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ABSTRACT 

  

Spatial and temporal analysis of Land use and Land cover Change (LULC) 

is a widely used and effective method for monitoring environmental issues caused by 

humans at both local and global scales.  Land use and land cover change play an 

important role in ensuring human well-being, particularly throughout regional 

socioeconomic development, and thus LULC is an important aspect of global 

environmental dynamics. The rapid increase in human population and associated 

livelihoods frequently causes problems for the biophysical environment and 

ecosystems, such as the loss of natural areas, particularly forests and natural vegetation 

due to urban development and agricultural expansion. The purpose of this study was to 

monitor land use and land cover change in the Gitega District, and also to simulate a 

future scenario in order to generate a long-term land use dataset using 

Geoinformatics.  The first step was to use multi-temporal Landsat imagery from 1984, 

2002, and 2019 to generate existing LULC maps using a combination of RS and GIS 

approaches. The supervised classification method was used to derive five major LULC 

classes, and the accuracy assessment resulted in an overall accuracy of more than 85 
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percent for all three years, with respective Kappa statistics of 83 percent and 91 percent. 

Net Change detection results showed that Agriculture had the greatest extension with 

an area of 94 km2 and an annual rate of 2.9 km2, a slight increase in Shrub Land by 5,5 

km2 and Built-up Area by 2 km2, and a steep decline in Tree Cover of 62.5 km2 with a 

rate of 1.79 km2 per year, and Grass Land decreased 39 km2 with a rate of 1.12 km2 

over the past 35 years. C-A Markov model was further calibrated to predict 2038 and 

2057 LULC using the transition probability matrices between the existing and 

simulated LULC map of 2019. Evaluation and analysis of 2019, 2038 and 2057 

simulation results showed an overall moderate agreement of 75 percent for Kappa 

statistics and the same trends of LULC change: Trees Cover, Grass Land, and Shrub 

Land are likely to decrease by 11.5 km2, 13 km2, 11.5 km2 respectively, whereas 

Agriculture and Built-up Area will increase by 30 km2 and 6 km2 respectively in 2057. 

Overall, major LULC dynamics occurred by conversion large agriculture and possibly 

thereby, high degradation with soil erosion, loss and soil depletion are some Gitega 

District. 

These research findings may assist decision-makers in gaining a thorough 

understanding of land use and land cover change patterns in order to devise the best 

strategies for land sustainable land use management, thereby avoiding future 

irreversible land degradation and environmental problems that may be difficult and 

costly to address over time. 
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CHAPTER I 

 

INTRODUCTION 

 

1.1 Background and significant of the study 

  Land use and land cover change (LULC) is widely recognized as an important 

component of global environmental change and plays an important role in ensuring 

regional socioeconomic development (Q. Liu & Shi, 2019). The land, as the core of the 

biophysical environment, serves a variety of functions such as agricultural resource, 

habitat, ecosystem, and wealth, among others (Bai, Dent, Olsson, & Schaepman, 2008).  

The LULC change alters the natural landscape, causing significant fragmentation or loss 

of habitats, which reduces human qualities (Boissière, Sheil, Basuki, Wan, & Le, 2009; 

E. F. R. Lambin, Mark Da & Geist, 2000). The rapid population with associated human 

livelihoods is prone to accelerate the rate of LULC change mostly in agricultural areas 

(Boissière et al., 2009; E. F. R. Lambin, Mark Da & Geist, 2000). These important issues 

of land use and land cover change have been reported in many parts of the globe (Meyer, 

Meyer, & BL Turner, 1994). According to global report (2000) by FAO, 24percent of the 

global land area was accounted for global degraded land due to deforestation for 

agricultural expansion in Africa south of the equator, South East Asia and South China, 

North Central Australia, Pampas and the Siberian and North American taiga regions (Bai 

et al., 2008). Land use and land cover changes often result in modifying physical 

dimension of spatial extent of LULC classes i.e. vegetated area, water etc., and 

consequently influence many mechanisms which lead to degradation of ecosystems and 

environment (Dregne & Chou, 1992). 

As per Marathianou et al. (2000), LULC changes reduce normalized difference 

vegetation index (NDVI) of land, which in turn increase the occurrence of many other 

extreme impacts on the environment.  List of such deleterious effects includes climate 

change, extreme radiative forcing, pollution and quality reduction of natural ecosystems, 

changes in hydrological regimes, runoff, soil loss and depletion of soil fertility (IPCC, 

2019; Marathianou, Kosmas, Gerontidis, & Detsis, 2000; Niyogi, Mahmood, & 

Adegoke, 2009).  Therefore, land use and land cover change information is worth needed 

in various fields of environment, especially in deforestation and disasters assessment, 
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agriculture and land management, urban expansion planning (Ghosh et al., 2017; Turner, 

Lambin, & Reenberg, 2007). Inventory and monitoring of LULC changes are 

indispensable aspects for better understanding of change mechanism and modelling the 

impact of change on the environment and natural resources (Halmy, Gessler, Hicke, & 

Salem, 2015; Twisa & Buchroithner, 2019).   

Remote Sensing and GIS have broadly proved to be very effective tools in 

assessing and analyzing land use and land cover changes (Dewan & Yamaguchi, 2009; 

Nijimbere, Lizana, & Riveros, 2019). These approaches enable to get multi-temporal 

datasets to qualitatively analyze spatial and temporal effects of phenomena and quantify 

the changes (Islam et al., 2018). Satellite data-based R.S has revolutionized the research 

of LULC change, throughout its virtual ability to provide synoptic information of land 

use and land cover at a particular time and location (Islam, Jashimuddin, Nath, & Nath, 

2018), and multi-temporal information on LULC helps identify the features and areas of 

change in a region (James Richard Anderson, 1976; Patil, Desai, & Umrikar, 2012). GIS 

provides a database by integrating, visualizing, analyzing and producing maps (Mishra, 

Rai, & Mohan, 2014; Shen, 2019). It can also integrate past and current LULC maps for 

comparison and change detection over time (Surabuddin Mondal, Sharma, Kappas, & 

Garg, 2013). These compound approaches, namely Geoinformatics allow to assign 

spatial connotations to land use land cover changes as well as population pressure, 

climate, terrain, etc. as driving forces of these changes (Ghosh et al., 2017; E. F. R. 

Lambin, Mark Da & Geist, 2000; Pijanowski, Brown, Shellito, & Manik, 2002). 

 

1.2 Problem statement 

 Burundi is a small landlocked country and the most densely populated country 

in Africa with 480 people/km2 approximately and total area of 27,834 km2 (UNdata, 

2020). 92 percent of its 12 million people are framers depending directly on farming 

activity to ensure the livelihoods (Kamungi, Oketch, & Huggins, 2005; Nzabakenga, 

Feng, & Yaqin, 2013). Access to arable land had been a priority for any household and 

demand of agricultural land has been highly increased (Nzabakenga et al., 2013) and as 

result, the land has become a source of conflict and contestation. Between 2007and 

2013, an average of 5451 per year conflicts was recorded (Bob, 2010). Thereby, the 

fast-high population growth has led to increasingly smaller plots of land per family and 
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substantially intensified land scarcity (Kamungi et al., 2005; Nzabakenga et al., 2013).  

This has caused persistent environmental degradation due to agricultural expansion and 

intensification. Deforestation has substantially increased from 240 ha in 1996 to 30,000 

ha in 2007, whereas forest areas decreased by 8.2 percent in 1990 to 6.3 percent in 

2006. The latest researches show that there was cultivation expansion which covered  

approximately 1,351,000 ha between 2002 and 2010,  and average of land use rate rose 

up to 72 percent in general (Nijimbere et al., 2019). Some regions of the countries are 

highly affected by the impact of LULC dynamics (Nzabakenga et al., 2013) 

 Gitega District, the National capital of Burundi and the seat of Gitega Province 

has witnessed the impact of Land use land cover change. Its topography and geographic 

position have been motivating the Governments since its inauguration in the 1680’s. 

This second city has been always issued to be the administrative capital of the country 

and best place for serving the majority of the citizens (Lemarchand, 2017). 

Consequently, it is impressive for massive immigration with greater resulting to an 

increase in population density and thereby an increasing demand of agricultural land 

(Guichaoua, 1982). The recent return of its former capital status by Government of 

Burundi in 2019 was accompanied by the shifting of some important institutions, 

ministries, agencies, and organizations to Gitega, which was likely to override the 

issues of land use and land cover in the already congested area (Garg, 2020). The land 

degradation and environmental pressure arising from attractiveness of modernity and 

developmental infrastructures is no longer uncertain (Guichaoua, 1982) As of now, 

Gitega is classed as the third most affected area by land degradation in Burundi. The 

agricultural subsistence system on which most people live and the poor farming 

methods are major components of dramatic land use and land cover changes (Moore, 

2007).  

These problems stem from the country's small land area, high deforestation 

rates, and growing population. All of this has put undue strain on the land, forcing 

farmers to reduce or eliminate fallow periods in order to feed their families. (Leisz, 

1996). Soil erosion, soil loss, and soil fertility depletion have increased as a result of 

forest clearing for agricultural purposes in Gitega district (Nijimbere et al., 2019; 

Niyuhire, 2018). Despite these alarming indicators of land degradation, Burundi lacks 
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a multitemporal database on land use and land cover changes that could assist decision-

makers in planning for sustainable land use (Islam et al., 2018; Ndzabandzaba, 2015). 

  

1.3 Research questions 

 From the above problem statement, four research questions were raised: 

1. What is the scheme of land use and land cover in Gitega District and which 

LULC type is mostly dominating? 

2. What is the rate, trends and amount of LULC changes in Gitega? 

3. What is going to happen in future if such LULC trends are likely to continue? 

4. What is the benefit of using an integration of Cellular Automata and Markov 

Chain models in modelling LULC change? 

 

1.4 Aim and objectives of the study 

 During the process of answering the above-mentioned questions, we will be   

generating a useful land use and land cover database. The following objectives were 

therefore framed: 

1. To evaluate the trends, rate and amount of LULC changes over the past 35 

years using multi-temporal Landsat data with R.S and GIS technology 

2. To explore the past and current LULC changes and simulate two future 

scenarios using CA-Markov Simulation Model. 

 

1.5 Significance and aims of the study 

 Although the land is currently faced with major issues in Burundi, we cannot 

entertain people to stop utilizing this natural reproductive resource. Through farming 

activities, the land is the most resource of income for about 95 percent of Burundians, 

thus the accessibility to land has been there a priority by any household. However due 

to the rapid increase in human population, the land has become insufficient and, in some 

households, it has reported as source of conflicts rather than a productive resource.  

 Despite these multiple issues observed in domain of land use, as of now 

Burundi doesn’t have any specific dataset to explore the land use and land cover 

changes evolution and start managing the land and environment accordingly. 
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Eventually this because the creation of such land use dataset could be more expensive 

in the country with many challenges in human resources amplified by long and unrest 

civil war.     

 Geoinformatics and statistical models are proven to be effective methods for 

addressing address major components of Land and environmental problems. They have 

revolutionized land and environmental research by linking individual features or people 

to pixels, such as household survey data to land-cover data derived by remote sensing 

technology. These approaches help to monitor and analyze accurately the Land use and 

land cover change at real time and large scale and acquire and store data which could 

be very expensive or difficult to collect due to the time consuming and topographic 

extents 

   This study aims to evaluate LULC changes occurred by calculating 

statistical rates and magnitudes of change by land/land cover category over the past 35 

years in Gitega District and also to simulate future scenarios with an assumption of 

continuation of current trends using the combination of RS, GIS and CA-Markov Chain 

modelling approaches.  

 Thus, this research will contribute to get the understanding of past and recent 

trends of LULC change at short and long-term basis and provide knowledge of future 

LULC change for eventually assist government policy and decision-makers in 

sustainable land use management and environmental conservation at Gitega regional  

scale and in the context of Burundi. 



 
 

CHAPTER II  

 

LITERATURE REVIEW 

 

2.1 Land Use and Land Cover change around the world 

 2.1.1 Concept and function of land 

 According to historical a definition made by United Nations Convention to 

Combat Desertification documentation, the land is '' the terrestrial bio-productive system 

that comprises soil, vegetation, other biota, and the ecological and hydrological processes 

that work within the system '' (UNCCD, 1994)." For deep understanding, the definition 

of Land was completed by Food Agriculture Organization (FAO) stating that " land is a 

delineable area of the earth's terrestrial surface, encompassing all attributes of the 

biosphere immediately above or below this surface including those of the near-surface 

climate the soil and terrain forms, the surface hydrology (including shallow lakes, rivers, 

marshes, and swamps), the near-surface sedimentary layers and associated groundwater 

reserve, the plant and animal populations, the human settlement pattern and physical 

results of past and present human activity (terracing, water storage or drainage structures, 

roads, buildings, etc.) " (Sombroek & Sims, 1995).  

 2.1.2 Relationship between Land use and Land cover 

 Often confused and ambiguously replaced with each other, the concept of land 

use and land cover have different meaning. On the one hand, “land cover” is the observed 

biophysical cover of the earth’s surface which make reference to other elements in the 

landscape such as vegetation, water, soil, artificial surfaces, etc.,”(Eurostat, 2001). It 

corresponds to physical description of space which enables various landscape features to 

be distinguished as well as vegetation (forest, bushes, trees, fields), bare soil (sand, 

rugged area), water bodies etc. (Di Gregorio & Jansen, 1998). The land cover categories 

can be easily observed by human eyes at different distances between observation station 

and observed area, using  aerial photographs or satellite images (Di Gregorio & Jansen, 

1998; Eurostat, 2001). 

On the other hand, the term “land use” is defined as all human  activities, 

arrangements and inputs undertaken on a surface that induce land cover transformation 

(U. FAO, 1999; E. F. Lambin & Geist, 2008). The land use corresponds literally to 
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functional description of a certain area in terms of its socioeconomic purposes (e.g. 

residential area, urban, industrial or commercial areas, Agricultural land, cropland, 

recreational parks or natural reserves, etc.) (Agarwal, 2002; Green, Kempka, & Lackey, 

1994). Land use description is more complicated but still connected to the land cover 

even though the link is not evident, and contrary to the land cover, the land use can be 

difficult to observe. For instance, it is always difficult to decide whether the observed 

area is grassland, grazing land or vegetable garden. Decision upon coming information 

from source often requires additional knowledge of the area functions (Eurostat, 2001).    

 Although, there is a clear difference of meaning between these concepts,  their 

relationship is still strong and  very complex to understand as broadly recognized among 

scientists and global LULU studies (Fisher, Comber, & Wadsworth, 2005; Verburg, Van 

De Steeg, Veldkamp, & Willemen, 2009). In order to tackle this comprehension issue,  

the land use concept was linked to human activities and specifically, to the economic 

factors behind these actions, in order to get better understanding of land-use/land-cover 

relationships (Turner et al., 1995).  For instance, the global Forest Resource Assessment 

(FRA 2000) of the FAO has been making different confusing definitions of forest.  In the 

first definition of FRA 2000, the forest was described a land cover class “with a 

continuous vegetation cover in which tree crown cover exceeds 10 percent” (Matthews, 

2001). After sometime, the official forest definition of FRA 2000 stated forest “land use 

class and the deforestation process as a land use change”. Few years later, FRA 2005 

performed forest definition by making more explicit that forest: “does not include land 

that is predominantly under agricultural or urban land use” and considers that “forest is 

land spanning more than 0.5 hectares with trees higher than 5 meters and a canopy cover 

of more than 10 percent, or trees able to reach these thresholds in situ”(FRA, 2020).  

 As aforementioned in the concepts and function of land, most of scientists and 

international organizations such as FAO (the United Nations' Food and Agriculture 

Agency) and EUROSTAT (the European Union's Statistical Office,) and global studies 

have been focusing on the establishment of relationship among land cover, land use 

dimensions and land functions with linkage to human activities (Eva & Lambin, 2000; 

Verburg et al., 2009).   
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Figure  1 Land Use, Land Cover and Land function relationship 

 

Source: Verburg et al., 2009 

 

 2.1.3 Driving factors of LULC change 

  Several driving factors determine land use and land cover change. From a 

distinctive analysis of relationship among land use, land cover and land function 

(Figure 1), it is clearly understood that most of the changes occurring in LULC patterns 

can be driven by human beings through provision of goods and services from land 

(Garg, 2020; Marchant et al., 2018). Furthermore, this analysis leads to understand how 

demographic and economic dynamics may influence demand for particular services and 

commodities which in turn drive LULC changes. Although, land use land cover change 

can also be influenced by other various natural processes such as, climate, topography, 

soil, water, human beings are still the main force activating these biophysical factors to 
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occurrence of LULC Changes, this means  physical and environmental drivers do not 

have a direct impact on land use and land cover changes (E. F. Lambin & Geist, 2008).   

First of all, LULC change involves two general forms: conversion from one 

LULC to another i.e. from forest to agriculture, and modification within exiting LULC 

category i.e. intensification of cultivation in extensive agricultural area (Di Gregorio & 

Jansen, 1998; Turner et al., 1995).  Consequently, the LULC changes induced by people 

at local scale can play a very important role on regional to global scales, with negative 

impacts on ecosystem functioning and services, biophysical variables such as climate 

change and ecological balance (Meyer et al., 1994). Marathianou et al. (2000) agreed 

that the LULC changes reduce normalized difference vegetation index (NDVI) of land, 

which in turn increase the occurrence of many other extreme impacts on the 

environment.  List of such deleterious effects includes climate change, extreme 

radiative forcing, pollution and quality reduction of natural ecosystems, changes in 

hydrological regimes, runoff, soil loss and depletion of soil fertility (Marathianou et al., 

2000; Niyogi et al., 2009).  

Therefore, the driving factors of LULC change had been finally categorized into 

groups: proximate factors and underlying factors (E. F. Lambin et al., 2001; Zak, 

Cabido, Cáceres, & Díaz, 2008). Proximate driving factors are direct causes of 

modification of land cover type and are usually induced by anthropogenic activities 

such as built-up, agricultural extension, etc. However, underlying factors infer to a 

complexity of interactions among sociopolitical, demographic and environmental 

factors (E. F. Lambin et al., 2001; Miyamoto, Parid, Aini, & Michinaka, 2014).  AS per 

explanatory classification of Lambin et al. (2001), proximate causes locally operate and 

they can be categorized into three subclasses namely agricultural expansion, wood 

extraction and infrastructures expansions and beneath them are several variables listed 

in Figure 2.         
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Figure  2 Proximate causes of LULC change and their variable 

Source: Lambin et al., 2001 

 

According to Reid et al. (2000) and Lambin et al. (2001), underlying factors of 

LULC change work at regional, national and global scales and they could also be 

categorized into government policy and institutional, demographic, economic, 

technological and cultural situations biophysical situations and linked diversifications 

as described in Figure 3 (E. F. Lambin et al., 2001; Reid et al., 2000).  
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   Resettlement   
   Cattle Ranching (Smallholder cattle  
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Industrial)   
   Polewood (Domestic)   

   Transport (Roads, Railways)   
   Market Infrastructure (Food Markets)   
   Settlement Expansion (Urban/ semi  

urban, rural)   
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Figure  3 Underlying causes of LULC change and their variable 

Source: Lambin et al., 2001 

In sum, the land use and land cover change always leads to considerable loss of 

natural resources which in turn results in extreme climate changes and environmental 

vulnerabilities (Zak et al., 2008). Indeed, regional, national and global land conversion 

and consumption rates has rapidly increased, and undoubtedly will continue to increase 

as surely as human population grows up (Reid et al., 2000). Thus, population dynamics 

is quite important among driving factors since reallocation of land is required to 

accommodate the ever-increasing human beings. Obviously, demand for producing 



 12 

more from natural resources especially the land is so evident.  Eventually, in order to 

meet such needs, the arable lands, built-up are bound to widely expand at the cost of 

the natural land cover such as forest and planted areas as exemplified in Figure 4 (van 

Vliet, 2019). 

 

 
 

Figure 4: Observed global land cover changes between 1992 and 2015 

Source: van Vliet, 2001 

 2.1.4 Burundi LULC context and driving forces of change      

Burundi’s total land area is approximately 25,700 km2, 91 percent of which is 

classified as agricultural land. As of 2020, 92 percent of Burundi’s 12 million people  

are traditional farmers living in rural areas (UNdata, 2020). Burundi's mild climate and 

plentiful rainfall make it suitable for intensive agriculture and livestock, where coffee, 

tea, cotton, tobacco, and sugarcane are all cash crops. Whereas bananas, corn, manioc, 

sweet potatoes, Irish potatoes, beans, peas, wheat, peanuts, vegetables, plantains, and 

fish are examples of subsistence crops. Ninety-four percent of Burundi's workforce is 

employed in agriculture. Concerning drivers of LULC change in Burundi and based on 

their explanatory operation scales given above, this section of study is focusing on 

driving forces in order to leave out the place for proximate causes of LUL Change in 

Gitega district.  
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  2.1.4.1 Policy and instittutional factors     

   Burundi land access and tenure security have been all long on 

the country ‘s political agenda, and a land code has been under consideration for from 

time to time Burundi has a long history of using the law and public institutions to 

compel arbitrary land reallocations, which is almost structural in national legislation... 

The land law of 1961 stated that land held under customary tenure is part of the state's 

domain, with the state exercising reversionary rights if the land becomes unoccupied or 

otherwise abandoned. Individual farmers were only permitted to occupy and use the 

land. However, the land licensed and owned by European companies and church 

missions was not equally encumbered as freehold under the colonial system. Laws 

enacted in 1976 and 1977 expanded the state's control over land. The 1976 law 

reclaimed all land that had been illegally distributed by local administrative personnel 

(the bourgmestres) since independence. The institution of UBUGERERWA was 

therefore officially abolished by law in 1977.  This was a system that allowed people 

to gain access to land by renting it out. To gain access to the land, the potential renter 

would approach someone who owned large portions of land. Traditionally, a potential 

renter would solicit access to the land with a gift of beer, and then negotiate the terms 

of use. The use rights were frequently insecure. The 1977 law also officially promoted 

the idea of villagization, or the relocation of families from their fields to villages, thus 

it is considered to contribute to the land use/land cover change in that period. 

Clearly seen as driving factor of LULC change, 1986 Land Tenure Code was 

the first law devoted entirely to land tenure reform since independence. Due to its 

overall mission to promote the country's development and increase agricultural 

production, this law had recognized all previous granted titles and land registration as 

evidence that the land has been appropriated. It also recognized customary land rights. 

On the other hand, all unoccupied land officially belongs to the state, and all occupied 

land must be registered under the terms of the Land Tenure Code of 1986. However, 

the reality is that the 1986 land law is not fully understood by the entire population, and 

as a result, community-based tenure systems that locally regulate access to and use of 

land and the natural resource base continue to be used. 
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Concerning urbanization, the 1986 law reinforces this by stating that urban land 

must be registered and that the registration must be passed on when it is sold, inherited, 

or otherwise transferred from one owner to another. As Current scientist’s policy 

makers discourse focuses on what are perceived to be the two major issues of 

agricultural land fragmentation and increasing degradation of the natural resource base, 

the government of Burundi is most concerned with these two areas, as well as how far 

the state land and forestry codes affect them. Despite the security provided by existing 

land occupancy systems and laws encouraging the fallowing of agricultural land in 

order to restore its fertility, there are still natural resource management and conservation 

issues in Burundi.  

 

  2.1.4.2 Demographic factors     

  Understanding a population's demographics can support to 

explain the causes and trends of LULC changes. various studies have shown that it is 

not only the number of people who matter the most the pressure on land, but also the 

aspects of population as well as its distribution such as household size, migration, and 

urbanization.  

Burundi's land occupancy patterns have changed more as a result of demographic 

pressures than of government or market forces since independence. According to the 

United Nations report, in 1992, Burundi has 5.78 million people, and its demographic 

growth rate was 2.9 percent between 1980 and 1991. During the same time period, its 

urban population increased by 5.7 percent per year, but today only 6 percent of the 

population lives in cities (Leisz, 1996). Currently, it is the most densely populated 

country in Africa with 480 people/km2 approximately and total area of 27,834 km2 

(UNdata, 2020). 92 percent of its 12 million people are framers depending directly on 

farming activity to ensure the livelihoods (Kamungi et al., 2005; Nzabakenga et al., 

2013).  Figure 5 below shows the most densely populated country’s provinces where 

the study occupies second topple position (UNOCHA, 2003).    
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Figure  5  Map of population ranges and density per province in Burundi 

Source: UNOCHA, 2003 
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• Urbanization and migration 

Resulting from interaction of political, social, economic and demographic 

factors drives of LULC change in Burundi, the migration especially internal migration 

is longstanding phenomena. This migration type involves movements across provinces, 

or subdistrict within same country.  

• Internal migration 

Internal migration in Burundi has been mostly influenced by poverty, economic 

condition, political instability and civil war (State, Affairs, & Relations, 2000). Internal 

migration is characterized by temporary circular migration or permanent  migration to 

the cities (Guichaoua, 1982). Circular migration entails moving to places of work or 

education whereas permanent residence remains in a rural or peri-urban setting (Kok & 

Collinson, 2006). The illustration in Figure 6 shows the origin, direction, destination 

within internal migration system of top seven country regions 

The following pillars make up the structure of urban areas or cities: economic 

development nodes, such as business and industrial sites; housing developments, such 

as residential and private developments; public transportation networks; infrastructure 

networks, such as water and sanitation. In case of the study area, the peace agreement 

issued in Arusha, 2002 between the parts in conflict brought back the peace and security 

to the country. In 2007, the democratic government of Burundi started the process to 

return Gitega its former status of the political capital city. Few months later, just after 

this official announcement, some changes in landscape of Gitega were observed, mostly 

the man-made features like cultivation, buildings, scattering roads and other 

infrastructures characterizing new construction appeared in Landscape. 

In January 2019, some governmental institutions, ministries, agencies, and 

organizations were shifted into Gitega capital city. There is increasing demand of the 

land tenure in the already congested area.  Citizens from across the country provinces 

hope to find the above-mentioned facilities have immigrated into Gitega District. This 

may have added land use and land cover changes.   
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Figure  6 Main attractive poles of internal migration in Burundi 

 

Source: Guichaoua, 1982 
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  2.1.4.3 Economic and tecnhologic factors 

  According to land functional approach by Duhamel (1998), Land 

use refers to the description of land in terms of its socio-economic purposes(Duhamel, 

1998). Thus, Taxes, investments, access to capital, markets, production and 

transportation costs, technology, and subsidies are all examples of economic factors 

(Barbier, 1997). These economic factors motivate land managers. Furthermore, they 

are motivated by the profitability and feasibility of a specific land use. Economic, 

institutional, and technological factors all play a significant role in land use change. 

Giving farmers access to capital, markets, and agricultural technology, for example, can 

encourage agricultural expansion and land conversion. 

However, Burundi was a hierarchical society with a monarchy as its government 

prior to colonization, characterized by a description of the traditional system of 

government and land tenure in the twentieth century which introduced anachronisms 

that have now become enshrined as reality. This is among many other factors of 

complication system of the land and its mismanagement. First and foremost, under the 

customary land tenure system all land was considered to belong to the MWAMI (king) 

of Burundi. However, the MWAMI was not the all-powerful ruler that Germans and 

Belgians imagined him to be. Certain lands, those belonging to him personally, were 

available for the MWAMI to assign or lend as he pleased, but neither in practice nor in 

theory did he or his delegates have broad allocation authority over his subjects or their 

land.  

Same as during the colonial era, Burundi remained a country of smallholder 

agricultural producers, with almost no land appropriated for European agriculture or 

industry. Aside from the changes made to the theoretical foundation of the land tenure 

system (as described above), there were few changes made to land tenure practices. The 

reason why the land use system in Burundi has been slightly influenced by 

technological development as well as industrial megalopolis expansions. With a few 

exceptions (such as urban areas, church mission lands, and minor agricultural and 

mining concessions), land holdings remained unregistered and held under the same 

tenure as previously.  
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However, the state lacks the resources to carry this out, and there has been no 

education of the population, including government officials, about official, national 

land use laws. Access to trees and tree products was also governed by rules in 

community-based tenure systems. These rules distinguished between those who had 

control and access rights to land and those who had the same types of rights to the trees 

on the land. For example, in the past, a person who planted the tree retained primary 

rights, determining who could harvest the tree's fruit and cut it down, even if he no 

longer owned the land on which the tree was planted. With the recent changes made in 

land tenure codes, there is some debate about whether the distinction between rights to 

trees and rights to land still holds. From this may be raised conflictual confrontations 

among individuals. However, the state may lack the resources to carry this out, and 

education of the population, and even of the government functionaries, regarding 

official, national, land tenure laws could not take place. In many places, administrators 

at the commune level look to community-based rules when regulating land tenure 

disputes rather than to the national law, and few in the rural population have registered 

their land with government officials.   

From 1980s, new farming techniques (such as intercropping, relay cropping, 

and double cropping) and altered the crops grown in its fields) were introduced so as to 

increase agricultural production for feeding increasing population. As a result, there is 

increase reliance on manual labor (resulting in poor farming practices) and an increase 

in land degradation, soil losses and soil depletion and other impacts on natural 

resources.    

• Land market and demand 

Land markets are mechanisms through which land and housing rights, either 

separately or jointly, are voluntarily traded through transactions such as sales and 

leases. These transactions may occur on the formal land market or via informal channels 

such as informal land developers (Palmer, Fricska, Wehrmann, & Augustinus, 2009). 

There is fierce competition for land between the private and public sectors, with the 

private sector aiming to make as much profit from the land as possible while being 

unwilling to participate in the delivery of affordable housing projects. As a result, if the 

private sector gains access to land, it will mostly be used for office parks, shopping 

malls, and high-income families. 
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The rich and wealth influence generally the LULC changes: there is evidence 

that land is being bought and sold in Burundi, not just in titled areas but also in 

indigenous tenure systems. In some densely populated areas, purchasing land is one of 

the few ways for a new farmer to gain access to enough land to support himself and his 

family. However, it appears that less than 50 percent of rural farm land is obtained by 

purchasing it. It appears to be no difference whether the seller has registered the land 

or has control over it under community-based land tenure rules.  

 

  2.1.4.4 Cultural factors     

  In addition to demographic, technological, environmental, 

political and economic factors, land use change is influenced by a variety of cultural 

factors, Cultural factors include land managers' beliefs, attitudes, values, and 

perceptions, which influence land use decisions (E. F. Lambin & Geist, 2008).  

 Burundi since history, land is owned by an individual rather than a family 

linage. In past decades, a man obtained land rights by clearing, planting, and continuing 

to work the land, or by inheritance or purchase of land. Previously, by clearing and 

settling on land, an individual placed himself under the authority of the chief whose 

district the land was located (Leisz, 1996). In exchange for the chief's patronage and 

protection, as well as an acknowledgement of the chief's authority this man would be 

obligated to supply some of his produce and labor to the chief. As a result, the chief 

distributed unallocated land to individuals in need of land.  

Under community-based land occupancy systems, land is held by individual 

heads of households and passed, for the most part, from father to son. From the past 

until today, land is inherited through the patrilineal line, from father to sons, either when 

the sons marry or when the father dies. However, women do not inherit land; instead, 

they have access to it through their husband, father, or another male relative. The 

nuclear family, rather than the extended family, is at the heart of land holding and 

inheritance rules, just as the nuclear family is the unit of production. In addition to 

fields, wealthy individual may also have rights to pasture and forest land, which are not 

under intensive cultivation. Despite being privately owned, access to such land has been 

usually shared with neighbors and relatives. In a certain way, neighbors' cattle may be 
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allowed to graze on pasture (or fallow) land, and neighbors may be allowed to enter 

wooded areas to collect dead wood for firewood. Notice such permission does not 

include collecting fruit from or cutting live trees. Not everyone owns forest and pasture 

land, and granting others rights to one's land is both a way to alleviate the unequal 

distribution of land and an expression of the unequal wealth (and status) in Burundi.  

These issues are related to the country's small land area, high deforestation rates, 

and growing population. All of this has put undue strain on the land, forcing farmers to 

reduce or eliminate fallow periods in order to produce enough food for their families. 

These same pressures are noted as the cause for a high deforestation, increasing land 

degradation, and destruction of rare flora and fauna found within the country. Thus, a 

complex relationship in which the cultural, legislative, and socioeconomic factors that 

contribute to land use change especially the deforestation need to be considered (Carr, 

Barbieri, Pan, & Iranavi, 2006). For instance, rural poor households, for example, lack 

the money and resources to invest in more productive farming methods and are unable 

to obtain land tenure and/or credit.  

 

 2.1.5 Proximate causes of LULC change in Gitega       

Described from the perspective of the farmer, a community-based tenure 

appears to operate (and has operated) reasonably simply in Burundi. As also showed by 

FAO statistics, approximately 91 percent (25,700 km2) of Burundi's total area (27,800 

km2) is used for agricultural production, including pasture land (JICA, 2014; Leisz, 

1996).  Land use land cover (LULC) in Gitega District is a complex pattern of 

Agricultural activities to meet the valuable needs of the populations. Besides this most 

important land function, the urban area characterized by open spaces, communication, 

and transportation features (roads and electrical lines) is also important.  

Due to mild climate, two harvests a year comprise of maize, rice, wheat, 

potatoes soybeans etc, (which can be replanted after each harvest) and permanent crops 

which are not replanted after harvest like coffee, citrus and rubber. The latter may also 

include the flowering shrubs, fruit trees and vines as well.   The Shrub or grazing lands 

are lands used for permanent pastures and meadows for at least 5 years to grow 

herbaceous forage, either cultivated or growing naturally. The Trees Covers also called 
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Woodland is area spanning with trees higher than five meters and a canopy cover of 

more than 10 percent that includes windbreaks, shelterbelts and corridors of trees   

greater than 0,5 ha and at least by 20 m wide.  

In Gitega District, the above land use types are made available by the irrigation 

water or the rainfall. During the summer and spring season, the major portion of land 

is not cultivated due to the lack of rainfall and the vegetation cover declines on escarped 

hills except the vegetation covering the wetlands, the valleys near and around the rivers 

and streams. Besides, the land use and land cover include other categories of bare soil 

arisen by poor practices and improper techniques applied during farming activities and 

engineering construction system, some example of land cover and land use types are 

given in Table 1. 

 

Table  1 Differentiation between Land use and Land cover type in Gitega 
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2.2 GIS and Remote Sensing application for LULC change analysis  

 

Geographic Information System (GIS) and Remote Sensing (RS) are generally   

methods used for capturing, saving, and analyzing the remotely sensed data and 

information. They are essential tools to create database and manipulate the considerable 

amount of data with complex geospatial operations that could be impossible to acquire 

due to price and time length requirements (Vanolya, Jelokhani-Niaraki, & Toomanian, 

2019). GIS and RS are both foundation of Geospatial analysis for professionals to 

design and plan, analyze and execute a number of projects in various disciplines such 

as Engineering, Constructions, Architecture, Agriculture, Land Management, Urban 

Planning, Transport and many more. However, GIS and RS concepts are very different, 

though some ambiguities can remain in many users (Curran, 1987; Wilkinson, 1996).   

 GIS is Conventionally defined as a set of complex tools to acquire, store and 

retrieve, manipulate and analyze spatial data within a set procedure to support decision-

making policies, thus GIS is a decision-support system involving an integration of 

spatially referenced data in solving various environmental problems (Malczewski, 

1999). On the other hand, RS is defined as process of detecting and monitoring the 

physical characteristics of an area by measuring its reflected and emitted radiation at a 

certain distance from stational point. Because every data consists of measurement, 

Remote Sensing system helps to measure numerous objects and features making the 

earth’s surface that reflect electromagnetic energy in unique base, and relevant formed 

data are namely “Satellite Images”(Campbell & Wynne, 2011). Remote sensed data 

acquired by the spacecraft are likely to be used in forecasting captured images of the 

land, seas, and ground etc, in order to make an overall assessment of the global weather, 

the oceans, atmosphere, hence RS methods are consistent with GIS (Green et al., 1994; 

Mennecke & West Jr, 2001). Remote sensing technology generates spatial data that can 

be converted with GIS software to extract the past and current information (Al-Bakri, 

Duqqah, & Brewer, 2013).  

Since the 1970s (when the United States launched the first satellite for specific 

purpose of collecting data on the Earth's surface: Earth Resources Technology Satellite, 

ERTS-1), RS scientific community has attempted to improve techniques for detecting 
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land use and land cover change (Humboldt, 2016; Pasquarella, Holden, Kaufman, & 

Woodcock, 2016). 

Essential improvements were then achieved in technical capabilities of the 

sensors such as spatial, spectral and temporal resolutions, the characterization and 

calibration of different sensors.  New potentialities of satellites and image processing 

algorithms were also performed to authentically represent the technological revolution 

for observing the Earth as shown in Figure 7. 

 

 

Figure  7 Linking different approaches with relative frequency monitoring, 

sensors, and different platforms of remote sensing acquisition and processing 

Source: Lausch et al., 2018 

The first and foremost aspect of remotely sensed data applications acquired 

from Earth-orbiting satellites is change detection due to repetitive coverage at short 

intervals and consistent image quality (James R Anderson, 1977; Ingram, Knapp, & 

Robinson, 1981; Nelson, 1983; Singh, 1986). Sequentially, Remote Sensing and GIS 

have broadly proved to be essential tools in assessing and analyzing land use and land 

cover changes (Dewan & Yamaguchi, 2009; Nijimbere et al., 2019). These approaches 

enable to generate a multi-temporal dataset through spatial and temporal analysis of 

events and phenomena and changes quantification (Islam et al., 2018).  
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Satellite data-based R.S has revolutionized the research of LULC change, 

throughout its virtual ability to provide synoptic information of land use and land cover 

at a particular time and location (James Richard Anderson, 1976; Patil et al., 2012), and 

multi-temporal information on LULC helps identify the features and areas of change in 

a region (Vila & Barbosa, 2010). Since the early 1980s, long-term multispectral satellite 

observations have been used to better understand the dynamics of terrestrial vegetation 

and appropriate ripostes to changes in climate and ecosystems (DeFries, 2008). RS 

process allows the detection of various land elements using satellite imagery, and thus 

now make possible to evaluate and identify land use components. For instance, very 

high spatial resolution images have a pixel resolution on the ground smaller than the 

size of a tree cover, they provide many pixels per object rather than many objects in a 

single pixel during Remote sensing-based classification process (Strahler, Woodcock, 

& Smith, 1986; Wulder, Hall, Coops, & Franklin, 2004). This property leads to easily 

identify almost all key land use elements as shown in (Figure 8). 

 
Figure  8 Key land elements mapping by using supervised 

Source: Vandana, 2014 
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A careful analysis of pixel combinations allows the analysis of the spatial 

combination of key land features, which will be the first step towards the identification 

of land use/land cover classes by RS (Figure 9). 

 

 

Figure  9  Influence of spatial resolution on the number and categories of land 

elements using maximum likelihood classification algorithm. 

 

Source: Vandana, 2014 

 

GIS provides a database by integrating and analyzing remote sensing data to 

produce maps (Mishra et al., 2014; Shen, 2019). It can also integrate past and current 

LULC maps for comparison and change detection over time (Surabuddin Mondal et al., 

2013). These Compound approaches, namely Geoinformatics allow to assign spatial 

connotations to land use land cover changes as well as population pressure, climate, 

terrain, etc. as driving forces of these changes (Eva & Lambin, 2000; Ghosh et al., 2017; 

Pijanowski et al., 2002).  

However, despite their ability  and multiple advantages,  the integration of RS 

and GIS technologies in research and studies as well as in LULC change monitoring is 
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still very low in some countries (especially developing countries) and various reasons 

were provided (Lausch et al., 2018): (i) First of all, complex and large RS data often 

pose high technical and personal requirements for data management, storage, 

processing, analysis, and the derivation of different LULC categories. (ii) Secondly, the 

processing and analysis of RS data requires highly skilled RS training, extensive 

expertise, and the access to RS software and RS data with high spatial and spectral 

resolution: the land use recognition through RS can still be difficult to release since the 

land use is determined not only by the land cover elements, but also by the social and 

economic properties of the land. A group of trees, for example, may be categorized as 

woodland, cropland, or settlement depending on their human use (Lausch et al., 2018). 

(iii) Thirdly, the methodological approaches, variables, and recording parameters of 

LULC change inventory differ from those of close-range, air and spaceborne RS 

approaches.  

In order to respond to some of these above-outlined scientific challenges, GIS 

and RS technology were therefore chosen to be applied in this study for exemplifying 

the essential need to use these tools in assessing and analyzing the LULC changes 

whether in presence of human resources challenges. 

  

2.3 Models for LULC change simulation and prediction   

Land is used for multiple purposes and therefore, the land use and cover change 

assessment starts from the land use identification (Lausch et al., 2018).  Inventory and 

monitoring of land-use/land-cover changes are indispensable aspects for further 

understanding of change mechanism and modelling the impact of change on the land, 

environment and associated ecosystems at different scales (Turner et al., 1995). 

Dynamic land use and land cover change processes induced by anthropogenic activities 

are likely to influence global climate change occurrence, either directly or indirectly 

(Herold, Couclelis, & Clarke, 2005; E. F. Lambin et al., 2001). Land use change models 

are then proven tools for analyzing such causes and impacts of land use changes. They 

guide through a better understanding of the dynamics of the systems to develop the 

hypotheses that can be empirically tested.   
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As per explanation given in the section 2.1.3 of this study concerning drivers of 

LULC change, future LULC changes are always function of numerous driving variables 

(E. F. Lambin et al., 2001; Zak et al., 2008). Therefore, modelling of current and future 

LULC changes is a very essential aspect for further improvement of land use land use 

management and environmental conservation at short term and long terms basis. Over 

the past decades, a number of land use change models have been developed by the land 

use research community to meet the needs of the land use planning as well as to analyze 

and predict impacts for the future (Veldkamp & Lambin, 2001). 

Literature described different sorts of models depending on different 

environmental disciplines such as: landscape ecology, disaster and deforestation 

assessment, urban planning, statistics and geographic information science emphasized 

on land use change studies (Goodchild, 2003; Veldkamp & Lambin, 2001). The 

diversity of models is due to differences in scientific disciplines, research goals, 

modelling approach, theoretical perspectives and scales of application. However, some 

scientists like Verburg et al. (2006) argue that despite this wide range of model’s 

availability, there is no single model that can be superior to model land use change 

(Verburg, 2006).  

Eventually, the selection of a model is extremely function of the research 

objectives, problems and expected responses, the sort of data and its availability and 

the area of interest. Based on these above listed criteria, the selection of models to 

simulate and predict the LULC change for this research was importantly made by 

considering the research aspect and objectives, questions and expected results, data 

availability, and advantaged and flexible model for data processing to successfully 

achieve the objectives of this research. 

 The knowledge acquired from literature review of related studies has led us to 

find out that the majority of land use based-models are referred to cellular models which 

includes several spatial modelling techniques such as cellular automata and Markov 

models (Parker, Manson, Janssen, Hoffmann, & Deadman, 2003). Therefore, Cellular 

Automata (CA), Markov Chain (MC) and Land Change Modeler (LCM) were highly 

selected to be used in this study. The details and descriptions of these models are 

discussed in the sections below.       
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 2.3.1 Cellular Automata model  

 In the 1940’s, John Louis Von Neumann and Stanslaw Marcin Ulam 

pioneered the concept of “Cellular Automata” in the field of computer science. 

However, the purposes for which these concepts were applied were not the same. Von 

Neumann hoped to model biological self-production and theoretical machines (known 

as Kinematonns) that coexisted in his studies of livings (Kumar, 2003; Von Neumann, 

1948), whereas Marcin Ulam devised the concept of “Cell Spaces” (a description of the 

physical structure of a Cellular Automaton, such as a grid of cells that can be either 

“on” or “off” (Maerivoet & De Moor, 2005).  

For successful advancement, these two C-A pioneers began to collaborate and, 

as a result, overcame challenges in their careers. It is possible to say that “Cellular” is 

a Von Neumann term, and “Automaton” is a Marcin Ulam term (Torrens, 2000). Some 

years later, John Horton Conway followed them and attempted to apply the concept of 

Cellular Automata in the field of artificial life (Robot) called "Game of Life" in the 

1970s. This type of "simulation Game" based on the cellular automata concept had 

become the most popular application of C-A models, which were discovered to be 

interesting and effective simulation tools (Gardner, 1970). 

However, Stephen Wolfram's work in 1980 that related cellular Automata to all 

disciplines of science such as Biology, Sociology, Physics, Mathematics, and so on, 

resulted in the widespread popularization of C-A models. Based on empirical 

experiment, this scientist provided a comprehensive classification of C-A models as 

mathematical models for self-organizing statistical systems. (Gardner, 1970; Wolfram, 

2002). 

Aside from the disciplines listed above, the CA approach has been widely 

applied to a variety of other disciplines such as Natural Sciences, Geography (GIS), 

Environment, and Urban Planning. C-A and GIS models are combined to calibrate 

Cellular Automata in the real world for in-depth analysis and problem solving in social, 

economic, and environmental domains. As a result of its simplicity, flexibility, and 

suitability to incorporate both spatial and temporal dimensions of the process, this type 

of technology has been most preferred and used by numerous researchers in Land use 
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change analysis and urban growth modelling (Kumar, 2003; Santé, García, Miranda, & 

Crecente, 2010; Torrens, 2000). 

Based on the availability of social and economic data, decision-makers gain a 

better understanding of the reasons and influences of why and how land use and land 

cover type are changing, i.e. cities grasp their neighborhoods very quickly and manage 

accordingly, i.e. building an early warning system potentially resulting in land use and 

land cover changes (Weng, 2002). 

 

  2.3.1.1 Comprised elements of Cellular Automata 

  Torrens (2000) identified five elementary Cellular Automaton 

components, which are briefly described below: 

a) The space represented by an array of cells, on which an automaton exists 

(lattice) 

The cell space (lattice) is a discrete cell component. The lattice in an elementary C-

A is one-dimensional (Figure 10). This is a linear spring made up of C-A elementary 

cells. The lattices, on the other hand, can be n-dimensional. C-A can have any 

dimensions and be of infinite proportions. (Torrens, 2000). In most cases, the lattices 

can be defined in any geometric shape, often as a regular grid: squares, rectangles, 

circular arrangements (hexagons), and torus (ring-shaped surface) for either one or two 

dimensional CA (Figure 11) (Andrews & Dobrin, 2005; Torrens, 2000).  
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Figure  10 One-dimension Cellular Automata 

 

Source : Andrews & Dobrin, 2005 

 

 

Figure  11 Two-dimensional Cellular Automata Grid 

 

Source: Maerivoet & De Moor, 2005 

 

CA is similar to raster GIS data because the CA uses regular grids to represent space 

cells  (Kumar, 2003). 

 

b) The cells in which the automaton exists than contains its state (s); 

In this case, each cell in the C-A lattice can exist in a variety of states, which 

define the cell's occupancy. It is important to note that a cell is not limited to the integer 
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domain; a cell can be empty or contain specific building blocks and attributes (i.e. 

molecule, particle, land use, organism, etc,). 

 

A cell can be binary, with a constant of symbols representing zero, or it can have a 

continuous range of values (Von Neumann, 1948). Kumar (2003) recently introduced 

the concept of variegated cells, in which each edge can have its own independent rules 

for interacting with one another (Kumar, 2003) as exemplified in the below (Figure 

12): 

 

Figure  12 Example of variegated cells 

 

Source: Kumar, 2003 

 

c) The neighbourhood around the automaton; 

 

Certain rules govern the movements and actions of cell ingredients on the lattice. 

Dynamic evolutions in a three-dimensional C-A lattice are determined by the nature of 

cells near the ingredient. This rule of cell proximity is referred to as the “neighbourhood 

condition.”(Kumar, 2003). As shown in Figures (10) and (11), each cell in a one-

dimensional C-A grid has neighbouring cells, whereas in a two-dimensional C-A grid, 

there are two ways to determine these neighbouring cells (Kier, Seybold, & Cheng, 

2005; Kumar, 2003; Torrens, 2000): Von Neumann defined the first possibility of four 
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neighbouring cells. This is the most common “Von Neumann neighbourhood” in the 

2D C-A grid, and it includes four adjacent cells (W=west, E=east, N=north, and 

S=south), as well as the cell “C” itself. Moore introduced the second possibility of 

having eight neighbouring cells.  This “Moore neighbourhood” is the most common 

example in the 2D C-A grid, and it adds four additional neighbouring cells to the five 

cells defined in Von Neumann's neighbourhood, as well as NE=north-east, NW=north-

west, SE=south-east, and SW=south-west. Another useful neighbourhood is the 

extended Von Neumann neighbourhood, in which the four C cells are just beyond the 

four B cells” (Kier et al., 2005). All examples of these cell neighbourhoods are shown 

in (Figure 13) 

 

 
 

Figure  13 Two-dimensional CA neighborhoods 

 

Source: Kier et al., 2005 

d) Transition rules that describe the behavior of Cellular Automaton 

The behaviors of ingredients on the grid are governed by a variety of rules. A 

transition rule affects a cell and its surroundings, causing the cell's stage to change from 

one discrete-time to another. As a result, the same rule is applied to all cell ingredients 

in parallel, resulting in subsequent dynamic evolutions of the CA system. The transition 

rules influence the likelihood that a cell ingredient, i.e. land cover type, will transform 

to another type of ingredient during each iteration of the simulation. These transition 

rules that govern the changes are summarized in three scenarios (Kier et al., 2005).  

Case 1: If P_T(AB) = 1.0, then the transition A →B is certain to occur. 

Case 2: If P_T(AB) = 0.0, then the transition A →B will never occur. 

Case 3: If P_T(AB) = 0.5, then during each iteration, there will a 50 percent chance that 

the transition A →B will occur.  
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Because there are no probabilities for different outcomes, the first two cases 

(Case 1 and Case 2) are referred to as “Deterministic C-A Models.” The third case is 

classified as a Stochastic (Probabilistic) C-A Model because it allows for different 

outcomes, such as the ingredient remaining unchanged or transforming to a different 

state, the temporal space in which the Automaton exists. Because time in CA is always 

discrete, time progresses in iterative steps of whatever length the model designer 

desires. The temporal evolution of cells destroys the independence of initial cell states, 

and the cells are updated simultaneously according to the transition rules in each step 

(Kier et al., 2005; Subedi, Subedi, & Thapa, 2013).  

The strengths and weakness of CA in relation to the selection criteria in section 

for LULC change modelling are presented in Table 2.  

  



 35 

Table  2 Cellular Automata strengths and weakness for LULC change modelling 
 

Selection Criteria  Advantages and Disadvantages  

Relevance  ✓ CA adds spatial dimension to Markov by integrating 

neighborhood effects using a contiguity filter.   

Linkage Potential  ✓ CA in IDRISI takes inputs of transition areas and 

suitability maps which can be created by other 

software.  

✓ The results of CA, in the form of a prediction maps 

can be easily understood and input in GIS software 

for visualization.  

Transferability   ✓ There are no modifications required when using the  

          software.  

User openness ✓ CA models are relatively easy to use and with 

knowledge of GIS analysis.   

Data Requirements  ✓ Markov models are generally not data hungry. The 

data inputs required are historical land use or land 

cover images for two time periods.  

Model Cost  ✓ CA is a module also available in Idrisi Selva. A 

student license was obtained for $39 for the purposes 

of this research. A one-month free trial is. Otherwise 

general license for Idrisi is $ 275.  

 

 2.3.2 Markov Chain Model        

Invented by a Mathematician Russian, Andrei Andreevich Markov (1858-1922) 

in 1906, A Markov chain is a stochastic process describing a sequence of possible 

events in which the probability of each event depends only on the state attained in the 

former event. This type of statistical model employs an integer of random variables that 

are dependent on the valuable parameter (e.g. a time). 

Markov chain property is a countably infinite sequence, in which the chain 

moves state at discrete time steps, gives a discrete-time Markov chain.  A discrete-time 

stochastic process X_d = [ X_n, n = 0, 1,2,3, is a countable collection of random 

variables indexed by non-negative integer.  Continuous-time stochastic process X_C = 

[ X_t, 0 ≤ t ≤ ∞] is an uncountable collection of random variables indexed by non-

negative real numbers.  In general, Markov chain is defined as a random process that 

has a property characterized by memoryless-ness, i.e. the transition from one state to 
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another on state space takes place depending on the current state only and not on the 

past state that the process went through.  It is critical to note that a random process can 

only be classified as a Markov chain when, in a sequence (series), every event that is 

about to occur depends solely on the current state and eventually forms a kind of chain. 

Despite the fact that, in the formal operation of the Markov chain, a number of events 

occur independently one after the other, this fits appreciation when the next state is 

reached. Thus, Markov chain process involves a measure of uncertainties (Ghosh et al., 

2017).   

Burnham pioneered the use of the Markov Chain model for land use modelling 

in the field of LULC studies. The Markov chain model depicts and predicts changes in 

land use and land cover from one time to the next. The current state at a given time t is 

determined solely by the state at time t-1 before it, and the future state is determined 

solely by the current state in the Markovian process (Burnham, 1973; Ghosh et al., 

2017). Equation [1] explains the calculation of the prediction of LULC changes 

(Behera, Borate, Panda, Behera, & Roy, 2012; Sathees, Nisha, & Mathew, 2014): 

 

   𝑆 (𝑡, 𝑡 + 1) =  𝑃𝑖𝑗  ×  𝑆 (𝑡)  (1) 

 

In general, the Markov Chain calculates how much land use is likely to change 

between the most recent date and the predicted date. The transition probabilities file 

called transition matrix contains the outputs of this Markovian process. This transition 

matrix records the likelihood that each LULUC class will change to every other class. 

The land-use changes analysis is achieved in Markov chain modelling for two different 

periods of the LULC images. The procedure is carried out in three steps: The use of 

transition matrices, a transition area matrix, and a conditional probability image, as well 

as the IDRISI software package developed by Clark Labs, makes the work simple 

(Eastman, 2009; Mishra et al., 2014) 
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  2.3.2.1 Transition probabilities matrix 

 The transition matrix is defined as the result of cross-tabulating two 

images and adjusting for proportional error. This transition matrix, denoted as 

“transition probabilities.txt,” records the likelihood that each LULC category will 

change to every other category. This transition probability matrix is very useful in some 

situations where determining the factors causing the change in land use is difficult 

(Turner et al., 1995). 

 

  2.3.2.2 Transition area matrix 

 The transition area matrix records the number of pixels that are expected 

to change from one land use/land cover type to another over the next time period. This 

matrix is created by multiplying each column in the transition probability matrix by the 

number of cells in the later image that correspond to the corresponding land use. The 

rows represent the older land cover categories, and the columns represent the newer 

land cover categories, in this file saved with the name “transition area.txt” as a result of 

software operations outputs. This transition area matrix is also used to create the 

suitability map (Eastman, 2009; Mishra et al., 2014). 

 

  2.3.2.3 Conditional probability area image 

 The Markov chain always returns a set of conditional probability images 

based on the transition probability matrix. As a projection from the latter of the two 

LULC images, these images report the likelihood that each land cover type would be 

found at each location in the following phase. These files are the most important key 

finders in the Markov process, and they can be used during the classification of remote 

sensing imagery and the prediction of future land use for the specified period (Eastman, 

2009; Ozturk, 2015). 

The summary of advantage, disadvantage and ability of Markov chain for 

modelling of land use change and its specific properties are presented in Table 3 
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Table  3 Markov Chain strengths and weakness for LULC change modelling 
 

Selection 

Criteria  

Advantages and Disadvantages  

Relevance  ✓ Markov can depict the direction of LULC change 

hence it is very useful in analyzing future land use 

demands. Future projections on LULC patterns can 

also be calculated by using drivers such as population 

growth, migration and economic growth patterns.  

 χ  Markov assumes that the factors that produced changes 

will continue in future. This can be overcome by using 

Markov with Land Change Modeler (LCM) to 

manipulate transition probability matrix by 

considering or incorporating other driving factors.   

 χ  In Markov, land use at a certain location is only 

influenced by the previous state of land use and not the 

surrounding land uses. However, spatial dimension can 

be added by incorporating cellular automata models.  

Linkage 

Potential  

✓ The results from Markov analysis are presented in the 

form of transition maps and can be statistically 

quantified and easily understood by decision-makers.  

 ✓ Markov transition matrices can be used in models such 

as CA and LCM to provide a framework for analysis 

of future land use demands.  

Transferability  ✓ There are no modifications required when using the 

software.  

User Openness  ✓ Markov models are relatively easy to use and with 

knowledge of GIS and statistics.   

 ✓ Markov can simplify complex processes of land use 

change in the form of transition probability matrices, 

making it an easy sketch planning tool.  

Data 

Requirements  

✓ Markov models don’t generally need complicated 

data. The only data input required are just historical 

land use or land cover images for two time- periods.  

Model Cost  ✓ Markov is available as a module in Idrisi Selva. A 

student license can be purchased for $39 for the 

purposes of this research, or you can get a one-month 

free trial. Otherwise, the general license for Idrisi is $ 

275.  
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 2.3.3 Cellular Automata and Markov Chain integration   

  Lambin et al. (2001) has described integrated modelling as an effective 

technique for predicting future scenarios on a larger scale. In this regard, CA-Markov 

combines the concepts of Cellular Automata and Markov Chain which are modules 

available IDRISI Selva 17 with other GIS Analysis tools. The first phase in CA-Markov 

involves the comparison of two historic land use maps in order to calculate the quantity 

of change for each land use category. As described d in section 2.3.1, Markov generates 

a transition probability matrix and conditional probability images. The next step is to 

simulate the location of change based on the concepts of suitability maps and contiguity 

filter.  

Suitability maps specify the suitability of each pixel for transitioning to any land 

use at a specific time. These suitability maps can be generated by including some 

variables such as socioeconomic and demographic parameters together with conditional 

probability images produced by Markov and the suitability maps are then further 

weighted using a CA contiguity filter. Cellular Automata model is used to convert 

Markov into a spatially explicit model as it implements the 1st law of Geography by 

using a contiguity rule: where a pixel that is close to a specific LULC type is most likely 

to change to that category as compared to a pixel that is further far away.  

The concept of nearby is determined by a spatial filter that the user specifies. 

CA-Markov in IDRISI Selva requires a certain number of iterations to decide the 

number of time-steps that will be used for simulation.  CA-Markov was therefore 

implemented in this study due to these attractive advantages. However, this future 

prediction was easily made due to data availability since CA-Markov would require at 

least two sets of LULC maps (e.g. input 1984 and 2002 maps and 2002 and 2019 LULC 

maps as a validation map) for this study. However, due to some data limitations, such 

as lack of demographic and socioeconomic data, this study did not include drivers in 

the LULC Change modelling. 
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 2.3.4  Land Change Modeler   

 Land Change Modeler (LCM) is an innovative land planning for 

supporting decision makers through land management and environment preservation. 

It also is an integrated tool in IDRISI Selva 17.0 oriented to model causes and impacts 

of land use conversion and can leads to the specific analysis of biodiversity 

conservation (Eastman, 2009). This software was invented by Clark Labs for assessing 

different land and land cover change scenarios and linked environmental impacts. 

During prediction process, with an automated user-friendly workflow, the model adopts 

the Markov Chains analysis for a spatial allocation of simulated land cover scores 

(Gupta & Sharma, 2020). 

As an essential tool for the assessment and prediction of LULC change and due 

to its organized implications around the major task areas, it has been widely applied in 

various topics around the world: change analysis, LULC change prediction, habitat and 

biodiversity impact assessment and planning interventions etc., Eastman (2009) stated 

that there is a facility in LCM to support projects towards Reducing Emissions from 

Deforestation and Forest Degradation (REDD). The REDD facility uses the land 

change scenarios generated by LCM to evaluate future emissions scenarios.  

In addition to that efficiency in detecting, analyzing and quantifying the change 

of land use and land cover patterns, LCM data input requirement are land cover images 

for two time- periods, with matching classes, legend and characteristics and identical 

extent projections in rows and columns marked with X and Y. With these two LULC 

maps between different periods as input parameters, land use change assessment is 

performed and three types of outputs in form of graphs are generated. The first graph 

indicates the gains and losses for each LULC category, the second graph represents the 

net changes of LULC category, calculating by adding gains and subtracting losses from 

the earlier LULC map. The third graph evaluates the contributions to changes 

experienced by LULC class due to other different LULC classes contributing to net 

change. Thus, this model was selected and applied in this study. 



 
 

CHAPTER III 

 

RESEARCH METHODOLOGY 

 

3.1 Study area description 

 3.1.1 Geolocation and population  

 Gitega is the second largest city and Political Capital of Burundi and the 

seat of the Gitega Province. It is located on the Central Burundian Plateau at an 

elevation of 1,705 m above sea level (asl), about 100 kilometers east of Bujumbura, the 

economic capital city. Geographically, Gitega District is located in the center of 

Burundi at a specific grid reference of "03° 25' 35" South Latitude and 29° 50' 37" East 

Longitude (Figure 14). It lies on the northwestern shoulder of the Birohe-Rugari-Songa 

Mountain range (1,700–2,000 m asl), which is separated from the Cene Mountains 

(2,000 m asl) by the Mutwenzi River. It covers a total area of 315 km2, and according 

to the 2008 census, the District of Gitega has a population of 150,001 people with a 

density of 476 inhabitants/km2 (Niyuhire, 2018). In Gitega region, agriculture is the 

main activity, with livestock breeding (goats and sheep), grazing, and small-scale 

agriculture producing banana, peanut, sweet potato, manioc, bean, corn, and coffee.  
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Figure  14 Location map of the study area 
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 3.1.2 Physical and climatic condition   

In Burundi, subsurface weathering and aquifer evolution are characterized by 

(1) faults associated with ancient (post-)Mesoproterozoic tectonics and ongoing rifting 

associated with the East African graben system, and (2) the development of horizontal 

fractures and fissures in the aftermath of initial weathering during exhumation (3) 

Mesozoic-Cenozoic denudation and planation surfaces, as well as the formation of 

respective deep weathering profiles, and (4) the shaping of Holocene topography, with 

a particular emphasis on linear erosion features and anthropogenic stripping of soil and 

saprolite. 

Thus, Gitega has a landscape dominated by plateau dispersed by hills, valleys 

and moderate plains rising between 1,600 – 2,000 m. According to the Gitega sheet of 

the “Geological map of Burundi,” the lithology of the Central Burundian Plateau, where 

Gitega is located, consists primarily of low to intermediate metamorphic pelitic to 

psammitic metasediments and extensive areas of intrusive rocks. Climate is subtropical 

highland and tropical savanna climate depicted by summer and winter (Vassolo et al., 

2019). The data from the “Institut Géographique du Burundi,” (IGEBU) recorded at 

Gitega airport station shows that the region has a moderate climate with maximum 

annual temperatures ranging from 24.1 to 27.7 °C and minimum values ranging from 

11.9 to 14.8 °C (Vassolo et al., 2019). Whereas, the mean annual precipitation at the 

Gitega airport station is generally 1,178 mm, with a distinct dry period from May to 

October and minimum rainfalls in June and July. The springs used for Gitega's water 

supply emerge at points where the gently sloping hills meet the gentle slopes of the 

valleys. The tectono-metamorphic complexes Kiryama and Vyanda are the dominant 

lithostratigraphic units. 

This Central Burundian Plateau is the relic of an ancient planation surface, most 

likely the late Tertiary Kagera surface (Rossi 1980), with distinctive demi-orange relief. 

Denudation and peneplanation cycles have resulted in staged surfaces and, locally, 

topographic inversion reinforced by lateritic ferricretes. These are common and can be 

seen as mesa-like hilltops or as distinct scarps on the steeper lower slopes, where they 

often formed within saprolitic schist. The ferricretes, which are frequently more than 6 

m thick and occur as both pisolithic layers and continuous vermiform ironstones, have 
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a high potential to influence the infiltration and runoff regime. Field observations 

indicate that ferricretes are rather absorptive (Vassolo et al., 2019). 

 

3.2 Data source and collection  

 3.2.1 Landsat data overview   

 Landsat program had been evolving since 1970’S when was launched the first 

Landsat before known as “Earth’s resources Technology Satellite (ERTS)” assigned to 

acquire data about Earth ‘structures (Pasquarella et al., 2016). Over the past four decades, 

continuous Landsat evolution program has been launching various Landsat named 

chronologically until the most recent version ( Landsat 8) launched in 2013 (Humboldt, 

2016).  As matter of fact, some generation failed their missions, thus the most of remote 

sensing-based studies have famously used online data amounted on Landsat 5 TM 

(Thematic Mapper), Landsat 7 ETM+ (Enhanced Thematic Mapper Plus) and Landsat 8 

OLI (Operation Land Imager) (Woodcock et al., 2008).  

 

Table  4 List of Landsat generations 
 

Satellite  Launch    Decommissioned     Sensors 

Landsat 1 July 23,1972 January 6,1978 MSS/RBV 

Landsat 2 January 22,1975 July 27, 1983 MSS/RBV 

Landsat 3 March 5, 1978 September 7, 1983 MSS/RBV 

Landsat 4 July 16, 1982 June 15, 2001 MSS/TM 

Landsat 5 March 1, 1984 2013 MSS/TM 

Landsat 6 October 5, 1993 Did not achieve orbit ETM 

Landsat 7 April 15, 1999 Operational  ETM+ 

Landsat 8 February 11, 2013 Operational OLI/TIRS 

 

Source: Humboldt, 2016 

 Landsat imagery collected on Landsat 5 TM and Landsat 7 ETM+ comprises 7 

bands identified based on their information coverage and resolution (3 visible bands, 2 

Near-Infrared, bands, 1 Thermal band, and 1 Middle-Infrared band).   
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Table  5 Spectral bands detail on Landsat 5 TM and Landsat 7 ETM+ 

 

Band No.     Name             Wavelength (μm)     Spatial resolution (m) 

Band 1 Blue 0.45 - 0.52 30 

Band 2 Green 0.52 - 0.60 30 

Band 3 Red 0.63 - 0.69 30 

Band 4 NIR 0.76 - 0.90 30 

Band 5 SWIR 1.55 - 1.75 30 

Band 6 TIR 10.4 - 12.50 30 

Band 7 MIR 2.08 - 2.34 30 

 

 Source: Humboldt, 2016 

Whilst, Landsat 8 carries two sensors, the Operational Land Imager (OLI) and the 

Thermal Infrared Sensor (TIRS). Landsat 8 has 16-bit radiometric resolution and also has 

more than 7 bands (greater spectral resolution) compared to earlier Landsat version 

(Humboldt, 2016) 

Table  6 Spectral bands detail on Landsat 8 OLI/TIRS 
 

Band No. Name Wavelength (μm) Spatial resolution (m) 

Band 1 Coastal 0.43 – 0.45 30 

Band 2 Blue 0.45 – 0.51 30 

Band 3 Green 0.53 – 0.59 30 

Band 4 Red 0.64 – 0.67 30 

Band 5 NIR 0.85 – 0.88 30 

Band 6 SWIR 1 1.57 – 1.65 30 

Band 7 SWIR 2 2.11 – 2.29 30 

Band 8 PAN 0.50 – 0.68 15 

Band 9 Cirrus 1.36 – 1.38 30 

Band 10 TIRS 1 10.6 – 11.19 100 

Band 11 TIRS 2 11.5 – 12.51 100 

Source: Humboldt, 2016 
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 3.2.3 Ancillary data   

This section of the research elaborates ancillary data collecting from different 

institutions and organizations. 

  3.2.3.1 Previous land cover maps    

    The ancient land use and land cover data of Burundi are contained 

in the Atlas of Burundi prepared by Association pour l'Atlas du Burundi which had 

produced various sheets covering different regions for  various fields such as physical 

environment,  history of the country until 1962, Population and economic information: 

agriculture, livestock, fishing, industry, transport, energy, mining  (Burundi., 1979).  

The toposheet 29 of Burundian Atlas covering Gitega shown in Figure 15 is used as 

reference data for preliminarily identifying the possible LULC classes in this study. 
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Figure  15 Ancient land use of Gitega 

 

Source: Burundi., 1979 

Furthermore, apart from that longstanding land use data containing specific 

information Gitega, it is also needed to look for the newest updated land use and land 

cover data in Burundi, Thus Land  use and cover map of Burundi produced in the year 

2016 and which is available online (RCMRD, 2016) and it was reclassified in order to be 

used as reference during image classification in this study (Figure 16 ). It was also used 

for easy analysis and classification accuracy assessment during. 
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Figure  16 Burundi Land cover map for year 2016 

 

Source: Updated from RCMRD, 2016 
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 3.2.2 Satellite data   

Landsat Images with 30 m resolution were downloaded from the United States 

Geological Survey (USGS) resource repository (http://earthexpolorer.usgs.gov/).  These 

images with a little bit different anniversary date were selected for good quality (cloud 

cover less than 10percent), because some satellite data with same anniversary date were 

unfortunately covered with too much clouds.  The first image was acquired on 20 June 

1984 by Thematic Mapper (TM) sensor onboard on Landsat 5. The second image was 

taken by the Enhanced Thematic Mapper Plus (ETM+) mounted on Landsat 7 on 17 

August 2002, and the third image was acquired using Operation Land Imager (OLI) 

onboard Landsat 8 on 23 July 2019.  

These three dates: 1984, 2002 and 2019 were chosen according to our research 

purpose of displaying a longstanding LULC change analysis over time. The meaningful 

use of such three dates was to have at least two periods during which we can detect the 

change of LULC and also to proceed on the comparison of the state of each LULC class 

in the first and second period. Hence, the first period ranges from 1984 to 2022: 18 years 

period. The second period ranges from 2002 to 2019: 17 years. This difference of 1 year 

in terms of interval between the first and second dates was made by an ambition of having 

an image of good quality, suitable for visual analysis to extract all necessary information. 

Again, two images acquired on two different date are also mandatory for running CA-

Markov model in order to simulate and predict the future scenario.   

Furthermore, the selected bands for LULC classification included visible (Red, 

Green and Blue) and infrared (one near Infrared band) for Landsat 8. All these images 

were taken on satellite track path/row:173/062 and projected in Universal Transverse 

Mercator (UTM) with WGS-84 datum 36 N.  The Table 7 shows the paths and rows and 

different acquisition dates of the Landsat imagery used for this research study.  

 

Table  7 Description of Landsat data collected during summer 
 

Satellite Sensor Path/Row Acquisition Date Bands Resolution 

Landsat 5 TM 172/062 20 June 1984      2, 3, 4 30 m 

Landsat 7 ETM 172/062 17 August 2002 2, 3, 4    30 m 

Landsat 8 OLI 172/062 23 July 2019 3, 4, 5     30 m 

http://earthexpolorer.usgs.gov/
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3.3 Research methodology framework   

In order to successfully achieve the overall objectives and results assigned to this 

study, the aforementioned data are processed, analyzed and examined through the 

following main phases:  

i) Data Processing 

ii) Data and Result Analysis 

iii) Simulation Result and Model Validation 

The general conceptual research framework is outlined in Figure 17.  The first 

phase involves Landsat image preparation by correcting eventual errors occurred during 

image capture, and classification of satellite data using appropriate tools available in GIS 

and IDRISI Software.  The second phase comprises the data and results analysis where 

the classification results are examined to find out how accurate are the obtained LULC 

maps using the most common method of confusion matrix which generates User’s, 

Producer’s and Overall accuracies along with calculation of Kappa Statistics, and after 

what, the change analysis is made.  In the final phase, one the validation of classification 
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results is done, the simulation of these results is done using Markov Chain (MC) and 

Cellular Automata (CA)- Markov Chain Models.      

 

Figure  17 General methodological chart 

 

 3.3.1 Data processing  

   According to Jensen (2005), digital change detection can be affected by 

a number of influencing variables such as spatial, spectral, radiometric resolution, 

temporal constraints, atmospheric conditions, and soil moisture conditions (Im & 

Jensen, 2005). It was therefore needed to proceed first with image corrections such 

radiometric and atmospheric calibration in order to get precise image visible and 

readable for conducting a good change detection.   
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  3.3.1.1 Image enhancement      

 Landsat data were selected because they are almost of good quality for 

image classification and land use change detection. As all these satellite data were 

acquired with less than 10 percent of cloud cover, and image pre-processing was going 

on with creating a multispectral image through combining three useful bands for LULC 

image classification (Lillesand, Kiefer, & Chipman, 2015). Firstly, each useful band of 

satellite data in this study was calibrated for noise removal using appropriate module 

available in Idrisi selva software. In this step, basic information about image acquisition 

was needed such, sun elevation angle, spectral radiant (LMin) scaled to the minimum 

quantized calibrated pixel value (QCalMin) in watt m-2sr-1µm-1 and the spectral 

radiance (LMax) scaled to the maximum quantized calibrated pixel value (QCalMax) 

in wattm-2sr-1µm-1 (acquired directly from image metadata file). This important 

technique for image transformation provided details about data at different time frames. 

We finally use ATCOR 2 module in Idrisi software which converts the digital numbers 

(DNs) of each pixel of each scene to a sensor spectral radiance (L) in mWcm-2sr-1μm-

1 using the following equation (1) and after module operation, obtained reflectance 

value of scene’s pixel ranges from 0 to 1(Eastman, 2009; Richter & Schläpfer, 2013): 

𝐿 = 𝐶0 + 𝐶1 × 𝐷𝑁                                                 (1) 

Where, L is the at sensor spectral radiance, C0 and C1 are radiometric 

calibration coefficients calculated from LMax and LMin for each spectral band and DN 

stands for the digital number of each pixel.  

Afterward, we used the technique of Window Composite Band using again the 

module embedded in Idrisi Selva.17 software to enhance images quality through 

increasing the brightness using basically three bands (red, green and blue) as presented 

in Figure 18, 19 and 20. This purpose of this method was to improve the appearance 

of images and to assist in subsequent visual and analysis. More importantly, image 

enhancement involves the technique for increasing the distinction interpretation 

between features by improving tonal differentiation between various features in a scene 

using contrast stretching techniques.    
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Figure  18 Corrected satellite image acquired on Landsat 5 TM (1984-06-20) 
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Figure  19 Corrected satellite image acquired on Landsat 7 ETM (2002-08-17) 
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Figure  20 Corrected satellite image acquired on Landsat 8 OLI (2019-07-23) 
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  3.3.1.2 Image classification  

    Image classification designs the process of assigning pixels to 

informational classes of interest. A good classification method must involve spectral or 

pattern recognition in order to generate a cluster of classes from multispectral images 

covering the Area of Interest (AOI). The aim of image classification in this research is 

to extract the spectral information contained in multispectral images and generate 

cluster classes that match well the informational classes of interest. The area coverage 

of the various classes of multispectral images will be compared to further determine 

changes that have taken place between the study dates.  

Therefore, based on the worldwide and common classification scheme in Land 

use/land cover system (James Richard Anderson, 1976), existing land cover data and 

field visit done in the area of interest (AOI), we have preliminarily grouped all 

characteristics of LULC classes that could not be easy to determine and this was done  

according to our classification purpose. Five major Land use/land cover categories were 

listed to be considered during digital image classification (Table 8).  

Table  8  LULC classes description based on Anderson classification scheme 1976 
 

LULC Class Subcategories Description 

 

Agriculture  

  

Cultivated land, croplands, 

Vegetable gardens, 

Cultivated fields used for crop production, Non-or 

poor vegetated areas, and gully features, typically 

associated with significant natural or man-induced 

erosion activities along or in association with stream 

and flow lines 
 

Built-up Area  

   Urban, Commercial,      

   Industrial, Residential,       

   Informal, Schools, etc., 

Areas containing built-up structures, commercial, 

administrative, health, transport, various residential, 

schools and sports playgrounds,   

 

 

Grass Land    

 

 

Grassland, Fallow lands 

  

Natural / semi natural grass dominated areas. Includes 

sparse bushland and woodland areas, areas that are 

primarily vegetated on a seasonal or permanent or 

daily basis (e.g. in valley alongside the streams of 

water)  
 

Shrub Land 

Shrubland, Bare rock / 

soil, deciduous, degraded 

land 

Natural / semi-natural grass dominated areas tree with 

clear canopy, deciduous and arid land, meadows and 

pastures 

 

Trees Cover    

Forest, Woodland, 

Plantations mature trees, 

young trees, temporary   

clear-felled stand   

Natural vegetation / forest dominated by tall trees and 

where canopy heights are > 5m,  

Planted forest used for growing commercial timber 

tree species 
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Land use and land cover classes can be well achieved by classifying satellite 

images based on the reflected signals from the earth surface materials. LULC 

classification refers also to the socio-economic activities which are interpreted from the 

land cover in the context of surrounding features in the area of interest. In this study, 

image classification was done using a very common and widely method of Supervised 

classification in Idrisi selva.17 software in order to finally get the land use and land 

cover classes. After the determination of the LULC classes, a menu of these classes was 

developed in accordance with the colors observed on the enhanced Landsat images for 

each land use and land cover classification and for mapping process. Using a widely 

color scheme for satellite imagery interpretation displayed in Figure 21,  

 
 

Figure  21 standard interpretation of LULC classes based on colors scheme 
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“Training sits “was therefore made by selecting a number of representative 

samples for each LULC class. This was finally achieved using Idrisi software which 

applied training samples on the entire image and a signature file which stored selected 

samples with reliable spectral information was generated (Figure 22). These Sample 

objects are selected based on x and y coordinates of the imported training site. 

The last step was to run a classification using Maxim likelihood algorithm (Patil 

et al., 2012), and we finally got the LULC images with five LULC classes previously 

noted as Agriculture, Built Area, Grass Land, Shrub Land and Trees Cover as shown in 

given example for 2019 Landsat image classification result in Figure 23.   
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Figure  22 Sample training area mask used to classify the images of 2019 
 

 

Figure  23 Image classification output for Landsat 8 OLI acquired on 2019-07-23



 
 

CHAPTER IV 

 

RESULTS AND DISCUSSION 

 

4.1 Classification results evaluation and mapping.  

Quantitative method was applied in this study to establish the correspondence 

between the classification results and the reference image. The sampling sites for the 

accuracy assessment were selected from random sampling using different sets of 

coordinates from the training sample locations. Stratified random sampling similar, but 

slightly different, from the procedure used earlier for the selection of training parcels 

was used. The high-resolution contemporary satellite imagery available on Google 

Earth pro has been used to collect the ground truth data for 1984, 2002 and 2019 maps. 

a total number of 30 sample pixels (6 pixels for each of the land cover classifications) 

were produced using stratified sample random method with ArcGIS software to 

characterize image classification accuracy (Pulighe, Baiocchi, & Lupia, 2016; Tilahun 

& Islam, 2015). The sampling sites had spread across entire classified area for each 

image to ensure that all land use and cover classes were considered in the accuracy 

assessment. Figure 24 shows accuracy assessment location over the Landsat 5 TM 

classification, Figure 25 shows the accuracy assessment locations generated over the 

Landsat 7 ETM classification and Figure 26 shows the accuracy assessment locations 

generated over the Landsat 8 OLI classification.  Using same X and Y coordinates 

extent, these selected randomly points were connected to correspondingly Google Earth 

features (Figure 27) in order to match accuracy between classifier and the ground truth 

data as exemplified in Figure 28 for Landsat 8 OLI image.  Details on randomly points 

for ground truth control and relevant evidence of the good classification in this study 

are given in the section of appendix.  
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Figure  24 Accuracy assessment generated over the MLC for Landsat 5 TM 1984 
 

 

 
 

Figure  25 Accuracy assessment generated over the MLC for Landsat 7 ETM 

2002 
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Figure  26 Accuracy assessment generated over the MLC for Landsat 8 OLI 

2002 
 

 

Figure  27 Ground point control with Google Earth for 2019classification 

accuracy assessment 
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Figure  28. Synchronization of 2019 classified LULC map and aerial Google 

Earth image for performing classification accuracy assessment. 
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Figure  29 Field photo 2019 corresponding to the selected stadium in figure 30 

showing classification accuracy for 2019 image. 

 

 

 

Figure  30 Field photo showing built-up area as appearing in both classified and 

aerial Google image given in the figure 29 
 

The performance of image classification accuracy  was made using the class 

values and ground truth values, and ultimately the confusion matrices were generated 
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to report the accuracy of each LULC classification in terms of overall accuracy (OA) 

user’s accuracy (UA), producer’s accuracy (PA) and kappa statistics (K) coefficient 

(Dewan & Yamaguchi, 2009; Rwanga & Ndambuki, 2017). 

 

Users accuracy (UA) 

In General, Users accuracy (UA) refers to the number of correctly classified 

pixels in each class (category) divided by the total number of pixels that were classified 

in that category of the classified image (row).  It reflects the probability that a pixel 

classified into a given category (Classified Map) actually represents that category on 

the ground (Reference Data). In this present study, results from User’s accuracy in the 

year 1984 range from 62.5 percent to 100percent, same as in the year 2002. In 1984, 

the maximum class accuracy was 100 percent which was systematically found in 

Agriculture, Built-up Area and Trees Cover (correctly classified), while the lowest 

value was Grass Land with an accuracy of 62.5 percent as presented in Table 9.  

However, in 2002, the high-class accuracy of 100 percent was systematically obtained 

in Built-up Area, Shrub Land and in Trees Cover, whereas minimum accuracy of 62.5 

percent was Grass Land as shown in Table 10.  Unlike the above results accuracy, 2019 

image was correctly classified with results accuracy ranging from 80 percent to 100 

percent as indicated in Table 11. This was due to the utilization of a good image from 

Landsat 8 OLI offering higher spatial resolution more than Landsat 7 and backwards. 

According to Woodcock et al., 2008, very high spatial resolution images provide many 

pixels per object rather than many objects in a single pixel during classification process 

(Woodcock et al., 2008; Wulder et al., 2004).  

 

Producer’s accuracy (PA) 

Producer's accuracy denotes the number of correctly classified pixels in each 

category divided by the total number of pixels in the reference data to be of that category 

(column total). This quantitative procedure shows how well reference pixels of the 

ground cover category are classified). Results from Producer’s accuracy in this study 

showed that in 1984, the maximum accuracy of 100 percent were Built-up Area, Grass 

Land and Trees cover, and equal lower value classes were both Agriculture and Shrub 
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Land as displayed in Table 9.   In 2002, Built-up and Trees Cover where are maximum 

producer’s accuracy (100percent) than other LULC classes (Table 10). In the year of 

2019, all classes were maximum accuracy with 100percent, except Shrub Land which 

was low value class with 66.6 percent as represented in Table 11 

 

Overall accuracy (OA) 

OA calculates the percentage of total classified pixels that truly labelled into the 

specific land cover and is computed by dividing the total correctly classified pixels 

(TCS or the sum of the diagonals) by the number of reference pixels (TS) in the error 

matrix shown in equations 2, 3 and 4 

 
𝑶𝑨 =

𝛴𝑇𝐶𝑆𝑖𝑗

𝑇𝑆
 

(2) 

 

 
𝑷𝑨 =

𝛴𝑇𝐶𝑆𝑖𝑗

𝑇𝑆𝑐𝑖
 

(3) 

 

 
𝑼𝑨 =

𝛴𝑇𝐶𝑆𝑖𝑗

𝑇𝑆𝑟𝑖
 

(4) 

Where 𝑇𝐶𝑆𝑖𝑗 is the total number of the correctly classified pixels in row i and column 

j,  𝑇𝑆 is the total reference sample,  𝑇𝑆𝑐𝑗 is the total number of pixels in column j and  

  𝑇𝑆𝑟𝑖 is the total number of pixels in the row i.  

The quantitative measure of the level of agreement was done with utilization of 

kappa statistic (K) assumed that a K of 1 indicates ideal agreement, whereas a kappa of 

0 indicates agreement equivalent to chance to truly classify the pixels. Then k statistic 

was computed in the equation 5:  

 
𝒌 =

(TS × TCS) − 𝛴 𝑇𝑆𝑐𝑗 𝑇𝑆𝑟𝑖  
𝑇𝑆2 − 𝛴(𝑇𝑆𝑐𝑗 − 𝑇𝑆𝑟𝑖  )

 
(5) 

Where 𝑇𝐶𝑆𝑖𝑗 is the total number of the correctly classified pixels in row i and column 

j, 

  𝑇𝑆 is the total reference sample,  𝑇𝑆𝑐𝑗 is the total number of pixels in column j and  

  𝑇𝑆𝑟𝑖 is the total number of pixels in the row i.  
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Table  9 Confusion matrix for land cover map of 1984 
 

 LULC Map (Maximum Likelihood Classification)  

A
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ia
l 
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a
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e 
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a
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h
) 

LULC 

Classes Agriculture 

Built-

Up Area 

Grass 

Land 

Shrub 

Land 

Trees 

Cover Total  

User'

s (%) 

Agriculture 5 0 0 0 0 5 100 

Built-up 

Area 0 3 0 0 0 3 100 

Grass Land  1 0 5 2 0 8 62.5 

Shrub Land  1 0 0 5 0 6 83.3 

Trees Cove 0 0 0 0 8 8 100 

Total  7 3 5 7 8 30 
 

Producer’s 

(%) 71.4 100 100 71.4 100   
Overall Accuracy 86.6 

Kappa Statistics  83 

 

 

Table  10 Confusion matrix for land cover map of 2002 
 

 LULC Map (Maximum Likelihood Classification) 

A
er
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l 

im
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e 
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rt

h
) 

LULC 

Classes Agriculture 

Built-Up 

Area 

Grass 

Land 

Shrub 

Land 

Trees 

Cover Total  

User'

s (%) 

Agriculture 7 0 1 0 0 8 87.5 

Built-up 

Area 0 3 0 0 0 3 100 

Grass Land  1 0 5 2 0 8 62.5 

Shrub Land  0 0 0 4 0 4 100 

Trees Cove 0 0 0 0 7 7 100 

Total  8 3 6 6 7 30 
 

Producer’s 

(%) 87.5 100 83.3 66.6 100   
Overall Accuracy 86.6 

Kappa Statistics  83 
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Table  11 Confusion matrix for land cover map of 2019 
 

 LULC Map (Maximum Likelihood Classification) 

A
er
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l 

im
a
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a
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h
) 

LULC 

Classes Agriculture 

Built-Up 

Area 

Grass 

Land 

Shrub 

Land 

Trees 

Cover Total  

User'

s (%) 

Agriculture 7 0 0 0 0 7 100 

Built-up 

Area 0 4 0 1 0 4 80 

Grass Land   0 0 8 1 0 9 88.5 

Shrub Land  0 0 0 4 0 4 100 

Trees Cove 0 0 0 0 5 5 100 

Total  7 4 8 6 5 30 
 

Producer’s 

(%) 100 100 100 66.6 100   
Overall Accuracy 93.3 

Kappa Statistics  91.5 

 

Furthermore, diversity of information and reporting documents on the land use 

and environmental sate like Agriculture Rehabilitation and Support and Sustainable 

Land Management (PRASAB), and other various legislation and policy documents 

from different governmental agencies e.g. Ministry of Environment, Agriculture and 

Livestock, were acquired from the internet and examined to retrieve relevant LULC 

information for research results validation 
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Table  12 Summary of accuracy assessment for 1984, 2002 and 2019 image 

classification 
 

 year 1984 2002 2019 

Land use/Land Cover Producer  User Producer  User Producer  User 

Agriculture 71 100 87 87 100 100 

Built-up Area 100 100 100 100 100 80 

Grass Land 100 62 82 62 100 88 

Shrub Land  71 83 66 100 66 100 

Trees Cover 100 100 100 100 100 100 

Overall Accuracy 86 86 93 

Overall Kappa Statistic 0.83 0.83 0.91 

 

The evaluation metric results presented in the (Table 12) revealed an equal 

overall accuracy of 86 percent for 1984 and 2002 maps, while for 2019 map the 

overall accuracy was higher as 93percent, and Kappa coefficient was 0.83 and 0.91 

respectively. These evaluation results justified a very good accuracy of the classified 

images with minimal error in the classification method (Lillesand et al., 2015; Rwanga 

& Ndambuki, 2017) . After this validation of image classification, the results were 

further exported from Idrisi to ArcGIS software for further necessary mapping.  The 

Figure 31, 32 and 33 represent the LULC maps resulting from image classification for 

year 1984, 2002 and 2019 respectively, whereas (Table 13) records the rea of each 

LULC class at different time frames. 
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Figure  31. LULC map of year 1984 
 

 

Figure  32  LULC map of year 2002. 
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Figure  33 LULC map of year 2019 
 

Table  13 Temporal area distribution of LULC in km2 by year 
 

LULC  1984 2002 2019 

Agriculture  48 111.5 142 

Built-up Area 1 1.5 3 

Grass Land 112 121 73 

Shrub Land  61 31 66.5 

Trees Cover 81 38 18.5 

 

4.2 Change detection 

As defined by Singh et al. (1989), Change detection is the process of identifying 

differences in the state of an object or phenomenon by observing it at different time 

(Singh, 1989). Thus, the aim of LULC change detection is to discern those areas on 
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digital images that represent change features of interest (e.g., forest clearing or land 

covert land-use change) between two or more time periods.  

In this study, Land use and land cover change detection was done through 

quantifying the decreasing and increasing amount of area in each LULC class at 

different time periods. Therefore, the magnitude of change (M) for each LULC 

category has been calculated by subtracting the area coverage (AC) from former and 

later time periods specifically denoted as AC2 and AC1for the 2nd and 1st years 

respectively in the Equation (6) follows (Islam et al., 2018):  

M = MAC2 − MAC1                                        (6) 

Where M is the magnitude of change?  

AC1 is the area coverage of LULC class at the first year, 

AC2  is the area coverage of LULC class at the second year. 

The percentage of change (P) was calculated by dividing the magnitude of 

change (M) by area coverage of LULC class at the first year ( MAC1) multiplied by 

100 as expressed in the following Equation (7):    

 P =
M×100

MAC1
                                                      (7) 

The annual rate of change (AR) for each land use type was then obtained by 

dividing the magnitude of change (M) by the number of years period (Npr) which 

corresponds to the difference between the last and first year periods i.e. a number of 

35 years (2019-1984) was used to calculate the annual rate of change in this research 

bay using Equation (8): 

AR =
M

Npr
                                                        (8) 

   

4.3 LULC change analysis results  

The LULC changes analysis enables to understand physical modification or loss 

of features in the natural landscape such as, vegetation and forests clearing, agricultural 

land, waterbody as worth useful information for planning land use and environmental 

conservation (Wang, Munkhnasan, & Lee, 2021). We applied comparative method to 

analyze 5 LULC classes from classified image-based remote sensing of years 1984, 

2002 and 2019 presented in the Figure 31, 32 and 33.   
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Figure  34 Comparison of existing LULC category by statistical area in km2 

 

 

 

Figure  35 LULC change patterns by statistical area in percent over 35 years 

 

The results from comparative analysis given in Figure 34, 35 reveal a huge 

conversion of one LULC to others taking place across years. In 1984, Gitega landscape 
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was extensively covered by Grassland and Trees Cover: 112 km2 (36.97percent) and 

81 km2 (26.73percent) respectively. Shrub land is the 3rd dominant class covering 61 

km2 (20.13percent), while Agriculture and Built-up Area cover occupy 48 km2 

(15.84percent) and 1 km2 (0.33percent) respectively. In the second year 2002, the study 

area was largely covered with Grass Land and Agriculture:121 km2 (39.84percent) and 

111.5 km2 (36.92percent) respectively.  However, Trees Cover and Shrub Land 

decreased to 38 km2 (12.24percent) and 31 km2 (10.21percent) respectively, and Built-

up Area has slightly increased.  In 2019, the largest land cover is Agriculture with 142 

km2, an increase of 10 percent from 2002 to 2019.  Grass Land took second areal 

position with 73 km2 due to a decrease of 5 percent nearly. Shrub Land rose up to the 

3rd position due to an increase by 11.74 percent with an area of 66,5 km2, while Trees 

Cover steeply decreased by 6.44 percent and occupies 18.5 km2. Built-up Area has a 

steady increase by 1.5 km2 from 2002-2019.  

In order to get deep understanding, LULC changes detection was analyzed with 

Land Change Modeler (LCM) and the outcomes framed the above trends of LULC 

change patterns (Figure 36).  
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Figure  36 Gains (Green) and losses (Purple) by category of LULC in km2 

 

 Using LCM model, Gupta and Sharma (2020) highlighted the outcomes of 

LULC dynamics studies over 50 years periods which are consistent with our results. 

These decreasing area in Trees Cover and Grass Land (by about 101,5 km2 in total with 

annual rate of 2.9 km2) has been converted mostly into Agriculture (94 km2), and little 

to Shrub Land and Built-up Area (7,5 km2 together) from 1984 to 2019.  
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4.4 CA-Markov for simulating the future LULC change 

CA-Markov Chain Model (CA-MCM) is the most popular model among 

various tools and techniques used for modelling spatial and temporal changes (Sang, 

Zhang, Yang, Zhu, & Yun, 2011; Torrens, 2000). In the LULC changes modelling, the 

integration of the two models, Cellular Automata and Markov Chain models has been 

widely used for optimizing the simulation of LULC change (Borana & Yadav).  

On the one hand, Markov Chain Model is a dynamic process based on 

Markovian random process that calculates the probability of changes from particular 

object (for example: Vegetation) into another objects (for example: Agriculture). 

Markov chain describes as transitional probability matrix in which the probability of 

each event depends only on the state attained in the previous event (Ghosh et al., 2017). 

Because of its immense ability to quantify the rates and states of conversion among and 

between categories respectively, it has been equally used in the LULC change 

modelling.  

On the other hand, Cellular Automata (CA) is a discrete dynamic system 

consists of a regular network of finite state automata (cells) that can change in 

neighboring cells and simulate the evolution of two-dimensional objects in many 

different directions such as West, East, North, South and other adjacent directions 

(Kumar, 2003; Torrens, 2000). Obviously, GIS raster data is known to fairly have 

resemblance with cellular automata concept and eventually, this property has enabled 

CA to be as famous as model used in LULC changes simulation (Pijanowski et al., 

2002; Surabuddin Mondal et al., 2013). Therefore, combination technique of the two 

above models was also applied in this research to simulate the LULC for 2019, 2038 

and 2058 using Idrisi Selva 17.0 software (Nadoushan, Soffianian, & Alebrahim, 2015) 

.  With two LULC maps of different time periods (defined as earlier and later images), 

transition probabilities between periods were then obtained using Markov Chain model 

using the following formulae (9) (Mondal, Sharma, Garg, & Kappas, 2016) : 

S (t, t+1) = Pij × S (t)                                                 (9)     

Where S (t) is the system status at time t; 

S (t+1) is the system status at a time of t+1 

Pij is the transition probability obtained in equation (10) below:   
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P = |Pij| =  |

P1,1P1,2 …P1,N

P2,1P2,2 …P2,N

⋯⋯⋯
PN,1PN,2 …PN,N

|        0 ≤ Pij ≤ 1            (10) 

Where P = the transition probability; 

 Pij = stands for probability of changing from particular state i (for example a current 

land cover = class) to another state j  (for example a projected land cover =class in 

next time) 

 PN = The state probability of any time  

 N= Land cover type in Gitega District.  

In the simulation process, Markov Chain produces a transitional probability matrix, a 

transitional area matrix and a set of conditional probability images (suitability images). 

The transition matrix records the probability of changing of each LULC category to 

every other category, while transitional area matrix contains the number of pixels that 

are expected to be converted from one LULC category to other categories over a 

specific period of time. On the other hand, the output conditional probability images 

represent the probability of each LULC class to be found in each pixel over the time 

(Eastman, 2009; Mishra et al., 2014). 

In the present research, we used the 1984, 2002, 2019 LULC maps obtained 

from image classification to run Markov Chain. Firstly, the two land cover maps (1984 

and 2002) representing the earlier image (time 1) and later image (time 2) were used to 

primely project the LULC map for 2019 (Figure 38 and Markov Chain model provided 

a related crosstabulation of transition probability matrix shown in the (Table 14 (a). 

This operation aimed to set and produce a suitability map matching the current rate and 

quantity of LULC change of Gitega district in 2019 which will be further used in 

simulating the future LULC changes.  

As Markov Chain model is just calculating the probability of changes in 

landscape and doesn’t have an ability to provide the spatial location of the future 

projected LULC change, a hybrid CA-Markov module in Idrisi Selva-17 was then used 

to solve this problem. it is an integrated Cellular automaton, Markov chain, multi-

criteria and multi-objective model for spatial-explicit term and location of changes in 

prediction process (Sang et al., 2011). In this first step of LULC prediction process 

(1984 and 2002), we used 1984 LULC data as base map and Cellular automata 
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iterations was set to 35 (as the time interval between 1984 and 2019 is 35 years) for 

predicting 2019 LUC map so that the simulation result could be compared with the 

existing LULC in order to evaluate the model performance (Figure 37) (Gupta & 

Sharma, 2020).  To estimate 2019 LULC, we used the transition probability area matrix 

of 1984-2002, transition suitability map and a set window technique 5*5 kernel called 

standard contiguous filter and this to ensure that the neighboring pixels were used to 

create spatially explicit contiguous weights with an influence of each cell enclosed by 

the following matrix space (11):  

Contiguity filter 5*5 = 

[
 
 
 
 
  0 0    1 0 0    
  0 1  1 1  0  

  
1
0
0

1
1
0

1
1
1

1
1
0

 
1
0
0 ]

 
 
 
 

                                    (11)                                          

In general, contiguity filter 5*5 causes the gain of a land use category to occur 

near another existing category and rules out randomly the major change in land use/land 

cover patterns i.e. a pixel near a bare surface area is likely to change into barren land. 

 

 

Figure  37 Area (in Km2) of LULC category in actual and simulated maps (2019) 
 

Upon successfully validation the simulated land cover data for year 2019, we moved 

on prediction for 2038 and 2057 LULC maps. In this process, we used actual land use 

map of 2019 as base data, transitional probability area matrices and transitional 
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suitability maps were provided, and a 5*5 kernel size contiguity filter was set in 

simulating both 2038 and 2057 LULC map.   

 

Table  14 Transition probability matrices used during simulation process 

 

a. Probability of changing from ………… by 2019 to: 

1984 Agriculture Built-up 

Area 

Grass 

Land 

Shrub 

Land 

Trees 

Cover 

Total Omiss

ion  

Agriculture 0.629 0.0072 0.1051 0.2336 0.0251 1 0.371 

Built-up Area 0.1401 0.4638 0.198 0.1903 0.0078 1 0.802 

Grass Land 0.3922 0.0186 0.4532 0.1131 0.0229 1 0.9814 

Shrub Land 0.2925 0.0166 0.3138 0.3534 0.0237 1 0.6466 

Trees Cover 0.4634 0.0071 0.1968 0.294 0.0387 1 0.9613 

Total 1.9172 0.5133 1.2669 1.1844 0.1182 5 
 

Commission  1.2882 0.0495 0.8137 0.831 0.0795 
  

b. Probability of changing from ……... by 2038 to: 

2019 Agriculture Built-up 

Area 

Grass 

Land 

Shrub 

Land 

Trees 

Cover 

Total Omiss

ion 

Agriculture 0.6824 0.0045 0.2076 0.0839 0.0216 1 0.3176 

Built-up Area 0.1681 0.4321 0.1959 0.1987 0.0052 1 0.8041 

Grass Land 0.5423 0.0021 0.3811 0.0601 0.0144 1 0.9979 

Shrub Land 0.368 0.0175 0.3905 0.2139 0.0101 1 0.7861 

Trees Cover 0.3706 0.0039 0.2147 0.3518 0.059 1 0.941 

Total 2.1314 0.4601 1.3898 0.9084 0.1103 5 
 

Commission 1.449 0.028 1.0087 0.6945 0.0513 
  

c. Probability of changing from…………by 2057 to: 

2019 Agriculture Built-up 

Area 

Grass 

Land 

Shrub 

Land 

Trees 

Cover 

Total Omiss

ion 

Agriculture 0.7109 0.0027 0.1733 0.0901 0.023 1 0.2891 

Built-up Area 0.1248 0.4901 0.2536 0.1256 0.0059 1 0.7464 

Grass Land 0.4026 0.0034 0.3084 0.2591 0.0265 1 0.9966 

Shrub Land 0.4801 0.0083 0.2102 0.2648 0.0366 1 0.7352 

Trees Cover 0.6446 0.004 0.1124 0.2032 0.0358 1 0.9642 

Total 2.363 0.5085 1.0579 0.9428 0.1278 5 
 

Commission 1.6521 0.0184 0.7495 0.678 0.092 
  

 

Table 14 (a), (b) and (c) records results from Markov Chain Analysis for exploring the 

probability of LULC conversions for all classes which could take place from1984 to 

2019, 2019 to 2038 and 2019 to 2057 (Ghosh et al., 2017; Wang et al., 2021).  For 
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example, from 2019 to 2038, the probability of change for Agriculture to Agriculture 

is 68.24percent, while the probability of future change of Agriculture to Grass Land is 

20.76percent. Trees Cover has a probability as low as 5.9 percent to remain as they are, 

but has a probability of 37.06 percent to change Agriculture and same process for other 

LULC classes. In the second prediction scenario, from 2019 to 2057, Agriculture has 

the highest probability of 71.09 percent to remain as Agriculture in 2057, whereas Trees 

Cover indicates the most declining probability of 3 percent to remain same in 2057. 

Built-up Area, Grass Land, and Shrub Land have probability of 49.01 percent, 30.84 

percent, and 26.24 percent respectively, to remain as they are in 2019. 

 

4.5 Accuracy assessment of simulated result and model validation.  

The accuracy of the simulation results and the model validation were once done 

based on the comparison of the predicted LULC maps for 2019, 2038 and 2057 with 

the real LULC maps of 2019 (actual land use data). The Kappa statistics is the most 

widely method agreed to quantify the power and suitability of simulation model 

(Maingi, Kepner, & Edmonds, 2002),  thus, this study utilized the submodule in Idrisi 

namely, GIS Analysis, to generate Kappa index of Agreement shown in Table 15. 

Basically, the module requires two land cover data denoted “comparison image and 

reference image” to provide Kappa index of Agreement (KIA) that breaks into several 

components of agreements or disagreement. So, the existing LULC map of 2019 has 

been frequently used as reference image to examine the simulated 2019,2038 and 2057 

map (comparison image). The validation was done based on the assumption that the 

higher are the kappa values, the better are the used models (Borana & Yadav). The 

Table 15 displays the values for kappa statistics noted as Kno, Klocation, Klocation strata and 

Kstandard (overall k) of year 2019, which also ensure the reasonable accuracy of predicted 

LULC maps for 2038 (83, 87, 87 and 79 respectively) and for 2057 (78, 83, 83 and 75 

respectively). All kappa index values surpass the minimum acceptable standard and 

they range from 65 percent to 89percent, indicating a high degree of agreement between 

projected and actual LULC map (Kundel & Polansky, 2003; van Vliet, Bregt, & Hagen-

Zanker, 2011). Furthermore, these evaluation results prove that Markov Chain 

simulation model was successfully designed and had a good ability to specify 

accurately the location and quantity for all simulated LULC maps in this study. 
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Table  15 Accuracy assessment results by kappa statistics values for predicted 

maps   
 

k Indicator  2019 

Kno 0.7205 

Klocation 0.7569 

Klocation Strata 0.7569 

Kstandard 0.6565 

 

4.6 Prediction results and change analysis for future scenario 

CA-Markov Chain simulation model requires earlier and later LULC maps to 

predict the future scenario (Sang et al., 2011). The future LULC maps given in Figure 

39 and 40 for year 2038 and 2057 were predicted using 2019 real LULC map (Figure 

33) and projected LULC maps of 2019 (Figure 38).  The future area distribution per 

LULC class is shown in Table 16.  
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Figure  38 Predicted LULC map for 2019 

 

 
 

Figure  39 Predicted LULC map for 2038 
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Figure  40 Predicted LULC maps for 2057 

 

 

Table  16 Predicted area in km2 by LULC category in different periods 
 

Land cover type 2019 2038 2057 

Agriculture 140 156 172 

Built-up Area 3 5 9 

Grass Land 71 78 60 

Shrub Land 68 54 55 

Trees Cover 21 10 7 

 

Based on a quick analysis and observation of the future area distribution in 

LULC patterns as displayed in above Table 16, in the next 19 and 38 years, the 

landscape of Gitega District will be extensively dominated by Agriculture.  According 

to this future areal distribution by LULC category, Agriculture will probably occupy 

more than 50 percent of the total area (156 km2 in 2038 and 172 km2 in 2057), while 

all other LULC classes (Built-up Area, Grass Land, Shrub Land) shall occupy less than 
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50 percent of the total area (total of 147 km2 and 131 km2 in 2038 and 2057 

respectively). 

Table  17 Change analysis of future projected LULC 

 

 Simulated area (in km2) Change detection (in km2) 

LULC 

category               

2038 2057 2038-2019 2057-2019 

Agriculture 156 172  14 30 

Built-up Area           5              9  2 6 

Grass Land           78 60  5 -13 

Shrub Land 54 55     -12.5    -11.5 

Trees Cover 10              7    -8.5    -11.5 

 

From change analysis results of the future predicted LULC in Table 17 and 

previous result from comparative analysis of existing LULC classes (Figure 33), 

Agriculture will continuously expand with by 14 km2 and 30 km2 in 2038 and 2057 

respectively. Built-up Area will increase by 6 km2 in 2057. However, Trees Cover, 

Grass Land and Shrub Land will be decreasing by 11.5 km2, 13 km2 and 11.5 km2 

respectively in 2057.  

 

4.7 LULC change, socioeconomic and environmental linkage analysis. 

 

An overview of LULC change analysis results over the time period of the 

current study (past 35 years and future 38 years) reveals a continuous trend and 

significant variability in land use and land cover patterns in Gitega District. In general, 

from the past to the present (1984-2019), Tree cover and grassland were continuously 

reduced by 62.5 km2 at a rate of 1.79 km2 per year and 39 km2 at a rate of 1.12 km2 per 

year, respectively. A net change, on the other hand, indicates a large extension in 

Agriculture of 94 km2 at a rate of 2.68 km2 per year. Similarly, the predicted LULC 

change trends, which show such continuous agricultural expansion at the expense of 

forest and vegetation, are similar to those reported by other LULC modelling studies. 
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(Henry, Maniatis, Gitz, Huberman, & Valentini, 2011; Mondal et al., 2016; Nadoushan 

et al., 2015; Wang et al., 2021). 

In terms of environmental aspect, this kind of trends of LULC change, 

especially deforestation and agricultural expansion is also observed globally (FAO, 

2016), and in many other developing countries (Alawamy, Balasundram, Hanif, & 

Sung, 2020; Berakhi, 2013; Islam et al., 2018). It is widely proved that the loss of forest 

and natural vegetation precedes the dramatic degradation of productive ecosystems and 

the loss of biodiversity. (Wang et al., 2021), the land degradation often spreads 

throughout the global environment (IPCC, 2019; Marathianou et al., 2000; Niyogi et 

al., 2009). Deforestation alters the hydrological process and has an impact on water 

conductivity, such as surface runoff, (El-Hassanin, Labib, & Gaber, 1993), and thus the 

occurrence of soil erosions and soil losses as observed in the study area (Henry et al., 

2011; Nijimbere et al., 2019; Niyuhire, 2018; Nzabakenga et al., 2013).  

In terms of social and economic implications, large agricultural expansion and 

outward expansion of built-up area indicate human encroachment on natural land 

resources and ecosystems (Y. Liu, Song, & Arp, 2012). Because the study area is a mix 

of urban and rural development, such land-use change can often result in short-term 

social and economic restructuring. Underprivileged people will inevitably lose their 

properties as a result of urbanization, whether through the land market or expropriation. 

As a result, the owners can flee and seek new residency in a distant city, where they 

can begin earning a new living (Wei & Ye, 2009).  These types of LULC changes 

observed in Gitega District are more likely to be the result of rapid population growth, 

as evidenced by the highest density of 476 people per km2, which increases demand for 

land use and, as a result, reduces ecosystem service functions. (Garrod & Willis, 1999). 

In any case, the heavy pressure on natural land resources and ecosystems severely 

hampers sustainable development, which requires proper use of natural resources while 

preserving capacity for future generations (Vihervaara, Kumpula, Tanskanen, & 

Burkhard, 2010).   In this regard, it is critical to assess the environmental and 

socioeconomic impacts of agricultural expansion, steep declines in forest and natural 

vegetation, and urbanization.



 
 

CHAPTER V 

 

CONCLUSION  

5.1 Conclusion  

This study has analyzed the rate and trends of change in LULC patterns 

quantified and predicted using Geoinformatics in Gitega District. The Change analysis 

was performed using 5 LULC classes obtained from images classification of years 

1984, 2002, and 2019 and was highlighted with Land Change Modeler.  The Markov 

Chain and CA-Markov models were used to forecast LULC changes in 2038 and 2057. 

Satisfactory accuracy was achieved, with good agreement of more than 85 percent and 

82 percent for overall accuracy and Kappa statistics, respectively. As a result, RS, GIS, 

Cellular Automata, and Markov Chain models are effective tools for assessing and 

monitoring LULC changes in order to generate a multitemporal land use database that 

guides decision-makers toward land use planning and environmental protection.  

Overall findings show a dramatic decrease in Tree Cover and Grass Land of 

101,5 km2, which was likely converted mostly to Agriculture (which increased by 94 

km2 at a rate of 2.68 km2 per year) and little to Shrub Land and Built-up Area (7,5 km2 

combined) over the past 35 years. These findings reflect the current rate, trends, and 

magnitude of LULC changes as well as local policies in the study area. If Gitega is to 

avoid further irreversible land degradation and associated environmental problems, the 

government and policymakers must implement agroecological approaches and 

reforestation as soon as possible. Another aspect of addressing land use and land cover 

change issues should be the encouragement of village development (to decrease the 

instances of farmers living in their fields). Regarding the demographic drivers of LULC 

change and the land fragmentation issue, significant effort will be made to control 

population growth rates. 

Similar trends in LULC change patterns are revealed by predictive result 

analysis. Agriculture has a 71.09 percent chance of remaining as Agriculture in 2057, 
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with an expected area of 172 km2 (56.76 percent). Tree coverage, on the other hand, 

has a 3 percent chance of remaining as Trees with an area of 7 km2 in 2057. 

Overall, the analysis of the results revealed that the Gitega District has 

consistently experienced high dynamics in land use land cover patterns, which are 

primarily dominated by conversion of the area into agricultural land. Prior to dramatic 

land degradation, the observed trends of LULC change, particularly agricultural 

expansion, were widely reported as the most significant drivers of deforestation and 

vegetation clearing. Deforestation changes hydrological processes and has an impact 

on water conductivity, such as surface runoff. In the study area, the Gitega region, 

where topographic inversion is likely to influence runoff regime, the multitemporal and 

spatial dataset produced in this study should be valuable information to consider in the 

future when performing land use management. Otherwise, the observed spectacular 

changes in LULC, exacerbated by poor agricultural practices, will continue to release 

biodiversity losses and general environmental issues.  

The study results are potential to support decision-making to undertake 

restoration measures of land degradation and future sustainable land use management 

and environmental preservation. However, future study should consider the correlation 

of Gross Domestic Products (GDP) and Population Growth with these LULC changes 

analysis results. 

 

5.2 Research limitations and suggestions 

Due to the persistent pandemic Covid-19 outbreak which has forced most of 

Governments around the world to implement restrictions and precautionary measures, 

as well as lockdown and confinement throughout our study period, it was not possible 

to collect ground data properly in the study area. As consequence, some important 

parameters such as socioeconomic and biophysical factors were excluded in the Markov 

Chain and CA-Markov simulation process, due to the lack of data. 

 Another limitation of the study was the use of Landsat imagery from a different 

anniversary day due to the need for high-quality images. 

Therefore, the future research should consider the correlation of Gross Domestic 

Products (GDP) and Population Growth with these LULC changes analysis results. 
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APPENDIX 

 

Appendix. Classification Accuracy Assessment Details   

Appendix A1. Detail of random points used for 1984 accuracy assessment  

Class Name Class Id Shape * Point Id MLC/User GEE/Producer 

Agriculture 1 Point 3 1 1 

Built-up Area  2 Point 8 1 1 

Grass Land 3 Point 11 1 1 

Shrub Land  4 Point 18 1 1 

Trees Cover 5 Point 23 1 1 

  Point 1 2 2 

  Point 5 2 2 

  Point 22 2 2 

  Point 4 3 3 

  Point 9 3 4 

  Point 13 3 3 

  Point 15 3 3 

  Point 17 3 3 

  Point 21 3 1 

  Point 28 3 3 

  Point 29 3 4 

  Point 7 4 4 

  Point 12 4 4 

  Point 19 4 4 

  Point 20 4 4 

  Point 24 4 4 

  Point 26 4 1 

  Point 2 5 5 

  Point 6 5 5 

  Point 10 5 5 

  Point 14 5 5 

  Point 16 5 5 

  Point 25 5 5 

  Point 27 5 5 

  Point 30 5 5 
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Appendix A2. Detail of random points used for 2002 accuracy assessment  

Class Name Class Id Shape * Point Id MLC/User GEE/Producer 

Agriculture 1 Point 15 1 1 

Built-up Area  2 Point 8 1 1 

Grass Land 3 Point 30 1 1 

Shrub Land  4 Point 18 1 3 

Trees Cover 5 Point 23 1 1 

  Point 25 1 1 

  Point 5 1 1 

  Point 22 1 1 

  Point 1 2 2 

  Point 9 2 2 

  Point 13 2 2 

  Point 3 3 3 

  Point 17 3 3 

  Point 11 3 3 

  Point 20 3 1 

  Point 12 3 3 

  Point 7 3 4 

  Point 10 3 3 

  Point 19 3 4 

  Point 28 4 4 

  Point 15 4 4 

  Point 26 4 4 

  Point 2 4 4 

  Point 6 5 5 

  Point 4 5 5 

  Point 14 5 5 

  Point 16 5 5 

  Point 24 5 5 

  Point 27 5 5 

  Point 21 5 5 
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Appendix A3. Detail of random points used for 2019accuracy assessment  

LClass Name Class Id Shape * Point Id MLC/User GEE/Producer 

Agriculture 1 Point 2 1 1 

Built-up Area  2 Point 9 1 1 

Grass Land 3 Point 11 1 1 

Shrub Land  4 Point 15 1 1 

Trees Cover 5 Point 17 1 1 

  Point 18 1 1 

  Point 28 1 1 

  Point 1 2 2 

  Point 8 2 2 

  Point 20 2 2 

  Point 23 2 4 

  Point 29 2 2 

  Point 3 3 3 

  Point 6 3 3 

  Point 10 3 3 

  Point 13 3 3 

  Point 16 3 3 

  Point 19 3 3 

  Point 21 3 3 

  Point 22 3 3 

  Point 25 3 4 

  Point 4 4 4 

  Point 12 4 4 

  Point 24 4 4 

  Point 26 4 4 

  Point 5 5 5 

  Point 7 5 5 

  Point 14 5 5 

  Point 27 5 5 
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Appendix B1. Aerial Google Earth image synchronized with random points for 

accuracy assessment  

a. 1984 image classification  

 

b. 2002 image classification  
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c. 2019 image classification  
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Appendix B2. Examples of Land use and land cover classes corresponding to the 

Raster classification for 2019 LULC map 

 

Agriculture 

 

 

Built-up Area 

 

 

 

Grass Land 
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Shrub Land 

  

Trees Cover 
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