หัวข้อโครงงานวิศวกรรมโยธา : การใช้ประโยชน์จากเถ้าหนักเพื่อแทนที่มวลรวมละเอียด

สำหรับการผลิตส่วนผสมชั้นผิวทางแอสฟัลต์คอนกรีต

ผู้ดำเนินงาน : นางสาวทิพวรรณ เพียรธัญกิจ รหัส 48360144

นางสาวอัญชลี กล้ากสิกรณ์ รหัส 48362940

นายอดิศร ธรรมบุตร รหัส 48370358

ที่ปรึกษาโครงงานวิศวกรรมโยธา : ดร.รัฐภูมิ ปริชาตปรีชา

สาขาวิชา : วิศวกรรมโยธา

ภาควิชา : วิศวกรรมโยธา คณะวิศวกรรมศาสตร์ มหาวิทยาลัยนเรศวร

ปีการศึกษา : 2551

บทคัดย่อ

โครงงานนี้มีวัตถุประสงค์เพื่อพัฒนาส่วนผสมชั้นผิวทางแอสฟัลต์คอนกรีตโดยการใช้เถ้า หนักมาแทนที่มวลรวมละเอียด โดยทำการศึกษาความสัมพันธ์ระหว่างปริมาณการแทนที่มวลรวม ละเอียดด้วยเถ้าหนักในปริมาณ 0, 10, 20, 30, 40, 70 และ 100 % โดยน้ำหนักต่อคุณสมบัติของ แอสฟัลต์คอนกรีตในด้านต่างดังนี้ คือ ค่าความหนาแน่น ค่าการไหล ค่าเสถียรภาพ ค่าร้อยละของ ช่องว่างระหว่างมวลรวม และค่าร้อยละของช่องว่างที่แทนที่ด้วยยาง AC (60/70)

จากผลการทดสอบ พบว่าการแทนที่มวลรวมละเอียดด้วยเถ้าหนักบางส่วนสามารถ นำไปใช้งานได้ตามมาตรฐานกรมทางหลวง ทั้งนี้ขั้นตอนและรายละเอียดผลการทดสอบได้มีการ นำเสนอไว้ในปริญญานิพนธ์ฉบับนี้ Project Title : Utilization of Bottom Ash as Fine Aggregate

Replacement for Producing of Asphaltic

Concrete Mixtures

Name : Miss. Thipphawan Phianthanyakit Code 48360144

Miss. Anchalee Klakasikorn Code 48362940

Mr. Adisorn Thammaboot Code 48370358

Project Adviser : Dr. Rattapoohm Parichatprecha

Major : Civil Engineering

Department : Civil Engineering ,Faculty of Engineering

Naresuan University

Academic Year : 2008

Abstract

This study aims to utilized bottom ash as fine aggregate replacement in producing of asphaltic concrete mixtures. The percent replacement of bottom ash which is considered in this study is 0, 10, 20, 30, 40, 70 and 100 % by weight, respectively. Each mixture was investigated by using DOT's standard experiments as relative duration stability, flow, density, percentage air void of asphalt, percentage air void of aggregate and percentage air void replace with asphalt.

Based on the test results, it was found that the asphaltic concrete can be efficiently produced by using bottom ash with suitable percent replacement. Furthermore, this approach can be reduced cost and enhanced environmental quality during production of asphaltic concrete.