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ABSTRACT

Project Code: R2559B119
Project Title: -Fixed point theorems fbr psi-alpha-eta-expansive mappings in
' - metric spaces
Researcher: Assistant Professor Dr. Anchalee Kaewcharoen
Professor Somyot VPIubtieng ‘

Project Period: - October 15‘, 2015 - September 30, 2016

In this pfoject. we introduce the concept of generalized alpho—eta—psi—Gemghty,
contraction type mappings and prove the unique fixed point theorems for such mappings ih_'_ '
alpha-eta-complete metric spaces without assuming the subadditivity of psi. We also give

an example for supporting the result and present an application using our main result to

obtain a solution of the integral ecuation,

We also we introduce the notion of  modified (olpho—psi—vorphiktheta)HrotiondI'
_ contractive mappings  where some conditions of Bianchini-Grandolfi gauge function varphi

are omilted. We establish the existence of the unique fixed point theorems for such -

mappings which are ftriongular  alpha-orbital admissible in alpha-complete  b-metric

spaces. Moreover, we also prove the unique commen fixed point theorem for mappings T

and g where T is a modified (alpha-psi-varphi-theta)-rational contractive mapping. with

respect to g. Our results extend the flxed point theorems in alphu complete metric spaces

to olpha complete b-metric spaces.

Keywords: qlphc—eta_—co_mpleté metric spaces; qlpho-eta—c'orntiinuous mappings;
triangular alpha-orbital admissible mappings; generglizéd _aIp_ho—.eta—'ps’i—Grerqghty

contraction type mappings.:
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CHAPTER 1
EXECUTIVE SUMMARY

Let Xbeasetand T: X — X a 'r_napping.' The solutions we seek are
represented by points invariant under T. These are the points satislying

x =Tz ‘ (1)

. Such points are said to be fixed under T or fixed points of 7. The set of all -
solutions of (1) is called the fixed point set of T and denoted by Fix 7. If the
mapping T does not have a fixed point we often say that T is fixed point free.

—_——ﬂmdﬂmanmuuhsﬂudmﬁﬂm_ﬂqmﬂmy_mﬂmmmmwfv

conditions which may be imposed on the set X and/or the mapping T that will
assure Fix T # @. Usually it is more efficient to study a family 7 of mapping
satislying some common conditions rather than an individual mapping. I all
the mapping 1" € T have fixed points, then we say that X has the fixed point
property with respecl to 7. The term * fixed point property” is often abbrevi-
ated as fpp, and if we are-dealing with the fixed specific family 7 the words-*
* with respect to 7 7 arc omitted.
Typically, a fixed point theorem has the following form.

Geéneric Theorem. Let X be o sel having siructure A and let T be the
family .of mappings T . X — X satisfying condition B. Then each mapping
T €T has a fized point.

Fixed point theory has fascinated many researchers since 1922 with the
celebrated Banach fixed point theorem. There exists a vast literature on the
topic field and this is very active field of research at present. Fixed point
theoréms are very important tools for proving the existence and uniqueness
ol the solutions to various mathematical models (integral and partial equations,

- variational inequalilies etc). It can be applied to, for examples, variational
inequalities, optimization, and approximation theory. The fixed point thecry
» has been continually studied by many researchers. It is well-known that the
contractive-type conditions are very indispensable in the study of fixed point
theory. The first important resull on fixed points for contractive-type mappings
7 -~ was the well-known Banach-Caccioppoli theorem which was published in 1922.
M o Later in 1968, Kannan studied a new type of contractive mappings. Since then,
there have been many results related to mappings satislying various types of
contractive inequalities.
" Recently, Samet et al. introduced anew category of contractive type map-
pings known as a-1 contractive type mappings. The results obtained by Samet
_et al. extended and generalized the existing fixed peint results in the literature,
- -in partlculdr the Banach contraction principle. Salimi et al. and Karapinar
~and Samet generalized the a-y ¢oittractive type mappings and obtained vatious™
fixed point theorems for this generalized class of contractive mappings. In most
. of papers have considered the -1 contractive type mapping for a nondecreasing
“ mapping ¥ : |0, +o0) — [0, +o0) with Y77, ¥™(t) < oo for all £ € (0, +co). The




convergence of 3w, #" () and nondecreasing condition for v are restrictive and
it is a fact that such a mapping is differentiable almost everywhere and hence
continuous why was one of our aims to write this article in order to consider
a family of mappings ¥ : |0, +o0)} — [0,+c0) by relaxing nondecreasing con-
dition and the convergence of the series } 2 | " (¢). This article inspired and
motivated by above research works, we will introduce a new [amily of mappings
on [0, +c0) and prove the fixed point theorems for mappings using properties of
this new family in complete metric spaces. By applying our obtained results, we
also assure the fixed point theorems in partially ordered complete metric spaces
and give the appllcatlons to ordinary diflerential equations.

One of the most important results in fixed point theory is the Banach con-
traction principle introduced by Banach. There were many authors have stud-

led and proved the results lor hxed point theory by generalizing the Banach.

contraction principle in several directions. One of the remarkable result is Ger-
aghty’s theorem given by Geraghty. In 2013, Cho et al. introduced the notion
of a-Geraghty contraction type mappings and assured the unique fixed point
theorems for such. mappings in complete metric spaces. Recently, Popescu de-
fined the concept of triangular a-orbital admissible mappings and proved the

unique fixed point theorems for the mentioned mappings which are generalized

a-Geraghty contraction type mappings. On the other hand, Karapinar proved
the existence of a unique fixed point for a triangular a-admissible mapping
which is a generalized a-1/-Geraghty contraction type mapping,

In this work, we introduce the notion of generalized a- 7-1-Geraghty contrac-
tion type mappings in melric spaces. Moreover, we prove the unique fixed point

_ theorems lor generalized a-1j-4-Geraghty contraction type mappings which are

triangular a-orbital admissible mappings in the setting of a-n-complete metric
spaces without assuming the subadditivity of 3. Qur resulis improve and gener-
alize the results proved by Karapinar and Poposcu . Furthermore, we also give
an example for supporting the result and present an application using our main
result to obtain a solution of the integral equation.

Tixed point theory in metric spaces is one of the most lmpmtant tools for
proving the existence and uniqueness of the solutions to various mathematical
models. Later in 1993 Czerwik, generalized the notion of metric spaces by intro-

ducing ‘the’ notion of b-metric spaces.- On thé other hand, Samet et al. proved

the fixed pomt theorems for a-admissible mappings w}nch are o--contractive
mappings in complete metric spaces. Salimi et al. and Hussain et al. modified

-these notions and assured the fixed point theorems. Recently, Hussain et al. es-

tablislied fixed point theorems for modified a-p-rational contractive mappings

in a-complete mettic spaces and proved the.existence of solutions of integral

equatlons
.In'this p]‘O_]ECt. we extend the fixed point results in a-complete metric spaces

" proved b_y Hussian et al. to o= completée b-metric spaces by introducing the notion
" of modified (a-1)-p-@)-rational contractive, mappings where some conditions of
. Bianchini-Grandolfi gauge function y are omitted. We establish the existence ol

the unique fixed point theoreins for such mappings which are triangular a-orbital

- admissible. Moreover, we also prove the unique common fixed point theorem for



mappings T and g where T is a modified (a-y--8)-rational contractive mappiﬁg
with respéct to ¢ and is triangular g-a-admissible in the setting of a-complete
b-metric spaces.. '




CHAPTER 1I.
CONTENTS OF RESEARCH

In this project, we obtain two publications that published in the international
journals as the followings: .

1. Preeyaluk Chuadchawna, Anchalee Kaewcharoen and Somyot Plub-
- tieng, Fixed point theorems for generalized alpha-eta-psi-Gerahty contrac-

tion type mappmgs in alpha- et'l comp]ete partlal metric spaces, Journal
Ak Neanl A ;

= 1.176)
(a) Theorem : Let (X,d} be a metric space. Assume that a,7: X x
— [0,00) and T - X — X. Suppose that the following conditions
are salisfied:
{i) (X, d) is an a-7-complete metric space;
(ii) T is a generalized a-n-1p-Geraghty contraction type mapplng,
(iii) T is a triangular a-orbital admissible mappmg with respect to
U
{iv) there exists 2y € X such that oz, Tx1) Z n{z1, Tz1);
(v) T is an a-n-continuous mapping,

“ “Phen " hasa fixed point=* ¢~ X amd-{T"z; } convergestoz*————— — — ——

(b) Theorem : Let (X, d} be a metric space. Assume that o, 5 - X x
© X = |0.00) and T X — X Suppose that the following conditions
are satisfied:

(i} (X,d) is an a-y-complete metric space;

(i1} T is a generalized a-n-y-Geraghty contraction type mapping;

{(iii) T is a triangnlar a-orbital admissible mapping with respect to
™

(iv) there exists 23 € X such that afz;,Tz)) > 5(z1,Lz1);

{v) if {n} is a sequence in X such that a{z,,Tht1) 2 9(Zn, Tnri)
for all n € Nand @, — 2* € X as n — o0, then there exists a
subsequence {@y k) f of {wn ) such that A{Tn(k), ©°) 2 Ty, T)
for all k e N. .

Then T has a fixed point £* € X and {T™z;} converges to z*.

7 (¢) Corollary : Let £X,d) be a complete metric space, & : X x X —
- ] B : [0,00) and T : X — X Suppose that the foltowing. condltlons are _
: ' satisfied: _
(i) T is a generalized a-Geraghty contraction type mapping;
(ii) T is a triangular a-orbital admissible mapping; -



(iii) there exists z; € X such that a(z,Tz) > 1,
(iv) T is a continuous mapping or il {z,} is a Sequence in X such
that a{tn,zp) 2 forallneNand z, > z* € X asn —
o0, then there exists a subsequence {z,x)} of {x,} such that
Ty, ") 2 Lforall ke N

-Then T has a fixed point z* € X and {T'™x1} converges to z*.

(d) Theorem : Let (X,d) be a complete metric space, @ : X x X —
- [0,00) and T : X — X. Suppose that the following condltlons are
" satisfied:

(i) Tisa trlangulal a-orbital admissible rnappmg,
23} 3 thore

oot c
AEyes R o = W AR R TR

a{z,y) > 1 implies P{d(Tz, Ty)) < ﬁ(¢(ﬁ4(m,y)))¢(ﬂ4(z,y)) for all z,y € X,
where
M(x,y) = max{d(z, ), d(z, T=), d{y, Ty)) and ¥ € V",

(iii) there exists x; € X such that a{x,, Tz} > 1;
(iv) T is a continuous mapping or if {z,} is a sequence in X such
that oz, z,) > 1 foralln e Nand z, - a* € X asn —
oo, then there exists a subsequence {w, ()} of {x,} such that
a(zyy,x*) > 1forall ke N

‘Then T has a lixed point =" € X and {T"x;} converges to a*.

(e) Theorem : Lel (X,d) be a complete metric space. Assume that
a: X xX - [0c0)and T: X — X. Suppose that the lollowing
conditions are salisfied:

(1) T is a triangular a-admissible mapping;
{ii) T is a generalized a-1p-Geraghty contraction type mapping;
(iii) there exists x; € X such that afz;,Tzy) > 1;
(iif) T is a continuous mapping or if {x,} is a sequence in X such
that ofz,,zng1) > 1 foralln e Nand oz, —» 2" € X asn —
o0, then there exists a subsequence {1} of {:cn] csuch that
a(Taey, z*) 2 1 [01 al ke N

Then T has a fixed pomt z* € X and {T"z;} converges to z*. Then
I has a coupled fixed point.

() Theorem : Let (X,d) be a metric space. Assume that o,7: X x
— [0,00) and T : X — X. Suppose that the following conditions
are satisfied:
(i) (X,d) is an a-n-complete metric space; .
- (ii) T is an a-n-y-Geraghty contraction type mapping;
(iii) T is a triangular a-orbital admissible mapping with respect to
m | :



(iv) there exists x; € X such that a(zy,Tz;) > n(a:l,T?:])

(v) T is an a-7-continuous mapping.

Then T has a fixed point z* € X and {T™z;} converges to z*.

Theorem : Let (X, d) be a metric space. Assume that o, : X x
— [0,00) and T": X — X. Suppose that the following conditions

are satisfied:

(i} {X,d} is an a-n-complete metric space;

(i) 7 is an a;nﬁw-Geraghty contraction type mapping; -

(iii) T is a triangular a-orbital admissible mapping with respect to

’I]; - . .

{xv} tnereexistsorr € A —suchthat _(.fi.;l,'f';clj = 7](.i:1 ; T.C])_.-

(v) if {z,,} is a sequence in X such that a(z,, Tnt1) = 9(Tn, Tni1)
for all n € W and'z,, — 2* € X as n — co, then there exists a
subsequence {"c,,(k)} ‘'of {z,} such thal; Ty, ) 2 n(:z:n(k),:r )
for all k e N.

‘Then T has a fixed point ' € X and {T"zy} converges to z*.

Theorem : Let (X, <) be a partially ordered set and suppose that
there exists a metiic d in X such that the metric space (XX, d) is com-
plete. Let T: X — X be a continuous and nondecreasing mapping
with respect to <. Assume that the {ollowing conditions hotd:

(i) there exists k € [0,1) such that d{(T'z, Ty) < k(d{z,y)) for all
'lryEXwiLh'L<y, '

'(ii) there exists zg € X such that zg < cho, '
(it} 7 is continuous. -

Then T has a fixed poinl.

Theorem : Let (X, ~) be a partially ordered set and suppose that
there exists a metric d on X such that (X, d} is a complete met-

-ric space. Suppose that T X — X. Assume that the followmg

condltlons are salisfied;

~ (i) there exists 3 .E i sut:h that

d(Te, Ty)) < Blw(d(e y)))u’)(d (x y))

for all Va:,y € X with £ <y where € ¥/;
(ii) there exists a7 € X such that z; < Txy;
(iii) T is nondecreasing;

-(iv) either 7" is continuous or if {z,} isa nondecreasing sequence with

Fp +— T a8 1 - 00, then there exists a subsequence {:z:n(k)} of !
{:r:n} such that En(k) < for all k e'N.

““Then T has a fixed pomt T eX and {T"a:l} converges to z" Further

if for all x # y € X, there exists v € X such thab z =y, y=vand
v 2 Tv, then T’ has a unique fixed point.



2. Preeyaluk Chuadchawna and Anchalee Kaewcharoen, Fixed point the-
orems {or modified (alpha-psi-varphi-theta}-rational contractive mappings
in alpha-complete b-metric spaces, 14 {2016), 215-235. (SJR:=Q4)

(a) Theorem : Let (X, d) be an a-complete b-metric space, o : X x X —
[0,c00) and T : X — X is a modified (a-1-p-0)-rational contractive
mapping. Assume that the following conditions hold:

(i) T is triangular a-orbital admissible;
(ii) there exists xp € X such-that ofxy, Txe) > 1;
{iii} T is a-continuous.

Then T has a fixed point.

(b~ Theorenr - et (X~ DE Il (+-COMPIEtE FMetrie space and o .
X x X — [0,00). Suppose that T : X — X is a modified (a-1)-p-8)-
rational contractwe mapping. Assume that the followmg conditions
hold:

(i) 7 is triangular a-orbilal admissible;
(i) there exists zy € X such that a(zg, Tzg) > 1;
(ii) if {zx} is a sequence in X such that a{z,,Tpy1) 2 1loraltne N
and zp, — 2 as n — oc, then there exists a subsequence {¥,(x}
of {z,, ) such that o(m,,m z) > 1forall ke N.

Then T has a fixed point.

(¢) Corollary : Let (X, d) be an a-complete b-metric space where o :
X xX — [0,00) and T X — X. Assume that_there exists L = 0
such that for all @,y € X,

alz,y) = 1 implies $2d(Tw. Ty) < o(My(z,y)) + LO(N{(z, v)), (1)

where

Mi(z,y) = maxddle) ey TR T’ 25

Ny(x,y) = nlin{d'(:n,’ll‘_fc)_,d(x!‘j“y), dly, T:L)}

and i, 8 : [0, 00} = |0,0c) dre continuous functions such that 6(0) =

0, @(t) < t, 8(t) > 0 for each ¢ > 0 and ¢ in nondecreasing. Assume

that the [ollowing conditions hold:
(I} T is triangular a-orbital admissible;
(i1} there exists g € X such that alze, T'zo) = 1;

(i) Tis a-continuousor if {z,}is a sequence in X such that a(Ty, :an) >

1 for all n € N and z,, — 7 as n -»-c0, then there éxists a sub-
sequence {J:nm} of {x,} such that a(:cn(k),a:) >1forallkeN.

Then T has a fixed point. Moreover, either a(u v) > 1 ar a("u u) > 1
whenever Tu =u and Tv=uv. Then T has a unique fixed point.

HeT3)  dyTy)  dz,Ty) + dly,Tx)



(d) Corollary : Let (X,d) be an a-complete I-metric space where o :
X x X — [0,00). Suppose that T : X — X is a mapping such that
forall z,y € X, -

alz,y) > 1 implies $%d(Tz, Ty) < My(z,y) — @' (My(e,p)),  (2)

where

d(z, Tx) dy,Ty) d(z,Ty) +d(y,Tx)
1+diz,Te)' 1+d(y, Ty)' 2s }’_

My(x,y) = max{d(z,y),

and ' : [0,00) — [0,00) is continuous-such that ¢'(0) = 0, () <
for each & > 0 and ' in nonincreasing_Assume that the following

conditions hold:

{i) T is triangular o-orbital admissible;
(ii) there exists xp € X such that a{zg, Txy) > 1;
(it1) T is a-continuous or if {z, } is asequence in X such that afz,, Tnp1) =
1 forall n € N and z, ~» 2 as n — oo, then there exists a sub-
sequence {4} of {x,} such that ez 1y, ) > 1 for all k e N.

|
! . Then T has a fixed point. Moreover, either au,v) = 1 or a(v,u) > 1
i whenever Tu = u and Tw = v. Then T has a unique fixed point.

(e) Theorem :Let (X,d) be an o-complete b-metric space and T, g :
X — X De such that TX € ¢X and suppose that gX is closed.
Let o X XX = [07coyand T &5a wodified {a=pp-f)rational- — — —— —
contraclive mapping with respect to g. Assume that the following
conditions hold:
(i) T is triangular g-a-admissible;
(1) there exists xp € X such that a(gze, Txg) > 1;
(iii) T is o-continuous with respect to g.
Then I’ and g have a coincidence point.

(f) Theorem : Let {X,d) be an o-complete b-metric space and T, g :
) X — X be such that TX C ¢X and suppose that gX is closed.
. Lel o ¢ X' x X — [0,00) and T is a modified {a-vr-o-0)-rational
contractive mapping with respect to g. Assume that the following
conditions hold:

(i} T is triangular g-a-admissible;
; {(ii) there exists zg € X such that a(gzg, Txg) > 1;

_ (iii) if {gzn} is a sequence in X such that a(gn, gzns1) > 1 for all
L T n € N and gz, — grasn — oo, thep there exists a subsequence
: {9Tnixy} of {gn} such that a(gz, k), gx) > 1 for all kel

Then T and g have a coincidence point.




(g) Theorem :Let {X,d) be an a-complete b-metric space with respect
togand T,g: X — X besuch that TX C ¢X. Assume that ¢X is
closed and there exist & : X x X — Rand L > 0 such that for all
r,y€ X, B -

o(z,1) > 1 implies d(Te, Ty) < plMy(, ) + L0z, ), (3

where

d{gz,Tz) = digy,Ty) = d(gz,Ty) +dlgy,Tx)
14d{ge, Tz)’ 1+ d(gy,Ty) 25

- My(x, y) = max{d{g=z, gy},

oz Ty dlge Ty} dlgy Tx)
+d(g,Tx)" 1+d{gz,Ty)' 1+ t:!f(gy,’I':r:)J
and y, @ : [0, 00) — [0, c0) are continuous functions such that §(0) =

0, p(t) < t, 9(t) > 0 for each £ > 0. Assume that the following
conditions hold: .

—ING(@ ) = o

(i) T is triangular g-c-admissible;
(i) there exists 2y € X such that o{gzq, Tza) > 1;
(iii) T is a-continuous with respect to g or il {gz,} is a sequence in
X such that ogz,, gTnt1) 2 1 for all n € N and gz, — gz as
n — oo, then there exists a subsequence {gax,x)} of {gzn} such
~that a(gz,xy,92) > 1 lorall ke N . '

l})_enzand__q ll_a_ve a _coi_ncidence__}_)_rlnt. I\J_oy_eover, assume th?lt the_____ L
folowing conditions hold:

(iv) the pair {T, g} is weakly compatible;
(v) either w(u,v) > 1or alv,u) > 1 whenever Tu = gu and Tv = guv.

Then 7" and g have a unigue common fixed point.
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Abstract

In this paper, the notion of strictly (o, 7,9, &)-contractive multi-valued mappings is introduced where
the continuity of £ is relaxed. The cx_istence of fixed point theorems for such mappings in the setting of
“a-n-complete™partial metric spaces are provided. The results of the paper can be viewed as the extension
of -the recent results ebtained in the literature. Furthermore, we assure the fixed point theorems in partial
" complete metric spaces endowed with an arbitrary bmaly relation’ and with a graph usmg our obtalned
results. (€2016 All rights reserved.

Keywords: a—n-colnplete partial metric spaces, c-i-continuity, (a, 1, ¢, &) contractive multi-valued
mappings, a-admissible multi-valued mappings with respect to 7.
2010 MSC: 4TH10, 54H25.

1 Introductlon and Prehmmarles

" The metric ﬁxed pomt theory is one. of the most lmportant tools for proving the existence and unigueness
of the solution to various mathematical models. There are many authors who have generalized the metric
spaces in many directions. In 1994, Matthews [12] introduced the partial metric spaces and proved the
" Banach contraction principle in such spaces. Later on, the researchers have studied the fixed point theorems
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the mentioned mappings which are generalized a-Geraghty contraction type mappings. On the other hand,
Karapinar [8] proved the existence of a unique fixed point for a triangular a-admissible mapping which is a
generalized a-1-Geraghty contraction type mapping.

For the sake of convenience, we recall the Geraghty's theorem. Let F be the family of all functions
3 : [0.00) — [0.1) satisfying the condition: ' -

lim B(t;) =1 lmplles “—')IIolot" =.0.

n—o0
Geraghty [4) proved the following unique fixed point théorem in a complete metric space:

Theorem 1.1 ([4]). Let (X,d) be a complete metric space and T': X — X. Suppose that there exists § € F
such that
d(Tx, Ty) < 3( d('c )d(z, y) for allz,y € X.

Then T has a unigue fized pomnt x* e X

In 2012, Samet et al. |13] introduced the notion of a-admissible mappings.
Definition 1.2 ([13]}. Let T: X —» X and a: X x X _> [0, 00). Then T is said to be a-admissible if
afxr,y) > 1 imb]ies al(Te, Ty) > 1
Karapinar et al. [9] defined the concept of l.riangu]ar'a;f"t;(l_-fllissible mappings.
Definition 1.3 ([9]). A mapping 7+ X — X is saidrtoibe triangular a-admissible if
(a) T is a-admissible; 7

(b) a(x, 2) 21 and a(2y) >1 imply of(ry) > 1.

The definitions of e-orbital admissible mappings and Lrlangular a-orbital admissible nmppmg,s are defined
by Popescu [12] in 2014.

Definition 1.4 ([12]) Let 770 X0 — X and o X x X — [0,00). Then T is said to be a-orbital admissible
if '
alz,Tz) > 1 implies oTx, T25) > 1.

Definition 1.5 ([12]) Let T X -y X 'and e \ X X" [0;00). Then T is said to be triaﬁgular a-orbital
adrr 1551b]e if - ' ; o

(a) T is o- orbital admlsmble
(b) alr,y)>1and aly, Ty) > 1 1n1ply a(w, Ty)

Remark 1.6. Every trlangular a—admlsmble mapping is a tr.iangulal a-orbital admissible mapping. There
exists a triangular a-orbital admissible mappmg whlch is not a trlangular a-admissible mappmg For more
details see [12]. : : _

Popuscu [12] gave the. dehmtlun of gener almu.l a- Geraghty contractlon type mappmgs and proved the
fixed point theorems for such mappings in "complete metric spaces. »

" Definition 1.7 [12]) Let (X d) be a metric space and o: X xX = |0, oo) A mappmg T: X — X is said
" to be a generalized a-Geraghty contraction type mapping if there exists 8 € F such that for all z,y € X,

a(z,y)d(Tz. Ty) < B(My(z,y))Mr(z.y),

where

MT(I.ly) = max {d(:{:,y)‘ d(z, Tx), d(y. Ty), d(x, Ty} ; d(y, T.’L‘)} '
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Theorem 1.8 ([12]). Let (X, d) be a complete metric space, o : X x X —» [0,00) and T': X — X. Suppose
that the following conditions are sulisfied:

(i) T is a generalized x-Geraghty contract'ion type mapping;
(iiy T is a triangular a-orbital admissible mapping;
(iii) there erists 7, € X such that 0(131 Tz) > 1;

(iv) T is a continuous mapping.

Then T has o fized point.2* € X and {T":t‘l}- caﬁvemes to z*.

Recently, Karapinar [8) mtroduced the concept of a-i-Geraghty contl action type mappmgs in complete
metric spaces. . .

Let ¥ denote the class of the functions 1 : [0, 00) — [0, 00) satisfying the [ollowing conditions:

a) 1 is nondecreasing;

(

{b) ¥ is continuous;

(¢) ¥(t) =0 if and only if ¢ = 0;

(d) ¢ is subadditive, that is /(s + 1) < (s) + (1)

Definition 1.9. Let (X, d) be a metric space and a : A x X — [0.0c). A mapping T : X -» X is said to
be a generalized a-1-Geraghty conltraction type mapping if there exists 3 ¢ 7 such that

alee,y)p(d(Te. Ty)) < A(M(,9)))b(M (z,9)) for all e,y & X,

where
Mz, y) = max {d(r.y), dlz,Tz). d(y, Ty)} and o € P.

Theorem 1.I0 ([8]). Let (X.d) be a complele metric space. a - X x X — [0.00) and T : X — X. Assume
that the following condiivons wre salisficd:
(i) T is a generalized o -y- Geraghly contraction type mapping;
(i) T is a triangular o -admissible mapping;
(iil) there exists xy € X such that o-(:cl,Tn:l) EN
(iv) T is a continuous mapping.

Then T has a fized point x* € X and {171} converges. 1o, x*.)

On the other hand, Hussain et al. [6] introduced the concepts of - 7) complete metnc spaces and «o-n-
continuous functlons :

Definition 1.11 ([6]). Let ( ,d) be a metric space and a,7 : X x X — [0, +c0). Then X is said to be
a-1-complete 1f every Cauchy sequence {z,} in X with a(z,; tn“) Z nlx,. 'r;n+1) for all n-€ N converges
in X. : _ .

Example 1.12, Let X = (0,00} and deﬁne a metric on X by d{x,y) = |:1; =y|-for a]l Ty e X Therefore
X is not complete. Let ¥ be a closed subset of X. Define a,7: X x X — 0, +00) by R t

and x, - 3z%y.
0, - otherwise, T’( y) 'y

('J:+y)3 1f'r: yYEY
alx,y) = {
We will prove that. (X d) is an a-- complete metrlc space. Suppose that {.L”} is & sequence in X such that
a(’cn,'c,ﬂ_l) 2 17{%n, Tng1) for all n € N, This implies that {za} isin Y. By the completeness of Y, there
exists z* € Y such that 7, — +* as n — 0.
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Definition 1.13 ([6}). Let (X, d) be a metric space and a,n: X x X — [0.4+00). A mapping T: X — X
is said to be an a-7-continuous mapping if for each sequence {zx} in X withzp, - z asn —= oo and
&(Tn, Tat1) > n(sr;n ZTnt1) for all n € N imply Tz, = Tr as 1 — co.

Example 1.14. Let X = [0,00) and define a metric on X by d(z,y) = lz — | for all ¢,y € X. Assume
that T: X - X and o, X x X - [0, +oo ) are defined by
.;‘, ' fleo.lr A 1, ifz,yelo,1 '
Tg={" el L[S, ity It ()=
cosmx + 3, ifx e (1,00), 0 otherwise, S

Therefore T is not continuous. We will prove that T is an a-7-continuous mapping. Let {z,} be a sequence
in X such that z,, > r as n — oo and a(zn. Tny1) 2 pl{en. 2ns1) for all n € N. This implies that z,, € 0,1] .

and so lim Tg, = lim Ti =t =Tz
n—00 . n-=200

Trthswork, we Introdice tie notion of generalized o-7-1-Geraghty confraction type mappmgs in metric
spaces. Moreover, we prove the unique fixed point theorems for generalized a-r-h- Geraght.y contraction
type mappings which are triangular a-orbital admissible mappings in the setting of a-n-complete metric
spaces without assuming the subadditivity of ¢». Our results inprove and generalize the results proved by
Karapinar (8] and Poposcu [12]. Furthermore, we also givean example for supporting the result and present
an application using our main 1esu1t to obtain a solution of the integral equation.

2. Main results

Let ¥ denote the class of Lhe functions ¥ : [0,c0) = [0, c0) satisfying the following conditions:

_(a) v is nondecreasing;
(b) % is continuous;
(¢) ¥(t) =0if and only if 1 — 0.

Definition 2.1. Let T: X — X and a,n: X x X — [0,00). Then 7 is said to be a-orbital admissible with
respect to n if ' _
alx, Tz)y > n(;r.. Ta) implies a(Tz. T%2) > n(Tzx, T%x).

Definition 2.2. Let T : X — X and a,5: X x X — [0,00). Then 7" is said to be tnangular - orblta]
admissible with respect to 7 if : ‘

1. T'is a-orbital admissible with respect to 7, ;
2. afz,y) > n(z,y) and a(y, Ty) > n(y. Ty) imply afz, Ty) > 1z, Ty).

Remnark 2.3. If we suppose that n(z,y) = 1 for all 2,y € X, then Definition 2.1 1educes to Deﬁmtlon 14
and Definition 2.2 reduces to Definition 1.5

We now prove the important lemma that will be used for proving our main results.

Lemma 2.4. Let T: X > X be a tr‘zangulara orbital admissible with respect to n. Assume that there emts
x1 € X such that oz, Txy) > n(z1,Tx1). Define a sequence {zn} by Tpi1 = Tan. Then a(:t:n,:r_:m) >
N&n, Twm) Jor el m.n € N with n < m. : R

Proof. Since a{z1.Tx1) > n(z1, T'x1) and T is a-orbital admissible with respect to 7, we obtain that
a(z2, x3) = (T, T(Tx1)) 2 (T2, T(T21)) = n(2, v3).
By ~ontinuing the process as above, we have a(zn. Tas1) > 12y, Ta+1) for all n € N. Suppose that

o Tn, Tm) 2 N(Tn, €m) . (2.1)
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and we will prove that a(xn, 2my1) 2 Mzn. Tme), where m > n. Since a(@m, Tm+1) = MTm, Tmy1), we
obtain that
a(:cmy T-Tm) = a(xrnrxmﬂ) > n(xm.- $m+1)": 7?(5'37?11 Tl‘m)- (22)

By (2.1), (2.2) and triangular c-orbital admissibility of T. we have
a(:fu-.T-Tm) > n(xn‘Tﬂ:m)-”--

This implies that
7 n-’(f‘!:n.-mnl+1) z U(Imxm-.f-l)-

Hence a(zn,Zm) > (0. 2m) for all m,n € N with n < m. : ]

We now. introduce the concept of generalized a-n-1-Geraghty contractlon type mappmgs and prove the
fixed point theorems for such mappings. :

© where

— that-the—fatlowing conditions are satisfied— .. - — — — .. _

Definition 2.5. Let (X,d) be a metric space and o, 7 : AxX —=[0,00). A mapping-T X — X is said to
be a generalized o-1-y»-Geraghty contraction type mapping if there exists g F such that a(x,y) 2 (=, y)
1mp]1es

P(d(T'z, Ty)) < ﬁ(u’J(MT(-T,y)))w(M'r(ﬂ?,y)),

dfw, Ty) + d(y, ')
2

Mr(z,y) = max {d(:c,y), d(z.Tx), d(y, Ty), } and ¥ € ¥

Remark 2.6. In Definition 2.5, if we take (. y) = 1 and ({) = ¢, then it rednees to Deﬁnition 1.7.

Theorem 2.7. Let (X,d) be a metric space. Assume that a.p: X x X == [0.00) and T XX Suppose

(i) (X,d) is an a-n-complete metric space;

(ii) T is e generalized a-n-d)AGemghty coniraction type maepping;
(iii) T s e triangular ¢-orbital admissible mapping with respect fo n;
(iv) there exists T1 € X such thot a(x;, Txy) > yley, Tay);

(VT s an a-1}-cOntinuous mapping.

“Then T has a fized point z* € X and {T"x,} converges to x”.

Prbof.- Let 2, € X be shch.ihat a(zy, Txy) > nlzy, Tp). Define a sequence {zp}in X by g1 = T, for

- alt n € N. Suppose that ©,, = v, for some ng € N, we have v, = 7,41 = T2p,- Then T has a fixed

point. Hence we suppose that @, # @nq for all n € N. By Lemimna 2.4, we have (Tn. Tys1) 2 N(Tn. Tutr)
for all n € N. Since T is a generalized a-n-1)-Geraghty contraction type mapping, we have

D(An11,Tn42)) = BT T, Tons1)) | (2.3)
. < ﬁ(d)(MT(lm E;;+1)))¢(M] (5’5'1:7 fL'TH-l))

' Vf(')r all ; ne€ N, where

MT(Tnl $n+1) = max{d(:cn, :L'nJrl): d(meIn)n d(mn+1:T$n+"1), ‘2“(‘1(3:11- TIn+]) + d($n+laT?L'n))} -

ATy, T d(Tni1,%n
=max‘{d(mn:-$n+l)1 d(Tn, Tny1), d_'(frn+1.ﬂ¢n{r2)- ( 5 +2) ( +12 +1)}

d(Tn. Tnt1) + d(Tny1,
< ma-x{d(f‘?mﬂ?nﬂ)a d(Tn1, Tnt2), (Zn: Tni1) 5 (Zn+1 Inﬂ)]}

= max{d(tn, Tr+1), ATnr1. Tns2))}-
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If max{d{zn, Tns1). d(Tp 1. Tny2)} = d(Tny1.Tpe2). then

$(d(Fnr3, Tny2)) < BE(Mr(En, Tne) WM (L0, Zns1))
< BY(My(Tn, Tne 1)) )P (d(Tns1, Tni2)) < Y(d(Tni1, Tnya)),

. which is a contradiction. Thus we conclude that

max{d(Ty, Tns1). dTui1.Trr2)} = d(@a, Tyq1)-

By (2.3), we gét that ¥(d(tp41. Tni2)) < z,b( {(Tn,Tp41)) for all n € N. Since ¢ is nondecreasmé, we
- have d(Zp41,Tni2) < d(@n, Tpt1) for all n € N. Hence we deduce that the sequence {d(%n,%n41)} is
nonincreasing. Therefore, there. exists 7 > 0 such that hm d('cn, Tn+1) = 7. We claim that r = 0. Suppose

that + > 0. Then due to (2.3), we have -

Al RN TN Y I SR YWY ST

MY
e e L B B B o e B T L e L e e T T [T o3 O O

Therefore .
(d($n+l ) -EJH—Z)

w(d(fcmxn-l—l))
This implies that ”li_)n;oﬁ(w(ﬂzqu(zn,mnﬂ))) = 1 Since @ € F, we have ]1m 7,0(]\!7*(:6,1 Tn+1)) = 0, which .
yields : :

= ﬁ(w(NIT(:cmxn—{-l))) < 1.

= _l]m d(zy, tpey) =0 _ (2.4)

n—oo
This is a contradiction. Next, we will show that {z,} is a Cauchy sequence. Suppose that there exists € > 0
such that for all k € N, there exists m(k) > n(k) > k& with d(z,y), r,,,(k)) > ¢. Let m(k) be the smallest
number satisfying the condltlon above. Then we have d( n(k),. Tmn(k)- 1) < &. Therefore

€< d( 'n(k)! m(k)) < d(:r’n(k)l .'1'.?.,,,(;\-)__1) + d(l‘,”“),l, xm(k)) =T d(fcm(.‘;)—-l) xm(k))-

Letting & — oo, we have Hm d(w, 1y, Tp) = - Since
k100

l(Zn k), Tm)—1) = d(ﬂ_fn(k):i‘m(k))l < (k) Trah) 1)

we have lim d{@,), :c,n(;\;)ﬁl) = ¢. Similarly, we obtain that ' '

A A(Zmry, Tagryer) = MA@y Tnerya) = ..

By Lemma 2.4, we have a(:cn(k);l,abm(k)_l) Z MTa()=1: Trn(k)—1)- Thus we have
(d(ﬂ»‘n(k),i“m(k)))— Y(A(TZn(y-1, TTm(ey-1)) - : (2.5)

- L8 (MT(’Un(k) b Tm(r) - 1)))1[)(]\/[7 (Tn(k_) 1> Tk 1))
where , ] . S S
MT(mn(k)—lﬂamm‘.(k)'—l)":"max{d('rn(k) 1 T 1) ﬂ’('rn(k) 1 TFn(L) 1) d(Tm(k) 1=TTn1(k) 1)
(d(:rn(k) lvTTm(.l.) ])+d('rm(.k) laTTn(L) 1))}

= max {d(@ug) 1> Tmr)- 1) ATatk)=15Fa())s AT anr)— 1 Tei),
ATn(k)-1,Tmik)) | ATmk)—1: Tn(k)) }
2 + 2 '

Therefore :
kl-l—flolo AJT(T‘R(k)—l: Im(k)—l) = E£. . (26)
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By (2.5) and (2.6), we have

lirn w(d(xn(ky Em(k)))

1= hm‘B Mr(T,)-—1)Tm —7 .
hm 1J’J(MJ( Tak)-1- Tmix)-1)) ~ koo WM (@ (1)1 i) -1)))

. which implies klim B (Mr(Tag)—1: Trawy—1))) = L. Conseqﬁent]y, we get klim M7 (Zngry-1: Tmgry—1) = 0.
—00 ) . — 00

Hence £ = 0 which is a contradiction. Thus {z,} is a Cauchy sequence. Since X is an a- n—complete metric

space and a{Tn, Tng1) = 1(Zn, Tny1) for all n € N, there is ' € X such that llm &n = z*. Since T is

a-n-cortinuous, we get lim T, = Tz and so ¥ = Tz*. ‘Hence T has a fixed pomt ' O
R—co c

In following theorem, we replace the continuity of T by some suitable conditions.

Theorem 2.8. Let (X.d) be a metric space. Assume that a.n: X x X — [0,00) and T : X — X .S;ﬂppos‘f' -

that the following conditions are salisfied:

(i) (X,d) is an a-n-compleie metric space;

(i) T is a generalized c-n-1p-Geraghty contraction type mapping;
(iti) T is a triangular o-orbitel adnussible maﬁping with respect to n;
(iv) there ewists x1 € X such thai a(z). Txy) = nlzy, Tay);

(v) if {wn} ds @ sequence in X such ihat a{v,.wy1) = 9@y, 2000) for alln ¢ N and zp — 2* € X 'as, :
n — 0o, then there exists a subsequerice {ay} of {wn} such thet afw, (1) &%) 2 1{Tay-2*) for all
ke N,

Then T has e fized point z* € X and {T“:r:l} converges to &,

Proof. By the analogous ploof as in Theorem 2.7, 7. we can construct the sequence {wn} defined by xn4y = Taq
for all m € N converging to =" € X and a(xv,.z,1) > nle,, vay1) for all n € N, By (v), there exists a
subsequence {7k} of {wa} such that a(x, ;). 7*) = gle, k- ") for all k € N, Therefore

Yldlitn k)41, Ta*)) = dl(ri(T:c;,(,;),Tm*)) . e
< B (Mr(Tapy, 2 )W Mr{znp, 7)),
where ‘ . |
-AJT(CER_(;.«), z*) = max{d(z,p) "), d(ﬂ;ﬂ(#)'chln(k)), d(-'L";,T.’E*), '.
| %(d(xn(k),n*) +d{@", TTpy)) .
= max{d(@a(ey, "), d(Tn(r): Tagry+1); d(-'c*rT-’B*‘),..

1 * TP |
o (A(zap), Te™) + d(2, 21410 }-

Suppose that T'x* £ =*. Letfing k — co in the above inequality_, we 7ha'\,"e
lim Myp(dngyc*) = d(z*, Tx").
) k—oo - .
From (2.7), we have
- w(d(xn(k)-’rl Tz ))
. — = .B 1/) MT In(k): ¥
Y(Mr (25 (k). 2*)) WGy, 7)) <

Letting £ — oo in the above inequality, we obtain that hm ﬂ(w(MT(.Ln(A) x ))) = 1 and s0 hm MT(:EH{U *) =
0. Hence d(z*.Tz*) = 0. ThlS is a contradiction. It follows that Tz* = z* ]
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For the uniqueness of a fixed point of a generalized a-n-y-contractive type mapping, we assume the
suitable condition introduced by Popescu [12].

Theorem 2.9. Subﬁose all assumptions of Theorem 2.7 (respectively Theorem 2.8) hold. Assume that for
al x # y € X, there exisls v € X such that a(z, v} 2 n(z.v), ay,v) = 5(y,») and afe,Tv) > (v, Tv).
Then T has a unique fized pont. .

Proof. Suppose that z* and y* are two fixed points of T such that z* # y*. Then by assumption, there exists -~
v € X such that a(z’,v) > n(z*,v), a(y*,v) 2 9(y*,v) and a(v,Tv) > n(v,Tv). Since T is triangular
a-orbital admissible with respect to 7, we have

afx*, T"v) > n(z*. T"v) and oy, T"v) > n(y*, T"v),

for all n € N. This implies that

P(d(x* T"+1 ) = (T TTM))
< Bl (Mp(z, T )N (Mr(z*, T™)),

forallmeN where .

Mrp(z*. T") = max{d(z*.T"v), d(=* . Tx"), d{T"uv, T" 1),

% (d, ™) ¢ T, Te*))

Y

= max{d(z", T™0), (T, T ), %(a’.(:c*, T 4 (T, 2*)}.

By Theorem 2.7, we deduce that
inequality, we have

{I"v} converges to a fixed point 2* of 7. Taking n .= co.in.the above — .

lim Ap(a®. Ty =d(x*. 27).

o

We will prove that &* = 2*. Suppose that 2" # z*. Since
’J,b(d(’l?* T”+IU))
Y(Mr(a* L))

we obtain that l]m Bl (Mr(z*, T ) = 1. Thisimplies that lim Mp{x* 7"v) = 0, and then d{z*,z*) =0
nm—eo

which is a contl adlctlon Hence x* .= 2*. Similarly, we can prove that 4* = 2*. Thus z* = y*. It follows
that 7" has a unique fixed point. 7 O

< B[y (2*, T™0))),

In Theorem 2.7 and Theorem 2.8, if we put n(z,y) = 1 and ¥(¢) = ¢, then we obtain the following result
proved by Popescu [12]. ' ' a

Corollary 2.10 ([12]). Let (X,d) be a complete metric space, o X x X — [0,00) and T: X = X. Suppose
that the follotmng condmons are satisfied:

(1) Tisa genemlzzed a-Geraghty contraction type nlappiﬁg,"
(i) T s a triangular a-orbital admissible mapping;
(iii) there exisls 71 € X such that a(zy, T) > 1;
(iv) T is a continuous mapping or if {xn} is a sequence in X such that Ty, 1:"+1) >1 foralln e N and

zi, & =¥ €X asn —> oo, then there evists a subsequence {T,y} of {x.} such that o(x Tp(k), @) > 1
forealik e N.

Then T has a fized point £* € X and {T"x,) converges to 7*.



P. Chuadchawna, A. Kaewcharoen, S. Plubtieng, J. Nonlinear Sci. Appl. 9 (2016), 471-485 479

By taking n{z,y) = 1 and the same techniques using in Theorem 2.7 and Theorem 2.8, we obtain the
following result.

Corollary 2.11. Let (X.d) be a complete metric space, a: X x X —>'[0.'oo) and T : X — X. Suppose that
the following conditions .are salisfied:

(i) T is a triangular a-orbital admissible mapping;
(ii) if there exists 3 € F such that

a(.y) = 1 implies $(d(Tz. Ty)) < BY(M (z,y)))w(M (x,y)) for all z,y € X,

~ where _
M{x, y) max{d(z, y) d(z. Tz). d(y, Ty}} and ¥ € ¥;
(iii). there exists x; € X such that a(a:l Tz) > 1, |
{1v-)-Hs-a—eamemzou&mapp—mg-or—zj-{*v—}-w—u—scquente-m-:«‘f-such-mumtcn, Thtl) = l"fbme
zp 2 ¥ € X asn — oo, then there ezists a subsequence {mnm} of {zn} such that aTngpy,2*) > 1
for allk e N.

Then T has a fired point 2* ¢ X and {T"x,} converges to =*.

Collséquent]y, we obtain that the following result proved by Karapinar [8].

ijb_lilary 2.12 (18]). Let (X,d) be a complete metric space. Assume that o« : X x X — [0,00) and
T: X —+ X. Suppose that the following conditions are salisfied: :

(' T is a triengular o -admissible mapping;
(ii) T is a generalized o-y-Geraghly coniraction type mapping;
(iif) there exists i € X Buchthatale Ty =1; — — —°
(iv) T is a continuous mapping or if {x,} 15 @ sequence in X such thot eo(ry, 7y41) > 1 for allm e N and
Tp = 2* € X asn - oo, then there exisls a subsequence {z, )} of {wa} such that a(z,gy,z*) 21
for all k € N.

Then T has e fized point 2* X and {T":cl} converges to x*,

- 3. .Consequences
Definition 3.1. Let- (X, d) be a metric space and a-,-n XXX o [0,. co). A mapping T : X — X issaid to
be an a-n-y-Geraghty contraction type mapping if there exists 7 € 7 such that a{z,y) > 7(z.y) implies

W(d(Tx, Ty)) < B(d(z, y))P(d(z, v)),
- where 3 ¢ ¥

Theorem 3.2. Let (X d) be.a metmc space. Assume that o, n: X x X — [0, oo) andT X — X. Suppose -
that the following conditions, are satisﬁed

(1) (X,d) is an a-n—complete metmc space;

(11) T is an a-n-w-Gemghty't_ontmctz’on type mapping;

(iii) T is a triangular a-orbital admissible mapping with respect to ;
(iv) there ezists z1 € X such that a(x1,Txy) > n(u Txy);

(v) T is an a-1-continuous thapping.

Then T has a fized point z* € X and {T"z1} converges lo x*.
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Proof. Let 21 € X be such that a(x,Tz1) > g(z1, T21). As in the proof of Theorem 2.7, we can construct
the sequence {xn} defined by zn4; = Tz, for all n € N converging to some z* € X and (Tn, Tny1) >
7(Zn, Tny1) for all n € N. Since T is cx—n—contmuous we have

:c"H—T:cn—)Trc as n - 0o,

Hence T has-a fixed point . 0

Theorem 3.3. Let (X,d) be a metric space. Assume that o,n7: X x X = [0,00) and T': X — X. Suppose
that the following conditions are satisfied:

(i) (X,d) is an a-n-complete metric space;

(i) T is an a-n-y-Geraghty contraction type maepping;
(iii) T is a triangular ov-orbitel admissible mapping with Tespect to n;
(iv) there ezists xy € X such thel a(z1,Tx1) > n(xy, T:cl)

{v) if {xa) is a sequence in X such that n(Tm%wﬂalM N ond &, = z* ¢ X g¢

n —» 00, then lhere exists a subsequence {Tny} of {'cn} such that a(zapy. z*) = n(zn(L) z*) for all
keN.

" Then T has a fized point z* € X and {Thxl} converges 1o 'c" -

- Proof. Let xy € X be such that a(z;, Tay) > n'('cj',T'z':I) As in the proof of Theorem 2.7, we can construct

the sequence {zn} defined by =, = Tz, for all n € N converging to some #* € X and o(Tp, Tppr) >
M&m Taqa) for all n € N By (v), there exisis a subsequence {zay ) of {xn) such that a(z, (k)Y >
Ty T *) for all k € N. It follows that |
‘l,[l(d(xn(k)+1, T’L"*)) o= l[)(d(T:B"(;\)TT*))
< Bld(@n). T INE (A @nry, 2*))
A T N PEagh . TN AL

Letting £ — oo In above inequality, we obtain that w(d(:c*; T*)) < 0. Thus ¥ (d(z*, Tx*)) = 0. This implies
that d(z*, Tx*) = 0. Hence z* = Tu". O

Theorem 3.4. Suppose_all assumptions of Theorem 3.2 (respectively Theorvem 3.3) hold. Assume that for
all » #£y € X[ there exisls v € X such-that afw, ) 2 n('c z) aly.v) = nly,v) end a(v, Tv) > plv, Tv).
Then T has a unique fized poini. ' : '

Proof. Suppose that z* and y* are two ﬁxéd pointé 6f T such that z* # y*. Then by assumption, there -

exists v € X .such- that alz*,v) > p(z*,v), aly*.v) = nly*,v) and a(v,Tv} > nlv,Tv). Since T is
triangular a—orbltal admissible with respect to 1, we have ' '

a(e’, T} z gz’ d™), and ofy’, T") > n(y*, T™)
for alln € N. It follows that I .
" p(d(x T”“”v)) glj(d(Tr* TT"v))

AW TV ) @)

& P(d(z", T™))

“for 411 n € N. Consequently, the sequence {(d(z*, T™v))} is nonincreasing, then there exists 7 > 0 such-

that. hm P(d(z*, T" )) =r. By (3.1) we have

W(d(;c 7))
< o d ,*‘ n, .
T < B T )
Letting limit n — oo, we have lim Ab(d{xz*, T"v))) = 1 and then lim 1/)(d,(:r;* T™4)) = 0. It follows that
lim d(z*,7"v) = 0. Hence hm T"v = z*. Similarly, we can prove tha.t hm T"v =y". Hencez*=y¢*. O
n—oo

n—oo
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Corollary 3.5 ([8]). Let (X, <) be a partially ordered sel and suppose thal there exisls a metric d on X
such that (X,d) is @ complete metric space. Suppose thatT: X — X. Assume that the following conditions
are salisfied: T ' :

(i) there exists f € F such that

Y((Tx, 7)) < B (d(e,y)P(d(. 1)

Jorallz,ye X with x <y where tp € 9'; .
(i) there emists ©1 € X such that 71 % Txy;
(iii) T is nondecreasing; . . |
(iv) either T is continuous or if {z,} is a nondecreasing sequence with ¥, -+ = as n — oo, then there exists
e subsequence {wnpy} of {xn} such that Bay 2% forallk e N, '

Then T has o fired point z* € X and {T"x)} converges to-z*. Further if for all x # v € X. there erisls -

ve XA such thats <v, y Zv and v I Tv, then T has a unique fized point.

Proof. Define functions «,7: X x X — [0,c0) by

1, ifa=y

otherwise

ifz =<y

otherwise.

A (1
e, y) = { and  7fw,y) = {;

e

Let x,y € X with a{z,y) > n(x.y). By (i), we have
Y(d(Te. Tyy) < plp(d(x.y))¥(d(z,y)).

This implies that T' is an a-7-1-Geraghty contraction type mapping. Since X is compiete metric space,
-we-have- X—is-a--complete-metric-space. ~By (ii); there exists =, € X such that Az Ta) 27, Ti). —
Let a(~, Tz} > n{zx, Tx), we have © < Tx. Since T is nondecreasing, we obtain that Tz < T'(Tz). Then
a(Tz,T?z) > n(Tx, T?z). Let oz, y) 2 M{r.y) and a(y,Ty) > 79(y, Ty), so we have = < y and y < Ty It
follows that x < Ty. Then «(v. Ty) > n(x. Ty). Thus all conditions of Theorem 3.2 and Theorem 3.3 are
satisfied. Hence 1" has a fixed point. , - ' M

We now give an example for supporting Theorem 3.2.

Example 3:6. Let X = {0,c0) and d{z,y) = |z - y| for all 2,y € X Let 8(t) = ﬁ for all £.> 0 and
B(0) =0. Then g € F. Let 4(t) = %t and a mapping 7': X -+ X bé defined by ' '

- 27, fO0<z <1
T =
2¢, ifx> 1

Also, we define functions a,7: X x X — [0,00) by

' 1, if0<zy<l - Lofo<eydl
0, otherwise, _ 2, otherwise.

First, we will prove that (X, d) is an a-7-complete metric. space. If {z,} is a Cauchy sequencé such that
~afTn, Tn+1) 2 MTn, Tnya) for all n ¢ N, then {zy} € [0, 1]. Since ([0, 1], d) is a complete metric space, then
the sequence {z,,} converges in [0,1] C X. Let a(x,Tz)-> n{x,T2). Thus z € [0,1] and Tz € {0,1] and so
T?z = T(Tz) € [0,1]. Then o(Tx, T%z) > 7(Tx, T2z). Thus T is a-orbital admissible with respect to 7. Let
a(z,y) 2 z,y) and oy, Ty) = n(y, Ty). We have z,y, Ty € [0, 1]. This implies that a(z,Ty) > n(z, Ty).
Hence T is triangular a-orbital admissible with respect to 7. Let {zn} be a sequence such that z, — T as
n — o0 and a(Tn, Tni1) > 9(Tn, Tny), for all n € N. Then {z,} C [0,1] for all n € N. This implies that
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lim Tz, = lim gftn = %:L Tz. That is T is a-p -continuous. It is clear that condition (iv) of Theorem

n—=oco n-—-}

3.2 is satisfied w11:h z1 = 1 since a(1,T(1)) = a1 ,5),: 1> 3 =n(l ,3) = n(1,T(1)). Finally, we will prove _
that T is an a-7-1-Geraghty contraction type mapping. Let a(z,y) > n(x,y). Therefore x,y € [0,1]. It
follows that

- Bld(z.y)))Y(d(z.y)) — v(d(T'z, Ty))

1 1 1 .
= 5(5(d(1ﬂsy))) : Z(d(;r,y)) - Z(d(TfC»T?J)) . (3.2}
1 1 1 , :
=ﬁ(1|$*y|)'leﬁy|—z|Tﬂ?—Py|
IS S W T
SRS i L Pt
1z =yl 1

=TFiE gl FH=
-yl -2+ e - yl)
6(2+ |=—ul)

S

_ Then we have ¥(d(Tz, 7)) < Blb{d(x,y)))v({d(z, v)). Thus all assumptions of Theorem 3.2 are satlsﬁed
Hence T has a fixed point #* == 0.

4, Applications to ordinary difTerential equations

The following ordinary diflerential equation is taken from Karapinar [8]:

(4 a(t), te[0.1)
{ o(0) = 2(1) =0, (4.4)

where f:[0,1] x R = R is a continuous lunction. The Green function associated to (d.1) is defined by
tfl—s), 0<t<s<1
Gt s) = ( hOStEss
s(0-t), 0<s<t<l.

Let C{J) be the space of all continuous [unctions defined on I where 7 = [0,1]. Suppose that d(z,y) =
Iz — ylleo = sup l2(t) — w(t)| for all z.y € C(J). 1t is well known that ((*(7),d) is a complete metric space.
Le P

Assume that the following conditions hold:

- (i) there exists a function £ : R? — R such that for all ¢,b € R with f(a b) =z 0, we have |f(t,a)— f(£,0)] <
8In{la — bl + 1) for all t € I;
(i) there exists z1 € C(7) such that for all ¢ € [,

¢ (ml(i),/nl G(t,s)f(s,:r:l(_s))ds) 270;

(iii) for allt € I and for all-z, y., ze C), -
£(x(t), ¥()) > 0 and £(y(t), 2(t) > 0 imply &(a(2). 2(t)) > 0;

| (iv) for all t € I and for all z,y € C(I),

1 1
€(e(0,5()) > 0 implies ¢ ([ Gt )f(s.atods, [ 60,911 u(o)ds ) > o
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(v) if {zn} is a sequence in C([0,1]) such that T, — = € C([0,1]) and &(zn(t). 2as1(t)) > O forall m € N
and for all ¢ € T, then there exists a subsequence {4} of {’En} such that {(zqk)(t), z(t)) > 0 for all
keNand foralltel. _ .

We now assure the existence of a solution of the above second order differential equation. The method
for proving the following result is taken from [3] but is slightly different.-

Theorem 4.1. Suppose that conditions (i)-(v) are satisfied. Then (4.1) has at least one solution x* ¢ C%(I).
Proof. It is well known that z* € C%(I) is a solution of (4.1) if and ohly if z* € C(I} is a solution of the
integral equation (see [8]). Define a mapping T : C(I) — C(J) by

Tz(t) = fl C(t._s)f(s.:c(s))ds forallt e 1.

—ﬂmmm@‘)q—%qmvamﬂﬁo-ﬂﬂmng%&tﬂ—tir%rﬁxed‘pmnmﬂﬂ'em‘m]')__""‘
such that £(x(t),¥(t)) > 0 for all t € I . From (i), we obtain that

1
T(8) — Ty(t)| =] fo Gt 9)[f(s-2(5)) — 7(s,5(s))]ds]
| %
< f Gt )] f(5-2(5)) = £(5. y(s))|ds
0
1
< 8] G(t, s) m(jz(s) — y(s)| + 1}ds

< 8/ G(t, s) In(d(z, y) + l)ds

< 8ln(d (1, ?/)Jrl)(supf G(t, .s)d,'s)

tel

Since . Jo G(t,s)ds = —(t7/2) + t/2 for all t € I, we have sup fo G(i s)ds = 5. This implies that
1el

lT:L ,Tyy < In{d(z. y) +1).
Thgaréfore:
- In{In(d{z,;y)+ 1) + 1)
In{d(x,y) + 1)

- In(d(T=.Ty) +1) < lln(]n,_(éi(&y) + 1) =N D In{d(x;y) +1). -

Define mappings ¥ : [0, co) — {0, c0) and 5 : [0,00) — [0,1) by

P(z) = ln(:z: +1) and ﬁ(:c) _ { — ifo# 0-
R L ] 0, Otherwlse

, Therefure W [0,00) [0 oo) is contmuous, nondecmasmg and 1,0 is p051t1ve in- O oo) with 1,!')(0) = O and
" also. qb :E) < z. Moreover, we obtam that ﬁ ¢ F and

Y(d(T, Ty)) < BW(d(z,y))(d(z,y)

for all ¢,y € C(I) such that {(:c(t) y(t)) 2 0foralltel.
Define a,n: C(I) x C(7) — |0,00) by :
otherwise.

alz,y) = {L i E(e(t). y(8)) 2 0.t [

_[ 5 &@ywrzotelol
0, otherwise, and n(w,y)—{ 5.-
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Let z,y € C(J) such that a(z,y) > n(z,y). It follows that {{z(t), y(t)) > 0 for all t € 1. This yields
Y(d(Tz, Ty)) < B(y(d(z, y)))(d(z, y).

Therefore T is an o-7-tr-Geraghty contraction type mapping. Using (i\}), for each x € C(I) such that
alz, Tz) > n{z,Tx), we obtain that £(Tz(t), 72x(t)) > 0. This implies that a1z, T%z) > #(T'z,T%x). Let
x,y e C(I) such that a(z,y) = n{z.y) and a(y. Ty) > n{y. Ty). Thus

E('c(t) y(t)) > 0 and &(y(t). Ty(t)) 2 O for all tel.

By applymg (iii), we obtain that E(x), Ty(t)) = > 0 and so afz, Ty) > n{z, Ty). It follows that T is triangular

0. bital admissible with respect to . Using (i), there exists x1 € C'(I) such that a(z1,Tx1) 2 521, T21).

Let {zn} be a sequence in C'(I) such that x, — z € C(f) and a(rn, :r:n+1) > N(tn, Tns1) for all n € N. By

(v), there exists a subsequence {%, )} of {#5} such that (k) (t), 2(2)) = 0. This implies that a(e, . =) >
_._______4"..{,,.,m,..;,.,..uxemfaﬁi—asmmmﬂfﬂeammﬁ—mahﬁed:ﬂﬁﬂ&é&hasxﬁxedmmmﬂﬁﬂt:
follows that there exists «* € C(J) such that Tz* = 2™ is a selution of (4. 1). : : 0

Corollary 4.2. Assume that the following (_:ondz'iions hold;_.'

() S0 xR - [0,0-5) 15 continuous end nandecreasiﬁg;
(i) for allt € [0.1], for all a.b ¢ B with a <. we have

5t~ F4,0)] < 8Tfa bl 1)

(i) there exists xy € C([0,1]) such that for all t € [0, 1}, we have

1
I |k R1e / GUMlso(Nds, . _ __ . _

Then (4.1) has a solution in C?([0, 1]).
Prooj. Define a mapping & : R? -5 R by
&le.b)=b~a foralla.be R

By the analogous proof as in Theorem 4.1, we obtain that (4.1) has a soluti_on.- ' O
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- — —— = — AbstractTIn this paper, weintroduce the notion of modified-(a-1=p-)rational —
contractive mappings where some conditions ol Bianchini-Grandolfi gange funclion
¢ are omitted. We establish the existence of the nnique fixed point theorems for
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1 Introduction

Fixed point theory in metric spaces is one of the most important tools for prov-
ing the existence and uniqueness of the solutions to various mathematical models.
Later in 1993 Czerwik [1], generalized the notion of metric spaces by introducing -
the notion of b-metric spaces. On the other hand, Samet et al. [2] proved the fixed
point theorems for a-admissible mappings which are a-g-contractive mappings in
complete metric spaces. Salimi et al. (3] and Hussain et al. [4] modified these no-
tions and assurcd the fixed point theorems. Recently, Hussain ¢t al. {5] established

—fix i oreme-la-Hod Hiod-=p-rationa FeontracH Ve MAappIngs- orompiete

metric spaces and proved the existence of solutions of integral equations.

In this paper. we extend the fixed point results in a-complete metric spaces
proved by Hussian et al. [5] to o-complete b-metric spaces by introducing the
notion of modified (a-¢-p-#)-rational contractive mappings where some conditions
of Bianchini-Grandolfi gauge function  are omitted. We establish the existence of
the unique fixed point theorems for such mappings which are tfiangular a-orbital
admissible. Moreover, we also prove the unique common fixed point theorem for
mappings T and gy where 1" is a modified (a-=-y-#)-rational contractive mapping
with Tespect to g and is triangular g-a-admissible in the setting of a-complete
b-metric spaces.

2 Preliminaries A~H N ]

We now recall some definitions and lemmas that will be used in the sequel.

Inn 2012, Samet et al. [2] introduced the notion of e-admissible mappings.

‘Definition 2.1 ([2]). Let T: X — X and n: X x X — [0.c0). Then T is said to
be a- admzsszble if for all o,y € X. .

(.c y) =1 1mphes o(T:z: Ty) 1.

Recently Hussain et al. (5] introduced the concept of modlﬁed a-p-rational
contractive mappings and proved the fixed point theorems for such mappings in .
a-complete metric spaces. -

Definition 2.2. A function @ : [0 o0) — [0,00) is called a Bianchini-Grandolf
gauge function (6] if the fo]lowmg condltlons hold:

{i) ¥ is nondecreasing; _
(i) 352, ¢*(t) converges for all ¢> 0.

Wt., denote by © thc sct of all Blam]um-Grandolﬁ Bangy huu,t]ons

_Lemma 2.3 {[7)). If ¢ € @, then the fotlounng statements ho!d
T (i) wlt) <t for alll > 0;
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(i) ¢ is continuous at O;
(i) p(0) =

Definition 2.4 ([5]). Let (X.d) be a metric space and o : X x X -» {0,0)
A mapping T : X 5 X is a modified a-yr-rational contractive mappmg if for- all
o,y €X,

ofz,y) = 1 implies d{T'¢, Ty) < (M (z.1)). ’ (2.1)

where

d(x, Tx) dly. Ty}  d{z,Ty) + d(y, Tx)

1 = . 9). . . .
Mz, y) = max{d(z. y) T+ d(e, Tr) 1+ d(y. Ty) 2 !

and ¢ € B,

Theorem 2.5 ([5]). Let {X.d) be a metric space, o = X x X — [0,0¢) and
T:X = X. Assume thai thf Jollowing conditions are sutisﬁed:

(z) X is an a-complete melric space;

(it) T is @ modified a-y-rational contractive mappinj; A
(1it) T is an a-admissible mapping;

(v} there exists wg € X such that olrg. Tag) > 1;
© (T i ama-contintous mapping.
Then T has a fzed point.

Recently. Papescu [8] studied the definitions ol a-orbita) adnmmble mappings
and triangular a-orbital admissible mappings.

Definition 2.6 ([8]). Let 7: X — X and oz X x X — [0 c0). Then T" is said to

* be a-orbital admissible if
afx. TL) > 1 implies a(Tt Te) > 1.

: Deﬁnltlon 2.7 ([8]). Let T: X » X and a: X x X = [0.00). Then 7' is said to
be trianguler o- orbital admissible if }

(a) T is e-orbital admissible;

(b) a(z,y) > 1 and a(y, Ty) > 1 imply ofz, Ty) >

Lemma 2.8 ([8]). Let T : X — X. be a triangular a-orbital admissible mapping.

Assume that there ezists mg € X such that cx(ro,TJ:g) > 1. DPﬁnc a sequence -

{ien) by Enty = Top for all n € N. Then a(.cm,.c,,) > 1 for all m;n € N with
m < .

Definition 2.9 {[1]). Let X be a nonempty set and let s > l a given real numbel
A'function d: X x X = R* is said to be a b-metric if for all «, W2 € X,
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(i) d(x,y) =0, if and.only if 5 = y;
(i) d(z,y) = dy.z); '
(ii}) d(z,y) < sld(x,z) + d(z,¥)|-
Then the pair (X, d) is called a b-metric space.

] Note that a metric space is evidently a [-metric space but the converse is not
“generally true. For more details see [9].

1T this paper, we s tie 1010WINE CONCEPts 1T -IMEtTiC Spaces:

Definition 2.10, Fet (X, d) be a b-metsic space and o 1 X x X — [0, +c0). Then
X is said to be an a-complete h-metric space if every Cauchy sequence {r,} in X
with a(&n,€nyy) > 1 for all n € N converges in X

Definition 2.11. Let (X, d) he a b-metric space, & @+ X x X — [0.+00) and
T:X = X. Then T is said to be-an a-continuous mapping on (X, d) if for every
sequence {T,} with ©, — = as n— oc and a{z,, Ty41) 2 1 for all n € N implies
Tz, - 1 as n — co.

In 2014, Rosa and Veiro [10] introduced the notion of triangular g-a-admissible
mappings.

— — = — — —Defimition 2.12 Let Ty X=X ando: Xx X = {0re0) Then Fissaidto ————— ~— ~—
be triangular g-a-adinissible if

1. algz.gy) = I implies a1, Ty) > 1
2. alyr.gy) > 1 and o(yy.gz) > 1 imply a(gr,g2) > L

Lemma 2.13 ( [5] Fet ' : X — X be a trienguler g-c-admissible. Assume that
that there exists xg € X such that o(geg. Tig) >-1. Define a sequence {gen} by
giny1 = Ty for all n e N. Then o(gtm. gtn) > 1 for atl m, n € N with m < n.

Definition 2.14. Let 7. g : X — X. [ v = Tu =y for some x € X, then » is
. . called a coincidence point of T and y, and w is called a point of coincidence of T
and g. '

Definition 2.15. Let T,y : X — X. The pair {T,y} is said to be weakly compat-
ible if Tgz = gT«x, whenever Tx = gx for some x in X,

Abbas and Rhoades [11] proved the existence of the unique common fixed
. points of a pair of weaklv compatible mappmgs by u'%mg the followmg })rO})OSIt]OI]
‘asamaintool. . T T T T

Proposition 2.16 ([11]). Let T.g: X — X and {T,g} is weakly compatible. If
T and g have a unigue point of cotncidence w =Tz = gz, then w is the unique
common fired point of] and g.



Fixed Point Theorems for Modified (a-i--t)-Rational ... 219

3 Main results

In this section, unique fixed point theorems and wnique common fixed point
" theorems in o-complete b-metric spaces and applications to integral equations are
presented.

3.1 . The unique fixed point theo'réms

W first introduce the coneept of 1nodified (a-y-4-0)-rational contractive map-

pings and prove the existence ol fixed point theorems lor such mappings:

Definition 3.1. Let (X;d) be a b-metric space and a : X x X — [0,00). A
mapping T+ X — X is a modified {a-y-p-8 )-rational contractive mapping if there
exists L > 0 such that for all =,y € X, '

a(?cfg) z l implies ¥(s3d(Tz. Ty)) < w(W(Mple.y))) + LONs(e.)).  (3.1)

where

d(z, T'r) dlg,Ty)  dis,Ty) + d(y, Tx)
-+ dize) 1 +dly. Ty} . 25

ﬂ’jb(ff;| ) = max{d{x.y),

'Y

o Ny mindd{eTe) din, T diy Te)) —  — 0 L

and .8 : [0,0c) — [0.00) are continuous lunctions with (1) < £, #(t) > 0 for
each t > 0, ¢ is nondecreasing, #(0) = 0, ¥:(¢) = 0 if and only if ¢ = 0 and 1 is
increasing. :

Theorem 3.2, Let (X.d) be an a- comple!e b-metric space, ot X x X -3 [0, c0)
and T X = X i o modified (o 11---,0 g)- ratwnal contmctwe mapping. Assumne
that the following conditions hold:

(i} Tés _trl'dngular a-orbital admissible;

(ii) there exists xp € X such that afro.Turo) > 1;
(i3} T is er-continuous.
Then T has a fived point.

- Pmof Let xg € X be such that Ct(.Eg TJ"[)) > 1. Definc a qoquonce {J:,—l} in X by

) Fn+1 £ Tt,, for all n e N _
By Lemma 2:8, we have -

{ZTn, Tny1) 21 forallneN (3.2
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IFey =xnpg for some N € N, then T has a fixed point. Suppose that @, # &,y
for all'n € N. Since T is a modified (a-t--#)-rational contraction and by (3.2),
we obtaln that

A

w(d(xn.xnﬂ)) < t}.')(saq‘(zmx"H)) _
P($'d(Teay.T2,))
PO (Moltn 1, 6a)) + LO(No(n_1,20))  (33)

7N

for all n € N, where

Np{n_1,5n) = min{d(rn_1, Toao1), d{rg-1, Tiryn), d(:n,,;rT:in_l)}
min{d(xn-1.2n). d(Ta-1.€n41), diien. €n)}
0 .

and
- d(In—hT’In—l) ‘ .d(-m-vli-T:Cn) -
]”-n— »<Ln = 'I‘nfn-n) Y ’ i )
slx 17'5 ) max{d(z,_1,%n) Ut dzn e 1) 1 ¥ Az )
d(wa1, Tey) + d(wp. Ten) ) N

2s :
d(-*t-‘n 1- ‘Cn) d( En, Cn+])
e l+"(_n 1. l""_) 1 +d(_n. rn+1) [

= max{d(z,- 1~t‘n)

d(ﬂ'-n-—]--'tﬂ+l) + d( L. -’En)}
2s

f Fn—1:%,
= ]“ax{d(ib‘ni],!En),rl(:ﬂn,:anr])' f__("r;s_x""l)}

Since

d(I?lhl!In+1) . <_ S[d(:cn—lemn);l‘d(-'r-r;‘:.ﬂn-f—l)]
20N = | T —OT : /3
it follows thaﬁ ‘ - & 7 >
My(rnor.za) < max{d(a—1. ) d(0, Lnr1)}. (3.4)
By (3.3) and (3.4), we obtain that - -

W(d(5a, 0np1)) < (—w(M;(:n,,'-h:n,;)))+L‘9(N'h(nn )
< (".!')(max{d(-T-n—]rIn) (Jrn £n+1)}))
I max{d(@a1,2n), (5, Tas1)}- 'd('z,,.é;,,ﬂ) we have

t,b(d(:vn.l'nﬂ)) ',S -W(W(d(ﬂ’nv.ﬂ?frl)))
< {d(en, o)),
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which is a contradiction. This implies that

Wllzntne) S eHd@nrz)))
< Pld(en—1.Tn)). ' (3.5)

for each n € N. Since ¢ is increasing, we get d(#,.Tn41) < d{x,-1,2,) for each
n € M. Therefore {d(:t,,on41)} is & nonincreasing sequence. Conseguently, there
exists r > 0 such that hm, oo d(En, Ene1) = 1. We claim that v = 0. Assume
that 7 > 0. Since ¥ and ¢ are continuous, from (3.5), we have

(r) < ol(r)) < ¥(r).
This implies that t(r) = @{p(r)). Since ¢t} < ¢, for each t > 0, we obtain that
() = plHr)y < Pir).

which is a contradiction and therefore r = 0. It follows that

im d(@n. Tng1) = 0. (3.6)

n—oc

Next we will prove that the sequence {x,} is a Caiichy sequence.. Suppose on
the contrary, that there exists £ > 0 such that Tor all & € N, there exist two
subsequences {w,,(ky} and {z,,x)} of {wa} with n(k) > m(k) > £ such that

— —  — = dEmpp a2 e — . 4 — — | (39
Let n{k) be the smallest number satisfying (3.7). Thus

AT k) Ty 1) < & _ (3.8)
By triangle inequality, (3.7) and (3.8), we obtain that

€ S d(Tnir)-Tmiky). € SHEngiyTniky-1) + 58 (F 0 1- Fni))
< sd(Tagkys Tagiy-1) F 5€

By taking the upper limit as & — cc and (3.6), we have

€ < Hmsup d{Toge), Trm(ry) < €. (3.9}

k=300
Using triangle inequality again, we obtain that
sd( (k) Fakyr1) T 34y 1. Fnir)

AT mky Tngr) + 52 Enihys Tagey11) + 34 (Tn)e1i Tngn) 7
SPA(Tmqrys Tagey) + (5° + 8)ATn(rys Tniry)- '

£ < d(Fmk) Tak))

IACIA A

From above inequality, we obtain that

€< 5T m (kys Trgry1 ) ST age) 417 Ta(ry) < Szd(I,n(k). :f-““r)')‘l‘(sz+3)(I(In(k)._I“'(.k)_'_l)-
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Taking the upper limit as k — 0o, by (3.6) and (3.9}, we have

. .
= < limsup (- Taggye1) S o7 (3.10)
5 koo

Similarly, we obtain that

€ S TnryTmxy) < sd{ughy, Tmpy+1) + 5d(Emky 11, Emix))

< gy Fmiry) + S UEmiky Ty r1) F 5 (k410 Eomik))

L0 (€ SN SN W CLETATLT) | C PN T
So from (3.6) and (3.9), we have
€
- = lim sup d(Tngey- Tongry41) < 3¢, (3.11)

5 koo
Since
AT (iy+1:En ) ) S G40 Entrrer) F 5 ar - Eagn)-
and by usin&—f; (36) and {3.11), we get that

£

< limsapd(imi 41 Ta(k)+1)- (2.12)

koo

&1

Using (3.6), (3.9), (3.10) and (3.11), we have

o

R . (l'(.l,‘ (&) TIC,,(R.))
lim sup Ay (2,50 Zon i = max{limsupd(Tay. Tmexy ) limsup 2 - ,
k—roc ( nik) g )) { kaocp ( L )) Wocal gt (I(Inl-‘c}’ 1 Iu(k))

A d(Im(k)vTIm(k))
limtsup — ;
Eaoe 1+ d{Emey T Cmiy)
hl" Sl]pk_ioo J(I"(k)- T-Tm(k)) ot ]iln Su])k—b'zo d{lC"](k), T'T'n(k‘)) }
3 23

: : . A2k Taiky41)
=  max{limsup d(T, k). Ty ). limsu ,
{ k00 (Znge, Bmery k——roop 1+ d(In(k)-‘:Cn‘(k)+l)

) (T (k)» Con(r) 4 1)
limsup ; '
koo L d{Empey CmEyr)

B sup o0 HTghy. Trm(iye1)} + Vi sup, o d(Tm(kys Tageye1) )

25
2 2,
< max{se,0,0, b—%} = s¢.
This implies that : '
- HmsupMp{Tny Tmry) <86 - (313 T
] L koo ' _ . .
By using the same argument as above, we have
limsup Np(#a(xy Famey) =00 (3.14)

k—oc
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Since T is a modificd {o- V- #)-rational contraction, by using Lemma 2.8 -and
(3.12), we have

(se) = p(s® - —2) < Y(s° limsup d{Emiky 41+ Tngky+1))
5 k—=oo

= lim sup Y(s*d{Tm(ry 1 Tniry1))
k—o0

"= limsup (s Ed(T'r:,n(k), F.c,,(k)))

k—oc

_ = limsuplo(d (M (Fpmy . fapn))) + LON (0. fnmm

K00
= p((limsup Mb(rm(k) Ta))) + LH(hm SUp Ny (Crmikys .rnu))) '
k00 k—oo
< w(y(se))
< y(se),

which is a contradiction. Then we can conclude that {«,} is a Cauchy sequence.
From (3.2) and since X is an a-complete b-metric spéce, we have linly, yp0 1, = &
for some & € X. Since T is o-continuous, we obtain that lim, .o T:6n = T, This
implies that g, oo d{tnyy. Tx) = by e d{Tz,, Tx) = 0. Then 7 lias a fixed
point. O

Example 3.3. Let X = [0,6) and d: X x X — R defined by d(z,y} = |« ~ yi%.
- —Fhen-¢Hs e-b-metric on-A-with-g=2: Definef : X-—A-by—- —- — — — -

T(r) = VT@IE‘ ifrel0.1];
' gh il € (1.6):
and define a : X < X — [0,c0) by

if w.y €10,1] 5
a(z y= { if otherw:se

Define ¥, : [0,00) = [0,00} by ¥(i) L and p(t) = gt. For all @,y € X and
a(z,y) 2 1, we have ¢,y ¢ [0,1] and then :
) : . 3 g, Y
a(rs ) = S ATETY)
_ 2B y2
B 2
_ 4‘£$_ V2 f
B I
R I
41z —yl?
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_ dd(my)
= 3 3 (3.15)

= Suldlzy)
= w(d(z,y))) < w((Mplz, 1))

"Then T is a modified (a-¥-p-0)-rational cont.rac'tive'r‘napping. We next show that
(X.d) is an a-complete b-metric. If {x,} is a Cauchy sequence in X such that
a(zn.Tp41) = 1 for all n € N, then {x,} C [0,1]. Now, since ([0,1].d) is a

— npletedmetriespacethemcthessequencefenjronvergeshi{i-H—Wewitlshow
that T is a-continuous. If iy — r asn — oo and a(en,wnyy) > 1 for all n € N,
then @y € [0.1] for all n'e N and so o

f 1
f P =—d(a:ﬂ,:c) )Oasnﬁoo

d{Ty, ’Ir)—t 18

= _lmu — &
Let a(x.T) > 1. Thus @ € [0.1] and 7z € [0,1] and so TZ:L' = T(T«) € [0,1).
Then a(f'r,1%z) > 1. Thus T is a-orbital admissible. Let a(w‘y) > 1 and
afy, Ty} > 1. We have z,y, Ty € {0,1]. This implies that afe, Ty) > 1. Hence "
T is triangular a-orbital adrmissible. It is clear that condition(ii) of Theorem 3.2
is satisfied with g = 0 since a(mg, Tg) = a{0.T(0}} = 2(0,0) = 1. Thus all
assumptions of Theorem 3.2 are satisfied and so 7" has a fixed point which is
e o —m=0. WL RO N
We next replace the a-continuity of the mapping T' by some appropriate con-
ditions.

Theorem 3.4. Let {X,d) be an a-complete b-metric space and o+ X x X —
[0.00). Suppose that T' : X — X is a modified (n-yr-@-})-rational contractive
mapping. Asswme that the following conditions hold: .

(z) T is tmangular o= orbital adm:sszbie

(n) there exists vq € X sich that Q((‘n‘ Irn) A

(i) if {en) is a sequence in X such that ality nyr) > 1 for all n ¢ N and
. En ) @ as 1 — 00, then ihere exists o subsequence {,cn(k)} of {#n} such
. - that ofzggy.2) 2 1 forallk & N

Then T has a fired pamt
--Proof. As in Theorem 3.2, we can’ construct the sequenice {,r,.} such that z; 1 =
Tic, for all n € N, afien,; E,—,+]) > 1forall n €N and &, - % as n = co. From’

condlt.lon (iii), there exists a subsequence {J‘,,(k)} of {: € } such that

a(:cn(k) ,_:r:) > 1 for all k €N, (3.16)
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We claim that ¢ is a fm,d point ol T, Assume that dir, Tr) >, 0. By triangle
inequality, we obtain that

d{z, Tz} < sd{z, Lawye1) + sd(Zagiys1, T)
= sid{x. Tnry41) + 3d(TiEnpy . T'z).

Taking limit £ — oo in above inequality, we have

d{e, Tx) < Jim -S(I'(T:Cn(k),T;L'). (3.17)

Since T' is a modified (a-i--0)-rational contractive mapping, using (3.16) and
(3-17), we have

P{s*d(x, T))

I

kliHl 1,"-'(.‘,‘3.('1(’11.'7'-,,“\-), T‘T))
= kl—iilolclip(dl(ﬂf{b(.’cn(k), .{'))) +- LH(!\’b(;rn(k). .[))]

A

< n,o(v,[;(klim_ M(zapy-x))) + LO( i Ny(z,00. 7). (3.18)
t oo . .Laoc
where
d(Tay. TT:I(L)j d(z. Tx)
Mpl .0} = d{< ks
i b(C (k) J'} I]lﬂx{ (.J' (k) -f) l'{-(l(.[n”\) 1[,1”\)) 1 ld('b‘ .[I)
ST T T T d(Cn(k),T.[)'}'d X, Tcn{k))}
2s 2
Ty Togkye 1) A, 1)
= nax {d Koy 1
I]l"l\{ ( (-’L) -f) 1+(i(£”(k) Tu(k) +l) 1+d(.{‘ I.E)
d(In(k).T:C)+d(£.:ﬂn(k)+1)}
- Y30
S max{d 'rn(k},:r') II(T“(k),' n(k)+1),fl(.'l}.T.’E)
'1( Ba(x), 1:5) + d{ir, rn(k)+l)}
25
. and
Nb(ﬂ':ﬂ(k)..'l:) = min{d(In(k).TSL'n(k)‘)‘.d(.’f:“(k),TI),(f(:T,T;E,!(k)}

= mind(z,x), Tn(ry+1) dEnny. T7), dl, gy 1)}

Taking limit as & — co, we obtain that

R R e —— - e —
lim My (:ry ). 6) < max{d(x, T'r). e f} = d{x, Tx)
k—oc . . 2

and -
i Ny(rai. ) =
Jim Ny(:oney. )
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Corollary 3.6. Let {X,d) be an a-complele h-meiric space where a1 X x X —
[0,00) and T : X — X. Assume that there exists L > 0 such that for all z.y € X,

alx,y) > 1 implies s*d{Tx, Ty) < (M. y)) + LNy (2, y)). (3.19)
where

Az, Tz)  dy.Ty)  dzTy)+ diy. Iz)
1+ d(z.Tz)" 1+d(y. Ty)’ © 2 '

Ny(z.y) = min{d{(z, I'z),d(z. Ty), d{y. T'x))

Myfa,y) = mox{d(z, ),

and .0 : [0,00) = [0,00) are continuous functions such that 8(0) = 0, (1) <
L. #(t} > 0 for each & > 0 and g is nondecreasing. Assume thaet the following
conditions hold:
(i) 1" is treiangular «-orbital admissible:
(i) there exists wo € X such that aleo.Txa) = 1;
(itt) T is a-continuous or if {x,} is a sequence in X such thet a(zy. $yeq) > 1

foralln € N and &, — i as n — co, then there exists a subsequence {ingey )
of {Jn} such that o{rygy,r) 2 1 for all k € N.

Then T has u ﬁIed poinl. Moreover, either o—(u.t{) 2 1 ora(v,u) > 1 whenever
Tu=u and Tv =v. Then I' has a unique fized poinl.

- = = == = — — ~IrCorollary 3:67if @{t) = t =%'(¢) for vll t-¢ {0o0) where ' : [0708) 37005 ~

is continuous such tha /(1) < ¢ for each t > 0 and ' is nonincreasing and L = 0,
then we obtain the following corollary

Corollary 3.7. Let (X.d) be an a-complete b-metric spuce where a - X x X —
[0,00). Suppose that T : X — X is a mapping such that for allx.y € X,

a(ec,y) > | implies .sa;f(T:c.Ty) < My(e.y)— @ (Mylro)), (3.20)
where '

d(m Tx) . dly,Ty)  dlz.Ty) +dy,1 “c)}
L+d(z. T2)" 1 +d{y, Ty)’ 2s

My, y) max{d(f: ¥h

and ' < [0,00) — [0,c0) is continuous such that v'(0) =0, ¥'(t) < ¢ for cach
i >0 and ¢ is nonincreasing Assume that the follounng conditions hold:

._ {i) T is triangular a-orbital admissible;
(i) there exists xo € X such that a('ro T'rn) >1;

(m) T is a-conlinuous or 1f.{:r,,} is g sequence in X such that ale,, Tap1) 2 1
for alln'e N and £, — x'asn = oo, then there ezists a subsequence {cn(k)]
of {2} such that a(:r,l(k), 2y > 1 for all k €N.

Then T hos u ﬁ.:ced point. Moreover, either a(u,v) = 1 or afv,u) > 1 whenever
"Tu=wuand Tv =v. Then 1" has a unique fized poind. :
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3.2 The unique of common fixed point theorems

" In this section, we introduce the concept of modified (a-th-p-8)-rational con-
tractive mappings with respeet to g and prove the the existence of unique common
fixed point theorems m a- complete b-metric spaces.

Definition 3.8. Let (X, d) be a b-metric space1 a: X xX —[0,00), and‘T,g .
X — X. We say that T : X — X is a modified (0--p-8)-rational contraclive
mapping with respect to g if there exists L > 0 such that for all z,y € X,

o

dlge Te) gy, Ty) d(gm Ty) + d(gy, T'r)
1+ d{ye, T} L+ dlyy, Ty) T2
No(x, y) = min{d(gz. 'z}, d{ge. I'y), d(gy,T:c)}_' .
and 4,0 : [0,00) — [0,00) are continuous functions with w(t) < t, 8(t) > 0 for
each t > 0, v is nondecreasing, #(0) = 0, #{f) = 0 if and only if t = 0 and ¢ is
increasing, ;

My(x.y) = max{d(gr, gy).

)

Definition 3.9. Let (X,d) be a bnetric space and o : X x X = [0, +00) and
T.g: X = X. Then T is said to be a-continuous wtth resper,t to g, if for each
sequence {gx,} with gz, = g as n = oo, a(gr,, 9Tn1) = 1 f01 all n € N, we
have Izr,, —>Fr as n — 00.

Theorem 3.10, Let (X, d) be an a- complete b-metric space and T g: X = X be
such that TX C gX and suppose that gX is closed. Let a: X x X — [0, 00) and
T 5 u modified (a-1-p-0 )-rational contractive mapping with respect to g. Assume
that the following conditions hold:

(i) T is triangulor g-0-admissible;

(ii) there exists zy € X such thut o(gsg, T:F:Q) »1;

(ti2) T is o-c.ontiﬁuous writh -res}Jeci to g.
_ Then T and g have a cmnmdence pomt : )
. : Proof. Let g ¢ X ‘be such that’ a(grn,f 80) > 1. Since I'X C QX, we can

construct a sequence {gx,, } such that g
7 gEny1 = Tiry for all m e N.
By ﬁsing Lemma 2.13, we have '
L a(g’cmgznﬂ) > 1 for a]l ne N _ : (3 22y

' By the analogous proof as in Theoremt 3.2, we can prove that {gic;} is a Cauchy I
sequence. Since a(gzn,gan) 2 1 for all n ¢ Nand X is an a- -complete b- o
metric space, we have {gz,) converges to.z € gX. Thus there exists z € X
" .such that lim,_, o g2, = gx. Since 1" is a-continuous with respect to g, so T =
My o0 Ty = limp 00 gy = g.c Thenzisa comc:dence point of T and g- O
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‘We replace the a- contmu1ty of the mapping T with lespect to y by some .
appropriate conditions.

Theorem 3.11. Let (X.d) be an a-complete b-mnetric space and T. g : X = X be
such that TX C gX and suppose that gX is closed. Let o i X % X — [0,00) gnd
T s a modified {a-y:-p-@ )-rational contractive mapping with respect to'g. Assume
that the following conditions hold:

(i) T is triangular y-a-admissible;

VALY N Fs &1 3 3

fii—theresristae—ush=tmt-algag-Erg==1
1 7 WSTUE Wy ¥

(i4i) if {¢en) is @ sequence in X such that afyen, yray1) > 1 for all n € N and
gtn — g€ as n — oo, then there exists a subsequence {trenpn ) of {yea}
such that o(gw,, ). goc) = 1 for all k € N,

Then " and g have o coincidence point.

Proof. As in the prool of Theorem 3.10, we can construct the sequence { g, } with
TEn = gng) forall n € N, a(gz,. g8ur1) = 1for all n € N and ling, 5 0o g2, = g
By (iii), there exists a subsequence {g.c,x)} of {g:rn} such that gy, yo) =1,
for all k € N. By the analogous proofl as in Theorem 3 4, we obtain that T and g
have a coincidence point. ; O

-— PFor-the unigqueness of-a-commen-fixed point, we addsone-apprepriate-condi-
tions to the hypotheses.

Theorem 3.12. Suppose that all hypotheses of Theorem 3.10 (respectively Theo-
rem 3.11) hold. Asswmne that the following conditions hold:

(i) the pair {T,y} is weakly compatible;
(ii) either a(n,v) > 1 or afv,u) > 1 whenever Tu = gu and Tv = gu.

Then T and y have a unique common ﬁ'red potnt.

Proof. Assume that T'u = gu and Tv = gv. We will show that gu = gv. Suppose
that g # go. Therefore a(u,«) > 1 or u(u u) > 1. Suppose that n(u,w) > 1. It
follows that :

(P d(gu. v)) = Y(s*d(Tu, T0)) < lP("i’(Mb(w v))) + LO(Ny(u.v})),
where .
e i d{gu, Tu) ‘ d(m, T} . d(gu.T'rr).-f- d(gu. Tu)
Mplu,v) - = max{digu, gv), 14 d{gu. Tu) b+ d(v. Tv)’ 2 }
= max{d(gu, gu), —I%IY) d{gv,gv)  d{gu, gv) + dlgv, gu)

"1+ dyn.gn) 1+ d{gu,gv)’ - 28

d(gu. gv)
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and o ; _
Ny{u,v) = min{d(gu. T'u), d{gu: T'v), d(gv. Tu)} =0

This implies that

PisHdgu, gv))) < wlw(d(gu. gv)))
< ¥(digu. gv)

which is a contradiction because s > 1. Thus gu = gv. Similarly, il a(v.u) > 1,

=7 rerﬁrm—-}—mrd'g-iravmmque-pmnt-oi—‘—“—“‘—__—'——”
_ coincidence., Smce the pair. {} g} is weakly compatible and by Theorem 2.16, we
can conclude that T and g have a unique common fixed point. n

Corollary 3.13. Lei (X, d) be an «-complete b-‘nﬁ_atrz'c space with respect to ¢ and
T.g:X — X be such that TX C gX. Assume that gX is closed and there exist
a: X xX =R and L > Q0 such that for allx,y € X,

ale.y) > 1 implies s2d(Te Ty) < p(Mp(x, y)} + LO(Np(z, y)). (3.23)

where

diga, Tx dlgy, Ty (e, Ty) + gy, Tc
hlna) = medgpsQufy *Ef;(ﬂ J)I) l—+-(-c)l'(93 '1)'-3;}.' ( .)_25 (i 1 )}
d{g:c. ) dgz. Ty) d{gy. 1)

Ny, y) = mi ; )
b, ) ]mn{ler(_q.Tlr) b+ d{ge. Ty) 14 dlgy. I70)

}

and ¢.0 : [0,00} — [0.00) are continuous functions such that #(0) = 0, @t} < L.
(1) > 0 for each t > 0, Assume that the following conditions hold:

(i) T-is triangular g-o-adnmissible;
(ii) there exisis Ty € X such that a{grg, Twe) > 1;

(iii) T is a-continuous with respect to g or if {9z, )} 1s a sequence in X such that
gy, 9&ns1} = 1 for ell n € N and g, — gxr as n — oo, then there exists
o subsequence {9, )} of {gc,} such that o{ge, . gx) = 1 for el k € M.

Then T and g have a coincidence point. Moreover, assume that the following
conditions hold:

. (w) the pair {T, g} is weakly compatible;
('u) either a(u v) > 1 or alv, u) > 1 whenever Tu = gu and T'v = gu.

Then T and g have u unique Common ﬁzed pomt
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3.3 Applications to integral equations

In this section, we prove the existence of a solution of a nonlinear quadratic
integral equation taken from Allahari et al. [12].
Let C(I) be the set of all continuous funct]ons defined on I = [0,1] and
Cp:C1) x C(N) - R defined by '

plw3) = supla(t) - 4| for y e ().

otop2t=Wesdefimart=E == rRdefimodby
d(s) = (4 = (@ Ia() o0 = $upla() = WO for al . O

It is well known that {X,d) is a complete b-metric space with s = 2P (see [13]).
Let T be the r;cl: ol functions 4 : [0, +oo) = [0, +00) which satisfy the following

"+ conditions: N
(i) ~is non'd_écreasing and {(7(1))P < 4(17) for all p > 1

(ii) There exists ¢ : [0, +00) = [0, +00) which is noninereasing and continuous,
w(t) <t for all £ > 0 such that y(t) = ¢ — p(t) for all t € [0, +00).

Consider the nonlinear quadratic equation as follows:

w(t)=h f}Jr/\[ KLY f{s,al{s)ds t € LA > 0. (3.24)

Suppose that the following conditions hold:
(A1) h: T — Ris continuous;

(A2) f:T xR — R is continuous, f(i.) > 0 and there exist L > 0,y ¢ T and a
- function.£ : B2 -5 IR such that forall 1€ I, for all v, b € R with £{a,b) > 0,

If(t,a) . f(t.b)| < Iyl

(Ad) k:IxT— IR is continuous at t € I for every 5 € I and measurable at s € [
for all t € / such that £(1,5) > 0 and fo (t,s)ds < K
(Ad) WKPL? < zzims; _ '
~ (A5) there exists wo € C(I) such that for all 1 € 1,

.

{(:t:o(t),h(f.-} + A /n:.k(f.; s} (s eg{s))ds) > 0; L S
" (A8) forallteIandforalla:y,zeC() -

€(a(t), y(t) = 0 and E((2). (¢ Nz0 lmply £(x(t), 2(1)) 2 0;
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T (AT) foralite 'z-md for all -,y € C(I},

e, y(t)) > 0 implies ¢(A(£)+) f k{t,5)/ (s, 2())ds, h(£)+A f (6 )/ (5, 5(3))ds) > 0
(AB) if {zn) is a sequence in C(I) such that z, .z € C(I) and &(n(t), Tnsa(2)) > 0

for all n € N and for all L € 1, then there exists a subsequence {z,.5} of {z.}
such LhaL @n)(t),z(1)) > Oforall ke Nand for all ¢ € 1.

Theorem 3.14. Under assumptions (Al}-(A8), the integral equatwn {3.24) has
a solution in C(J).

Proof. Let T : C(I}) = C(I) be defined by

T{z)(1)=h{#)+ )\-/ k(1.8)f (s, x(s))ds for t € 1.

Let =,y € C(T) such that £(e(t). y(t)) > 0 for all t.€ I. Th‘eleforé

Il

fT(f:)(f} — T(y)(1)] [h(t) + A /0 i.'(r' s) (5. x(5))ds = h(t) - )\]0. k(fa)f(.s (s Nds}

IA

] |
A/'Muﬂuumw»—fumuma~

1A

)\[ k(e T(s) — r;( JIGES

Since ~ is nondecreasing, we obtain that
vkx(s) — plsh) < a(suplets) — (o)) = v(p(z,w)).
s€

This implies that .
Tla)(t} = T} < Al Ly(pley)).
Therefore .

tel
[,\KL'y (p(x, q) lis

AP KPEPy(d(ze, y))
N KPLPA(M (1. 3)) - |
)\"KPLP[M {r,y) — (M('r: y) ] -

F=sM () - ol (),

for all z,y € C(J) such that f(.r(f) y(t)) 0 for all tel- ’We"h‘é:{t*tléﬁﬁé"
a:CI) x C{I) — [0,00) by : e '

“(‘“'I{) - {1. 1fE ) y(t)) >0, te I

10, otherwise:

d(Zx. Ty), ."suplf(_)( )= ( )(l)l" )

CIAIA A A

":/\
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- Let 2,y € C({) be such that a(z,y) > 1. It follows that &(:z(2), y(1)} > 0 for al

t € 1. This yields : S

, s'd(Tx, Ty) < M(z,y) - p(M(z, ). ,
This implies that 1" satisfies the contractive condition in Corollary 3.7. Using (AT},
for cach = € C(J) such that a(x, Tc) > | we obtain that &(Tw{t), T2c()) > 0.
This implies that (T, T%¢) > 1. Let .y € C(I) be such that alz.y) > 1 and
a{y,Ty) > 1. Thus - '

E(x(t), y(t)) > 0 and E(y(t), Ty(t)) >0 for all t € 1.

- By applying [AG], we obtain that {(«w(t}, Ty(l)) > 0 and s0 a{x, T'y) > 1. Tt follows
that T is triangular a-orbital admissible. Using (A5}, there exists zg € (I} such
- that a(zg, Twg) > 1. Let {x,]} be a sequence in C(I) such that =, — = ¢ c(n
and aTn. Fa11) > 1 for all n € N. By (A8), there exists a subsequence {€niiy} of
{x,} such that E(eny{t). (1)) = 0. This implies that a(tyum).©) > 1. Therefore
all assnumplions in Corollary 3.7 are satisfied. Hence 7" has a fixed point in i
that is a solution of the integral equation (3.24). " : O
Corollary 3.15. Assume that the following conditions hold:
(i) h:1 =R is a continvous; 7
(i) f:1 xR - [0,00) 15 continuous and nondecreasing aund fi s > 0.

(iit) there exist L > 0 and v € I such that for all t € I, for all a.b € R with
—  a<b, we have- — - - — - — —— — e — m — e

[F(Ea) = (L) < Ly(le — bi);
(iv) k:IxI = R is continuousatt € I for every s € I and measurable at s ¢ T
for all t € T such that k(t,s) > 0 and fol L, 8)ds <K :

(v} YPEPLY < i

(w) there exists «cy € C([0. 11} such that for all t € 1. we have
1
£olt) < h(E)+ A / E(L, ) f (5, 00(8))ds.
o : -

Then (3.2{) has a solution wn C(1).
Proof. Define a mapping £ - R? > R by
Ela,b}=b—a forallabcR. _
By the analogous proof as in Theorem 3.14, we obtain that {3.24) has a solution
in C(1). _ O
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