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ABSTRACT 

  
Mine reclamation is essential as the extractive organizations are bounded by-

laws that have been established by stakeholders to ensure the restoration of mined areas. 

This study focuses on the application of Unmanned Aerial Vehicle (UAV) 

photogrammetry and deep learning. The use of a UAV improves safety compared to 

other surveying systems in mines. In addition, monitoring utilizing drones delivers fast, 

real-time results, and minimizes human exposure in unsafe ground conditions at mines 

area. UAVs have revitalized the mining industry through Artificial Intelligence. Deep 

learning reignited the pursuit of artificial intelligence towards machine to perform 

related tasks in an automated way. The recent advances of Deep learning (DL) for 

computer vision tasks, especially for Convolution Neural Network (CNN) models, the 

potentials the automatically classification of land cover using UAV Photogrammetry. 

Orthophoto and Digital Surface Model (DSM) are the photogrammetric results used for 

land cover classification. 

This research aims to employ the classification of land cover for monitoring 

mine reclamation using DL from the UAV photogrammetric results (orthophoto and 

DSM) at Mae Moh mine in Lampang, Thailand. Two vegetation areas were selected 

(Pattern and complex) to perform the classification using DL with CNN also, the height 

of the trees was calculated using results from UAV photogrammetry.  The land cover 

was classified into five classes, comprising: 1) trees, 2) shadow, 3) grassland, 4) barren 
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land, and 5) others. The effectiveness of both datasets was examined to verify whether 

orthophoto or combination of orthophoto with DSM for land cover classification. 

Land cover classes were, thus, classified with accuracy. The experimental 

findings revealed that effective results for land cover classification over test area were 

obtained by DL through the combination of orthophoto and DSM with an Overall 

Accuracy (OA) of 0.904, Average Accuracy (AA) of 0.681, and Kappa (K) of 0.937 

for study area 1 and OA of 0.751, AA of 0.636, K of 0.684 for study area 2. Our 

experiments presented that land cover classification from combination orthophoto with 

DSM was more precise than using orthophoto only. This research provides framework 

for conducting an analytical process, a UAV approach with DL based evaluation of 

mine reclamation with safety, also providing a time series information for future efforts 

to evaluate reclamation. 
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CHAPTER 1  

INTRODUCTION 

1.1 Background 

There is a need to quantify land cover and its changes over time in a precise and 

timely way for monitoring human and physical environments at the reclaimed mines 

area. Mining of the minerals for construction works is human activity, especially open-

pit mines represent a physical trace of land modification by human activities (Tarolli & 

Sofia, 2016). Moreover, open-pit mines influence vegetation, land cover soil, and 

hydrology condition (Mossa & James, 2013; Osterkamp & Joseph, 2000; Tarolli, 

2014). The modern mining process involves prospecting of ore bodies, analysis of profit 

of a proposed mine, monitoring the mine conditions during mining, extraction of 

desired minerals, and finally, rehabilitation of the land after the mining activity is 

closed. However, the demand for mineral resources has significantly increased with the 

growth of the industry and urbanization, leading to a greater need for mining activities. 

In recent years, urbanization and industrialization have the increasing demands for the 

materials for building, base materials, industrial materials (Kobayashi, Watando, & 

Kakimoto, 2014), and the trend will not cease according to the prediction (Vidal, Goffé, 

& Arndt, 2013).  Mining activities contribute to development through several channels, 

ranging from employment and development activities. 

The reclamation in mines has become the focus of the mining works. Decent 

engineering design is essential for reducing the effects of the hazards in the mining, 

which can help to realize the higher level of the mine reclamation works. For example, 

after finishing mine activity, plantation of trees is vital for the rehabilitation at the mines 

because the miners are degrading the land and the vegetation by the mining activities 

and they are supposed to make the land to their natural state and also the mine area is 

bound by legislation to conclude the rehabilitation works. Therefore, it is also a 

requirement of monitoring for the post-mining activity (especially land cover, 

ecological and geological hazard monitoring) for land rehabilitation in mining, which 

is also the key to provide reasonable planning.  

The application of Unmanned Aerial Vehicles (UAV) is essential in mining 

during recent years, as UAV explore ways of improving the monitoring methods. UAV 



 3 

helps mining companies to survey large fields at a lower price, less time, and with 

higher safety margins. The potential usages for the application of drones in mining are 

seemingly endless. Drone aerial surveys, field mapping, and monitoring can be done in 

real-time, depending on the system (Rathore & Kumar, 2015). Companies are no longer 

required to operate land vehicles in rugged environments, frequently with unstable and 

unsafe terrain. To date, the application of UAV has been limited to operations such as 

stock control, transport management, dumping dams, safety, emergency response, and 

monitoring. UAVs play an important role in the mining industry. The following are the 

benefits of the use of drones in the mining industry: 

1. Monitoring – The first and foremost priority of the mining industry is safety, 

and various kinds of monitoring play a major role in increasing mine safety. 

Monitoring by drones is an important new type of monitoring and the use of 

point cloud and image processing to regulate the monitoring. Monitoring 

with drones is important in mining as traditional monitoring has access 

problems and safety issues. 

2.  Cost-Effective - In the past, a team of surveyors was necessary for the 

surveying equipped with the device at the field. This method was labor-

intensive and requires a lot of effort including a large number of errors. The 

application of UAV as a survey tool takes good planning but improves the 

use of staff and findings can be obtained in real-time with great accuracy, 

saving the cost.  

3.  Development and Resource Replacement – With the application of UAV 

and sensors, the productivity of the mines can be increased also it optimizes 

the use of equipment and manpower. Employing UAV can potentially be 

more cost-effective compared to tripod-based new technologies such as 

GPS, total station, and LiDAR surveys. 

4. Safety and Security- The use of drones helps avoid unexpected accidents by 

identifying unsafe hazards and identify points of threat. With specialized 

remote sensors including monitoring techniques, drones help to ensure 

continuous monitoring of extremely complex mining environments. A 

UAV can perform continuous monitoring of processing plants and other 
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structures for safety risks, and inspect structures for unsafe rock movements. 

It can also help in emergency escape and disaster monitoring. 

UAV photogrammetry has revolutionized our ability to observe the surface of 

the earth. Technological developments over the last decade have allowed more and 

more accurate location and time monitoring of land and water supply by improved 

sensors. The Ordnance Survey, an extractive corporation, needs square kilometers of 

aerial photography per year to upgrade its imagery for the monitoring of reclaimed 

mines and topographical items. The number of sensors being flown is increasingly 

growing, both in terms of spatial resolution and temporal frequency, due to better 

instrumentation and demand from the authorities and end-users concerned to maximize 

the data currency.  The vast majority of the ground features were collected manually by 

on-site observations and aerial photo interpretations, which are highly labor-intensive 

and time-consuming. UAVs, more generally referred to as drones, are widely being 

used in research studies to resolve issues related to the fast and high-resolution 

processing of spatial datasets (Gago et al., 2015; Haala, Cramer, Weimer, & Trittler, 

2011; Webster, Westoby, Rutter, & Jonas, 2018). UAVs can be operated at low altitude, 

allowing high-resolution data to be obtained (Flener et al., 2013); The low cost of UAVs 

enables time-and spatially versatile observation schemes, due to ease of implementation 

and use, to promote the acquisition of data (Feng, Liu, & Gong, 2015). Arguably, this 

large archive of aerial imagery is highly under-utilized and could be mined for much 

more information efficiently and effectively through modern techniques UAV 

photogrammetry, and deep learning (DL). Accurate and up-to-date information on land 

cover is also required to keep pace with evolving conditions and to improve appropriate 

policy and decision-making.  

Recent trends in Artificial Intelligence (AI) and machine learning, particularly 

in the emerging field of deep learning, have transformed the way we store, interpret and 

manipulate geospatial data. These are largely motivated by the surge of interest in deep 

machine learning, as the new frontier of AI, where the most representative and 

hierarchical attributes are trained from end to end, spatially (Arel, Rose, & Karnowski, 

2010). Deep learning approaches have gained considerable success not only in classical 

computer vision activities, such as target identification, image recognition, and 



 5 

robotics, but also in many other practical applications (F. Hu, Xia, Hu, & Zhang, 2015; 

Nogueira, Penatti, & Dos Santos, 2017). They have made significant advances from 

state-of-the-art documentation in several areas, and have drawn considerable interest in 

both academics and industrialized cultures. Deep learning is basically about 

representation learning or function learning, where the most representative and unequal 

attributes are taught at the end to end, hierarchically (C. Chen, Zhang, Su, Li, & Wang, 

2016). Unlike their shallow equivalents, such as the support vector machine (SVM) and 

multi-layer perceptron, DL methods do not focus on prior features extraction or human 

feature architecture, but rather learn higher-level features representation through the 

models themselves to improve generalization capabilities (Arel et al., 2010). Also, deep 

levels of interpretation have a strong ability to describe robust features of complicated 

patterns and classifications such as ground cover, functional locations, etc. Deep 

learning approaches are good match for capturing this form of feature representation 

with high-level semantics (Nogueira et al., 2017).      

In past few years, deep learning with  convolution neural networks (CNNs) have 

gained substantial interest in the community's image processing (Krizhevsky, 

Sutskever, & Hinton, 2012). They were originally designed for image classification, 

where the image is attributed to a particular real-world category depending on its 

nature, such as natural scenes used in computer vision applications (Maggiori, 

Tarabalka, Charpiat, & Alliez, 2017). However, the land classifications 

(LC) classifications follow the actual criteria of image classification, which expects all 

pixels in the whole image to be classified and labeled in land cover categories. 

In summary, DL methods have significant advantages for the learning of 

dynamic feature representations, they are still feasible. LC classification has not been 

discussed until now.  In comparison, LC are simply abstractions or generalizations of 

the terrain in the reclaimed mining area. The classification systems are presented at 

different levels, nested within each other hierarchically over the same geographical 

space. Different land features exist at different scales, and their monitoring goals are 

highly dependent on important implementations (Heydari & Mountrakis, 2018). There 

is also an open issue as to how to better implement or refine DL-based approaches to 

solve complex LC classification challenges using UAV imagery. 
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1.2 Statement of problems 

The reclamation of vegetation on mining sites is one of the principal 

rehabilitation strategies used to address the environment (Hartemink & Minasny, 2014). 

Reclamation is a complex and long process that can be unsuccessful due to a range of 

living and nonliving factors (Ramoelo et al., 2015). Open-pit mining causes the 

comprehensive destruction of the solid environment, water bodies, and environment. 

The reclamation of open-pit mines is regulated in all the developing countries. 

Reclamation of the degraded land at the mines area involves priority for the government 

as well as public sector (Ockendon et al., 2018). Introducing through planting showing 

encroaching the vegetation to the rehabilitation of the mining landscape conditions 

(Korjus, Laarmann, Sims, Paluots, & Kangur, 2014). For instance, in Thailand, we can 

find different levels of legislations and regional government all of which require 

monitoring periodically of mine rehabilitation (Ministry of Industry Thailand 2009). 

Rehabilitation of the open-pit mine and mining integration techniques is an effective 

way to solve the environmental problems of the open-pit mine. Mine rehabilitation is 

an important part of mining technology. 

These problems are related to the employment of affective monitoring 

techniques aimed at accurate observation of mining-related effects. Besides, there are 

many advantages to employ Geomatics approaches for reclamation monitoring, using 

UAV Photogrammetry and deep learning. The increasing availability of UAV recent 

advances in sensor technologies and analytical capabilities are rapidly expanding the 

number of potential UAV applications. UAV-based environmental monitoring 

applications, work has focused on land cover mapping (Akar, 2017; Bryson, Reid, 

Ramos, & Sukkarieh, 2010).  

In comparison to the other monitoring methods, UAVs based on different kinds 

of sensors acquire multi-source data for continuous monitoring, and the centimetre-

scale images can be obtained rapidly when the UAV flew at a low altitude. As a 

dynamic, continuous, and economical data acquisition method, UAVs have now 

various advantages in monitoring the mines compare to the traditional methods. The 

comparison of the different equipment used for monitoring is shown in table1.  



 7 

 
Table  1 Comparison between UAV Photogrammetry and other monitoring 

methods in mining  

Monitoring 

methods 

Total station Satellite 

remote 

sensing 

InSAR UAV 

photogrammetry 

Data collecting 

time 

Long Short Short Shortest 

Data processing 

time 

Depend on 

computer 

Depend on 

computer 

Depend on 

computer 

Depend on 

computer  
Price Low High High Low 
Working 

condition 

Weather 
dependent 

All-weather All-
weather 

Weather 
dependent 

Monitoring Area Small Large Large Medium 

Source: Arango & Morales, 2015; Cigna et al., 2017; Padró, Muñoz, Planas, & Pons, 

2019 

Mine site rehabilitation typically needs to be addressed at fine spatial scales due 

to the heterogeneous nature of the substrate and topography that influence rehabilitation 

processes. Characterizing the spatial distribution of land-cover at high spatial resolution 

can provide key information to assist in landscape function. Object-based approaches 

are used to classify landscapes, whose features can be observed at multiple spatial 

scales. These approaches are also employed to analyze ecological patterns that are 

suitable for extraction through object-based segmentation and classification methods 

with the use of high spatial resolution imagery or image data in complex environments. 

Thus, the application of UAV photogrammetry can help to provide information related 

to land cover at high spatial resolution. 

In conclusion, the study focuses on the monitoring of the mine rehabilitation 

using the imagery from UAV. The research focused on UAV in the application of 3D 

modeling, slope stability, mapping but there is insufficient information related to mine 

rehabilitation monitoring. Mining areas are being impacted by the mine works and need 

to be rehabilitated (Xiang, Chen, Sofia, Tian, & Tarolli, 2018; Yucel & Turan, 2016) . 

The method of UAV monitoring for mine rehabilitation used in this study will be useful 

for government and private agencies to evaluate the mining areas, especially for 

decision-making purposes. Therefore, UAV photogrammetry for monitoring 

rehabilitation in the open-pit mine can be for legislation purposes. 
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1.3 Aim and objectives of the study 

The study aims to monitor the mine rehabilitation works at the open-pit mine site 

after the completion of the mine work using UAV photogrammetry. The following are 

the objectives of the study: 

1) To employ UAV photogrammetry for supporting the rehabilitation monitoring 

in open-pit mines. 

2) To develop the algorithm based on Deep learning for the land cover 

classification of the rehabilitation monitoring in the mine works. 

1.4 Research questions 

The research question for the above objectives are as follow:  

• How is the effectiveness of the UAV photogrammetric approach compared to 

other monitoring methods for monitoring rehabilitation in the mines? 

• How did the algorithm develop from deep learning benefits for the 

classification of land cover? 

1.5 Purpose of study 

UAV technology is developing and progressed rapidly from year to year for 

mapping applications. Moreover, UAV is a low budget with time constraints and less 

manpower rather than satellites of aircraft with expensive flight costs, time-consuming 

and weather dependent data collection, restricted workability, limited flying time, and 

low ground resolution mapping process (Aasen, Burkart, Bolten, & Bareth, 2015; 

Bendig et al., 2014; Dash, Watt, Pearse, Heaphy, & Dungey, 2017; Tian et al., 2017) . 

The UAV photogrammetry can be used for monitoring the rehabilitation of the mine 

sites as it provides rapid data collection, faster, low cost and utilizes less manpower. 

Moreover, the 3D model can be generated using UAV images performing digital image 

processing (DIP). Data processing rapid and accurate results can be obtained. Hence 

this study attempts to improve the methodology for monitoring the mine rehabilitation 

assessment using the UAV technology. This technology can be used by government 

organizations, private agencies, and local authorities for planning and making decision 

purposes. This study accounts for the land cover mapping of the rehabilitated mining 
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areas.  The study focus on the digital elevation model (DEM), and UAV images for 

land cover classification and monitoring for the rehabilitated open-pit mine areas.  

1.6 Significance of the study 

Monitoring reclamation for open-pit mining with UAV photogrammetry is 

useful at it provides expedient and accurate spatial and thematic information. 

Monitoring the restoration after the extraction is the legal requirement for the mine 

companies and public administration. It is resulting in the systematic and sampling of 

the restoration area of interest, which improves the airborne spatial resolution. Allows 

the monitoring in inaccessible restricted and dangerous areas, also the imagery for 

visual inspections, photogrammetric processing, and GIS software provides spatial 

information about the vegetation development with relatively low-cost equipment used 

in the study. i.e. low weight platform sensor, low-cost reference panel. Also, UAV 

photogrammetry is possible to generate useful results such as orthophoto, DEM, digital 

surface model (DSM), vegetation indices, and thematic land cover maps. The use of 

UAV photogrammetry gives the new idea for monitoring the open-pit mine 

rehabilitation. Moreover, UAV is a low budget project with time constraints and less 

manpower rather than satellites imagery with expensive flight costs, time-consuming 

and weather dependent data collection, restricted workability, limited flying time, and 

low ground resolution mapping process (Ren, Zhao, Xiao, & Hu, 2019). 

The monitoring of the rehabilitation of the mine works will guide the 

government, organizations, and private individuals for the developmental activities. 

The area with the mine works is prone, land cannot be kept barren it needs to be with 

vegetation after the completion of the mine works. The study will suggest the 

appropriate UAV photogrammetry techniques in an open-pit mining environment and 

represent a valid support susceptible area for the mine area to monitor with high spatial 

and temporal resolution. This approach can be considered as a valid tool to monitor the 

impacts of mining. 

1.7 Benefits of study   

UAV photogrammetry has shown the possibility for the future in mining 

applications. UAV can minimize the time consuming and labour-intensive rapidly in 

comparison to the traditional surveying methods(Park & Choi, 2020). Periodic data is 
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obtained from the UAV ensures much-improved resolution than satellite images 

(Hastaoğlu, Gül, Poyraz, & Kara, 2019).  At the same time, the payload and the time 

consumed for the study are less and are accessible to environmental factors such as 

terrain. Furthermore, hyperspectral cameras, thermal cameras, infrared cameras, and 

LIDAR suitable for UAV platforms are still expensive, limiting their use (Colomina & 

Molina, 2014; Lucieer, Jong, & Turner, 2014; Turner, Lucieer, & De Jong, 2015). At 

present, the bulk of sensors used in the mining applications are still focused on 3D 

reconstruction and terrain Surveying. It can be seen that UAVs have a great possibility 

in mine monitoring at a small or large scale. Low-cost sensor development is necessary 

to expand the service range of UAV photogrammetry in mining applications and 

achieve better research results. The use of UAVs helps to obtain information for 

complex mining environments.      

Monitoring of the rehabilitation of open-pit mines represents a challenge for the 

upgraded supporting the planning.  The analysis of open-pit mines through 

rehabilitation improves the mechanism for responsible environmental effects with the 

classification helps to find the appropriate strategies for the rehabilitation (Al-Najjar et 

al., 2019). UAVs have been attractive in many research fields to obtain the latest 

information of the target areas, owing to their high mobility, high resolution, and low 

cost (Remondino, Barazzetti, Nex, Scaioni, & Sarazzi, 2011). Nowadays, UAV-

photogrammetry has reached a level of practical reliability and become a useful 

platform for spatial data acquisition. Hence it is expected that UAV-photogrammetry 

can acquire topographical data in a short time and generate a high-resolution digital 

model of the environment with the required accuracy.  

Studies have been done for using the approaches and tasks for the classification 

of land cover. Al-Najjar et al. (2019) used fused DSM and CNN for land cover 

classification. The studies also, therefore, vary according to the technique used. Feng 

et al. (2015) developed model for the classification of forest and urban area, model 

contained 200 trees trained on handcrafted texture feature. 
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1.8 Thesis Structure  

Chapter 1 gives the general introduction of this thesis. It comes with commercial and 

academic needs and towards deep learning as the methods, focusing on the challenges 

and opportunities for land cover and land use classification using DL with UAV 

photogrammetry. 

Chapter 2 provides a concise literature review of the traditional and deep learning-

based methods in land cover classification using UAV photogrammetry and discusses 

the research directions. 

Chapter 3 presents the methodology for UAV photogrammetry and land cover 

classification with deep learning using CNN in which land cover at reclaimed mines 

area is classified. Also, the evaluation methods for determining the accuracy of the 

research is described 

Chapter 4 summarizes the results obtained from this research and answers the 

research questions. Also, the results from the classification methods are evaluated.    

Chapter 5 concludes the remarks of the thesis followed by the recommendations and 

future works.  
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CHAPTER 2 

 LITERATURE REVIEW 

2.1 Research overview 

land cover classification contributes to the up-to-date evidence on both the 

current state of and changes on the surface of the land. Mine surface information 

includes relates to the land cover at the mines area. Also, it is necessary to develop an 

automatic classification methodology.  Monitoring plant development and their 

conditions on rehabilitated mining areas are one of the most important factors in 

assessing their adaptation in the restored ecosystem. Plant succession strongly depends 

on soil parameters and soil formation processes in the restored or rehabilitated area soil 

is a critical component that interacts with vegetation, climate, and animals (Bradshaw 

& Hüttl, 2001). Method for land cover classification mapping utilizes modern machine 

learning techniques. The basic concept of image classification can be shown in two 

steps: first, learning the classification model from labeled reference data, and second, 

its prediction to all pixels of the imagery. The excellence of the image classification 

depends on the machine learning algorithm (Maxwell, Warner, & Fang, 2018). 

Moreover, the accuracy is influenced by the class, extent, spatial and semantic 

distribution, and positional correctness of the reference data. Some related studies focus 

on vegetation land cover to describe the vegetation cover maps (Tassopoulou et al., 

2019), agriculture and monitoring the vegetation  (Khaliq, Musci, & Chiaberge, 2018; 

Kussul, Mykola, Shelestov, & Skakun, 2018). 

Land cover classification creates a common understanding of land cover 

nomenclatures to produce global, regional, and national data sets able to be designed at 

different scales, levels of detail, and geographic location. The land cover classification 

provides a general framework of rules from which more exclusive conditions can be 

derived to create specific legends. The system may be used to specify any land cover 

feature anywhere in the world, using a set of independent diagnostic criteria that allow 

correlation with existing classifications and legends. Researchers have developed and 

studied methods for land cover classification, such as the Maximum Likelihood 

Classifier (Otukei & Blaschke, 2010), Random Forests  (Breiman, 2001), and Support 
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Vector Machine (SVM) (Suykens & Vandewalle, 1999) methods. There is a high 

probability for mixed classes and other problems 

The advancement in the deep learning techniques provided an alternative to 

traditional land cover classifiers. Deep learning brought about around 2006 (G. E. 

Hinton, Osindero, & Teh, 2006), became well known in the computer vision 

community around 2012, since one supervised version of deep learning networks CNN 

made a breakthrough for scene classification tasks (Krizhevsky et al., 2012; Yann 

LeCun, Yoshua Bengio, & Geoffrey Hinton, 2015), and has reached out to many 

applications and other academic areas in recent years as it continues to advance 

technologies in areas, like speech recognition (G. Hinton et al., 2012), medical 

diagnosis (Suk, Lee, Shen, & Initiative, 2014), autonomous driving (Huval et al., 2015), 

or even the gaming world (Silver et al., 2016). When compared with other traditional 

classifiers, deep learning does not require feature engineering, which attracted many 

researchers from the remote sensing community to test its usability for landcover 

mapping (Alshehhi, Marpu, Woon, & Dalla Mura, 2017; X. Ma, Wang, & Wang, 2016; 

Vetrivel, Gerke, Kerle, Nex, & Vosselman, 2018). The review papers on object-based 

image analysis (OBIA) (G. Chen, Weng, Hay, & He, 2018; L. Ma et al., 2017) 

emphasize the need for testing deep learning techniques under the OBIA framework 

(G. Chen, Weng, Hay, & He, 2018; L. Ma et al., 2017. 

2.2 Applications of UAV photogrammetry in mining  

The method of collecting useful data with UAV is the advancement in 

technology. Recently UAV also known as drones are  used as platforms for data 

acquisition in natural and complex landscapes also, the UAV (Colomina & Molina, 

2014; Salvini, Mastrorocco, Seddaiu, Rossi, & Vanneschi, 2017), play an important 

role for monitoring. In digital photogrammetry, UAVs equipped with compact or reflex 

cameras allow high-resolution images of inaccessible areas to be obtained with 

relatively low costs, avoiding shadow zones compared to terrestrial surveys, acquired 

from the ground. The technological advances have recently enabled an alternative to an 

inflexible fixed network of sensors or the labor-intensive and potentially slow 

deployment of personnel (Coifman, McCord, Mishalani, Iswalt, & Ji, 2006). Initially , 

satellites and manned aircraft were used for monitoring purposes, but several qualities, 



 14 

cost, and safety issues have proven these methods to be inefficient. Recently, UAV in 

the monitoring, management, and control are starting to take center stage (Kanistras, 

Martins, Rutherford, & Valavanis, 2013; Puri, 2005). The UAVs commonly is  

considered to be one of the most dynamic and multi-dimensional technologies of the 

modern era (Park & Choi, 2020). This technology is rapidly strengthening its presence 

in multiple fields of the human life, varying from commercial tasks from exploration to  

monitoring (Park & Choi, 2020)the mines area.  UAVs are predicted to be the most 

dynamic growth sector of the world aerospace market this decade , as mentioned by 

(Kanistras et al., 2013). The UAVs cover a large area in short times with an extreme 

low cost. The lower cost can also be achieved, since all the equipment is reusable to a 

different point of interest (Barmpounakis, Vlahogianni, & Golias, 2016). Nevertheless, 

this technology is progressing rapidly and can be safely termed as a future-proof 

technology with the widespread commercial availability and decreasing costs. It may 

also serve as a foundation for more advanced studies related to UAVs but there has 

been no such detailed framework based on the existing literature. 

2.3 Land cover classification 

Land cover (LC) information at reclaimed mines is essential for a range of 

geospatial purposes, such as urban planning, regional management, and environmental 

management (X. Liu et al., 2017). It also acts as a framework for understanding the 

dynamic relationships between human behaviors and environmental change (Patino & 

Duque, 2013). Many predictive models (e.g. ecosystem, hydrological, and transport 

models) include LC as input variables to simulate natural and anthropogenic processes 

and the workings of the Earth's surface (Verburg, Neumann, & Nol, 2011). Earth 

observations from a range of sites, including satellite, airborne, along with and Public 

Observatories, offer excellent opportunities to classify LC characteristics at mines and 

improvements across various scales (Katherine Anderson, Ryan, Sonntag, Kavvada, & 

Friedl, 2017). With the exponential advancement of sensors and computers, vast 

volumes of remotely sensed spatial resolution (VFSR) images are now commercially 

available with submeter resolution, enabling the processing of detailed LC details in 

fine spatial detail (Pesaresi et al., 2013; Zhao, Zhong, & Zhang, 2016). 
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LC classification using remotely sensed data can be a very challenging task due 

to the spatial and temporal sensitivity of the imagery. However, LC is much more 

complicated due to the indirect interaction between trends of land cover and spectral 

responses reported in photographs. These land uses are usually defined in terms of 

functions or socio-economic practices rather than tangible types of land cover, which 

can only be inferred explicitly by interpreting the color, texture, or shape of the picture 

features (M. Li, Stein, & Bijker, 2016). Sometimes the same land-use types are 

distinguished by distinctive physical properties as a result, such spectral and spatial 

ambiguity and heterogeneity make the automated LC classification using VFSR images 

an incredibly challenging task. 

During the last few decades, significant effort has been made to establish 

automated LC classification methods using remotely sensed data. These techniques, in 

particular in terms of land cover environments, are constructed mainly based on the 

spectral characteristics reflected by the physical properties. Pixel Classification 

Methods, Support Vector Machine (SVM), and Random Forest (RF) have been 

developed to learn nonlinear spectral feature space at pixel level independently of its 

statistical properties (Zhong, Zhu, & Zhang, 2015). However, these pixel-based 

approaches cannot guarantee high classification precision, especially at the fine spatial 

resolution, because single fine pixels will lose their thematic sense and the 

discriminatory efficiency of various types of LC (Xia et al., 2017). Object-based 

approaches, as part of the OBIA, have dominated ground cover detection using VFSR 

imagery over the last decade (Blaschke et al., 2014). A variety of experiments used 

OBIA methods to extract land cover information from VFSR images, using spectral, 

textural, and geometric information from image objects made up of relatively 

homogeneous neighboring pixels (Myint, Gober, Brazel, Grossman-Clarke, & Weng, 

2011).  

The major challenges of these object-based approaches are the choice of 

segmentation scales to obtain objects that conform to particular types of land cover in 

which over-segmentation and under-segmentation typically occur within the same 

picture (Ming, Li, Wang, & Zhang, 2015). To date, current methods remain insufficient 

to properly analyze the data, and no successful solution has been suggested for 
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LC classification using remotely sensed VFSR imagery. Classification of the LC is less 

studied due to the ambiguity of the spatial composition and configuration. This 

difference has resulted in a semantic divide between details from the data and 

information relevant to users and applications (Bratasanu, Nedelcu, & Datcu, 2010). To 

bridge such a semantic gap, a variety of studies have attempted to integrate specialist 

information or ancillary data as a geographical framework for the extraction of land-

use features. Additional regional details for defining the LC might not be appropriate 

for certain regions (M. Li et al., 2016), and contextual environments are also 

challenging to define and classify the land cover even if complicated constructs or 

patterns may be identifiable and distinguishable for human experts (Oliva-Santos, 

Maciá-Pérez, & Garea-Llano, 2014). 

2.4 Traditional land cover classification approaches 

During the last decade, a significant attempt has been done to establish 

automated LC classification methods using remotely sensed imagery. For LC, 

conventional classification techniques may be categorized into pixel-based and object-

based methods based on the specific processing, either per pixel or per object (Salehi, 

Ming Zhong, & Dey, 2012). Pixel-based approaches are commonly used to identify 

individual pixels in specific land-cover categories based  on spectral reflection, without 

considering the effect of neighboring pixels (Verburg et al., 2011). These methods are 

also constrained in classification performance due to speckle and increased inter-class 

variation relative to the coarse or medium spatial resolution of remotely sensed 

data.   post-classification methods have been developed to address the limitation of 

pixel-based approaches e.g. (Hester, Cakir, Nelson, & Khorram, 2008; McRoberts, 

2014). However, such approaches exclude small classes with few pixels or single -

family classes, such as small fields. Object-based techniques, as part of the OBIA, have 

regulated land cover identification using imagery throughout the last decade (Blaschke 

et al., 2014). These OBIA approaches are focused on similar characteristics objects, 

which are formed of pixel values all around the image, for the classification of land 

cover components. The key concerns in implementing these object-based approaches 

are the collection of segmentation scales to obtain objects corresponding to particular 

types of land cover in which over-segmentation and under-segmentation typically occur 
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within the same image (Ming et al., 2015). As a result, the task of classifying LCs is 

very difficult, particularly for mine restoration, which exhibits high intra-class 

variations with a wide variety of land cover classes. 

In the meantime, such objects also interact with each other by occlusions and 

shadows, that present significant difficulty to distinguish them accurately and 

consistently. Till present, no practical approach has been suggested for the 

automatic classification of land cover using remotely sensed imagery. A variety of 

studies used OBIA for land use classification including object details with a collection 

of low-level characteristics (such as spectra, texture, shape) of landforms e.g. 

(Blaschke, 2010; Blaschke et al., 2014; S. Hu & Wang, 2013). 

However, these OBIA methods ignore semantic functions or spatial structures 

limiting the ability to use low-level features in the representation of semantic features. 

In this sense, researchers have indicated a two-step workflow, where object-based land 

covers were initially collected, accompanied by accumulation of objects using spatial 

contextual descriptive indicators on well-defined LC units. Descriptive measures are 

usually derived from spatial data to determine their properties or graph-based 

approaches that structure spatial relations (Walde, Hese, Berger, & Schmullius, 2014). 

However, additional geographic data for defining the LC may not be appropriate for 

certain areas, and geographical contexts are also difficult to define and classify 

complicated patterns may be identifiable and differentiated for human experts (Oliva-

Santos et al., 2014). 

2.5 Problems in traditional land cover classification approaches 

The traditional method for land cover classification is hand-drawn in 

application combined with structure and architecture. They usually require two distinct 

but complementary steps for the extraction and classification of features (Volpi & Tuia, 

2016). Feature extraction is performed by unique operators on specific parts of the 

image (e.g. image patches, pixels or areas, objects, etc.) to translate the original feature 

into compact and/or abstract representations that can be conveniently separated by a 

classifier (Sun, Zhao, Huang, Yan, & Dissanayake, 2014). These modified spatial 

features are then used, along with the actual spectra, to train supervised classifiers (e.g. 

Vector Machine Support), to understand the semantic content of the imagery (C. Chen 
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et al., 2016). The efficiency of any classifier used is greatly influenced by the 

transformations used and the resulting spatial characteristics. Popular examples of such 

operators involve a variety of parameters (Reis & Taşdemir, 2011), classification 

techniques (Pingel, Clarke, & McBride, 2013), and gradient orientation (Cheng et al., 

2013). 

However, the hand-drawn approach also requires a time-consuming trial-and-

error technique for the extraction and selection of features (Volpi & Tuia, 2016). These 

hand-drawn features are also task-specific and can be useful for a particular area and/or 

problem. In comparison, the low-level features used, accompanied by coarse classifier 

architectures, are inadequate to undermine the underlying semantics or structures due 

to the absence of larger feature representations (Liu, Hang, Song, & Li, 2017). Thus, 

minimal classification efficiency has been accomplished for utilizing images that are 

spectral and structurally challenging. 

2.6 Overview of Deep Learning 

Deep learning provides a new perspective on classification, where stable, 

abstract, and observable features are taught end-to-end, spatially, from raw data (e.g. 

image pixels) to functional labels, which is a key benefit relative to previous approaches 

(Nogueira et al., 2017). Several deep learning approaches have been suggested, namely 

deep networks (DN) (J. Chen, Li, Chang, Sofia, & Tarolli, 2015), deep Boltzmann 

systems (DBMS) (Qin, Guo, & Sun, 2017), stacked self-encoders (SDE) (Yao, Han, 

Cheng, Qian, & Guo, 2016) and CNNs (Maggiori et al., 2017). Among them, the CNN 

model is the most well-established process, with remarkable efficiency and 

considerable popularity in the area of computer vision and pattern recognition 

(Schmidhuber, 2015), likely visual recognition (Farabet, Couprie, Najman, & LeCun, 

2012; Krizhevsky et al., 2012), image processing  (Yang, Yin, & Xia, 2015) and scene 

annotation (Othman, Bazi, Alajlan, Alhichri, & Melgani, 2016). Deep learning 

convenient throughout the field of image processing (X. X. Zhu et al., 2017) .  

These previous works reflect the research emphasis and the topics of deep 

learning in the field of remote sensing. Note, while this section discusses the most major 

contributions in the research, it will not include a complete description of deep learning 

in remote sensing (Zhang, Chen, Wang, Wang, & Dai, 2017; X. X. Zhu et al., 2017). 
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Instead, the goal is to provide a succinct description of the deep learning approaches 

used to identify LC using remotely sensed images. The research emphasis on CNNs 

because they're the most popular and well-established deep learning approach 

implemented in the field of remote sensing. Deep learning with CNNs are a variant of 

multilayer neural networks primarily designed to process large-scale representations of 

sensory data in the form of several arrays, considering local and global static properties 

(Y LeCun, Y Bengio, & G Hinton, 2015). The fundamental aspect of CNNs is their 

translational variability by a patch-based process in which a higher-level entity within 

an image patch can be identified even though the pixels containing the object are 

modified or blurred. 

Deep learning with CNNs were developed to solve an image classification 

problem, i.e. to assign an entire image to a semantic class, such as a digit (LeCun, 

Bottou, Bengio, & Haffner, 1998) or an object type (Krizhevsky et al., 2012). The 

equivalent challenge in the remote sensing domain is to solve the remotely sensed 

classification role where an image patch is assigned to a particular category, such as 

vegetation, grassland, barren land, etc.  These types of land cover classification 

activities are directly connected to object identification (Zhang et al., 2017) and position 

(Long, Gong, Xiao, & Liu, 2017) where translational invariance is the main advantage 

of CNN to represent data with higher-order characteristics, such as land cover locations. 

However, this attribute is a major limitation in the LC classification for pixel-level, 

from which distorted boundaries are created between ground surface objects. Here, we 

study the classification of LC using CNNs to expand on these challenges in depth and 

to define research gaps. 

2.7 Deep learning for land cover classification 

Land cover (LC) classification via CNN can be divided into two types based on 

processing, namely patch-based and pixel-based techniques. The patch-based methods 

for LC classification include an image patch going over the given dataset pixel-by-

pixel, with strongly overlapping patches used for land cover calculations (Fu, Liu, 

Zhou, Sun, & Zhang, 2017). Deep learning with CNN models has explored some 

advances with patch-based. For example, Mnih (2013) suggested a patch-based CNN 

model develop large-scale visual factors for aerial object labeling. The model created a 
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complex classification patch, rather than separating a single value image type, where 

its spatial contextual features were trained to further differentiate the land cover classes.  

Längkvist, Kiselev, Alirezaie, and Loutfi (2016) used the pixel-wise CNN with patches 

for the classification of land cover, outperforming the current classification approaches. 

Sharma, Liu, Yang, and Shi (2017) obtained image patches for all potential positions 

throughout medium-resolution satellite data and categorized them into land cover 

classes respectively.  However, a patch-wise approach has the drawback of adding 

objects at the boundary of the defined patches, and the use of the patches adds too many 

redundant computations, therefore, significantly reducing the actual usefulness of the 

system for land cover classification (Fu et al., 2017; Maggiori et al., 2017). New studies 

have changed the emphasis on patch-based CNN for land cover classification towards 

developing pixel-level frameworks for pixel labeling with remotely sensed imagery 

(Volpi & Tuia, 2016). Additionally, classification of  land cover (Wang, Wang, Zhang, 

Xiang, & Pan, 2017; Zhao et al., 2016) proposed for the task of classification such as 

building, grassland, and trees (X. Liu et al., 2017). These FCN methods include 

convolution and down-sampling along with concurrent up-sampling to sustain the 

resolution of the outcome map to be like the input image, where the class likelihoods 

for a feature map were generated for pixel-wise image classification (C. Chen et al., 

2016). However, the convolution uses the local features as background, and there is an 

exchange between down-sampling, which enables the network to see a broad context 

but removes fine spatial information for specific boundary delineation (Marmanis et al., 

2018).  

Besides, the up-sampling layers are done in a sense of interpolation at the pixel 

level that appears to over-smooth the target with inadequate spatial information during 

the inference stage (Q. Liu et al., 2017). As a result, the FCN models face difficulty in 

pixel-wise dense classification. Some other research has aimed to limit the disparity 

due to down sampling and up-sampling, by using the convolution to improve the 

strength of the expected class labels or by introducing skip links inside the network 

architectures, such that the fine resolution information was initiated after up-sampling 

(Marmanis et al., 2018). These extension approaches resulted in distorted boundary 

demarcations when extended to remotely sensed information of several objects 

enclosed within each other. 
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Others took the CNN as a coarse classifier for image classification and further 

resolved the boundaries during the post-classification process by using the initial image 

as the guideline for detailed classification Maggiori et al. (2017).  For example, 

Längkvist et al. (2016) combined the regular pixel-wise CNN with features extracted 

to smooth the classification results by average post-processing. Zhao et al. (2016) 

presented a contour-preserving CNN approach for image classification and smoothed 

the classification results by post-processing using a conditional random field (CRF). 

Likewise, Fu et al. (2017) used FCN-based methods for classification and then 

conducted the CRF procedure as post-processing to optimize the boundaries. 

(Marmanis et al., 2018) added a special framework of FCN (SegNet) and filtered the 

results using CRF for image classification. However, such post-processing techniques 

(either by averaging over classified regions or using a CRF approach) will only partly 

resolve the boundary problems created by CNN models by mapping the outputs at the 

expense of sacrificing fine spatial information. Sometimes, some small features of 

linearly formed objects were easily removed by post-processing processes, which is 

inappropriate in the case of remotely sensed image classification. 

2.8 Accuracy assessment 

This section describes the evaluation metrics used for UAV photogrammetry 

and image classification. The UAV photogrammetry approach should be validated for 

the precision result. The Root Mean Square Error (RMSE) is calculated for the 

evaluation of the photogrammetric works. For the image classification validation 

compares the model and evaluates using the ground truth. Overall performance of a 

deep learning architecture in image classification task is described in terms of overall 

accuracy, average accuracy and per class accuracy of pixel-wise labelling. The 

performance of the classified algorithm was evaluated using confusion matrix which 

shows a classification model's efficiency on a series of test data for which the true 

values are identified. The confusion matrix is used for the validation of the classified 

results where the row entries are the reference data, and the column entries include the 

number of pixels expected by the classifier belonging to the column class obtained 

using MATLAB. From the confusion matrix, indices are calculated for each class, and 

the average of all the values across classes serves for the multiclass purposes. The 
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Overall accuracy (OA) Average accuracy (AA) and Kappa (K) is calculated for the 

validation of results. OA is the simplest and one of the most popular accuracy measures 

and is computed by dividing the total correct (the sum of the major diagonal) by the 

total number of pixels in the confusion matrix (Congalton, 1991). The accuracy were 

averaged respectively by (Fung & LeDrew, 1988) to get the average accuracy. The 

kappa coefficient of agreement was introduced to the remote sensing community in the 

early 1980s as an index to express the accuracy of an image classification used to 

produce map (Congalton, Oderwald, & Mead, 1983; Rosenfield & Fitzpatrick-Lins, 

1986). 

 

 

 

 

 

 

 

 

 

 

 

 

 



 23 

CHAPTER 3 

METHODOLOGY 

3.1 Study area in Mae Moh mine 

The research area Mae Moh mine is located at Mae Moh District, Lampang 

Province, Thailand. The Mae Moh mine is the largest Lignite mine with 

over 630 million tons throughout Thailand, it is one of the places where lignite has been 

providing fuel for the power plants operated by the Electricity Generation Authority of 

Thailand (EGAT). The region has a vegetated area of 135 km2. The reclamation area of 

the mine was grown with a number of trees for five, ten, fifteen and twenty years. Fig 

1 shows the mines area at Mae Moh mine Lampang. The diverse landforms at reclaimed 

mines area render the study area suitable as an experimental area for this study.   

 
Figure  1 Study Area in red box at Mae Moh mine Lampang 

 

3.1.1 Study area 1  

 Study area 1 shows the area with the pattern of vegetation (trees at the separate 

interval). The southwest and northeast UTM coordinates (Zone 47N, WGS84) of this 

area are (579550, 579630) and (2027500, 2027620), respectively, and covers an area of 
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2,702.85 m2. The selection of the study area was based on its characteristics of 

vegetation at the reclaimed mines area, which includes wide range of slope values.  The 

height of the tress was between 1 - 3 meters Figure 2 shows the location of the study 

area 1.  

 

Figure  2 Study area 1 with the pattern of the vegetation at the Mae Moh mine 

Lampang 

3.1.2 Study Area 2 

Study area 2 shows the area with complex vegetation types (trees not separated) 

The southwest and northeast UTM coordinates (Zone 47N, WGS84) of this boundary 

are (579700, 579800) and (2027140, 2027270), respectively, and covers an area of 

2,519.98 m2. The selection of the study area was based on its characteristics of 

https://www.mdpi.com/1999-4907/10/2/145/htm#fig_body_display_forests-10-00145-f001
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vegetation at the reclaimed mines area, which includes flat area.  The height of the tress 

was between 4 -10 meters Figure 3 shows the location of the study area 2.  

 

Figure  3 Study area 2 with complex vegetation at the Mae Moh mine Lampang  
 

There were two areas were selected for the research as the areas show the 

different vegetation types. The two-study areas were selected to classify the land cover 

at the reclaimed mine and predicting the results of the pattern and complex vegetation 

types. Also, the slope variation was different in the two areas. Study area 1 has a 

variation in the slope whereas the second study area is flat. 

https://www.mdpi.com/1999-4907/10/2/145/htm#fig_body_display_forests-10-00145-f001
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3.1.3 Comparison between study area 1 and 2 

 The study area 1 and 2 comprises of the pattern and complex vegetation types. 

Study area 1 has the training and test area which were captured using DJI phantom 4 

pro on 2nd October 2020 whereas study area 2 has training area and test area captured 

at different time using different drones. Due to the time constrains for research, data for 

the test area was requested to the EGAT team. The training images were captured on 

2nd October by the research team using DJI phantom 4 pro and the test image were 

captured on 21st July 2020 by the EGAT team using Wingtra one.  

3.2 Methodology in Research 

3.2.1 Overall methods for monitoring using UAV photogrammetry and deep 

learning  

The overall methodology describes the workflow procedure of the methodology 

used in this research for the UAV photogrammetry and deep learning. Fig 4 describes 

the methodology used for the research. There are three steps assigned for the 

methodology to conduct the research i.e. (1) Data preparation, (2) Data processing, and 

(3) Data analysis. 

1) Data preparation: - Data preparation is also known as data collection describes 

the device used in the research and the ways of collecting the data for the 

research. It also describes the ground control points, flight plan, Imagery from 

UAV, and photogrammetric processing. The details of the data collection are 

provided in section 3.3. 

2) Data processing: Data processing is another important factor for conducting it 

includes the photogrammetric processing and the generation of orthophoto and 

DSM. Also, it describes the deep learning approach for land cover classification 

using a convolution neural network (CNN) in MATLAB. The details of data 

processing are provided in section 3.4    

3) Data Analysis: Data analysis is the concluding factor of the research. It 

describes the accuracy assessment and the land cover information using the 

UAV imagery and the deep learning approach using CNN. The details of the 

data analysis are provided in section 3.5. 
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Figure  4 Overall workflow of the research using UAV photogrammetry and the 

Deep learning approach 

 

3.2.2 UAV photogrammetric approach 

The methodology is described for the UAV photogrammetry approach. Fig 5 

describes the methodology for the UAV photogrammetric approach and the manual 

survey to meet the requirements of objective 1 of the research. The UAV 

photogrammetry comprises the UAV flight plan, collecting imagery from the UAV and 
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the photogrammetric results (orthophoto and DSM). The details of the flight plan, 

imagery from UAV and photogrammetric processing is described in section 3. For the 

UAV photogrammetry approach using the DSM and DTM the height of the tree is 

calculated to ensure the evaluation of the photogrammetric work. Also, from the manual 

survey in which the height of the trees was measured using Haga (the device used for 

measuring the height of the trees) to compare between traditional and UAV approach. 

The location of the trees was also recorded manually using the GPS. And finally, the 

evaluation of the height of the trees was intended from the UAV photogrammetry and 

the manual survey method.   

 

Figure  5 Workflow of measuring the height of trees using Manual and 

automated method 
 

3.2.3 Land cover classification using Deep learning 

The research aims to classify land cover at a selected region of interest by using 

deep learning with the CNN classification method. Deep learning is adaptable to 

modern techniques for feature extraction and classification. This technique has shown 
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capable results and potential in the field of image classification (Al-Najjar et al., 2019). 

The purpose of selecting deep learning CNN is to work on unstructured data effectively. 

It can automatically extract features that are required for the detection or classification 

of the land cover. This patch-level analysis is used with deep learning methods, 

especially CNN to classify with pixel-level and object-level feature extraction (Sameen, 

Pradhan, & Aziz, 2018). Also, the images are divided into a grid of tiles of m*m and 

then each patch is separately analyzed. The size of the image patch used to train the 

CNN is determined based on the spatial resolution of the RGB image and the expected 

size of the objects.   

Convolution Neural network (CNN): CNN is a class of deep neural networks 

that are used to analyze visual imagery. They have applications in image and video 

recording image classification, medical image analysis, and natural language 

processing. CNN is a multilayer perceptron.  Multilayer perceptron can be said as the 

connected networks that in each neuron in one layer is connected to all neurons in the 

next layer.   These networks classify the image by using the number of convolutiona l 

layers that improve the labeling process (Y. Zhu & Newsam, 2015). The deep learning 

method can automatically learn hierarchically contextual features from the input image 

and the architecture provide a suitable platform to analyze high-resolution images 

(Bergado, Persello, & Gevaert, 2016). The information can be extracted at the pixel 

level, object level, and patch level. Fig 6 shows the flowchart of the deep learning with 

CNN. 

The CNN is based on the three layers  

1) Convolution layer 

2) Pooling layer  

3) Fully connected layer 

1. Convolutional Layer: It includes the values of the input image or raw pixel values. It 

is a layer of access to all the other layers. The activations of perceptron related to the 

receptive fields of the previous layer are calculated by this layer.  Each perceptron is 

bound to a spatially local area of the input volume, as discussed above. The 

convolutional parameters of a layer include: 
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a. The input for the next layer is the number of outputs. 

b. The kernel size regulates the local spatial region of the input value. 

c. The pixel skips the sliding pane. 

d. Padding refers to the scale of the layer. 

2. Pooling Layer: This layer is used specifically to resize the spatial representations and 

accumulate them. for example, is called max pooling.  It is quite common to a pooling 

layer between convolutional layers periodically. 

3. Fully-connected Layer: These are generally the last couple of layers for CNN. 

Perceptron are fully connected to all activations of the previous layer in a fully 

connected layer. The distinction between a fully connected layer and a convolution 

layer is that only a local area in the input is connected to the perceptron in the 

convolution layer, while all the perceptron in the fully connected layer is connected to 

all the input perceptron (input to the fully connected layer). 

 

Figure  6 Flowchart of CNN with deep learning model  

Source: Al-Najjar et al., 2019 
3.3 Data collection  

Geographical data can be collected in many ways and different systems are used 

today. All systems have both advantages and disadvantages and the choice of which 

method to use usually depends on the project, time acquired for the project, and the 

budget. This section briefly presents the collection of the images at the Mae Moh 
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reclaimed mine using the UAV approach. The study sites were surveyed in October 

2020 when the vegetation was properly developed with the leaves. Images were 

captured using the UAV Phantom 4 pro with the normal camera. The resolution of the 

camera was 20 megapixels. The images were captured with the pix4d software in the 

single grid and double grid mission of the flight. The UAV was programmed for 

automatic flight mode at 150 m above ground level with a horizontal speed of 4 m/s 

from the waypoint. The images were collected continuously at an interval of 2.4 s.  

There was 80% overlap was along and across the flight plan. The flight plan was 

uploaded to the autopilot, the system had all the information needed to complete the 

survey and return it. Each flight block consisted of 200-300 images. The duration of the 

flight was around 30-40 min.   

3.3.1 UAV system for survey 

UAV consists of the aircraft and other support equipment. The aircraft, referred 

is a UAV is operated without an aircrew aboard and is instead controlled by remote 

control or autonomously. The features of the UAV camera (DJI phantom 4) as shown 

in table 2 and Fig 7 shows the UAV used for the photogrammetric surveying at Mae 

Moh mine Lampang. 

Table  2 Features of the camera used for monitoring 
 

Parameters Value 

Sensor 1-inch CMOS 

Effective pixels  20 Megapixel 

Lens FOV 84° 8.8 mm/24 mm f/2.8-f/11 auto focus at 1m-∞ 

Mechanical Shutter 

Speed 
8-1/2000 s 

Electronic Shutter Speed 8-1/8000 s 

Image Size 3:2 Aspect Ratio: 5472×3648 

Photo type JPEG 

 



 32 

 

Figure  7 UAV DJI phantom 4 for the data collection at Mae moh mine Lampang 

 
 

3.3.2 Flight planning for UAV  

The Flight plan is a component designed to facilitate the exploitation of data 

obtained from the UAV. It provides a hardware-independent interface that isolates 

payload components from the autopilot specificities. We used the pix 4D software to 

plan the flight for the UAV.  The flight plan was performed using DJI phantom Pro 

UAV with pix4D mobile application for autonomous flight planning. The description 

of the flight parameters while capturing the imagery at Mae Moh mine is as shown in 

Table 3.  

Table  3 Parameters for flight plan at reclaimed area in Mae Moh mine 

Lampang 

 

Parameters Value 

Speed 5.8 m/s 

Flying height 150 meters 

Front overlap 80% 

Side overlap 80% 

Camera angle 750 

                  The drone was equipped with autonomous flying modes for image capturing 

mode. Image capture was done in a pre-defined flying path. Coupled with the excellent 
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obstacle avoidance systems, the DJI Phantom 4 was used for surveying and monitoring 

purposes.  

3.3.3 Image acquisition of UAV survey 

The image was collected using a normal RGB camera. To obtain the best 

images, the camera was calibrated by setting its parameters on the ground. Usually, it 

is required to set the parameters before the flight and leave the shutter speed and 

diaphragm opening to function automatically. To examine and evaluate camera 

calibration one has to pick the drone and move around 1800 to calibrate. Several factors 

are influencing a flight plan, including the desired resolution, the area to be covered, 

and the height variations over the terrain. The expected resolution has a direct impact 

on the height of flight. The area to be covered determines the number of flight lines. 

Moreover, the variation of the height of flight influences the overlapping values 

between images. The resolution, pixel size, or ground sampling distance (GSD) is the 

size of the projected pixel on the ground. It is directly dependent on the sensor’s size 

and height of flight. As far as the terrain is not entirely flat in the study area, thus this 

value is an average of the different pixel sizes in the dataset. Indeed, it dictates the 

accuracy which is possible to vectorize objects on an ortho-photo.  

In this study, the vectorization was realized on the point cloud. In the end, the 

global set of pictures presented a good level of overlapping and was of good quality. 

The Study area 1 and 2 consists of 272 and 376 UAV imagery respectively.  

3.3.4 GNSS survey for georeferencing 

To provide an independent network of GNSS, a total of 5 targets were deployed 

at both the study area A Trimble receiver was used to collect coordinates of the site 

amenities and ground control points (GCP) for the UAV imagery.  To obtain the best 

resolution possible it is necessary to use ground control points. Placement of target and 

measuring location of targets by GNSS is in many cases fast and efficient. Five targets 

were placed as homogeneously as possible on the site to obtain the best referencing on 

the whole model. Fig 8 shows the GCP used for the georeferencing indicating A for 

study area 1 and B for study area 2 and Fig 9 shows GNSS survey for Target as GCP 

in georeferencing at the study area. 
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Figure  8 GCP used for the georeferencing using the GNSS indicating A for 

study area 1 and B for study area 2 
       

 

Figure  9 GNSS survey for Target as GCP in georeferencing at the study area 
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3.3.5 Ground truth survey for validation 

Ground truth data for this study is collected with the GPS for measuring the height of 

the trees and determining the locations of the trees on the orthophoto for the validation. 

The height of the trees was recorded manually using the device Haga (a device used for 

measuring the height of trees). Fig 10 Measuring the height of the trees using Haga. Fig 

11 represents the location of the trees at the study area. 

 

Figure  10 Measuring the height of the trees using Haga (a device used for 

measuring height) 
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Figure  11 Location of the trees at the study area 1 and 2  

 

3.4 Data processing and quality assessment  

3.4.1 Photogrammetric processing  

In the area of study, we will be able to see three-dimensional earth surface image 

on a smaller scale, commonly called a model. That is why data mapping results by using 

this drone, besides, produce images with a very high resolution it also produces a three-

dimensional view of the surface from the recorded object.  The photogrammetric 

processing is done using the software Agisoft Photoscan as shown in Fig 12. Align 

photo is done to identify the points in each photo and make the matching process of the 

same point in two or more photos. The align photos process generates the initial 3D 

model, camera position, and photo in every recording, and sparse point clouds to be 

used in the next stage.  

After aligning the photos, the process is data rectification. Rectification is a re-

exposure of a photograph so that the tilt of the image is lost and at the same time adjusts 

the average photo scale to one another. Rectification of aerial photographs using 

Ground Control Point (GCP). With rectification, we make photos completely upright / 

without tilt and average scales are following the desired scale of each photo. while the 
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depth parameter filtering shows how the treatment of a suspected high point. Its 

characteristics are usually the value of its altitude is much larger or much smaller than 

the dots around it.  

The next step is a 3D model or mesh. This is one of the main outputs of air photo 

processing in Agisoft Photoscan. The 3D model will be used as the basis for making 

DEM both Digital Surface Model (DSM) and Digital Terrain Model (DTM) and also 

orthophoto. At the time of build, a mesh appeared Mesh Parameter option. For Surface 

Type, there are two options, Height Field and Arbitrary. The next step in the Aerial 

Photogrammetric process is to build a digital elevation model (DEM). Digital Elevation 

Model is a digital field model in raster/grid format that is usually used in spatial 

analysis.  

The last step in an aerial Photogrammetric process is to build an orthophoto and 

DEM. Orthophoto is generated after making stage Dense Point Clouds, Mesh, and 

DEM. The Orthophoto is an aerial photograph that has corrected geometric error using 

DEM data and GCP data so that it can be utilized for the benefit of mapping without 

any scale inconsistency along with photo coverage. 

 

Figure  12 Processing steps in the Agisoft Photoscan  

Source: Yucel & Turan, 2016 
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3.4.2 Accuracy assessment of photogrammetric results 

The calculation of spatial error can be implemented in numeral ways (Z. Li, 1993), but 

positional accurateness is assessed by RMSE (Greenfeld, 2001). This statistic is 

calculated as the square root of the average of a set of squared variances among 

calculated values and independent control measurements (of the same points) of 

superior accuracy. Since it shows all error influences, the RMSE is represented as an 

absolute accuracy measure (Kraus, 2011). The RMSE is calculated for the difference 

between values predicted by DSM and the value observed manually.  The RMSE 

represents the square root of the DSM and the differences between predicted and 

observed values for calculating the height of the trees. The root mean square error 

(RMSE) is a method for calculating a model's error in predicting quantitative results. 

RMSE is suitable for the prediction task, because it measures inaccuracies on all ratings, 

positive and negative. RMSE is obtained using equation (1) as shown below.  

           

𝑅𝑀𝑆𝐸 =  √
∑(𝑥1−𝑥2)2

𝑛
                           (1) 

The accuracy of the photogrammetric results is done using ArcGIS and 

Microsoft excel. The height and location of the tree are located manually and from the 

photogrammetric results DEM. Also, using the DEM the average height is calculated 

from the maximum and minimum height at the same location with trees. The average 

height is obtained from the mean of the values from the DEM. From the average values 

of DEM, the average height is calculated by subtracting the height from the DSM and 

the average height of DEM. Similarly, the standard deviation is calculated, and hence 

to perform the accuracy assessment, the set of 28 known ground points was calculated 

for two study areas as they were located within the area covered by the aerial images. 

The GCPs were used for georeferencing the reconstructed model in Agisoft Photoscan, 

the accuracy evaluation was yielded by treating the remaining 28 points as an 

independent data set GCPs to validate the positional accuracy of the orthophotograph 

and DSM. 
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3.5 Data analysis and validation  

The collected raw data may be noisy, incomplete, or inconsistent, and before 

using the data as input in the model, it is required to pre-process it by removing errors 

and outliers and fill missing values. Other tasks include the integration of datasets and 

transform the data into an appropriate format, so it is readable depending on the tool 

deployed to perform the deep learning process. The training dataset is applied to show 

the model how to estimate the feature which will be able to predict the efficiency of 

observation for the analysis (James, Witten, Hastie, & Tibshirani, 2013).  the validation 

dataset is applied to choose a suitable architecture for the model. Finally, the testing 

dataset allows the model to iterate and tune the different parameters until the model is 

ready to be deployed. The analysis focuses on the effectiveness of the method and on 

the computational criteria (training and testing time) for its application (Sammut & 

Webb, 2011). A high analysis refers to a simplistic DL model that poorly maps the 

relations among characteristics and results (under-fitting) whereas a variance means a 

DL framework that matches the training data but does not generalize well to 

predict new data (Boutaba et al., 2018).  

3.5.1 Land cover classification with MATLAB 

Accurate land cover classification is based on remotely sensed data is essential 

for relevant authorities to evaluate the time or event-based shift in 

reclaimed mining areas. Every approach that has user flexibility in region selection 

offers a great deal of convenience during research, since the analyzer may need to focus 

on a single area of interest instead of working with all remotely sensed data. Image 

classification refers to the task of extracting information classes from a raster image.  

Pixels are the smallest units represented in an image, and image classification uses the 

reluctance statistics for individual pixels to group them. The classification of land cover 

is based on the labeled data defined in the training set.  

Land cover classification in MATLAB has 3 steps described:  

1) Create a training set of pixels belonging to a certain group from orthophoto and 

DSM. 
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For the process of image classification, we need the orthophoto and DSM to be 

labeled according to their features in MATLAB using the image labeler application 

available in MATLAB. The data labeling process is done using the pixel labeling 

using the polygon feature.  There was no prelabelled dataset available for the study 

area thus, the manual labels were generated for the specific period.  However, extra 

time was allocated in this study to properly label the images. Precise labeling is 

highly encouraged for this research to obtain a precise result. The correct method 

of labeling features for deep learning is by marking the pixels of the mentioned 

topographies in detail. All visible areas should be marked and those must be within 

its boundaries. Extra attention should be given to annotate marks, shaded areas, or 

anything on the ground level. Images were finally extracted in the PNG format after 

completion of the labeling. MATLAB was employed for this step since it offered 

the most straightforward process. It provided a user-friendly interface and an 

exportable setting. The labeled result from this setting can be easily applied for 

training the data set. Another important item for deep learning images is to make 

sure that both the original image and the resulting image are of the same resolution. 

The later section will dive into how the model is trained and the final model after 

testing. 

2) Training the Model.  

   The next step in the development of a deep learning model is to train it using 

the labeled data and orthophoto in a dataset. Model training was the easiest initial 

option where it has a built-in function in MATLAB. A line of code can represent a 

whole architecture of UNet layers. It reduced the overall coding time. However, it 

was slightly problematic when an error was found since most functions cannot be 

examined directly. The images were first loaded into the workspace by storing them 

in Datastore.  This step was done for image files by directing them to the 

corresponding folder location in the computer without separately loading them into 

the MATLAB workspace. Original images were stored with the image Datastore 

function, and the mask images were stored with pixel Label Datastore function. An 

image Datastore is commonly used for applications related to image classification 

tasks necessarily; however, pixel Label Datastore uses the read function in 
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MATLAB but more specific to reading pixel label data for the classification task. 

It combined the mask image, classes given, and ID of each class. The class for each 

pixel is defined with the code in MATLAB from the marked image. The pixel value 

ranges from 0 or 225 respectively. The original image was transformed into 

grayscale which uses an 8-bit pixel range from 0 to 255, so the labels generated 

were using the same range. Both datastores were then combined in one datastore 

that connects original images to the corresponding mask. UNet network architecture 

creation in MATLAB was straightforward. The function used was UNet layers, and 

the parameters feed were the sizes of images and the number of classes assigned to 

the mask. This input will let the network know that images stored in datastores are 

of such sizes and pixels that can be labeled as either of the five classes.  

Fig 13 displays the accuracy and loss during the training and validation data during 

the model training. It shows that the training accuracy increases and loss gradually 

decrease toward zero the validation loss was initially very high then it decreases and 

follows a similar trend after 15 epochs as the model generalizes. The performance of 

this model served as the model was performing well. If the validation curve does not 

follow the trend of the training curve asymptotic toward zero, then the model is 

overfitting. Overfitting means the model is simply memorizing the training data by 

heart, thus unable to predict new data properly (Goodfellow, Bengio, Courville, & 

Bengio, 2016).On the contrary, the model is considered underfitting when the training 

loss is not asymptotic toward zero meaning it is too simple to learn the complexity of 

the current data structure (Géron, 2019). It means that the best result was obtained by 

the model as there is consistency for accuracy and loss after the 10th epoch.  
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Figure  13 Accuracy and loss of the model during training the dataset 

 

3) Prediction of the results  

It ran through parameters values for training in the MATLAB during training and 

validation parameters. It was first tested qualitatively by overlaying the predicted mask 

with the original image. A common model evaluation would start by observing the 

accuracy, and the confusion matrix to determine how well the model performed. 

However, the deep learning model is a new approach for monitoring the reclaimed mine 

in the mining industry.  

This initial test result showed that the model was able to predict all pixels on the image 

used in the training data.  The resulting prediction quantitatively proved effective 

vegetation detection. Areas selected were meant to test the model’s capability of 

monitoring the vegetation, the model predicted the vegetation with the test image.  

3.5.2 Preparing ground truth data 

The ground truth object contains information about the data source, label 

definitions, and marked label annotations for a set of ground truth labels. These are the 

label which is performed in the image labeler application in the MATLAB using point, 

polyline, polygon, bounding box, and segmenting tools available as shown in Fig 14. 

The Ground truth data comprises the information about the data source, defined label, 

and the labels marked for the annotations. Image annotations are designed to increase 
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the productivity of labeling and also efficiency to reduce the efforts. Also, the labeling 

interface allows adapting the specific needs of the area for the classification. All tasks 

for image classification on multiclass, drop-down on a long list, and systematic 

classification is done to handle complex ontologies. The point, polyline, polygon, 

bounding box, and segmenting tools are available.  

 

Figure  14 Labeling the image in MATLAB using image labeler application 

 

3.5.3 Validation of classification results 

For the evaluation of the deep learning, the statistical methods, major 

misclassified classes will undergo a visual explanation for identifying the inconsistency 

in the classifier. This test considered how many pixels were correctly labeled. Three 

metrics, namely overall accuracy (OA), Per class accuracy (PA), Average accuracy 

(AA) and Kappa(K) coefficient were used to evaluate the quantitative performance of 

different classifiers. The parameters needed to calculate these metrics acquired from 

the confusion matrix.  

Overall accuracy represents the correctly classified areas for the whole image 

and is calculated by dividing the number of correctly classified pixels to the total 

number of pixels in the confusion matrix. (T𝑎𝑏 or the sum of major diagonal) by the 
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entire sum of pixels (N) in the confusion matrix, as shown in equation (2), and PA was 

calculated using equation (3); 

 

 
OA =

∑ T𝑎𝑏

N
 

(2) 

 
PA =

∑ T𝑎𝑏

𝑝i
 

(3) 

 

Where Tab is the total number of the correctly classified pixels in row m and 

column n and pi is the total number of pixels in the row. Average accuracy (AA) was 

computed as in equation (4) defining C as the number of the classes  

 

 
𝐴𝐴 =

∑ 𝑃𝐴𝑚
1

𝐶
𝐶 

(4) 

 

The Kappa coefficient is the proportion of agreement after the possibility 

agreement is excluded (Landis & Koch, 1977). Kappa provides data on comparing the 

effectiveness of a classifier, Several researchers have clarified the suitability of the 

kappa coefficient in accuracy evaluation of image classification to include more clear 

measurements such as averages or per-class accuracy and confusion matrices (Foody, 

2020; Pontius Jr & Millones, 2011). Alternatively, the Kappa coefficient is the standard 

calculation of the definite and predicted values reliability of a confusion matrix that 

takes into consideration of the non-diagonal elements (Foody & Mathur, 2004). Kappa 

analysis is a powerful way to validate a single mistake matrix and compare the 

difference between error matrices (Ben-David, 2008). 0 to 1 is the value range for 

kappa. The analysis of Kappa produces a K metric, a quantifiable estimate of the 

accurately labeled pixels and the degree of consensus (Landis & Koch, 1977). The 

kappa was calculated as in equation (5):  

 
𝑘 =

𝑁 ∑ 𝑇𝑎𝑏
𝑚
𝑝,𝑞=1 − ∑ 𝑜𝑖 ,𝑚

𝑝,𝑞=1 𝑝𝑗

𝑁2 − ∑ 𝑅𝑖
𝑚
𝑝,𝑞=1 , 𝑆𝑗

 
(5) 
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Where m is the number of classes, Tab is the number of correctly classified pixels 

in row p and column q, oi is the total number of pixels in row p, pj is the total number 

of pixels in column q and N is the total number of pixels. 

 

Model validation is used to predict how effective an estimator is on data which 

has been trained on and applicable to new input. The training and validation time on 

the parallel axis and a reliability metric is plotted by validation curves. The accuracy 

curve is a standard measure of reliability derived from the matrix of uncertainty and 

displays both accurate and inaccurate classifications (Abd & Alnajjar, 2013). The 

accuracy is calculated as shown in equation (6).  

 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

∑ 𝐶𝑎𝑏𝑝=1

∑ ∑ 𝐶𝑝𝑞
𝑛
𝑞=1

𝑛
𝑝=1

 
(6) 

 

Where Cab is the correct classification on the diagonal, n is the number of 

classes, Cpq is the number of times items of class p were classified as class q (an 

incorrect classification) and ∑ ∑ 𝐶𝑝𝑞
𝑚
𝑞=1

𝑁
𝑝=1   is the total number of samples that were 

analyzed. 

 

Another metric for understanding the potential of DL is the loss curve which 

proves whether the method of optimization and relative development in learning 

improves in several epochs through the training (Foody, 2002). The loss function is 

obtained using equation (7). 

 

 Loss = 1- accuracy (7) 
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CHAPTER 4 

 RESULTS AND DISCUSSION  

In this section, the results from the UAV photogrammetry and the deep learning 

are described. For deep learning using the results from UAV photogrammetry, the best 

parameters are applied to the training data, and later the trained model is used to classify 

the test data enabling the classification of land cover at reclaimed mine. The final map 

is discussed in the section and analyzed based on the metrics presented in the section. 

Finally, a visual evaluation of the map is shown to understand the correct classification 

results. 

4.1 Photogrammetric results of Study area 1 and 2  

Our results show that the UAV images used in our studies were able to capture 

the vegetation at the reclaimed, mines with high resolution.  In the two study areas 

presented here,1) area with the pattern of vegetation and 2) area with complex 

vegetation, orthophoto and DSM generated was in an automated way. The UAV used 

in this thesis was easy to use and highly flexible in time and space, as it was transported 

and operated by a single person and without applying for flight permissions 

(autonomous flight). Ground control points were also needed for validation. UAV-

technology has, however, the potential to reduce fieldwork in comparison to the amount 

that would have been necessary to assess the entire surveyed area by fieldwork. 

Therefore, UAVs are especially suited for areas that are difficult to access (mines area). 

The potential of UAVs in remote areas is, at the moment, hampered by flight 

regulations that restrict their use to the range of vision. Nevertheless, it is easier to 

transport and a backpack with ground-control-station equipment to reclaimed mines 

area.  Collecting the UAV imagery is cost-effective as described by (Karen Anderson 

& Gaston, 2013). Finally, the image data were analyzed to extract the desired 

information automatically. 

4.1.1 Orthophoto 

A set of aerial images for study areas 1 and 2 respectively were taken from 

automated flight paths was used for the generation of orthophotos. In areas where the 

terrain is flat, corrections for tilt are enough. The correction process is called 

rectification and requires four Ground Control Points for each image. When the terrain 
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is not flat, relief distortions have to be eliminated which requires elevation data that 

usually is presented in the form of a DEM. The orientation parameters were obtained 

from photogrammetric measurement. The image is then orthorectified, which means 

that the image is cleared from scale distortions due to terrain height and camera tilt, 

resulting in the same scale everywhere in the image. An orthophoto was transformed 

from a perspective projection. Finally, generated orthophotos for study areas 1 and 2 in 

this dataset are tiled together in Figure 15 (a), (b). In that figure, occluded cells in each 

of the tiles are filled using those in overlapping orthophotos.  Two orthophotos 

produced from UAV image enables GIS-based studies of the reclaimed mine. 

 

                               (a)  

                                   (b) 

Figure  15 Orthophoto of (a) study area 1 and (b) study area 2  
 

4.1.2 DSM 

A set for study areas 1 and 2 respectively were taken from automated flight paths 

was used for the generation of the DSM. A DEM is usually provided by photogrammetry 

for monitoring the mine reclamation analysis, the UAV image data is advantageous since 

the image data is used for the automated generation of elevation models and manual 

measurements. The orientation parameters were obtained from photogrammetric 
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measurement. DSM is used for interpretation of the height due to the high point density. 

DSM was produced covering the mines study area 1 and 2 because the manual 

measurements were very time-consuming. The DSM model covers the reclaimed mines 

area as shown in Fig 16 (a), (b) which is covered by vegetation. Automatically generated 

DSM has a resolution of 5 cm for both study areas 1 and 2.  

 

(a) 
                                           (b) 

Figure  16 DSM of (a) study area 1 and (b) study area 2 

 

4.2 Accuracy results of photogrammetric accuracy for study area 1 and 2  

In this study, height was extracted to assess the accuracies of the 

photogrammetric works.  The accuracy of all photogrammetric projects was evaluated 

using the surveyed points for trees and the calculation of the height from DSM and 

DTM using ArcGIS. Also, the average DTM and from the maximum height was 

calculated as shown in the table for study area 1. Also, to compare quantitatively the 

difference between UAV and the traditional approach, the mean difference (MD), the 

RMSE were used in this study. For the study are 1 table 4 shows the height of the trees 

and error calculated using DSM and DTM results from the UAV photogrammetry.  
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Table  4 Study area 1 with the height of DSM, DTM showing the difference 

between DSM and DTM and error 

 

No. 
Height 

of tree 
DSM DTM 

DSM- 

DTM 
Error 

1 2.9 456.636 453.749 2.9 0.0 

2 3.7 455.062 451.908 3.2 -0.5 

3 2.7 455.391 452.875 2.5 -0.2 

4 2.8 453.991 451.936 2.1 -0.7 

5 3.2 453.840 451.773 2.1 -1.1 

6 2.8 455.930 453.453 2.5 -0.3 
7 3.3 457.490 453.855 3.6 0.3 

8 2.9 456.924 454.260 2.7 -0.2 

9 3.3 454.925 452.795 2.1 -1.2 

10 2.5 455.193 453.093 2.1 -0.4 

11 2.8 453.382 450.660 2.7 -0.1 

12 2.7 450.195 448.220 2.0 -0.7 

13 2.9 451.965 449.397 2.6 -0.3 

14 3.7 453.376 448.894 4.5 0.8 
15 3.8 453.980 451.026 3.0 -0.8 

16 2.5 453.264 450.475 2.8 0.3 

17 2.8 452.495 450.285 2.2 -0.6 

18 3.1 453.730 450.901 2.8 -0.3 

19 3.0 452.889 449.727 3.2 0.2 

20 3.8 452.570 448.749 3.8 0.0 

21 3.2 449.760 446.465 3.3 0.1 

22 3.7 449.515 446.083 3.4 -0.3 
23 3.5 449.449 446.294 3.2 -0.3 

24 3.8 449.131 445.436 3.7 -0.1 

25 3.3 448.218 445.102 3.1 -0.2 

26 3.7 449.818 446.283 3.5 -0.2 

27 3.7 448.915 445.425 3.5 -0.2 

28 3.3 451.012 447.414 3.6 0.3 

The height was extracted accordingly as the method used in study area 1 from 

DSM and DTM. Also, the results from the traditional approach were used for the 

calculation of the error at study area 2. Table 5 shows the height of the trees and the 

error calculated using DSM and DTM results from the UAV photogrammetry.  
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Table  5 Study area 2 with the height of DSM, DTM showing the difference 

between DSM and DTM and error 

 

No.  
Height 

of tree 
DSM DTM DSM- DTM Error 

1 6.0 456.633 451.052 5.6 -0.4 

2 5.5 453.993 449.417 4.6 -0.9 

3 4.0 452.412 449.090 3.3 -0.7 

4 9.0 458.590 449.772 8.8 -0.2 
5 6.0 448.896 443.638 5.3 -0.7 

6 2.0 447.752 445.665 2.1 0.1 

7 7.0 452.297 444.571 7.7 0.7 

8 5.5 448.980 443.631 5.3 -0.2 

9 5.0 448.987 444.765 4.2 -0.8 
10 7.0 450.777 443.881 6.9 -0.1 

11 7.0 450.556 444.464 6.1 -0.9 

12 10 453.004 443.251 9.8 -0.2 

13 6.0 450.225 444.357 5.9 -0.1 

14 5.0 448.927 443.150 5.8 0.8 

15 3.0 446.293 443.133 3.2 0.2 
16 6.5 449.124 443.012 6.1 -0.4 

17 7.0 449.400 443.065 6.3 -0.7 

18 5.0 448.418 443.363 5.1 0.1 

19 5.0 448.115 443.162 5.0 0.0 

20 5.5 448.580 443.276 5.3 -0.2 
21 7.0 449.805 443.203 6.6 -0.4 

22 7.0 450.475 443.047 7.4 0.4 

23 7.0 450.114 443.252 6.9 -0.1 

24 7.0 449.902 443.463 6.4 -0.6 

25 6.5 451.461 444.143 7.3 0.8 
26 8.5 451.986 444.331 7.7 -0.8 

27 9.0 452.548 443.908 8.6 -0.4 

28 7.0 449.988 443.821 6.2 -0.8 

 

For the accuracy of the photogrammetric results, RMSE was calculated for 

study areas 1 and 2. In both study areas, the based on the UAV photogrammetric 

approach achieved better results in terms of RMSE compared to the two study areas 

(Table 6). The height from the DSM and DTM were calculated using ArcGIS and the 

mathematical calculation using excel. The mean for study area 1 was -0.2 and standard 

deviation (SD) was 0.4 likewise for study area 2 mean of -0.2 and SD of 0.5 were 
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calculated respectively for both the study area to compute the values for RMSE. The 

height of 28 trees was calculated manually and from the UAV photogrammetric works 

which resulted in an RMSE for the study area 1 and 2 was similar. Moreover, DSM and 

DTM revealed limited differences in prediction accuracy in terms of RMSE at the 

reclaimed mine area Mae Moh. Furthermore, the Min and Max values were significant.  

The visual analysis of the field reference against predicted values confirmed the 

accurate results. It was possible to observe that the effect of the values from the 

traditional survey and UAV photogrammetry. 

Table  6 Evaluation of photogrammetric results with traditional survey on the 

study area 1 and 2 

 

4.3 Validation results of land cover classification for study area 1 and 2  

This section describes about the validation results from the study area 1 and 2 

It ran through all training and test dataset in MATLAB. It was first tested by overlaying 

the predicted mask with the original image. A common model evaluation would start 

by looking at the accuracy, precision, Overall accuracy, Average accuracy, and per 

class accuracy to determine how good the model performs. However, image 

classification for monitoring the reclamation of the mines area using a deep learning 

model is a new approach in the mining industry  

4.3.1 Study area 1 

As displayed in Figures 17 (c) and (d) the model was effective when tested on 

the training data using orthophoto. This initial test result showed that the model was 

able to predict all pixels on the same image used in the test data. Figure 18 (c) and (d) 

reveals that the model responds qualitatively well for orthophoto using the model for 

the same time period. The test area included the height information from the DSM to 

predict the better result. The model was effective in predicting the vegetation accurately 

when orthophoto was combined with DSM. The testing procedure of the deep learning 

model is done using the test dataset. This test shows the capability of the model for the 

Study Area Mean (m) SD (m) RMSE (m) Min(m) Max(m) 

1. -0.2 0.4 0.5 -1.2 0.8 

2. -0.2 0.5 0.5 -0.9 0.8 
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land cover classification at a reclaimed mine. The other area was used for test data 

besides the training data. Each predicted patch was 256*256 in size showing the land 

cover classification. The resulting predicted model was effective for the test area. There 

are shadows in the study area, classifying the shadows at the reclaimed area shows the 

accurate classification of the vegetation. Next, the test was performed for the accuracy 

of the correctly classified pixel.  This test considered how many pixels were correctly 

labeled. The model is evaluated by calculating per class accuracy. The parameters 

needed to calculate these metrics were acquired through the confusion matrix.  
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Prediction results on the training area study area 1 based on the training dataset  

 

                                    (a) 

 

(b) 

 

(c) 

 

(d) 

 

 

Figure  17 Training datasets and results after classification using DL (a) 

Orthophoto, (b) DSM, (c) land cover map from orthophoto, and (d) land cover 

map from orthophoto and DSM with the legend 
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Based on the training results for each class, Table 7 shows the per-class 

accuracy (PA) achieved by the proposed model. The results from the training data 

suggest that the deep learning with a combination of orthophoto and DSM was able to 

classify almost all classes excluding others with relatively high accuracy. The 

maximum per-class accuracy of the orthophoto and a combination of orthophoto with 

DSM for the grassland were 0.992 and 0.994, respectively. Focusing on the 

classification of vegetation area, the PA of combining orthophoto with DSM for both 

trees and grassland was relatively higher than the orthophoto.  

 

 

 

 

 

 

For validation of prediction results using DL, the evaluation criteria for Overall 

accuracy (OA), Average accuracy (AA), and kappa(K) are presented in Table 8. The 

OA for the orthophoto and orthophoto with DSM were 0.987, AA was higher for 

orthophoto with DSM 0.948 and the K (0.991) was similar for both the models.  

 

Table  8 Accuracy metrics of the classification methods for the training dataset 

 

 Model OA AA K 

 

Training 
Orthophoto 0.987 0.938 0.991 

Orthophoto 
and DSM 

0.987 0.948 0.991 

 

 

 

 

 

 

Table  7 Training Dataset with per-class accuracy obtained by different class 

Class Orthophoto Orthophoto and DSM 

Trees 0.978 0.983 

Shadow 0.967 0.969 

Grassland 0.992 0.994 

Barren land 0.982 0.970 

others 0.772 0.824 
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Prediction results on the test area study area 1 based on the training dataset  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure  18 Test datasets and results after classification using DL (a) Orthophoto, 

(b) DSM, (c) land cover map from orthophoto, and (d) land cover map from 

orthophoto and DSM with the legend 
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Also, from Table 9, in terms of the classification results of the test dataset, the 

PA of combination orthophoto with DSM was more accurate than orthophoto excluding 

barren land and other class. The accuracy of trees was 3.9% greater when orthophoto 

was combined with DSM and the accuracy of grassland increased by 1.3% when 

orthophoto was combined with DSM. Likely, the classification results for the 

vegetation obtained from combination of orthophoto with DSM were significant ly 

potential for the DL approach. However, the other class was misclassified when 

orthophoto was combined with DSM because of the inequalities in the dataset of other 

classes for training with DL, dataset of the labeled pixel for GT was the least of all. It 

is noticed that a contributing factor may also be the lack of adequate sampling (Marcos, 

Volpi, Kellenberger, & Tuia, 2018). On the other hand, most of the sampled pixels in 

the training dataset were for grassland the highest precision of classification was 

predicted by grassland for both approaches. 

 

 

 

 

 

 

For validation of prediction results using DL, the evaluation criteria for OA, 

AA, and K are presented in Table 10 When the orthophoto was combined with DSM, 

the overall accuracy (OA) for the test dataset was 0.900 and 0.904, respectively. The 

OA and K for the test dataset using the orthophoto and a combination of orthophoto 

were 0.837, 0.681, and 0.935, 0.937 respectively. Moreover, in the case of the testing 

for a combination of orthophoto with DSM, AA is lower accuracy as compared to the 

orthophoto due to misclassification error in other classes, as there was the least number 

of classified pixels for the others class which is shown in Table11.  

 

 

Table  9 Test Dataset with per-class accuracy obtained by different 

Class Orthophoto Orthophoto and DSM 

Trees 0.731 0.770 

Shadow 0.770 0.788 

Grassland 0.920 0.933 
Barren land 0.963 0.913 

others 0.800 0.000 
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Table  10 Accuracy metrics of the classification methods for the test dataset 

 Model OA AA K 

 Orthophoto 0.900 0.837 0.935 

Testing Orthophoto 
and DSM 

0.904 0.681 0.937 

 

 
Table  11 Number of pixels per land cover class in the ground truth 

 

Land cover class No. of pixel  Square meter 

Trees 138,452 346.130 

Shadow 519,76 129.940 

Grassland 725,547 1813.868 

Barren land 163,008 407.520 

others 2,156 5.390 

Five land cover groups considered in this research are (i) trees, (ii) shadow, (iii) 

grassland, (iv) barren land, and (v) others. The database provides ground truth labels 

that associate each pixel with one of five semantic classes. Total 1,011,839 pixels of 

the test area dataset were labeled in the image labeler, as shown in table 11. Each class 

was labeled according to its respective class using the orthophoto and DSM. The overall 

area was classified using the training area which shows that all the area of the overall 

image was classified especially for the vegetation area.  
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In conclusion, developing a machine learning model is a challenging process 

yet produces an effective way for monitoring reclaimed mines. This study had a 

challenging data acquisition process, but it allowed the researcher to explore another 

acquisition method. The vegetation classes were categorized well-using orthophoto and 

combining orthophoto with DSM. The study area has the test and train area which were 

taken from the same area and same time period. Images captured UAV platform showed 

the potential for land cover classification. Fig 19 shows the classification of the overall 

area for the test and train dataset. In addition, the UNet architecture provided favorable 

results in the vegetation detection algorithm. Some misclassifications were present for 

the other class due to the least number of labels for the other class.  

 

Figure  19 Classification map using orthophoto and combination of orthophoto 

with DSM 
 

4.3.2 Study area 2 

The study area 2 consists of two datasets of the same area at a different time 

consisting of a) July 2020 and b) October 2020. The dataset for training was collected 

on 2nd October 2020 and the test data was collected on 22nd July 2020 by officials of 

Mae Moh mine using different UAV. Previously collected data was requested for 

                                    (a)                                                                                  (b) 
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conducting the research which was used for predicting the result. After training of DL 

with CNN, land cover classification for the train and test dataset is predicted. Validation 

curves (accuracy and loss) of the two models evaluated the results using orthophoto and 

a combination of orthophoto with DSM. The accuracy and loss curves demonstrate the 

consistency of the training over the iterations for the DL with CNN. The accuracy 

curves in both the methods saturated after the 10th epoch. After the iterations were 

completed, the accuracy curves of both the model were identical. The findings revealed 

that the learning rate was positively linked to model efficiency. After 15 iterations, the 

loss curves reached a smooth stage, with the highest precision. The accuracy of the 0.1 

curves was the highest when the iteration was stopped. Fig 20 shows the orthophoto 

and DSM used for the prediction of land cover using DL.         

 

Figure  20 Test area (a) orthophoto and (b) DSM (July 2020) 

 

According to a visual interpretation between Figure 21 (a) and (b) the results 

were very different for the prediction. While using the only orthophoto the classes could 

not be identified and the results were not precise where when orthophoto was combined 

with the DSM the land cover classes were distinguished. Likely, there is insignificant ly 

                                    (a)                                                                                  (b) 
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identified for the type of land cover when orthophoto was combined with the DSM. In 

addition, the tree canopy was appropriately classified while using orthophoto with 

DSM.  In conclusion, the DL for land cover classification demonstrates an efficient 

approach for monitoring the vegetation at the reclaimed mines when orthophoto was 

combined with DSM. 

 

For validation of prediction results using DL, the evaluation criteria for OA, 

AA, and K were presented in Table 12. The overall accuracy (OA) for testing datasets 

using orthophoto and combining orthophoto and DSM were 0.395 and 0.751, 

respectively. Moreover, in the case of the testing orthophoto have lower accuracy as 

compared to the combination of orthophoto with DSM which shows that while 

combining orthophoto with DSM shows the better result of prediction as in Fig 22 

orthophoto only cannot predict precise results using the data at different times. 

However, the OA and K of training using orthophoto and a combination of orthophoto 

with DSM are similar. 

 

                                    (a)                                                                                  (b) 

Figure  21 Land cover classification results of test area using (a) 

orthophoto (b) orthophoto and DSM of July 2020  
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Table  12 validation results for the train and test area study area 2  

 

Dataset Model OA AA K 

 

Training 

Orthophoto 0.990 0.964 0.987 

Orthophoto and DSM 0.994 0.979 0.992 

 

Testing 

Orthophoto 0.395 0.482 0.417 

Orthophoto and DSM 0.751 0.636 0.684 

Based on the training and test results for each class, Table 13 shows the per-

class accuracy (PA) achieved by the proposed model. The results from the test data 

suggest that deep learning with a combination of orthophoto and DSM was able to 

classify almost all classes with relatively high accuracy than orthophoto. The maximum 

per-class accuracy for test data using orthophoto and a combination of orthophoto with 

DSM for the grassland were 0.913 and 0.947, respectively. Focusing on the 

classification of vegetation area for the test area at different time, the PA of combining 

orthophoto with DSM for both trees and grassland were relatively higher than the 

orthophoto. Also, from Table 13, in terms of the classification results of the test dataset, 

the PA of combination orthophoto with DSM was more accurate than orthophoto 

excluding shadow and other classes.  

The accuracy of trees was increased by 0.088 when orthophoto was combined 

with DSM and the accuracy of grassland increased by 0.550 when orthophoto was 

combined with DSM. Likely, the classification results for the vegetation obtained from 

orthophoto and DSM were significantly potential for the DL approach for change in 

time series data. However, the other class was misclassified when orthophoto was 

combined with DSM. Because of the inequalities in the dataset of other classes for 

training with DL, the dataset of the labeled pixel for GT was the least of all. It is noticed 

that a contributing factor may also be the lack of adequate sampling (Marcos et al., 

2018). On the other hand, most of the sampled pixels in the training dataset were for 

grassland and trees with the highest precision of classification using orthophoto and 

DSM. 
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Table  13 Per class accuracy for the train and test area using orthophoto and 

DSM 

 

Per Class accuracy 

Classes 

Training area Test area 

Orthophoto Orthophoto and 

DSM 

Orthophoto Orthophoto and 

DSM 

Grassland 0.993 0.994 0.117 0.665 
Barren land 0.988 0.993 0.913 0.947 

Trees 0.986 0.993 0.844 0.931 
Shadow 0.892 0.940 0.521 0.000 
Others 0.960 0.972 0.000 0.000 

In conclusion, developing a machine learning model is a challenging process 

for the time series data yet produces an effective way for monitoring reclaimed mines. 

The vegetation classes were categorized well-using orthophoto and combining 

orthophoto with DSM. The study area has the test and train area which were taken at 

the same area and different periods. Images captured using the UAV platform showed 

the potential for land cover classification. Fig 21 shows the classification of the overall 

area for the test dataset from orthophoto and combination of orthophoto with DSM 

using the trained model at different time and same area. In addition, the UNet 

architecture provided favorable results in the vegetation detection algorithm when 

orthophoto was combined with DSM. The shadow and other classes were not classified 

while combining orthophoto and DSM due to the least number of labels for the classes.  

4.4 Discussion 

UAV data, as presented in this study, could potentially contribute to mine 

reclamation studies by providing land cover information meeting research needs. Land 

cover information provides a comprehensive insight into how the environment is useful 

for many conservation applications in reclaimed mines, such as investigation of spatial 

effects. Furthermore, it is dynamic to observe a large number of individuals within a 

forest community in order to adequately capture the expected variation in timing events 

(Donnelly, Grant, & O'Reilly, 2017). A UAV dataset, preferably acquired using the 

same camera at the different times, could provide vision into whether these issues have 

significant influences Furthermore, the ability to monitor mine reclamation with UAVs 

(although an accurate species identification still requires field observation) could help 

in understanding the effects of the underlying spatial complexity of the objects which 
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might be present within the resolved satellite imagery (White et al. 2009).  The findings 

of this research support the use of UAV data for this application, as canopy of 

vegetation (based on the pixels).   

The findings of the study show that the UAV photogrammetry approach for 

mine reclamation provides photogrammetric results, consisting of orthophoto and 

DSM, which is possibly more useful information for monitoring land cover. The deep 

learning technique can employ the automatic extraction of land clover using the trained 

datasets from orthophoto and/or DSM at the pixel level. The effectiveness of land cover 

was determined using the DL technique with training and test datasets from between 

orthophoto and a combination of orthophoto with DSM. The results comparison of the 

land clover classification based on DL revealed that the use of both orthophoto and 

DSM provides more accuracy than orthophoto, especially the vegetation area. As the 

DSM can offer useful information of height above ground surface especially for 

vegetation (such as trees),  adding this information helps to improve accuracy (Al-

Najjar et al., 2019). On the other hand, the use of orthophoto and DSM for DL revealed 

that the misclassification for barren land and other class due to adequate labeled data 

mentioned by Marcos et al. (2018). However, for mine reclamation, the vegetation area 

was more important due to the regulation of plantation from the concerned authorities 

and natural recovery.  

In our land-cover classification task, it is clear that the reliability of deep-

learning approaches (Al-Najjar et al., 2019; S. Li, Hao, Gao, & Kang, 2018). The spatial 

resolution of the orthophoto and DSM available in this analysis was 5 cm, which was 

adequate for vegetation classification. In the terms of the shadow, it is necessary to 

separate the shadow area from the tree crown measurement because calculating the 

vegetation area would be more precise when excluding shadow (Adeline, Chen, 

Briottet, Pang, & Paparoditis, 2013; Movia, Beinat, & Crosilla, 2016).  The results for 

the image classification as in Figures 17 and 18 analyzed shows precise results based 

on Tables 8 and 10 for the land cover especially vegetation. Relevantly, the timeline for 

estimating land cover from digital images are based on models is also substantially 

improved relative to conventional approaches. Applying the DL methods to trained U-

Net models, land cover maps are generated. Few computationally effective CNN for 

detection, semantic labeling has been added (Krizhevsky, Sutskever, & Hinton, 2017; 
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S. Li et al., 2018; Tang & Yuan, 2015). Land cover classification is essential for mine 

reclamation, as it can help reduce mine recovery to assess the mine field. Several studies 

have been developed to create effective architectures that can be performed in land 

cover based on DL (Alshehhi et al., 2017; Wu, Yu, Huang, & Yu, 2015) . In addition, 

regarding the state of art technologies, introducing DL and UAV into the periodic 

monitoring of mine reclamation could be considered as an effective result for reducing 

discrepancies among public administration and private companies, and at the same 

time, contributing to monitoring the sustainable development of extractive mining 

activities. 

 DL with a UAV photogrammetric approach platform could be more suitable 

for much more extensive restorations and perhaps further improvements could be 

achieved using multispectral sensors with more bands or hyperspectral sensors to 

enhance the spectral information.  This study was limited by UAV imagery with a 

normal (RGB) camera at the mines area with the pattern of vegetation. These results 

indicated that the combination of orthophoto with DSM provides a comprehensive 

database of UAV imagery at an affordable cost, which can be exploited for land cover 

mapping and detecting the changes of vegetation at reclaimed mines area. The accuracy 

of image classification is as improved by Y. Li, Zhang, and Shen (2017), the accuracy 

of OA, AA, and K was higher for the training data using the combination of orthophoto 

and DSM with the spatial resolution of 5 cm/pixel.  

The test and the train study area 1 were taken at the same time and using the 

same camera whereas for the study area 2 the images were of different time between 2 

October 2020 (train dataset) and 21 July 2020 (test dataset). The results for the study 

area 1 show precise results for both the test and train data as shown in figure 17 (c, d) 

and 18 (c, d). the objects in the train and test areas are classified easily using orthophoto 

and combination of orthophoto with DSM. Also, the misclassification for barren land 

and other class due to adequate labeled data mentioned by (Marcos et al., 2018). 

Similarly, for the study area 2 as in Fig 21 (a), (b) using the test imagery at different 

time the result is more precise when orthophoto is combined with DSM (Fig 21 b).  

 

In our experiment, it was observed that the vegetation area specially trees were 

classified well for both the study pattern and complex vegetation while combining 
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orthophoto with DSM from table 9 and 13 Deep learning with CNN provided effective 

techniques to deal with these problems and to improve accuracy. Moreover, a useful 

method is to use the pixels and guide the maps used by (Wang et al., 2017) for 

classification. Xu, Xie, Feng, and Chen (2018) designed attention unit to fuse different 

scale feature maps and designed a global attention unit to eliminate the effects on object 

covering, which effectively improved the accuracy. The cases of vegetation (trees) 

being often misclassified as vegetation may diminish but if we add DSM to the model 

it enhances the vegetation features. Trees, are one of the most prominent classes in the 

reference map for the testing area at different time. Also, (Al-Najjar et al., 2019) 

proposed the method for land cover classification using fused DSM which improved 

the accuracy. These methods contribute to improve the performance of the model. 

 This experimental study demonstrated two successful applications using the 

different time of dataset for the classification method. This technique attempted to 

simulate the pattern of vegetation and classification for interpretation. The proposed 

convolution neural network and its associated training techniques can be extended to 

monitor reclaimed mines areas. In fact, the deep learning with CNN technique should 

be able to be trained and to detect almost all vegetation patterns perceivable for 

monitoring the reclaimed mines. CNN extracts deep spatial-related features for fixed 

input patch size. The DL with CNN offered land cover classification results in their 

mapping accuracies using between Orthophoto and combination of orthophoto with 

DSM.  Therefore, the classification using CNN solve the problem of monitoring scale 

across the mines area. 
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CHAPTER 5  

 CONCLUSION AND RECOMMENDATION 

 5.1 Conclusion 

A comprehensive review of UAVs photogrammetry concerning traditional 

photogrammetry is presented at the reclaimed mines as is efficient and low cost. This 

described the applications of UAVs in photogrammetry for monitoring the reclaimed 

mines. Based on the literature review and results of reclaimed mines area, classification 

methods using UAV were presented. Using the review and the formulated classification 

UAV system is low-cost, open-source, manually, and assisted controlled and 

autonomously flying UAVs. The coordinates in the flight planning are frequently 

defined relative to the start point, which allows flight planning independently from 

existing maps and coordinate systems. Finally, the capability of using UAVs in 

inaccessible and dangerous areas, and the improvements in the data processing open up 

new applications in UAV photogrammetry at the reclaimed mines area. Images 

captured through the UAV photogrammetry showed the potential to serve as suitable 

input data to monitor the vegetation at the reclaimed mine.  

The deep learning with CNN presented in this thesis is feasible to automate the 

detection and monitoring of reclaimed mines which does not require a long waiting 

period between data acquisition sessions at different intervals of time. However, this 

thesis took that concept and utilize automation in the monitoring reclaimed mine from 

UAV imagery. Developing a deep learning model is a challenging process yet will 

produce an effective way for monitoring the reclaimed mine. Deep learning has had a 

revolutionary effect on computer vision. The deep learning with CNN provided 

favorable results in land cover classification at reclaimed mines. Deep learning with 

UAV has become a widespread resource for aerial imagery. The proposed approach in 

this thesis has shown that it can be applied to photogrammetric results for automatic 

land cover classification from UAV images at reclaimed mine areas. A large survey 

area can be mapped through the use of a UAV system without interrupting ongoing 

production operations, and regions inaccessible by human operators can also be 

covered. This results in the acquisition of on-demand and almost real-time data, which 

delivers high-resolution data. The method shows that networks trained on a task for 
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image recognition can potentially be used to solve the problem of classification. The 

approach also deduced that these methods for land cover classification are consistent 

on a same area and different time as the dataset used for training the model. This 

proposed approach is a breakthrough as significant unlabeled photogrammetric datasets 

can now be classified and categorized. Adapting a deep pre-trained network on a new 

dataset that has a limited number of labeled images to train quickly, learn and adjust 

the weights and biases of the network on the new dataset in effect delivers promising 

results.  

The trained model in DL for the study areas 1 and 2 both orthophoto and DSM 

have higher precision of OA, AA, k, and PA than only orthophoto due to the height 

information. The values of land cover classification for train area were OA of 0.987, 

AA of 0.938 and k of 0.991 also test area from combining orthophoto with DSM with 

OA of 0.904, AA of 0.681, and K of 0.937 for study area 1 in which data was used for 

same time and same UAV. Similarly, for study area 2 the values for train area were OA 

of 0.994, AA of 0.979 and k of 0.992 and for test area with OA of 0.751, AA of 0.636, 

and K of 0.684 in which data for train and test were of different time and different UAV. 

The deep learning model presented in this thesis showed that it is feasible to 

automate the detection and monitoring of reclaimed mines which does not require a 

long waiting period between data acquisition sessions at different intervals of time. 

However, this thesis took that concept and utilize automation in the monitoring 

reclaimed mine from UAV imagery. The automation process suggested in this study 

would reduce the time spent significantly. The trained model in this study showed 

promising performance. It was evaluated qualitatively and quantitatively to determine 

the feasibility of the proposed method. The final model also attests that an image 

classification problem can be solved effectively through the UNet architecture. Also, 

this thesis serves as a methodology and provides a concept to apply deep learning for 

monitoring and classifying land cover at reclaimed mine. 

It is concluded that when implementing succession for restoration of vegetation 

the following points are considered evaluation of environmental site conditions; 

deciding whether spontaneous succession of vegetation at reclaimed mines area; 

prediction of successional development; monitoring of the results. The need for 
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interdisciplinary approaches and communication between engineers and decision‐

makers is emphasized. Land cover information at reclaimed mines plays a significant 

role in the earth system, which reflects the influence of human activities and 

environmental changes. Administrative and extractive companies are bounded by laws 

for carrying out the vegetation activities at the reclaimed mines area. Also, this 

approach helps engineers and decision makers to conclude the results at the reclaimed 

mines area. 

Also, this research developed a UAV photogrammetric approach using the deep 

learning method for land cover classification. The land cover classes were classified 

and mapped with high accuracy and computational efficiency for the train and test 

areas. Below are the main conclusions emerging from this research. 

• Effectiveness of the UAV photogrammetric approach was compared to the 

traditional monitoring methods for monitoring rehabilitation in the mines in 

terms of time consuming, less labour and cost. 

• Land cover classification with deep learning using convolutional neural 

networks (CNN), where a group of pixels was used for labeling, and further 

incorporated the spatial context with high accuracy. Substantial progress in 

developing a method for extracting information from reclaimed mines has been 

made. 

5.2 Limitations  

The UAV imagery was limited by normal RGB camera from the UAV and the 

time series datasets for the study area as the research could be conducted at the same 

time later using the same UAV approach. Additionally, to some extent, shadows from 

the UAV platform may be responsible for the final results from the deep learning. In 

this study, different tree species were considered and analyzed. UAV-acquired data help 

provide low-cost, high-resolution, and continuously updated mine land cover 

information for sustainable development.  

5.3 Future Works 

The following suggestions for future work based on our experience of DL for mine 

reclamation: Future studies may explore the feasibility of using UAV systems to collect 
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multispectral data for monitoring. The collected information will be beneficial for 

various monitoring tasks because the UAV data captured in different wavelengths can 

reveal different features. This direction will result in a new set of data analytic methods, 

which will complement the proposed approaches in this work. Further multispectral 

UAV sensors need for more accurate land cover mapping at the rehabilitated mines 

area. Further works can be listed as:  

• Future studies should conduct for identifying the types of trees at large areas to 

further improve and refine the proposed workflow for monitoring.  

• Also, the data can be collected at the same time (October 2021) using UAV with 

the flight conditions same as in October 2020 and the results can be predicted 

using the model of October 2020. 

• While DL is very promising and currently applied in a wide range of 

applications. It might be interesting to explore other classification methods 

like Random Forest models on this same dataset to make a comparison of the 

prediction results with the DL model 
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APPENDIX 

Appendix A  

Co-ordinates of the ground control points 

Point Easting Northing Orthometric Height 

study area 1 

A1 579601.203 2027507.857 453.871 

A2 579582.162 2027576.060 456.154 

A3 579493.217 2027566.857 444.172 

A4 579568.515 2027481.120 444.690  

A5 579537.595 2027534.877 446.535 

study area 2 

B1 579718.878 2027263.832 443.748 

B2 579756.781 2027191.277 444.362 

B3 579790.363 2027128.612 444.624 

B4 579739.465 2027127.284 442.509 

B5 579665.410 2027238.617 442.565 
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Appendix B 

MATLAB CODES 

(a) CNN prediction using orthophoto 

imageDir = tempdir; 

load('rit18_data.mat'); 

train_data = switchChannelsToThirdPlane(train_data); 

val_data   = switchChannelsToThirdPlane(val_data); 

test_data  = switchChannelsToThirdPlane(test_data); 

train_data_ortho = imread('train_image_ortho.tif'); 

figure 

%CH3 = Red, CH2=Green, CH1 =Blue 

montage(... 

     {histeq(train_data_ortho(:,:,[3 2 1])), ... 

    histeq(val_data(:,:,[3 2 1])), ... 

    histeq(test_data(:,:,[3 2 1]))}, ... 

    'BorderSize',10,'BackgroundColor','white') 

title('RGB Component of Training Image (Left), Validation Image (Center), and Test 

Image (Right)') 

% display the 3 figures in the 3 color bands separating the bands from the 

% RGB image  

figure 

montage(... 

    {histeq(train_data_ortho(:,:,1)), ... 

    histeq(train_data_ortho(:,:,2)), ... 

    histeq(train_data_ortho(:,:,3))}, ... 

    'BorderSize',10,'BackgroundColor','white') 

title('Channels 1 (Left), 2, (Center), and 3 (Right) of Training Image') 

% defining the classes for the images to segment 

%define_Class = char('0.Trees ', '1.Grass ','2.Road ','3.Other Class/Image Border') 
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define_Class = char('1.Trees', '2.Shadow','3.Grass', '4.Barrenland', '5.Others') 

%create the vector name for the classes 

%classNames = [ "Trees", "Grass", "Road", "Other Class/Image Border"] 

classNames = [ "Trees", "Shadow", "Grass", "Barrenland", "Others"] 

% creating the train label and adding the image to the train label 

train_label_ortho = imread('train_label_ortho.png'); 

% Overlay the labels on the histogram-equalized RGB training image. Add a colorbar 

to the image. 

cmap = jet(numel(classNames)); 

B = 

labeloverlay(histeq(train_data_ortho(:,:,1:3)),train_label_ortho,'Transparency',0.8,'Col

ormap',cmap); 

figure 

title('Training Labels') 

imshow(B) 

N = numel(classNames); 

ticks = 1/(N*2):1/N:1; 

colorbar('TickLabels',cellstr(classNames),'Ticks',ticks,'TickLength',0,'TickLabelInterp

reter','none'); 

colormap(cmap) 

% Save the training data as a MAT file 

save('train_data_ortho.mat','train_data_ortho'); 

%create .mat file for storing the training images 

imds = 

imageDatastore('train_data_ortho.mat','FileExtensions','.mat','ReadFcn',@matReader); 

%Create a pixelLabelDatastore  

pixelLabelIds = 1:5; 

pxds = pixelLabelDatastore('train_Label_ortho.png',classNames,pixelLabelIds); 

% ******Create a randomPatchExtractionDatastore (Image Processing Toolbox) 

from the image datastore and the pixel label datastore 
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dsTrain = 

randomPatchExtractionDatastore(imds,pxds,[256,256],'PatchesPerImage',16000); 

% ************************************************* 

% correct matReader.m in four bands as the image  

% ************************************************** 

%The random patch extraction datastore dsTrain provides mini-batches of data to the 

network at each iteration of the epoch. Preview the datastore to explore the data. 

inputBatch = preview(dsTrain); 

disp(inputBatch) 

% Create U-Net Network Layers 

% change in flie createUnet.m for the number of classes which we changed 

% from 18 classes to 5 classes as our requirement**** 

inputTileSize = [256,256,4];%<<<<4 is channels of imagery 

lgraph = createUnet(inputTileSize); 

disp(lgraph.Layers) 

%Select Training Options 

initialLearningRate = 0.05; 

%maxEpochs = 150;*******original 

maxEpochs = 15; 

% Original 

% minibatchSize = 16; 

minibatchSize = 8; 

l2reg = 0.0001; 

options = trainingOptions('sgdm',... 

    'InitialLearnRate',initialLearningRate, ... 

    'Momentum',0.9,... 

    'L2Regularization',l2reg,... 

    'MaxEpochs',maxEpochs,... 

    'MiniBatchSize',minibatchSize,... 

    'LearnRateSchedule','piecewise',...     
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    'Shuffle','every-epoch',... 

    'GradientThresholdMethod',' l2norm',... 

    'GradientThreshold',0.05, ... 

    'Plots','training-progress', ... 

    'VerboseFrequency',20); 

%********Train the Network******************************** 

doTraining = false;  

if doTraining 

    modelDateTime = datestr(now,'dd-mmm-yyyy-HH-MM-SS'); 

    [net,info] = trainNetwork(dsTrain,lgraph,options); 

    save(['multispectralUnet-' modelDateTime '-Epoch-' num2str(maxEpochs) 

'.mat'],'net','options'); 

else  

    load('multispectralUnet-17-Nov-2020-12-13-11-Epoch-30.mat'); 

end 

%****************************************************** 

%**********Predict Results on Test Data 

predictPatchSize = [512 512]; 

%**********create and import the image for train data%  

test_datanew = imread('test_image_ortho.tif'); 

segmentedImage = segmentImage(test_datanew,net,predictPatchSize); 

segmentedImage = uint8(test_datanew(:,:,3)~=0) .* segmentedImage; 

figure 

imshow(segmentedImage,[]) 

title('Segmented Image') 

segmentedImage = medfilt2(segmentedImage,[7,7]); 

imshow(segmentedImage,[]); 

title('Segmented Image  with Noise Removed') 

B = labeloverlay(histeq(test_datanew(:,:,[3 2 

1])),segmentedImage,'Transparency',0.8,'Colormap',cmap); 
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figure 

imshow(B) 

title('Labeled Test Image') 

colorbar('TickLabels',cellstr(classNames),'Ticks',ticks,'TickLength',0,'TickLabelInterp

reter','none'); 

colormap(cmap) 

imwrite(segmentedImage,'results.png'); 

%create the ground truth from the test data (from image labeller) and predict the 

global 

%accuracy% 

pxdsResults = pixelLabelDatastore('results.png',classNames,pixelLabelIds); 

pxdsTruth = pixelLabelDatastore('gtruth_test_area.png',classNames,pixelLabelIds); 

ssm = evaluateSemanticSegmentation(pxdsResults,pxdsTruth,'Metrics','global-

accuracy'); 

% Per class accuracy%%% 

metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTruth); 

metrics 

metrics.ClassMetrics 

metrics.ConfusionMatrix 

(b) CNN prediction using orthophoto with DSM 

imageDir = tempdir; 

load('rit18_data.mat'); 

train_data = switchChannelsToThirdPlane(train_data); 

val_data   = switchChannelsToThirdPlane(val_data); 

test_data  = switchChannelsToThirdPlane(test_data); 

train_data_ortho = imread('train_image_ortho.tif'); 

figure 

%CH3 = Red, CH2=Green, CH1 =Blue 

montage(... 
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     {histeq(train_data_ortho(:,:,[3 2 1])), ... 

    histeq(val_data(:,:,[3 2 1])), ... 

    histeq(test_data(:,:,[3 2 1]))}, ... 

    'BorderSize',10,'BackgroundColor','white') 

title('RGB Component of Training Image (Left), Validation Image (Center), and Test 

Image (Right)') 

% display the 3 figures in the 3 color bands separating the bands from the 

% RGB image  

figure 

montage(... 

    {histeq(train_data_ortho(:,:,1)), ... 

    histeq(train_data_ortho(:,:,2)), ... 

    histeq(train_data_ortho(:,:,3))}, ... 

    'BorderSize',10,'BackgroundColor','white') 

title('Channels 1 (Left), 2, (Center), and 3 (Right) of Training Image') 

% defining the classes for the images to segment 

%define_Class = char('0.Trees ', '1.Grass ','2.Road ','3.Other Class/Image Border') 

define_Class = char('1.Trees', '2.Shadow','3.Grass', '4.Barrenland', '5.Others') 

%create the vector name for the classes 

%classNames = [ "Trees", "Grass", "Road", "Other Class/Image Border"] 

classNames = [ "Trees", "Shadow", "Grass", "Barrenland", "Others"] 

% creating the train label and adding the image to the train label 

train_label_ortho = imread('train_label_ortho.png'); 

% Overlay the labels on the histogram-equalized RGB training image. Add a colorbar 

to the image. 

cmap = jet(numel(classNames)); 

B = 

labeloverlay(histeq(train_data_ortho(:,:,1:3)),train_label_ortho,'Transparency',0.8,'Col

ormap',cmap); 

figure 
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title('Training Labels') 

imshow(B) 

N = numel(classNames); 

ticks = 1/(N*2):1/N:1; 

colorbar('TickLabels',cellstr(classNames),'Ticks',ticks,'TickLength',0,'TickLabelInterp

reter','none'); 

colormap(cmap) 

% Save the training data as a MAT file 

save('train_data_ortho.mat','train_data_ortho'); 

%create .mat file for storing the training images 

imds = 

imageDatastore('train_data_ortho.mat','FileExtensions','.mat','ReadFcn',@matReader); 

%Create a pixelLabelDatastore  

pixelLabelIds = 1:5; 

pxds = pixelLabelDatastore('train_Label_ortho.png',classNames,pixelLabelIds); 

% ******Create a randomPatchExtractionDatastore (Image Processing Toolbox) 

from the image datastore and the pixel label datastore 

dsTrain = 

randomPatchExtractionDatastore(imds,pxds,[256,256],'PatchesPerImage',16000); 

% ************************************************* 

% correct matReader.m in four bands as the image  

% ************************************************** 

%The random patch extraction datastore dsTrain provides mini-batches of data to the 

network at each iteration of the epoch. Preview the datastore to explore the data. 

inputBatch = preview(dsTrain); 

disp(inputBatch) 

% Create U-Net Network Layers 

% change in flie createUnet.m for the number of classes which we changed 

% from 18 classes to 5 classes as our requirement**** 

inputTileSize = [256,256,4];%<<<<4 is channels of imagery 

lgraph = createUnet(inputTileSize); 
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disp(lgraph.Layers) 

%Select Training Options 

initialLearningRate = 0.05; 

%maxEpochs = 150;*******original 

maxEpochs = 15; 

% Original 

% minibatchSize = 16; 

minibatchSize = 8; 

l2reg = 0.0001; 

options = trainingOptions('sgdm',... 

    'InitialLearnRate',initialLearningRate, ... 

    'Momentum',0.9,... 

    'L2Regularization',l2reg,... 

    'MaxEpochs',maxEpochs,... 

    'MiniBatchSize',minibatchSize,... 

    'LearnRateSchedule','piecewise',...     

    'Shuffle','every-epoch',... 

    'GradientThresholdMethod',' l2norm',... 

    'GradientThreshold',0.05, ... 

    'Plots','training-progress', ... 

    'VerboseFrequency',20); 

%********Train the Network******************************** 

doTraining = false;  

if doTraining 

    modelDateTime = datestr(now,'dd-mmm-yyyy-HH-MM-SS'); 

    [net,info] = trainNetwork(dsTrain,lgraph,options); 

    save(['multispectralUnet-' modelDateTime '-Epoch-' num2str(maxEpochs) 

'.mat'],'net','options'); 

else  
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    load('multispectralUnet-17-Nov-2020-12-13-11-Epoch-30.mat'); 

end 

%****************************************************** 

%**********Predict Results on Test Data 

predictPatchSize = [512 512]; 

%**********create and import the image for train data%  

test_datanew = imread('test_image_ortho.tif'); 

segmentedImage = segmentImage(test_datanew,net,predictPatchSize); 

segmentedImage = uint8(test_datanew(:,:,3)~=0) .* segmentedImage; 

figure 

imshow(segmentedImage,[]) 

title('Segmented Image') 

segmentedImage = medfilt2(segmentedImage,[7,7]); 

imshow(segmentedImage,[]); 

title('Segmented Image  with Noise Removed') 

B = labeloverlay(histeq(test_datanew(:,:,[3 2 

1])),segmentedImage,'Transparency',0.8,'Colormap',cmap); 

figure 

imshow(B) 

title('Labeled Test Image') 

colorbar('TickLabels',cellstr(classNames),'Ticks',ticks,'TickLength',0,'TickLabelInterp

reter','none'); 

colormap(cmap) 

imwrite(segmentedImage,'results.png'); 

%create the ground truth from the test data (from image labeller) and predict the 

global 

%accuracy% 

pxdsResults = pixelLabelDatastore('results.png',classNames,pixelLabelIds); 

pxdsTruth = pixelLabelDatastore('gtruth_test_area.png',classNames,pixelLabelIds); 
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ssm = evaluateSemanticSegmentation(pxdsResults,pxdsTruth,'Metrics','global-

accuracy'); 

% Per class accuracy%%% 

metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTruth); 

metrics 

metrics.ClassMetrics 

metrics.ConfusionMatrix 
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