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1

-Introduction

“All models are wfong; some are useful”
— George E. P. Box, William Hunter and Stuart Hunter, Statistics for
Experimenters, second edition, 2005, page 440

1.1 Introduction

In developing commtry, the logistic and supply chain management is one of a

key to siiccess. The overall systeni of supply chain is’a complex system since™ ™ ™

there are several factors involving in the system. In order to creale a model
of the overall system accurately, two main characteristies: flexibility and in-
formativeness are needed. Some of the control theories {e.g. Robust Control
Theory, Predictive Control Theory) are dealing with the complex system,
for example, the control of robot, the control of refinery. Is it possible to
adapt the control theories into the application of industrial engineering, sup-
ply chain management? Is the state space model or spatio-temporal state
space model suitable to model the supply chain system since the basic in-
formation or data is collected as a time series? Those are some questions
related to the application of state space model in the area of supply chain
management. Furthermore, the estimation methods, which are used in the
field of control engineering, can be adapted to utilize in the supply chain
management field, for example, Kalman filter. Kalman filter is a mathe-
matic tool, which is employed for state estimation. The underlying system
state is estimated from noisy data. Time series data of the interest system is
collected, and then is used in the estimation procedure. The Kalman filter
operates recursively in order to estimate the system state. Kalman filter is
widely used in various fields, such as navigation control of aireraft, guidance
and sensorless control.

Inventory control is another active research area in the field of industrial
engineering. The demand forecasting is the key to improve inventory con-
trol performance. There are several methods used in forecasting the demand,

1



2 1. INTRODUCTION

for instance, exponentially weighted moving average (EWMA), EWMA with
trend and seasonal corrections. The use of Kalman filter to correctly fore-
cast the demand is an interested issue since the demand itself is consisted
of various types of uncertainty.

The project is firstly planned to study various supply chain systems in
various organizations. It will concentrate on the Lower North Region of
Thailand, where is the area of Naresuan University located. The informa-
tion, which is gathered from this phase, wilt be used to construct a Spatio-
temporal State Space Model by simulating through the MATLAB program.

Nextthe-tine-series-of demmudiir-tlie-orgamzations irtiesame-area-will
be collected. The information in this phase will be used in the estimated
procedure. At this stage, various types of estimation methods will be em-

ployed in order to compare variety of performance in individual estimators.
Similar to previous phase, the MATLAB prograu {or perhaps other relevant
programs) will be employed to calculate the information.

The result of the study is firstly expected to provide a proposed model and
estimation method, which is potentially giving more or deeper understand-
ing through supply chain system. Secondly, it is expected to provide an
accurately prediction of demand. This result will assist an organization a
better control of inventory. The more accuracy the system is, the more
an organization reduces its cost, time investment and resources in its pro-

“diiction line. "The tesults ¢an be applied and developed in wider arveag and ™~ T

regions.

1.2 Research Objectives

To develop a model with a better understanding of the dynamic character-
istics in a supply chain system.

1.3 Conceptual Framework of the Research Project

The study will utilize a spatio-temporal state space model associated with
Kalman filter technique in describing a dynamic characteristic of supply
chain system. Inventory is managed based on demand forecasting at various
points of the supply chain from incomplete data.

1.4 Literature review - State of research

There are several definitions of a supply chain system. Recently, [13] defined
a supply chain as a system that consists of all parties, directly or indirectly,
in fulfilling a customer demand. A supply chain system includes not only
the manufacturer and suppliers, but also transporters, warchouses, retailers,
and even customers themselves. A typical supply chain is characterized as
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a forward flow of material and a backward flow of information, [2]. Many
companies, both global and local, plan their operation (production, stock
and distribution systems) based on custoiner demands, supply conditions,
sales and raw material prices, (14]. Various industries improve their supply
chain management through an integration of information technology into
a decision-making procedure. Since the supply system consists of several
factors and the interaction between those factors, it can be called a com-
plex system. According to [16], a typical supply chain can often be complex
due to large mesh of interlinked suppliers, manufacturers and distributors,

turer and distributor) may be a member of a large number of other supplies
chains. Finally, the dynamic nature of the supply chain. In supply chain
system, it can be categories the whole system into a number of subsystems.
[2], supply chain is comprised of two basic, integrated processes, First, the
production planning and inventory control process consists of raw material
scheduling and inventory control process, inanufacturing design and schedul-
ing process and material handling design and control process. Second, the
distribution and logistics process consists of the transportation process, dis-
tribution facilities design and control, management of inventory and final
product delivery. Since the supply chain system consists of several stages of
operation, in the past, in each echelon would operaie independently. The

~ decigion tiakiiig i éach sehelof is fade mdividially based on objectives ™ T

of theilr particular activity. As a result, each echclon attempted to opti-
mize its own operations In separation. In general, a global optimum cannot
guarantee from a sequence of locally optimized.

In the past decade, rescarchers pay more attention on the performance,
design and analysis of the supply chain as a whole rather than investigated
the various processes within supply chains individually. The other inter-
ested aspect is to reveal the dynamics of the process involve. Static models
are insufficient when dealing with the dynamic characteristics of the supply
chain, which are due to demand fluctuations, lead-time delays, sale fore-
casting, etc., In particular, they are not able to deseribe, analyze, and fine
remedies for a major problem in supply chains, which recently became known
as “the bullwhip effect”, [6]. The orders at the upstream of a supply chain
have been observed to exhibit a higher level of variability than those at
the downstream, which is nearer to the customer, [14]. [5] identified four
major causes of the bullwhip effect. First, Demand forecasting updating,
Secondly, Order batching, Third, Price fluctuation, and Finally, Rationing
and shortage gaming.

A model that can capture the dynamic of the supply chain system is a
key to make a good decision in supply chain system management. According
to [4], multi-stage modecls for supply chain design and analysis can be di-
vided into four categories, by methodology, 1.) Continuous time differential
equation models 2.) Discrete time differential equation models 3.) Discrete
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Material Flow

Tismintion

Figure 1.1: Supply Chain System

event simulation systems 4.) Operational research techniques

Control theory provides sufficient mathematical tools to analyze, design
~aiid ghniilate " dynaiiie systews. 6] presented d veview of advaiced o
trol methodologies to a supply chain management system. The majority
of the paper focus on the application of classical control to supply chain
management problem, where most of the analysis concerns linear systeimns
and is performed in the frequency domain via Laplace transfer function and
Z transfer function. The next session of the paper review the application
of advanced control theory, optimal control, where the system dynamics
are analyzed in the time domain and are described by state space models.
The rest of the paper review the application of Model predictive control,
robust control and approximate programming, State space model is a use-
ful model in a dynamic control system. The state-space model or dynamic
linear model, in its basic form, employs an order one, vector anto-regression
as the state equation, [12],

2= Az +wy {1.1)

where @y is a state vector, A is pxp state matrix , for time points £ =
1,2,...,n Assume the wy arve pxl independent and identically distributed,
zero-mean normal vectors with covariance matrix Q. The observation equa-
tion is

iy = Crxy + vy (1.2)

where C} is a qxp measurement or observation matrix. The additive chserva-
tion noise v is assumed to be white and Gaussian with gxq covariance matrix
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R. Aviv (2003), proposed a time-series framework for supply chain inventory
management where demand process can be described in a linear state space
form. Inventory is managed at various points of the chain (members), based
on local information that each member observes and continuously updates.

Kalman filter technique is used fo calculate minimum mean square er-
ror (MMSE) forecasts of future demands at each location of the supply
chain. Inventory levels and the order sizes determine by updated forecast.
A state space model of a multi-node supply chain is presented in [3]. The
bullwhip effect (demand amplification) is characterized using the proposed

statespace-medel-A-multi-nede suppl gontic al-propor-
tional inventory-replenishment policies. A state of supply chain is modeled
by Augmented Trans-Net model, extend version of Tran Nets [16], with opti-
mal estimation techniques of the extended Kalman filter. As a result, a less

complex buf more accurate model of state of supply chain is constitcted,
[15]. A supply chain consists of 7 place nodes and 3 transition nodes is mod-
eled using the proposed method. The values of 2 place nodes are available
from measurements that include the error variance and the measurement of
one of the interest place node is missing. The Augmented Tran Net models
with extend Kalman filter is used to estimate the value at those 3 interest
place nodes. In conclusion, a proposed model is able to estimate the state
of supply chain based on incomplete data and errors in data.

- = -The Spativ=TFemporal-State Space (STSS) model is-studied and-presented- - i e

by [7], since the state space framework is more convenient and widely used
in control systems design. The spatio-temporal system can be observed as
a set of spatially arranged and correlated time series, which motivates the
use of a spatio-temporally indexed hidden, variable, [8]. In [9], the Spatio
Temporal State Space (STSS) model, is used to model a smart structure,
the smart beam. The defined neighborhood structure is introduced in order
to describe the spatiotemporal neighborhood relationship. The proposed
estimation method, the EM algorithm in association with the Kalman filter
and smoother, is used to model smart structures based on the 3TSS model.
From above review, the Spatio-Temporal State Space model can be used
as a supply chain model since the basic structure is match. In more details,
the structure of each echelon in supply chain match with the neighborhood
structure in STSS model and also, in each echelon, the demand is collected
as a time series. The EM algorithm associated with Kalman filter and
smoother is then used to estimate the parameters of the proposed model.
The-structure-of the paper-is-as follows. -In section 2; spatio-temporal
model is explained based on the work of (7], (8] and [9]. In section 3, intro-
duction of neighbourhood structure associate in spatio-temporal state space
model is presented. These can, later, adapt to use in modelling of a dynamic
supply chain system. Finally, the parameter estmation procedure based on
EM algorithin associate with Kabman Filtr and Smoother is proposed. The
parameters of the model can be estimated despite an incomplete data.
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1.6 Research Methodology

The research firstly developing a spatio-temporal state space model with
Kalman filter technique and EM algorithm, then doing series of simulation
through the MATLAB software. Secondly the examples of supply chain
system, over the area of lower North Region of Thailand, are selected. The
data is then collected from these systems. Finally, the collected data is
applied into the model. It will be run and analyzed tlwough the MATLAB
software in order to generate inventory replenishment policy.
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—Spatio-Temporal-State-Space

In this chapter the detail of Spatio-Temporal State Space mode! is presented.
Spatio-Temporal State Space model is developed from state space model
which use to model the dynamic systems, for example, motor control system,
chemical process system.

2.1 Spatio-Temporal State Space Model

In supply chain, the data can be collected at several locations throughoug_ S

the structure of suf)'p'li; "c'.l'lé'iiimé};é'te'xn'. The overall éys'teiii can be viewed
as a spatio-temporal system since the relationship between each location
and the time series data given by each location can be used to model the
system. For these reasons, the supply chain system can be viewed as spatio-
temporal system and the spatio-temporal based model is an alternative way
of modelling supply chain system. In this section, the spatio-temporal state
space model is introduced. The spatio-temporal systetn can be observed as
a set of spatially arranged and correlated time series which motivates the
use of a spatio-temporally indexed hidden variable, [7], [8]. Let n, denote
the maximum temporal antoregressive order of the process and let x(s, )
be a hidden variable at a specific spatio-temporal location, s € Sand t € T
where S is spatial domain and 7 is the temporal domain, The dynamics of
the hidden field are represented by

Tipl = Axy + Wuy (2.1)
where z; € R?+*1 denotes the state vector

xp = [w(s1,t) x(s2,t) ... x(sn,,1)
w(si,t —1) a(sg,t = 1) ... a(sn, t — 1)

(s, t —me+ 1) x(se,t —ne+1) ...
&(sn,,t —ne+ 1|7 (2.2)

7



8 2, SPATIO-TEMPORAL STATE SPACE

where ny is the number of observation locations. Partitioning the state
vector into current and past hidden variables

@ = [1—"] (2.3)

fof}
where the partition

e = [w(s1,t) @(s9,8) ... (50, 1)]" (2.4)

—randrtheremainder-of-therstate-vector-isTdenotedras-Zratlowing-theemodel—=—=
to be written

HTAS /—i:L‘t,_1+wg (2.5)
Ep = [ 0]z (2.6)

The state matrix is arranged in the following canonical form

A
Fie I:I 0] (2.7)

where A € R™W*™ contains parameters and 7,0 denote the identity and
zero matrices, respectively, such that A € R"*"  The n, x n, matrix
W = [{ 0]Y maps the state disturbance wy € B"»*! onto the next state.
The disturbance on the state is modelled using Gaussian white noise with
distribution w; ~ N0, Zy) where 3J,, € Ry,

The mapping between elements of the hidden field and the observed field is
given by

ye = Cxr + v (2.8)
where £ € 7 C Z denotes discrete time. The n, X 1, observation matrix
C = ln,xn, Onyx(n;—ny)| i constructed so that the current output is a

noise corrupted version of the hidden variables &;. The observation vector
yy € R ig formed from the current value of the time series associated
with each observation location

v =[y(s1,8) - y(sn,, )] ey

where s; € § is a spatial location. Observation noise is denoted v; & R"*!
and is modelled by Gaussian white noise with distribution v ~ N(0,%,)
where 2, € R™Ww*M,

The collection of states up to time n is defined as X = {x1,...,zn}, the
collection of observation up to time n is defined as Y = {yi,..., ys} and the
collection of both the states and the observations is denoted Z = {X,Y'}.
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Produet

Process 2

o)

.,m,i.um\.ma(umi =4 ? e \llh LT Ty o= ?

P'rocess |

L2 (Rnwhlntcrial-Zj (Rm Material - 1

]

L1

L....)

-.Figure 2.1: . Three tiers supply.chain system...

2.2 Neighbourhood Structure

The relationship between locations in a neighbourhood is introduced into
the model via the structure of the A matrix. This relationship structure
amongst neighbourhoods inside the A matrix is then mapped to unknown
parameter space, 6, [9].

vec(A) = Af (2.10)

The principle of selection of neighbourhood structures is introduced here by
configuring the order of the relationship in time and space domains and also
the direction. Concerning the directional aspect, there are two directions,
one is the forward dircction and the other is the backward direction. The
direction only applies to the domain of space. Let us consider the spatio-
temporal state space model representation of the example supply cham
three-tiers supply chain-system, as shown in Fig. 2:1 ) i

From the example of three tiers supply chain system, the system can be
represented using 1 dimension of locations arrangement, as shown in Fig.
2.2

The data are assumed to be correlated with space-time in either direction
or both. The order is defined by how far the response from that particu-
lar location goes on to affect the neighbourhood in both space and time.
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Provess | Process 2

Figure 2.2: Forward flow of materials

Figure 2.3: Backward flow of information

t-1 t

Figu1‘e 2.4: Model structure for three tiers supply chain éysfem o

The time order means how many steps back in time the response of that
particular location has an effect on itself and its neighbourhood.

The configuration shown in Fig. (2.4), corresponds to the structure of
the A matrix as,
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@11 0 @3 0 0

0 99 (193 0 0
1‘1 = (31 a3z ass 0 a3y
0, 0 0 ag4 «as
0 0 as3 as4 ass

(2.11)

The diagonal of matrix_A corresponds to the autocorrelation effect of

the time series at that particular location. The upper 'part is the result of
the forward directional spatial correlation, which represent the information
of materials. The lower part is the result of the backward directional spatial
correlation, which represent the information of order.
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T'his chapter deals with the parameter estimation method for Spatio-Temporal
State Space model.

3.1 Modelling of STSS Model and EM Algorithm

Considering the spatio-temporal state space model, represented by equation
(2.1) and (2.8), the complete data log-likelihood can be written in terms of

. the model’s component densities giving, {[7]],

o
Le(X,Y) = inpleo) + ) In p(yelar)
t=1
T T
s Z In ]J(.’Et.}.l |.’Lt) + Z in p(:ﬁt+1 |1L;) (3.1}
=0 t=0

where the component densities are written as
plae) = N(pg, >0),
PEdleer) = N{Azi1, Zw),
p(E]@e—1) = 6(&; — [T Olzi—1),
P(yelz) = N (Cae, By).

Each term of the model’s component densities can be evaluated, ignoring
constants. The complete log-likelihood of the spatio-temporal state space
model can be written as,

1 1. o '
Lo(X,Y) = —inlZo] — ;(zo - 10)" g (o — peo)
n - - B -
3 In|B,] - 3 Z('Ef — Awe ) Y'E @ — Aza)
t=1

7 1 o
5 D] -5 > (e —~ Ca) 'S5 (g — Ca) (3.2)
i=1

13



14 3. ESTIMATION

3.1.1 E-step

In this step, the expectations for the state sequences are calculated given
the current parameter set, ¢, and the observation data, ¥,,. From the above
definition and the definition of the state error covariance equation, the expec-
tations ::(,;IL) € Rtoxnr H(l D ¢ mrexne and :;(,;?,;D) € RWw*"z aye calculated

from the following equatlons,

n n
G =" Bplel 2 1 = Y (PR + @adly) (3.3)
=1 =1
_ n - n B . .
EOD =3 Bolapal™) = > (PP + &) (3.4)
=1 =1
i = ZEB’ apaf Z(PH |+ Bl 1) (3.5)
=1

where P/ denotes the first ny, rows of the smoothed state covariance, Py
denotes the first n, rows of the lag-one covariance and z} denotes the first
ny rows of smoothed state sequence.

3.1.2 M-step

T After evaluating the expectations, the Q-function becontes a deterministic ™

function of 8, which can be maximised, given an estimated state sequence.
The Q-fumetion for the spatio-temporal system represented in equations
(2.5}, (2.6) and (2.8) can be written in the following form,

QW) = B{2 Ly(X, Y)|Y,, ot~ (3.6)

where the complete log-likelihood, Lg(X,Y), is presented in equation (3.2).
In order to express the log-likelihood in a more compact form, the trace
operator is applied. Replacing equation (3.2} into (3.6), the  function in
equation (3.6) can be rewritten as

QOO = —nfXo| — tr{%g [P + (2§ — mod(ef — o)}
—n {n|Zy|
—tr{Z7'[EGY — SRV AT — AER)T + A=) AT}
—n nf%,|
~tr(S;" Z (e = Caf) (g — Ca)' + CPFOIT) 3.7)

. (0 (1,1 —(0,0
where the expectations .:&-x‘ } € R=Xnz :&5 ) € RA*Mx and & _;(m ) € R

are calculated by the following equations,

LEB’['H g :Z(Ptril + & 18{,) (3.8)

t=1
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it n
S0 =" Eglafap®] = 3 (PP + &t} (3.9)
=1 =1
n T n .
B0V =" Eplefal 11 =D (P, + #dT ) (3.10)
=1 t=1

where & denotes the expects value of x.
From the basic trace operator theorem, #r(A) = tr{AT) and the property
of transpose {AB)! = BY AT it can be shown that

t,r(ég:(l,l)['i*l“) _ tr((_é‘(z_(;;l)ﬁiv)q.)
tr(AEGNT)

Réplaeing t-r{é;(,;?v'l)/izv} with tv'{/i(ég;l))'r} in equatiou (3.7) then leads to

QUEDIBID) = o] ~ (5§ + (off = 0)(ah = o))
—n |y —tr{S; LY — 2 A(ZCNT 1 A=V AT}
—n In|%,|

n
A{ET ) e — O~ Cef)' + CPRC} (3.11)
=1

state uncertainty covariance(Z,) and neighbourhood structure are known.
The unknown parameter set is then defined by § = {A}. Replacing the
complete log-likelihood equation into the () function equation gives

\e
folA) = Elo— 3 (wy— A1) 25 i — Awet)] (3.12)
=1

where the guantities that do not depend on an unknown parameter, 8, are
lumped into the constant «. Based on the properties of the trace operator
and the definition of expectations, equation (3.12) can be written as,

fold) = a—tr{S,'[—24ERN" + AN AT}
= a4 2r{EGNY LAY - 2LV ATE 1A (3.13)

Further properties of the Kronecker product, the vectorise and trace oper-
ators are used to manipulate equation (3:13);-[[?]]. The first component of
the equation can be written as

tr{(EODTE 1 A) = pee(NT(ELY & £, Yvec(A) (3.14)
and the second component can be written as

tr(ELVATY LAY = vee(A)V(EOD © 55 Dvec( A) (3.15)

Assume that the observation matrix(C), observation noise covariance(Z,},
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replace the equation (3.14) and (3.15) into equation (3.13)
fold) = a+2vec()T(ELY ® £ Yvee(A)
—vec{ A)T (B @ B3 wec(A) (3.16)
where ® denotes the Kronecker product, see Appendix (77) for more de-

tails, and all the independent parameters are lumped into the constant a.
Replacing the term A with vee(A) = Af, gives

fold) = o+ 2vee(DT(ESY g n Al

= EL Rz Al

In order to maximise the function, differentiating the fo{A4) function with
respect to 8 gives
d folA = N _ - o
—% = 2wee(NT(ELY @ D HA —20TAT(ELY @ 2.1)A  (3.18)
With the above equation being set to zero, the estimate of the unknown
parameter ¢ = {A} that locally maximises the Q-function of the spatio-
temporal state space model is given by

6 = (AT(ERD @ 2,HA) TATERT @ Xy ee() (3.19)

_ Note that the matrix (AT(E8” @ £,1)A) is invertible.

In some applications, the state uncertainty covariance and observation

noise covariance are assumed unknown. The estimation of state uncertainty
covariance can be performed by maximising the log-likelihood function with
respect to state uncertainty covariance matrix, given the Q) function of the
form,

QD 80y = a ninl%,l
=tr{Z, [EG - EGUAT = AGRY)T
+A=(LD AT)} (3.20)

where o gathers all the terms that do not depend on state uncertainty
covariance.

3.2 EM Algorithm

Given an incomplete data set, the estimation of dynamic systems can be
done using the EM (Expectation-Maximisation) algorithin which first intro-
duced by [1]. Parameter estimation problem for state space models which
is solved by EM algorithm was presented by [11]. The EM algorithm in
conjunction with the conventional Kalman smoothed estimators are used to
estimate the parameters of the state space model by maximum likelihood.
The EM algorithm for spatio-temporal state space, 9], is presented in Table.
3.1




3.2. EM ALGORITHM 17

Table 3.1: The EM algorithm for state space models.

Initial:

e statessequence;mrg
parameter set §7)

"EM algorithm:
E-step:
The calculation of estimated state sequence, given the observed data:
Kalman filter: Prediction
Calculation of a priori state estimate !~
Calculation of the prior state error covariance Pf~!

1

Kalman filter: Correction
Calcilation of a posteriori state estimate 2§~ 77
Caleulation of the posterior state error covariance Pf

RTS smoother:
Calculation of the covariance of the smoothed state P

Lag-one covariance smoother:
Calculation of the lag one covariance of the smoothed state FJ,_,

The calculation of the expectation of state sequence:

=TT 3 —ITL y I

M-step:
New parameter set , 801 ig caleulated by maximising the Q-function

Repeating until the stopping eriteria is reached
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4

—Spatio-Temporal-State-Space—
for Supply Chain System

In this section, the Spatio-Temporal State Space model for supply chain
system is discussed in detail. Two simulated example of simple supply chain
system are explored and analyse. Finally, the spatio-temporal state Space
model is utilised based on collected data.

system

The concept of dynamic programming has been use in formulating, analysing
and solving the inventory problem. For a single-echelon, single product
sytem where the problem is to optimally select orders u(t) of the product
(control variable) in order to meet uncertain demand d(t) (exogeneous dis-
turbance), while minimising the total expected purchasing, inventory and
shortage cost. The dynamics of the system are described by the following
stat space equation|6]:

z(t -+ 1) = «(€) +ult) —d() (4.1)

where x(t) is the inventory level at time #/*. In this study, based on
state space approach for supply chain system, space domain is considered
and included into the mathematical model. The proposed model capture
the dynamic of supply chain system in both time and space domain.

Consider supply chain system example, as shown in Fig, 2.4, which can
be represented using spatio-temporal state space model as

wi(t) = Azi(t — 1) + Bus(£) — Dad(t) (4.2)

where state matrix (A), which capture the dynamic of the system, and state
vertor {z;(t)) at location 7 is arranged in the form of eq. (2.7} and (2.3)

19
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=

Process 1
L2 { Raw Material 2 Sub-Product 3 L3
| Process 2
rx

e e e bt I ..... ‘ ..... T
| |
L4 CRaw Material 4 ) (Ra\v Material 5 ) L5

Figure 4.1: Supply Chain System Example 1+

respectively, ui{t) = [ug(t, 7)), ua(t, 72),uz(t, m3)swa(t, 1a), uslt, 75)]7 is the
order plan at time t at each locations, 7 is defined as a delayed and d(%) is
the demand of the product at time £. In this study, time delay is not taken
into account. From the matrix A in equation 2.11, neighbourhood structure
formulation, the 4 matrix can be written as follow,

aii aiz a3 0 0
asy 22 0 0 0

A = |az; 0 az a6z ass
0 0 ay5 a0

0 0 asz3 0 ass

(4.3)
The matrix B and Dy is shown as follow, respectively,
1000 0
10000
B = 110000
00100
00100
{4.4)
1
0
Dy = 0
0
0

(4.5)
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Considering at each location the spatio-temporal state space equations are
presented as follow, respectively,

T (1) = enz(t — 1) + apee(t - 1) + aiazs(t — 1) + wi(t) — di(t)  (4.6)

To(f) = anz (f — 1) + ageaa(t — 1) + uy (€) (4.7)

ealt) = e {t="1)-kasanalt =1} azets{t=1)+Fazszs{t =1} L ua{f) (4.8}

2

24(8) = agzzs{t — 1) 4 agyza(t — 1) + aqsas(t — 1} + ua(t) (4.9)

x5(t) = aszxs(t — 1) -+ assas(t — 1) + us(?) (4.10)

The measurements, with noise, available at location 1 and 3. The map-
ping between elements of the hidden field and the observed field is given by

yi(t + 1) = Cai(t) + v(t) (4.11)

where matrix C' is shown as follow,

T LY
0 00 0 C
¢ = 1001 00
00000
G 00 00
(4.12)
As a results,
y1(t) =z (t — 1)+ oi(t) (4.13)
y3(t) = wa{t = 1) + wa(t) (4.14)

Another example, the supply chain system with more complex structure
as shown in figure 4.2. A matrix, with the consideration of space and time,
can be written as follow,

rﬂ-ll @iz adi3- 0 0- 0

[+ 5 N (] 0 0 0 0
~ ast O azz asq ez agg

A =

0 0 143 g4 0 46

0 0 a3 0 ass as

8 0 ass ags ass Gss |

(4.15)
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L5 (Raw.\ta:eria] 5 ) (Raw Matenal 6 ) L6

Figure 4.2: Supply Chain System Example 2

Considering at each location the spatio-temporal state space equations
are presented as follow, respectively,

@) =anm(t -1 +anw(t—1) fagus(t - 1) fult) ~d@#) (416

xo(t) = agx (€ - 1) + aggae(t — 1) + uy (t) (4.17)

T3 (t) = aziTq (t— 1 )+033(L’3 (t—l)—l—a34{l}4 (t—1)+a35x5 (t—1)+a36$5 (t*" 1) +usz (t)
(4.18)

T4 (t) = agpz3(t— D +apuas(t — 11+ apzs(E—1) +a45$5(t — 1) +ug(t) (4.19)
x5(t) = asswa(t — 1) -+ asgzs(t — 1) + asere(E — 1) + us(f) (4.20)

zg(f) = (153:1:3(?5—-1)+ﬂﬁ4:1:4(t—1)+a55:1:5(t—1)+0653:ﬁ(t— 1) +usg(t) (4.21)

The measurements, with noise, available at location 1 and 3. The map-
ping between elements of the hidden field and the observed field is given by

it + 1) = Cxi(t) + v(t) (4.22)
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where matrix C is shown as follow,

1 0 0 0 0
0 00O0O
¢ = |00 100
00000
00000
(4.23)
As-arestits;
yi1(t) = x1(t — 1) + v1(¢) (4.24)
ys(t) =aa(t— 1) + v3(l) : B ¢ %:15)

4.2 Simulation

The simulation was done using MATLAB software, source code available in

Appendix A. There are two sections in simulation step. First, the simulation

of toy model, in this section the toy model which mimic the supply chain

. system js used to simulate the ability of proposed technique. Secoudly, the
collected data from a casc study is used to simulate the performance of

proposed technigue.

4.2.1 A toy Model, Supply Chain System Example 1

In this section, a duplicated supply chain system is generated to mimic the
behaviour of the real system, a toy model. Measurements of the quantity of
the product are measured in location Lz and Lg, as shown in Figure 4.3 and
4.4 respectively. Measurcment at location Lg is generated using N(50, 3)
with white noise and location Ls is generated using N(50,2) with white
noise.

Inventory levels at location Lg, Ly, Ly are input of the system, shown in
figure 4.5,

Parameters in A matrix, estimated A matrix, caleulation is done by using
the algorithm in section 3. @ function is shown in figure 4.6 and estimated

A matrix is shown in figure 4.7.

4.2.2 A toy Model, Supply Chain System Example 2

Tu this section, a duplicated supply chain system is generated to mimic the
behaviour of the real system, a toy model. Measurements of the quantity of
the product are measured in location Lz and Ls, as shown in Figure 4.8 and
4.9 respectively. Measrement at location Lz is generated using N(140, 4)
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Figure 4.4: Quanti

with white noise and location L is generated using A{160,2) with white

1oise.

Inventory levels at location Ly, Ly, Ls are input of the system, shown in

figure 4,10,

Parameters in A matrix, estimated A matrix, calculation is done by using
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Figure 4.5: Input, inventory level of supply chain system, Example 1.
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the algorithm in section 3. Q function is shown in figure 4.11 and estimated
A matrix is shown in figure 4.12.
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estimated A (EM algorithm)
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>> |
Figure 4.7: Estimated A Matrix, Example 1.
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Figure 4.8: Quantity of the product at location L;, Example 2.

4,2.3 A case study

In this section, data collections are done within the selected clectronic part
assembly company. Selected electronic part, a final product, are comprised
of 3 raw materials and 1 sub-part. Inventory level for each material is
collected and use as an input of the systemn. Number of part both final
product and sub-part are recorded and use as a measurement of the system.
All collected data can be shown in figure 4.13, 4.14 and 4.15.
] Inventory levels at location Lo, La, Ly are input of the system, shown in
figure 4.10,

Parameters in A matrix, estimated A matrix, calculation is done by using

the algoritlim in section 3. The result is shown in figure 4.16.
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Figure 4.12: Estimated A Mairix, Example 2.
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The spatio-temporal state space model is proposed as a dynamic model of
supply chain system since the basic structure is match. The information
at each location can be integrated into a model via the structure of the
spatio-temporal state space model. The model structure integrates flow of
information in one direction and material flow in another direction. These
can be represented in upper section and lower section of A matrix. In the
diagonal of A matrix, the relationship between inventory level at previous

__time step and current situation is captured. The EM algorithm associate

with Kalman Filter use to estimate the parameter i A matrix, The re-
sults show that the algorithm able to estimated parameters even the data,
inventory level and/or quantity of parts, is contaminated with noise.

Recommendations

In this study, the relationship of inventory level and quantity of part and/or
sub-part are considered. In estimation step, the estimated A matrix can
become unstable. This problem arvise time by time. The further study can
explore, how to gnarantee the stability of A matrix during estimation step.
Another issue, since the process time associated with time delay is not con-
sidering in this study. Further explore area is that, how can we integrate such
kind of information into spatio-temporal state space model? To completely
capture the dynamic of supply chain system all information and uncertainty
have to be captured, analyse and able to use those information in order to
control the system. The mathematic model that can-mimic the real system
can be used as a power tool for supply chain management.
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clear all
close all
cle

resY=realdd;

resY Y=outpp(resY);
%load resYYT
%ploty(resY);

icomp=1;

stssscl.m

My stss=stss(resY Y);
mystss—testmodelr(mystss,icomp);

Yomysiss. A

%EM algorithm
[nstored mystssem]=emc(niystss);

disp(‘estimated A (EM algorithm)')

disp(mystssem.A)

%mysissem
%finalsw=mystssem.Sw
%finalsv=mystssem.Sv

yr=mystssem.Y,



€me.m

function [lstore, sys]=emc(sys)

% function to calculate the maximum likelihood parameter estimates of the
% state space model object sys. Returns the sys object with updated state
% and parameter estimates.

%o

% sys is expected to have at least nx and Y defined. Will overwrite

% anything else.

% store initial system for debugging
sysinit=sys,

1f(1)=0;
qf(1)=0;
lold=0;

threshold=1*10°(-5);

% iterate
it=1;
count=1;
criteria=1;

%Initial state sequence and its covariance
POf = sys.P;

PO=POf(:,:,1);

POini=P0;

%put measurement into x0
Yoyx=sys.Y/(10°(3));
YoxhatO=[yx(:,1); yx(:,2)1;

%random generation x0
xhatO=randn(sys.nx,1); %XO0 - N(0,1)

xhatQOini=xhat0;
while criteria
Yoit
Abef=sys.A;
Yoswt=eig(sys.Sw)

Yosvt=eig(sys.Sv)

% E step
[sys,Ifilter]=ksmooth(sys,P0,xhat0);



lincom(it+1)=Ifilter;
if lincom(it+1) < lincom(it), warning(|'negative change in I: ' num2str(lincom(it+1)-lincom(it))]),
end

%update PO x0 for next iteration.
%P0Of = sys.P;

%PO=POf(:,:,1);

%%oxhat0f = sys. X;

%xhat0 = xhatOf(:,1);

% M step

“[sysqfunc]=maximise(sys;P0,xhat0,P0ini;0);

gf(it+ )=gfunc;

if qf(it+1) < gf(it), warning(|'negative change in q function: ' num2str(qf{it+1)-qf{if))]), end
Aaft=sys.A;

Yofigure(3)
Yohold on
Yplot(it,qfunc,'™")

I=complikelihood(sys,xhat0ini,POini,xhatOini);

Istore(count)=l;

if'lold > 1, warning(['negative change in comp likelihood: ' num2sir(l-fold)]), end
lold=l;

cunstable=max(abs(eig(sys.A)));
if cunstable>1

error('unstable A matrix')

Yeestimated state lead to unstable A matrix
end

count=count+l;

normbf=norm({Abef);
normaf=norm(Aaft);
ccheck=abs(normbf-normat);
%Abef-Aaft

Ycriteria=abs(l-lold}>threshold;
Y%criteria=abs(If(it+1) - 1{it))>threshold;
Y%criteria=abs(qf(it+1) - qf(it))>threshold;
criteria=ccheck>threshold;

it=it+1;



% put a limit on the number of iterations
if it>50, criteria=0; end

end
Yoplotres(qf,lstore,lincom);
Y%plotql{qf,lstore);

end

function plotql{qf;lstore)

figure

“Tor =2 engh(qh

afp(-D=(qf();
end
plot(qfp)
title("Q function’)
xlabel('"No. of iteration')
figure
for i=2:length(Istore)
lep(i-1)=(Istore(1));
end

 olot(lep)

title('The complete log-likelihood function’)
xlabel('No. of iteration')
end

function plotres(gf,Istore,lincon)

figure(5)

subplot(3,1,1)

for i=2:length(qf)
qfp(i-1)=(qf(i));

end

plot(qfp)

title('Q function') -

subplot(3,1,2)

for i=2:length(Istore)
lep(i-1)=(Istore(i));

end

plot(lcp)
title('L, complete”)

subplot(3,1,3)
for i=2:length(lincom)
Ifp(i-1)=(lincom(i));



end

plot(lfp)
title('L"

save ldata.mat Istore;
end




testmodelr.m
function sys=testmodelr(toy,icomp)
%% set up the testing model

swi=1%10°(-1);
svi=1#10°(-3);

Y%icomp
switch icomp

case 1

Yent=input('Enter nt :=");
nt=1;

ny=toy.ny;
nx=nt*ny;

Y%test=stss(nx,ny);
test=stss(toy.Y);
i test.nx=nx;

~ Y%test. Y=toy.Y;,
test.U=zeros(0,toy. T);
test.B=toy.B;

%test. A=afixbeamb(icomp,nt,ny);
test A=[10100;01100;11101;0001 1001 11];

test=mappingd(test);

test. A={];

test. P=1000%*eye(nx);

S%otest. Sw=1*10"(-1)*eye(ny);
Y%test. Sv=2*10"(-4)*eye(ny);
test.Sw=swt*eye(ny);

f . test. Sv=svt*eye(ny);
' test. W=[eye(ny,ny); zeros(nx-ny,ny)|;
test.C=[eye(ny) zeros(ny,nx-ny)|;

%test.C=[00000;00000,60000,00000,00001F;

test=myinitialise(test);

Y%test.A=[ab ; eye(nx-ny) zeros(nx-ny,ny)|;
Astab=test.A;

disp(['max cig of test model: ' num2str{max(abs(eig(Astab))))|)



nx=nt*ny;

Yotest=stss(nx,ny);
test=stss(toy.Y);
fest.nx—nx;

%test. Y=toy.Y;
test.U=zeros(0,toy.T);
test.B=toy.B;

test. A=afixbeamb(icomp,nt,ny);
test=mappingd(test);
test. A=[];

test.P=1000%eye(nx);

Yotest. Sw=2%10"(-2)*eye(ny);

Yotest. Sv=8*10"(-3)*eye(ny);

test. Sw=swt*eye(ny); -
test.Sv=svt*eye(ny);

test. W=[eye(ny,ny); zeros(nx-ny,ny)|;
test.C=[eye(ny) zeros(ny,nx-ny)|;

test=myinitialise(test);

Yotest. A=[ab ; eye(nx-ny) zeros(nx-ny,ny)l:
Astab=test.A;

disp(['max eig of test model: " num2str(max(abs(cig(Astab))})])

while max(abs(eig(Astab))) > 1
error{'unstable ini system’)
end

case 4

%nt=input('Enter nt :=');
nt=3; - e
ny=toy.ny,
nx=nt*ny;

Y%test=stss(nx,ny);
test=stss(toy.Y);
test.nx=nx;

Y%test. Y=toy.Y;
test.U=zeros(0,toy.T);
test. B=toy.B;



test. A=afixbeamb(icomp,nt,ny);
test=mappingd(test);

test. A=[];

test.P=1000*eye(nx);

Ytest. Sw=2*%10"(-2y*eye(ny),

Yotest. Sv=8*10"(-3)*eye(ny);

test. Sw=swit*eye(ny);
test.Sv=svt*eye(ny);

test. W=[eye(ny,ny); zeros(nx-ny,ny)|;
test.C=[eye(ny) zeros(ny,nx-ny)];

test=myinitialise(test);

%test. A=[ab ; eye(nx-ny) zeros(nx-ny,ny)];
Astab=test.A;

disp(['max eig of test model: ' num2str(max(abs(eig(Astab))))})

while max(abs(eig(Astab))) > 1
error('unstable ini system')
end

case 5

Ynt=input('Enter nt :=');
nt=4;

ny=toy.ny;

nx=nt*ny;

Yotest=stss(nx,ny);
test=stss(toy.Y);
test.nx=nx;

%test. Y=toy.Y;
| test.U=zeros(0,toy.T);
_— test. B=toy.B; -

test. A=afixbeamb(icomp,nt,ny);
test=mappingd(test);

test. A={};

test.P=1000%eye(nx);

Yotest. Sw=2*10"(-2)*eye(ny);

Ytest. Sy=8%10"(-3)*eye(ny);
test.Sw=swt*eye(ny);
test.Sv=svt*eye(ny);

test. W=[eye(ny,ny); zeros(nx-ny,ny}[;
test.C=[eye(ny) zeros(ny,nx-ny)|;



test=myinitialise(test),

Y%test. A=[ab ; eye(nx-ny) zeros(nx-ny,ny)];
Astab=test.A;

disp(['max eig of test model: ' num2str(max(abs(eig(Astab))))])
while max(abs(eig(Astab))) > 1

error('unstable ini system’)
end

case 6

Yent=input('Enter nt ="
nt=3;

ny=toy.ny,

nx=nt*ny;

Yotest=stss(nx,ny);
test=stss(toy.Y);
test.nx=nx;

Ytest. Y=toy.Y;
test.U=zeros(0,toy.T);
test.B=toy.B;

test. A=afixbeamb(icon /)5
test=mappingd(test);

test. A={];

test.P=1000*eye(nx);

Yotest. SWw=2*10"(-2)*eye(ny);

Yotest. Sv=8%10"(-3)*eye(ny);
test.Sw=swt*eye(ny);
test.Sv=svt*eye(ny);
test. W=[eye(ny,ny); zer os(nx Ily,ny)]
test.C=[eye(ny) zeros(ny,nx-ny)|;

test=myinitialise(test);

Yotest. A=[ab ; eye(nx-ny) zeros(nx-ny,ny)];
Astab=test.A;

disp(['max eig of test model: ' num2str(max(abs(eig(Astab)))}{)



whilc max(abs(eig(Astab))) > 1
error('unstable ini system")
end

otherwise
error('select 1-51")
end

%otest.P=100%eye(nx);
Yotest. SW=2%10"(-2)*eye(ny);
%test. Sv=8*10"(-3)*eye(ny);

%% retun test model
sys=test;



myinitialise.m
function sys=myinitialise(sys)

% this function initialises the system object, depending on the conients of
% sys

if isempty(sys.Y);

% if no data exists (sys.Y is empty), then we should generate a toy
% model and populate the Y and X sequences.

disp('no data exists');

n flag=1; % there should be a neighbourhood defined
u flag=0; % there should be no input

% generate toy model
Y%sys=toy(sys,n_flag.u flag);
sys=mytoy(sys,n_flag.u flag);

Yesimulate
sys=simulate(sys);
| elseif isempty(sys.A)
% if data exists but no parameters we should use the data to initialise the system
% object.

% old method: run least squares (o get initial estimate, then smooth
% sys=leastsquares(sys):

% smooth to get state estimates, P and K

% sys=ksmooth(sys);

% better method, populate the state, fake a P and a K, then get

Y% parameter estimates with maximise using the neighbourhood, then
% smooth to get a proper Pand K

disp('data exist sys.Y and no parameters sys.A");

Y=sys.Y;
T=size(Y,2);
" sys. T=T;
NX=8ys.nx;
ny=sys.ny;
dt=nx/ny;

X=1;



for i=dt:-1:1;
X=[X; Y(:,i:T) zeros(ny,i-1)];
end

sys. X=X,

% generate a P matrix by just replecating the intial P
P=sys.P;

sys.P=repmat(P,[1,1,T]);

% use the zero matrix for an initial K
sys.K=zeros(nx,ny,T);

““%calculate Aini
sys=maximiseini(sys);

% error catching
if sum(abs(eig(sys.A))>1), error('unstable A matrix'), end

else
% if data exists, and the parameters exist then just set up X and P and
% K without running maximise

disp('parameter exist')

Y=sys.Y;
T=size(Y,2);
sys. T=T;
NX=Sys.nx;
ny=sys.ny;
dt=nx/ny;

X=[1;

for i=dt:-1:1;
X=[X; Y(,i:T) zeros{ny,i-1)];

end- - e
sys. X=X;

% generate a P matrix by just replecating the intial P
P=sys.P;

sys.P=repmat(P,[1,1,T]);

% use the zero matrix for an initial K
sys.K=zeros(nx,ny,T);

end



