGCTTACAAGTAGGGTCTAAGCACGGCAATTTAGATACTGGTATTTGTGCTCTA
CTTGATTTT

>RrDEF4

ACATCGACGAGGCATTGAAGCTAGTACGAAATAGAAAATATCATGTAATCAGTACTCAAACGGACACCTA
CAAGAAGAAGCTGAAGAACTCTCAAGAAACACACCGAAACTTAATGCACGAACTGGAAATCGTTGAGGAC
CACCCAGTCTTTGGGTACCACGAGGATTCAAGCAATTATGAGGGCGTTCTTGCTCTCGCARATGATGGGT
CTCACATGTATGCCTTCCGAGTGCAACCCAACCAACCAAATCTTCATGGAATGGGATATGGCTCCCAGGA
TCTCCGCCTCGCCTGATATAATCGCGTAAGTACTACAATCACATATGCTATTTTCGTTTTATGGTTCGCA
AATTATGCGCTTTGTAGCTGATATCTAATGTAGAACTAACTACTGCAACTTGTTCTTATCTTACTATGTG
TGATTCTGTGGTTATCTGGACTTAAAAGTATTTGTTGCATTGTGTTTTTTGCATAATAATACCACTCATC
CCTATGTCAAATTCTGTTATTTATTTATTTATACAACACTCTTCCGTC

Figure 35 The partial sequences of four DEF-like genes in R. retusa
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>RrAGLE-1

AAGATCAATCGCCAGGTGACCTTCTCCARAGCGCAGGAATGGCCTCCTCARAARAAGGCTTATGAGCTTTCTG
TTCTCTGTGATGCCGAGGTCGCCCTCATCATCTTCTCAAGCCGAGGCAAGCTCTATGAATTCGGCAGTGC
TGGCACTTGCAARAACACTGGAACGATATCAACGTACCTGCTACAGTTCTCAAGCTGCCAATCCCGTAGAT
CGTGAAACACAGAGCTGGTATCAAGAAGTATCCAAATTGAAGGCAAAGTTCGATTCATTACAACGCTCCC
ACAGGAATTTACTTGGAGAGGATCTTGGACCCTTGAACGTGAAGGAATTACAGCAGTTGGAGCGGCAACT
TGAATCTGCTTTATCGCAGGCCAGGCAAAGAAAGACACARAATAATGCTGGATCARATGGAGGAGCTACGT
ARARAGGAACGTCAACTTGGAGAGATCAATAAGCAGCTARAARAATGAAGCTTGAGGCTGGTGGTGGCTCTC
TTAGGCTTATCCAAGGCTCATGGGATTCTGATGCGGCGGTGGTTGAAGGCAATGCGTTCCAAATGCACCC
TTACCACTCGAATTCATTGGAATGCGAGCCAACTCTACATATAGGGTATCACCAGTTTGTTCCTCCAGAA
ACTGTAATTCCCAGAACCCCTGGTGTAGAGAATAATAATT

>RrAGL6-2

TGTTGGACCAGATGGAAGAGCTAAAGAAAAAGGAACGCCACCTCGGTGATATTAACAAGCAGCTTAAACA
TAAGCTTGGGGCAGATGGTGGAT CGATGAGAGCTCTCCARAGTTCCTGGCGGCCTGCTTCTGGGGCCAAT
ATTGATACTTTTCGTAATCATTCAAGTAACATGGACACCGAACCCACTCTTCAAATTGGGAGGTACAATC
AGTATGTTCCTTCTGAAGCAACAATTCCTAGAAACGGTGGAGCTGGAAACAGTTTCATGCCTGGATGGGE
CGCAGTTTGAGAGAGTTTGACTGAAAACTTCCTAARAATGTAATTTTAGGTGTTCCGCTTCTGTTTAATAA
CGTACCTGTCTGTTGGAGGCTTTTTTTTCTCAGCTCTTACACTATGACTGTTTTGGGTATCAARACATATG
TTGATATCTGGTCACTAAACTTGAATATGGTGGTTGAGGAACTAAATGGCAATTTTAGTTTAGCAGGGCT
TCACAGGCAATGTCTGTTGGTTGGGTTGCTCTTTAGATTAGTGACGACATGCACTATATTTTCTCACATT
AGTTTGCTTCCGTAAAAATCAAGTTTTCATGTTTAATAAAARAA

Figure 36 The partial sequences of two AGL6-like genes in R. retusa

4. The nucleotide sequence deposited to gene bank database
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The partial sequences of four DEF-like genes and two AGL6-like genes in R.

retusa were deposited into the GeneBank database. The accession numbers were

obtained and shown in Table 4.

Table 4 The accession numbers of four DEF-like genes and two AGL6-like

genes in R. retusa

Genes Accession number
RrDEF1 MW033595
RrDEF2 MW033596
RrDEF3 MW033597
RrDEF4 MW033598

RrAGL6-1 MW033599

RrAGL6-2 MW033600
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Partial coding sequence of DEF-like and AGL6-like genes in R. retusa

Two well-conserved sequences of DEF-like and AGL6-like proteins were found
in the C-terminal region. The C-terminal region of B-functional genes showed most
DEF-like genes as two consensus sequences of a Pl-derived motif
(FXFRLOPSQPNLH) and a paleoAP3 motif (YGXHDLRLA) (Kramer et al., 1998).
Both of these motifs were found in RrDEF1, RrDEF3, and RrDEF4, but were absent
in the C-terminal region of RrDEF2 (Figure 37). This evidence strongly indicated that
all four RrDEF genes were members of the DEF-like family and the presence of paleo
AP3 motif supported the duplication events of DEF genes family that paleoAP3 limited
in low eudicots, magnolid dicots and monocots. The AGL6-I motif (DCEPTLQIGY)
and AGL6-Il motif (ENNFMLGWVL) (Ohmori et al., 2009) were also located in the
middle part and at the end of the C-terminal regions of the RrAGL6-1 and RrAGL6-2
genes (Figure 38).

Pl-derived PaleocAP3

PeMADSS
CgDEF2
CMADS3 :
EpMADS14 :

gAfs VD DENQQ--RSFIAEDLSGVYNSAISMANQRLAHCL
Q8 FVENENQOHNFMIQDLECVYNNETSMANQSTAHCT

motif motif
CgDE‘Fl T IHIIMEDENPNYNFSEENHSRVYQNSTEMATECE QMRS WESHET.STA
OMADSS H TY)3 FSFEH
EpMADS1S : TY)ai ESER}
CmAE3A H TY)ss FSFR —
* RrDEF1 T FSFHR] —
PeMADS2 T FSFEH —
PtAPRP32 THz YSFER =
% EBrDEF3 T ¥SFH =
PeMADS3 T YSFR —
CgDE‘F3 T YSFR] —
OMADSS H T YSYR =
EpMADS13 : T -
“ RrODEF4 T s
PeMADS4 T —
CgDEF4 T -
CmAP34 T =
PtAPRP33 T
“ RrDEF2 I
I
TR
M
I

Figure 37 Alignment of the consensus amino acid sequences of the C-terminal
region for RrDEF1, RrDEF2, RrDEF3, and RrDEF4 compared to
other orchid species DEF-like MADS-box proteins. The two highly
conserved Pl-derived motif and PaleoAP3 motif are indicated above
the columns. Except for RrDEF2, all RrDEF genes were detected as
two conserved motifs in the C-terminal region. Identical and similar
amino acids are shaded black and gray, respectively. The multiple

sequence alignment was generated by ClustalW.
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AGL6-I motif AGLG6-II motif

< RrAGL61 : [#:[ey
CgAGL61 : pesie
CfAGLE : peslei i

CeAGL6 : paleibifs
OMADS7 : phalel
EpMADS3 : phsle
CMADS1 : p{e
EpMADSS : piebh

KX RraAGL62 : ps[el s

2222 HEHEAA

CgAGLE3 : e

Figure 38 Alignment of the consensus amino acid sequences of the C-terminal
region for RrAGL6-1 and RrAGL6-2 compared to other orchid
species AGL6-like MADS-box proteins. The two conserved AGL6-I
and AGL6-I1 motifs at the C-terminal region were detected and
indicated above the columns. Identical and similar amino acids are
shaded black and gray, respectively. The multiple sequence
alignment was generated by ClustalWw.

Phylogenetic analysis

To analyze the phylogenetic relationships of orchid B- and E-class genes, a
phylogenetic tree of DEF and AGL6 lineages from Orchidaceae was reconstructed
using the most published orchid B-class genes (Figure 39) and E-class genes (Figure
40). The maximum-likelihood analysis indicated that the orchid B-class homologs
consisted of two lineages, DEF and GLO. Orchid DEF homologs were subdivided into
two groups, AP3A and AP3B, and each consisted of two monophyletic clades. Within
clade 1, RrDEF1 was in the same subclade as PeMADS2 and DmAP3A from
Phalaenopsis equestris and Dendrobium moniliforme. RrDEF2, PeMADS5, CgDEF2
(Cymbidium goeringii), GgDEF2 (Gongora galeata), OMADS3 (Oncidium Gower
Ramsey), and EpMADS14 (Erycina pusilla) were grouped in the same subclade 2, clade
2. Clade 3 contained RrDEF3 with other clade 3 DEF-like genes from various orchid
genera, such as Phalaenopsis, Cymbidium, Oncidium, and Erycina. Clade 4 comprised
RrDEF4, PeMADS4, CgDEF4, DmAP3-4, and PtAP3-3 (Phaius tancarvilleae). All
four RrDEF genes were closely related to four DEF-like genes in P. equestris. The
phylogenetic tree showed that the four RrDEF genes were separated into two

monophyletic clades corresponding to previous data in P. equestris, O. ‘Gower
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Ramsey’, E. pusilla, D. moniliforme, C. goeringii, and Habenaria radiata (Hsu &
Yang, 2002; Kim et al., 2007; Mitoma et al., 2019; Pan et al., 2011; Tsai et al., 2004;
Xiang et al., 2018). These results showed that two major duplication events from
ancestral genes occurred, confirming the previous B-class gene evolution data. The first
duplication from the ancestral genes produced both paleoAP3 and Pl lineages of
orchids, while the second duplication only occurred in the lineage of paleoAP3 (Kramer
et al., 1998; Mondragén-Palomino & TheiRen, 2008; Mondragon-Palomino &
Theissen, 2009).

Phylogenetic analysis of the AGL6-like genes showed that monocot AGLS6,
eudicot AGL6, and gymnosperm AGL6 were separated into three clades. Two genes,
RrAGL6-1 and RrAGL6-2, were assigned to two distinct clades in monocot AGLS6,
orchid AGL6-1 and orchid AGL6-2. RrAGL6-1 was closely related to CeAGL6 (C.
ensifolium), CfAGL6 (C. faberi), and CgAGL6-1 (C. goeringii) with high bootstrap
support. RrAGL6-2 was closely related to PaAGL6 (Phalaenopsis aphrodite), DAGL6
(Dendrobium hybrid cultivar), OMADSL1 (O. ‘Gower Ramsey’), EpMADSS (E. pusila),
and CgAGL6-3 (C. goeringii). These results were similar to previous reports of AGL6-
like genes from O. ‘Gower Ramsey’, P. equestris, E. pusilla, C. goerigii, and H. radiata
(Dreni & Zhang, 2016; Hsu et al., 2015; Lin et al., 2016; Mitoma et al., 2019; Xiang et
al., 2018). Phylogenetic trees with two distinct subdivided clades of DEF- and AGL6-
like genes from R. retusa suggested that the common ancestor of Orchidaceae possibly
consisted of two DEF-like and AGL6-like genes.
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Figure 39 Phylogenetic analysis of DEF-like gene nucleotide sequences
constructed by a maximum-likelihood tree with 1000 bootstrap

replicates in MEGA version 7.0.26.
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Figure 40 Phylogenetic analysis of AGL6-like gene nucleotide sequences
constructed by a maximum-likelihood tree with 1000 bootstrap

replicates in MEGA version 7.0.26.
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Expression analysis

The expression of DEF-like and AGL6-like genes was further studied in various
floral development stages and dissected flowers using reverse transcription PCR (RT-
PCR) (Figure 41 and 42) and quantitative real-time polymerase chain reaction (QRT-
PCR) (Figure 43-49). The RT-PCR and gRT-PCR relatively have the same direction.
All genes were detectable in all developmental stages of the flower buds and mature
flowers but not in leaves, apart from the RrDEF2 gene that was slightly expressed in
vegetative leaves (Figure 43). When the floral organs from floral bud stage 3 and mature
flower were examined in the B-class group, the expression of RrDEF1 was high in the
sepals and petals but low in the lips and columns of both stages (Figure 44). This result
supported previous studies that investigated sepal/petal development (Chang et al.,
2010; Hsu et al., 2015; Lin et al., 2016; Mitoma et al., 2019; Mondragén-Palomino &
Theissen, 2011; Pan et al., 2011; Xiang et al., 2018). In stage 3 and mature flowers,
RrDEF2 was more highly expressed in the petals than in sepals, lips, and columns. The
RrDEF2 expression was notably expressed lower than other genes in every
developmental stages (Figure 45). RrDEF2 was detected in vegetative and all floral
organs and highly expressed in sepals/petals, similar to OMADS3 from O. ‘Gower
Ramsey’(Chang et al., 2010) and OMADS3 was presented the low copy number in O.
Gower Ramsey genome (Hsu & Yang, 2002). RrDEF3 was expressed in the petals,
lips, and columns but not in the sepals (Figure 46). This expression pattern of RrDEF3
was only evident in inner tepals similar to its orthologs PeMADS3, CgDEF3,
EpMADS13, OMADS9, HrDEF, and DMAP3B (Chang et al., 2010; Kim et al., 2007,
Lin et al., 2016; Pan et al., 2011; Sirisawat et al., 2010; Xiang et al., 2018), while the
RrDEF3 and RrDEF4 genes were notably expressed in the lips. Thus, RrDEF3 has a
possible role in regulating lip formation, as reported in previous studies (Hsu et al.,
2015; Mondragon-Palomino & Theissen, 2011). The expression of RrDEF4 was
detected in all floral organs. However, most orchid DEF-like clade 4 genes have
identical expression patterns to DEF-like clade 3 genes, with RrDEF4 distinctly
expressed either in sepals or petals (Figure 47). Orchid DEF-like clade 4 genes showed
various expression profiles supported by CgDEF4, PaphAP3-2, OAP3-4, and BnAP3-
1 from C. goeringii, Paphiopedilum Macabre, O. ‘Gower Ramsey’, and Brassavola
nodosa, respectively (Hsu et al., 2015; Pan et al., 2011; Xiang et al., 2018). Our results
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further indicated that DEF-like clade 4 genes may play different roles in the
development of floral organs in various orchids.

In the E-class group, except for the high level of RrAGL6-1 in stage 3 column,
RrAGL6-1 was highly expressed in sepals and petals but rarely in lips in both stage 3
and mature flowers (Figure 48). The expression patterns of RrAGL6-1 were similar to
its orthologs CgAGL6-1, OMADS7, and EpMADS3 in C. goeringii, O. ‘Gower Ramsey’
and E. pusilla (Hsu et al., 2015; Lin et al., 2016; Xiang et al., 2018). Thus, similar to
RrDEF1, the RrAGL6-1 gene is related to sepal/petal development. In stage 3 and
mature flowers, the expression patterns of RrAGL6-2 were strongly detected in the lips
(Figure 49), similar to orthologs CJAGL6-2 and OMADSL1 (Hsu et al., 2015; Hsu et al.,
2003; Xiang et al., 2018)
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Figure 41 The expression pattern of RrDEF-like and RrAGL6-like genes in
various floral development stages using RT-PCR and evaluated on
1.5% (w/v) agarose TAE gel electrophoresis stained with Ethidium
bromide (EtBr)
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Figure 42 The expression pattern of RrDEF-like and RrAGL6-like genes in
various floral development stages using RT-PCR and evaluated on 1.5%
(w/v) agarose TAE gel electrophoresis stained with Ethidium bromide
(EtBr)
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Figure 43 Expression patterns of four RrDEF and two RrAGL6 genes in different
developmental stages from 1-4 (stage 1: 0.5 cm; stage 2: 1.0 cm; stage 3:
1.5 cm; stage 4: mature). All experiments were performed in triplicate

with data presented as means + SD.
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Figure 44 Expression patterns of RrDEF1 genes in various organs of stage 3 and
mature flowers (stage 4), including sepals, petals, lips, and columns. All

experiments were performed in triplicate with data presented as means
+SD
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Figure 45 Expression patterns of RrDEF2 genes in various organs of stage 3 and
mature flowers (stage 4), including sepals, petals, lips, and columns. All
experiments were performed in triplicate with data presented as means
+SD
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Figure 46 Expression patterns of RrDEF3 genes in various organs of stage 3 and
mature flowers (stage 4), including sepals, petals, lips, and columns. All
experiments were performed in triplicate with data presented as means

+SD
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Figure 47 Expression patterns of RrDEF4 genes in various organs of stage 3 and



86

mature flowers (stage 4), including sepals, petals, lips, and columns. All
experiments were performed in triplicate with data presented as means
+SD
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Figure 48 Expression patterns of RrAGL6-1 genes in various organs of stage 3 and
mature flowers (stage 4), including sepals, petals, lips, and columns. All
experiments were performed in triplicate with data presented as means +
SD
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Figure 49 Expression patterns of RrAGL6-2 genes in various organs of stage 3 and
mature flowers (stage 4), including sepals, petals, lips, and columns. All
experiments were performed in triplicate with data presented as means
+SD
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CHAPTER V

CONCLUSION

Four DEF-like genes and two AGLG6-like genes found in R. retusa were
investigated. Interestingly, four types of DEF genes were isolated from many orchid
species, but rarely were all four DEF-like genes identified in a single orchid species
(Phalaenopsis and H. radiata); R. retusa was one species in which they are all
expressed. Expression patterns of RrDEF1 and RrAGL6-1 suggested that these genes
may be involved in sepal/petal formation, while expression of the RrDEF3, RrDEF4,
and RrAGL6-2 genes related to lip development. These results confirmed the revised
‘orchid code’ and ‘P-code’ hypotheses that the expression levels of DEF-like and
AGLG6-like genes play a key role in orchid tepal speciation. The revised ‘orchid code’
hypothesized that different clades of DEF-like genes determine perianth development,
with a high level of clades 1 and 2 and a low level of clades 3 and 4 specified for petal
(inner lateral tepal). By contrast, a high level of clades 3 and 4 related to lip formation.
However, the ‘P-code’ hypothesized that there was competition among the sepal/petal
(SP) complex (OAP3-1/OAGL6-1/OAGL6-1/0OPI) and the Lip (L) complex (OAP3-
2/0AGL6-2/0AGL6-2/0PI1). The SP complex specified the formation of sepals and
petals, while the L complex determined lip formation. Moreover, the RrDEF2 gene was
expressed in all floral organs and in leaves. This indicated the possibility of functional
diversification from other RrDEF paralogs during the second gene duplication in orchid
evolution. However, the determination of accurate mechanisms of RrDEF and RrAGL6
genes in floral developmental control requires more data from downstream experiments

such as protein-protein interaction.
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APPENDIX A CHEMICALS AND SOLUTIONS

75% ethanol (50 mL)
Add following components
Absolute ethanol 37.5mL
Distilled water 63.5 mL

Chloroform (50 mL)

Separated 50 mL of Chloroform to bottle with aluminium foil wrap

0.5M EDTA, pH
1. Add following components

EDTA 9.306

2. Dissolved completely in 40 mL of distilled water and adjusted the pH to 8.0 with
HCI

3. Adjusted the volume to 300 mL

4. Autoclaved at 121°C for 30 minutes and stored at room temperature

50X TAE buffer
1. Add following components

Tris-base 242 g
Glacial acetic acid 57.1 mL
0.5M EDTA (pH 8.0) 100

2. Dissolved completely and adjusted the volume to 1000 mL
3. Stored at room temperature
4. Prepared 1X TAE buffer before using

100 mg/ml Ampicillin (5 mL)
1. Add following components

Ampicillin 059
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Distilled water 5mL
2. Dissolved completely and filtered with sterile syringe filter
3. Separated 1 mL to 1.5 mL microcentrifuge tube with aluminium foil wrap
4. Stored at 4°C

2M D (+) Glucose (10 mL)
1. Add following components

D(+) Glucose 059

2. Dissolved completely with distilled water and adjusted the volume to 10 mL

3. Filtered with sterile syringe filter and separated 1 mL to 1.5 mL
microcentrifuge tube

4. Stored at -20°C

1M MgS0O4.7H20 (10 mL)
1. Add following components

MgS04.7H20 2.64 g
2. Dissolved completely with distilled water and adjusted the volume to 10 mL
3. Filtered with sterile syringe filter and separated 1 mL to 1.5 mL microcentrifuge tube
4. Stored at -20°C

1M MgCl2.6H20 (10 mL)

1. Add following components

MgCl,.6H.0 2.03 ¢
2. Dissolved completely with distilled water and adjusted the volume to 10 mL
3. Filtered with sterile syringe filter and separated 1 mL to 1.5 mL

microcentrifuge tube, then, stored at -20°C

1M CaCl2.2H20 (100 mL)

1. Add following components

CaCl,.2H,0 14.7g
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2. Dissolved completely in 80 mL of distilled water and adjusted the volume to 100 mL
3. Filtered with sterile syringe filter and stored at 4°C
4. Prepared 100mM CaCl; every time before using

1.5% Agarose gel (40 mL)
1. Add following components
Agarose 069
1X TAE buffer 40 mL
2. Heated and dissolved completely using microwave oven
3. Cast agarose gel in tray for 30 minutes and put into the electrophoresis tank to run

4. The gel was visualized by straining with ethidium bromide under UV light

SOB medium (300 mL)

1. Add following components

Tryptone 69
Yeast extract 45¢
NaCl 0.175¢g
KCI 0.55

2. Dissolved completely in 150 mL of distilled water and adjusted the volume to 300 mL
3. Separated 50 mL of SOB medium to Erlenmeyer flask and capped with cotton plug

4. Autoclaved at 121°C for 30 minutes, cool down and stored at 4°C

SOC medium (60 mL)

1. Add following components

Tryptone 12¢g
Yeast extract 0.3g
NaCl 0.0351¢g
KCI 0.111

2. Dissolved completely in 50 mL of distilled water, adjusted the volume to 60 mL
3. Transferred to Erlenmeyer flask and capped with cotton plug
4. Autoclaved at 121°C for 30 minutes, cool down and stored at 4°C
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5. Added (Before using)

1M MgS0QO4.7H20 600 pL
1M MgCl2.6H20 600 pL
2M D(+)Glucose 600

2X YT broth (200 mL)

1. Add following components

Tryptone 329
Yeast extract 24
NaCl =\ 0

2. Dissolved completely in 150 mL of distilled water and adjusted the volume to 200 mL
3. Transferred to Erlenmeyer flask and capped with cotton plug

4. Autoclaved at 121°C for 30 minutes, cool down and stored at 4°C

2X YT plate (800 mL)

1. Add following components

Tryptone 128 ¢
Yeast extract 8¢
NaCl 2440

2. Dissolved completely in 500 mL of distilled water and adjusted the volume to 800 mL
3. Transferred to Erlenmeyer flask which has 12 g of Agar and capped with cotton plug
4. Autoclaved at 121°C for 30 minutes, cool down and added Ampicillin

5. Cast the 2X YT medium in plate aseptically (approximately 20 mL per plate)
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APPENDIX B SUPPLEMENTARY DATA

* 20 > 40 * €0
AACTGCGCGGTCTTGAGCAAACTTTGGAAGAGTCTCTGAGAATTGTTAGGCATAGARAGT
AACTGCGCGGTCTTGAGCAAACTTTGGAAGAGTCTCTGAGAATTGTTAGGCATAGAAAGT
AACTGCGCGGTCTTGAGCAAACTTTGGAAGAGTCTCTGAGAATTGTTAGGCATAGAAAGT
AACTGCGCGGTCTTGAGCARACTTTGGAAGAGTCTCTGAGAATTGTTAGGCATAGARAGT
ARACTGCGCGGTCTTGAGCAAACTTTGGAAGAGTCTCTGAGAATTGTTAGGCATAGARAGT
AACTGCGCGGTCTTGAGCAAACTTTGGAAGAGTCTCTGAGAATTGTTAGGCATAGAAAGT

® 80 * 100 * 120
ATCATGTGATCGCCACACAAACTGACACTTACAAGAAAAAGCTTAAARAGCACAAGGGAAA
ATCATGTGATCGCCACACAAACTGACACTTACAAGAAAAAGCTTAAAAGCACAAGGGAAA
ATCATGTGATCGCCACACAAACTGACACTTACAAGAAAAAGCTTAAAAGCACAAGGGAAA
ATCATGTGATCGCCACACAARACTGACACTTACAAGAAAAAGCTTAARAGCACAAGGGAAA
ATCATGTGATCGCCACACAAACTGACACTTACAAGAARAAGCTTAAAAGCACAAGGGAAA
ATCATGTGATCGCCACACAAACTGACACTTACAAGAAAAAGCTTAAAAGCACAAGGGAAA

% 140 * 160 * 180
CTTACCGCGCTCTAATACATGAACTGGATATGAARAGAGGAGAATCCGAACTACGGTTTTA
CTTACCGCGCTCTAATACATGAACTGGATATGAAAGAGGAGAATCCGAACTACGGTTTTA
CTTACCGCGCTCTAATACATGAACTGGATATGAAAGAGGAGAATCCGAACTACGGTTTTA
CTTACCGCGCTCTAATACATGAACTGGATATGARAGAGGAGAATCCGAACTACGGTTTTA
CTTACCGCGCTCTAATACATGAACTGGATATGARAGAGGAGAATCCGAACTACGGTTTTA
CTTACCGCGCTCTAATACATGAACTGGATATGAAAGAGGAGAATCCGAACTACGGTTTTA

x 200 X 220 * 240
ATGTGGAAAGCCATAGTAGAATTTATGAAAATTCAATTCCAATGGTGAATGAGTGCCCTC
ATGTGGAAAGCCATAGTAGAATTTATGAAAATTCAATTCCAATGGTGAATGAGTGCCCTC
ATGTGGAAAGCCATAGTAGAATTTATGAARATTCAATTCCAATGGTGAATGAGTGCCCTC
ATGTGGAARAGCCATAGTAGAATTTATGAAARATTCAATTCCAATGGTGAATGAGTGCCCTC
ATGTGGARAGCCATAGTAGAATTTATGAAARATTCAATTCCAATGGTGAATGAGTGCCCTC
ATGTGGAAAGCCATAGTAGAATTTATGAAAATTCAATTCCAATGGTGAATGAGTGCCCTC

* 260 ol 280 * 300
AGATGTTTTCCTTTAGGGTTGTTCATCCAAATCAGCCCAATCTGCTTGGCTTAGGTTATG
AGATGTTTTCCTTTAGGGTTGTTCATCCAAATCAGCCCAATCTGCTTGGCTTAGGTTATG
AGATGTTTTCCTTTAGGGTTGTTCATCCAAATCAGCCCAATCTGCTTGGCTTAGGTTATG
AGATGTTTTCCTTTAGGGTTGTTCATCCAARATCAGCCCRATCTGCTTGGCTTAGGTTATG
AGATGTTTTCCTTTAGGGTTGTTCATCCAARATCAGCCCAATCTGCTTGGCTTAGGTTATG
AGATGTTTTCCTTTAGGGTTGTTCATCCAAATCAGCCCAATCTGCTTGGCTTAGGTTATG

* 320 *
AATCACAGGATCTCAGCCTCGCCTGATAAT : 330
AATCACAGGATCTACGCCTCGCCTAGTAAT : 330
AATCACAGGATCTCCGTCTCGCTTGATAAT : 330
AATCACAGGATCTCCGCCTCGCTTAATAAT : 330
AATCACAGGATCTTAGCCTCGCATAATAAT : 330
AATCACAGGATCTAAGCCTCGCCTAATAAT : 330
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Figure 50 Multiple sequence alignment of selected clones of amplified S-HrDEF

fragment in R. retusa. Colony 1, 2, 3,5, 7 and 17 were represented

DEF-like clade 1.
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o 20 X 40 * 60
AACTGCGCGGTCTTGAGCARRATATGGACGAGGCCCTAARAAGCTTGTAAGGAATCGAAAGT
AACTGCGCGGTCTTGAGCAAAATATGGACGAGGCCCTAAAGCTTGTAAGGAATCGAAAGT
AACTGCGCGGTCTTGAGCAARAATATGGACGAGGCCCTAAAGCTTGTAAGGAATCGAAAGT
AACTGCGCGGTCTTGAGCARAATATGGACGAGGCCCTAAAGCTTGTAAGGAATCGARAGT

». 80 2 100 * 120
ATCACGtCATCAGCACGCaGACAGATACCTTCAAAAAAAAGTTGAAAAACTCTCAAGAAR
ATCACGtCATCAGCACGCaAGACAGATACCTTCAARAAAAAGTTGAAAAACTCTCAAGAAR
ATCACGtCATCAGCACGCaGACAGATACCTTCARAAAAARAGTTGAAARACTCTCAAGARR
ATCACGtCATCAGCACGCaGACAGATACCTTCAARARAAAAGTTGARARACTCTCAAGAAA

* 140 * 160 * 180
CCCAaAGGAACTTACTACGGGAGCTGGARARCLGAGCATGCCGTCTACTATGTGGATGATG
CCCRaAGGAACTTACTACGGGAGCTGGAAACLGAGCATGCCGTCTACTATGTGGATGATG
CCCAaAGGAACTTACTACGGGAGCTGGAARACtGAGCATGCCGTCTACTATGTGGATGATG
CCCAaAGGAACTTACTACGGGAGCTGGAAACLGAGCATGCCGTCTACTATGTGGATGATG

i 200 ol 220 l 240
ATCCAAACAACTATGATGGCGCGCTTGCACTTGGAAATGGGGCTTCCTACTTGTATTCAT
ATCCAAACAACTATGATGGCGCGCTTGCACTTGGAAATGGGGCTTCCTACTTGTATTCAT
ATCCARACAACTATGATGGCGCGCTTGCACTTGGAAATGGGGCTTCCTACTTGTATTCAT
ATCCARACAACTATGATGGCGCGCTTGCACTTGGAAATGGGGCTTCCTACTTGTATTCAT

* 260 x 280 o 300
TTCGTACCCAACCAAGCCAGCCAAACCTTCAAGGAGTGGGATATGTCCCTCAGGATCTEC
TTCGTACCCAACCAAGCCAGCCAAACCTTCAAGGAGTGGGATATGTCCCTCAGGATCTEC
TTCGTACCCAACCAAGCCAGCCAAACCTTCAAGGAGTGGGATATGTCCCTCAGGATCTEC
TTCGTACCCARCCAARGCCAGCCAAARCCTTCAAGGAGTGGGATATGTCCCTCAGGATCTLC

&
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Figure 51 Multiple sequence alignment of selected clones of amplified S-HrDEF

fragment in R. retusa. Colony 4, 6, 8 and 12 were represented DEF-

like clade 3.
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S-HrDEF-16

S-HrDEF-9

S-HrDEF-10
S-HrDEF-11
S-HrDEF-13
S-HrDEF-14
S-HrDEF-16

% 20 % 40 3 60
AACTGCGCGGTCTTGAGCAARACATCGACGAGGCATTGAAGCTAaGTACGARATAGARRAT
AACTGCGCGGTCTTGAGCARAACATCGACGAGGCATTGARGCTaGTACGARATAGAARAT
AACTGCGCGGTCTTGAGCAAARACATCGACGAGGCATTGAAGCTAaGTACGARATAGARAAT
AACTGCGCGGTCTTGAGCAARAACATCGACGAGGCATTGAARGCTAGTACGAAATAGAAAAT
AACTGCGCGGTCTTGAGCAAAACATCGACGAGGCATTGAAGCTaGTACGAAATAGAAAAT
AACTGCGCGGTCTTGAGCARAACATCGACGAGGCATTGAAGCTaGTACGAAATAGAAAAT

5o 80 & 100 & 120
ATCATGTAATCAGTACTCAARACGGACACCTACAAGAAGAARGCTGAAGAACTCTCAAGAAA
ATCATGTAATCAGTACTCAARACGGACACCTACAAGAAGAAGCTGAAGAACTCTCAAGARA
ATCATGTAATCAGTACTCAAACGGACACCTACAAGAAGAAGCTGAAGAACTCTCAAGAAA
ATCATGTAATCAGTACTCAAACGGACACCTACAAGAAGAAGCTGAAGAACTCTCAAGAAA
ATCATGTAATCAGTACTCAAACGGACACCTACAAGAAGAAGCTGAAGAACTCTCAAGAAA
ATCATGTAATCAGTACTCAAACGGACACCTACAAGAAGAAGCTGAAGAACTCTCAAGAAA

2 140 * 160 o 180
CACACCGAAACTTAATGCACGAACTGGAARATCGTTGAGGACCACCCAGTCTLTGGGTACC
CACACCGAAACTTAATGCACGAACTGGARAATCGTTGAGGACCACCCAGTCTtTGGGTACC
CACACCGAAACTTAATGCACGAACTGGAAATCGTTGAGGACCACCCAGTCTLTGGGTACC
CACACCGAAACTTAATGCACGAACTGGAAATCGTTGAGGACCACCCAGTCTETGGGTACC
CACACCGAAACTTAATGCACGAACTGGARATCGTTGAGGACCACCCAGTCTtTGGGTACC
CACACCGAAACTTAATGCACGAACTGGAAATCGTTGAGGACCACCCAGTCTLTGGGTACC

o 200 bl 220 * 240
aCGAGGATTCARAGCAATTATGAGGGCGTTCTTGCTCTCGCAAATGATGGGTCTCACATGT
aCGAGGATTCAAGCAATTATGAGGGCGTTCTTGCTCTCGCARATGATGGGTCTCACATGT
aCGAGGATTCAAGCAATTATGAGGGCGTTCTTGCTCTCGCAAATGATGGGTCTCACATGT
aCGAGGATTCAAGCAATTATGAGGGCGTTCTTGCTCTCGCAAATGATGGGTCTCACATGT
ACGAGGATTCAAGCAATTATGAGGGCGTTCTTGCTCTCGCAAATGATGGGTCTCACATGT
ACGAGGATTCAAGCAATTATGA GTTCTTGCTCTCGCAAATGATGGGTCTCACATGT

¥ 260 x 280 * 300
ATGCCTTCCGAGTGCAACCCAACCAACCARATCTTCATGGRATGGGATATGGCTCCCAGG
ATGCCTTCCGAGTGCAACCCAACCAACCARATCTTCATGGAATGGGATATGGCTCCCAGG
ATGCCTTCCGAGTGCAACCCAACCAACCAAATCTTCATGGAATGGGATATGGCTCCCAGG
ATGCCTTCCGAGTGCAACCCAACCAACCAAATCTTCATGGAATGGGATATGGCTCCCAGG
ATGCCTTCCGAGTGCAACCCAACCAACCARATCTTCATGGAATGGGATATGGCTCCCAGG
ATGCCTTCCGAGTGCAACCCAACCAACCAAATCTTCATGGAATGGGATATGGCTCCCAGG

*

ATCTccGcCTCGCcTgaT : 318
ATCTccGCcCTCGCcTgaT : 318
ATCTccGCCTCGCcTgaT : 318
ATCTccGcCTCGCcTgaT : 318
ATCTccGcCTCGCcTgaT : 318
ATCTccGcCTCGCcTgaT : 318

60
60
60
60
60
60

120
120
120
120
120
120

180
180
180
180
180
180

240
240
240
240
240
240

300
300
300
300
300
300

99

Multiple sequence alignment of selected clones of amplified S-HrDEF

fragment in R. retusa. Colony 9, 10, 11, 13, 14 and 16 were represented
DEF-like clade 4.
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