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Abstract

This research project is a theoretical study of the particle and spin transport in a
metal and a semiconductor with Rashba spin-orbit coupling system within a lattice model. A
lattice model is used to investigate conductance spectra and the spin polarization of the
system. An appropriate matching conditions at the interface was developed in order to
calculate the particle current across the junction. This model can provide the conductance
value for both electron and hole Fermi surfaces, We found that the injection of the particle
from ferromagnetic to the Rashba system gives the similar results from that using the
injection from metal. An exchange energy in ferromagnetic does not affect to the scattering
potential at the interface of the junction. For simplicity, we study the injection particle for
normal metal instead the ferromagnetic. In this project we consider a heterostructure for
two system.

First, we calculate the particle and spin transport in a metal and a semiconductor
with Rashba spin-orbit coupling system. It found that the tunneling conductance was
calculated as a function of applied voltage and showed the containment of two
distinguished features, the energy spacing between which equal to the Rashba spin-orbit
coupling energy. The conductance is increased with the applied voltage. When consider the
impact of interface qualities we found that the conductance was suppressed with 'mcreasé
the barrier potential. However, it can be enhanced when equally increase the spin-
conserved and spin-flip scattering at the interface of the junction. This result can be showed
both electron and hole conductance. As for spin polarization of conductance in the
absence of spin-flip scattering potential, the maximum magnitude occurs at the voltages
equivalent to the two crossing points in the Rashba energy band.

Second, we also calculate the charge conductance across a metal/cubic
semiconductor with Dresselhaus spin-orbit coupling junction. The conductance at a zero-
applied voltage is caleulated by using a free electron and scattering methods. The carrier
density of semiconductor and the strength of Dresselhaus system are investigated on the
overall conductance. We found that the conductance appears a kink feature which occurs
when the Fermi level reaches the coincidence of Dresselhaus spin-orbit coupling band
interaction. The Dresselhaus coupling strength increases, the conductance decreases until
the strength reaches a critical value. Beyond this value, the conductance gradually increases
with the coupling strength. The conductance can be enhanced when both types of interface
spin scattering (spin-flip and non-spin-flip) are risen under certain condition. The spin
polarization of current in the Dresselhaus system at a zero-applied voltage is also studied.



We found that its magnitude is large by increasing the carrier density and it weakly depend
on the interfacial scattering. However, at the low carrier density, the sign of spin polarization
switches when both types of interface spin scattering are taken into account.

This findings in this project can be used to help design spintronic devices that
contain these types of interface
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We presented both the normal metal and the RSOC in an infinite 2D square lattice

i a 2y planc (sce Fig 1) and the sketched of encrgy dispersion of the model as see in
Fig. 2. We described the RSOC system by E¢.(1) and for simplicity we assume there
arc only nearest-neighbor hopping energy. The simplest tight binding Hamiltonian
that can be deseribed the imfluence of Rashba spin-orbit coupling in a square lattice

[15. ‘27] has the form.

1’[{;5 N Z(E”"“y u ‘”)(f"’t”m(?m"" TLlr Z(( 'rT:—i-L.'nrr(r‘nmcr + (—_'rTmn+i¢T(-7’rmm‘r + H.C '-)

nmo nmao

| ! [H) Z {{:‘rill'I't,uz(T’(“'Ty)aaf(_ nme ( u.m+1,a’l {-”T" )tTr'l’("{?“ﬂ'T i [1(’!} (1)

’
nmaoag

where the subscripts n and m indieate the colmmn and row indices of the square

lattice site. The tight-binding Hamiltoman is obtained by discretzing the free electron

/e

Hamiltonian: p?/2m?* + a0y Py — 0upy), where m* is the elcetron cffective mass and

p is the electron momentum. Cf (C,,.,) is the creation (annihilation) operator of

an clectron at indices (run) at lattice site with spin 0 =T, ¢40 is the on-site energy;

tr = h?/2m*a is the hopping energy (nearest-neighbor) for a lattice constant « (sce

Fig. 1), g is the chemical potential. a is the Rashba parameter, Ta(yy 18 the Pauli’s



matrix, ly, = ov/2a denotes the RSOC strength in the lattice representation (t,, = 0,
the Hamiltonian is reduced to that of electrons in a normal metal).

The Hamiltonian can transform into the momentum space by using the Fourier
transform and can be obtained the eigenstates and cigenvalues by the standard quan-
tam mechanics, thus the energy dispersion relation of electron in the Rashba system

are

E(k) =g le)=2T,, Siti%(hesa) - Sillz(]-‘y!.'i.) (2)

where Eyp(k) = (er — i) = 2tp (cos(kpa) + cos(k,a)) i1s the eigenvalue for a 2DEG
without spin-erbit coupling. The plus and minus sigus are for plus and minus branch
of Rashba energy spectrum, respectively. kyg, is the wave vector in a(y) direction.
Assuming an incoming electron from the normal metal side, the electronic wave
function of electron with the energy £ in the metal is written as a linear combination
of incident momentum state and reflected states of the same energy and &, Based on
the spin part of the wave function, we again have two equally likely incident states. In
the absence of the applied magnetic field, we write the two cases of thie wave function

i the metal side as

{Tk-!’ ) . dqean 1 o iean ! Ll' f,ﬂ.‘yuu! 3

Al m) = ; - e : (3)
L

[,-'1-'1_; ! ) - Jigean 0 { L —igran "2y Jikyma 4

Unfaliam) = Je + ¢ ( _ (4)
1 o

where n,m represent the indices of the coluinns and rows of the lattice points, ¢, =
é('o;ﬂ_l {(F —en + 1L 21‘:\, I }H(!a'y(i_)) ] — ‘2!.;\-'] 15 the wave vector along the x direction
with |¢.| < 7/a and |k,| < 7/a. rje is the relieetion amnplitudes of spin-o state in
case J.

In order to focus our attention on the effect of the Rashba system on the particle
transport across the junction, we set the hopping energy along the surface in the
metal to be smaller than that along the direction perpendicnlar to the surface, 1.,
t;\r = (.1ty. This choice of the parameter results in the energy contours as shown in

Fig. 3. The parameter Fyy = (exy—p1)/2(Ly 41y ) is called the filling pavameter. In this
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Ficure 1:  Schematic illustration of the square lattice junction of a normal
metal /2DEG with RSOC in @y plaue, a is a lattice constamt of the system, and

nm indicate the colwnn and row indices of the squave lattice, respectively.
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Figure 2: Sketches of the cnergy dispersion of the clectron in the metal (left) and the
Rashba system (right). The dashed hne that evosses both sides shows the momentum
states with the same by, [0, Epin, Bri. and Egre are dependent with k. They
correspond to the maxinmm energy level, minimmu encrgy level, the condition of an
appropriated cigenstates for the 15 and 2" erossing point of RSOC band dispersion,
respectively. Note that Epy = (ep — pt) — 2tp(1 + cos(kya)) — 25, sin(kya) and Epy =

(e — ) — 2t p(—1 4 cos(kya)) + 2L, sin(kya).

work. we use the half-filling Fermi surface (Fyy = 0) represented as the thickest energy
contour in the figure. Also, in most cases the energy band width of a metal 1s about an

order of magnitude larger than that of a Rashba system, we therefore set onr enerey
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Figure 4: Plots of contour energy of RSOC system (left) Fermi levels in minus branch

and (right) for plus branch, note that the encrgy is multiply £y.

parameters accordingly. That is. we sct the hopping encrgy in the Rashba system to
be tg = 0.1ty. The spin-orbit coupling energy that canses the spin-sphitting states is
lso. Which is set to be t,, = 0.4ip = 0.0d 5, unless we state otherwise. Similarly, we
define the filling parameter for the Rashba system as Frg = (1t — cp) /(dtr F 2v/21,,).
Each {illing level is shown in Fig. 4, where the left panel is for the minus branch and
the right panel is for the plus branch. However, we also consider effects of t,, on the

conductance spectrium as will discuss later.



For wave function of the Rashba region, There are three forms of the electronic

wave function, depending on the energy. For I < Epy(ky),

i sin(—kj'u) +sinkya

: : 1 Ry = -
(j:‘?y (??-.. I?I-) — t—j+ﬁl£_kj Jan > \/5:112(—1.';‘0)-1-3:112 kya
= 1
isin{ky a)+sinkya
s f-j...(’ik;mz I \/sin"j'(k;ujﬂLsinz kya ¢ ikyma ‘ { .")

for Em(ﬂ‘_,_,} S EX ff/';g(!’:'”%
isinkYatsink,a

(_’rﬁy(??. ) = f,‘+;-”“f““ _]_. VEin? kfatsin? kya

V2 I

isin{k; a)4sinkya

AL I}ﬁ(\ih_,—.rm 1 \/.L‘,in'—’(lr,_uH—:&iql‘z Ry (Jiﬁ‘cs,J;rcz ) (G)
a) .
V4 1
for £ > Epal(k,),
| isink} a+sin kya
(;‘T;‘Iu(i’?, IH) - IJ'+(IPLJ‘ an \/j 5 sin? bt a+-sin kya
i |
isin{—hy a)+sinkya —l
A~ _u(.if-—f",-,_- Jan _ﬂlﬁ \/s-in'-’{ —k «)+sin? kyn (,ilc_,,nm i

| g \D 1 J (7)

where Epi(ky,) and Epy(k,) are defined in the Fig. 2, j = 1,2 refer to the two cases
of different incoming states in the metal, £ correspond the transmission amplitudes

of plus and minus branch in case j, respectively, and L are defined as

1 1 fgg( I + '2[[; ('U.‘\‘( l"y&))
('U,‘é(]l‘_,_. HJ == f‘ n 12
i 80

9
1 /42, (482, 4+ Gt2, — E? — dtpF cos(kya) — 2 (214 + 12,) cos(2k,a))
B (th+ &)

+

. C

The = signs are for the plus and minus branch.
All wave function have positive group velocities or the vector momentum k, have a
positive imaginary parts. As mention above we developed the suitable way by making

the quality of interfacial scatiering to caleulate the transport properties of particle.



With the translational symunetry of the system, the component along the surface (k)
of a momentnm is conserved within a reciprocal-lattice vector corresponding to the
translation of a distance between the lattice networks. Therefore, we can used the

Bloch’s theorem to write the eigenstates of Eq.(1) in the following form
Uln,m) = et™kva /b (p) (9)

where n and m indicated the column and row indices as sce in Fig. 1, —7w/a < &y
w/a. Substituting Ee.(9) mto Eq.(1). the 2D equations arc reduced to the following
LD equations for each ky

> TR, YU () = BU*(n). W

!
n

z 7 . o . . . . .

T s (1, n') is the suitable (2 % 2) energy matrix between two ions with column indices
] i . o . ‘

n and 1 . neach system, we have to set of a different equation to deseribed both bulk

state of normal metal and Rashba system, these equation still provide the matcehing

A . . . rle, vk 2 Y
condition for two wave functions, Uy/ (n) and Uy’ (n) at the interface,

U (0) — U (0) =0 (11)
INU3H(—1) = Tuallj? (=1) + VU (0) = 0 (12)
AN N 8 A
where V = . The diagonal clements of V from now on mean Vg = Vi =
Vie W

Vi, which is a spin-conserved that related to the potential barrier of the junction,
the off-diagonal clements are denoted by Vi = Vo = Vi which mean the spim-flip
. - . =8 {R —IL.-'-U
mterfacial scattering and Ty =
tso Ir
After substituted the wave function of both normal metal and RSOC into the

boundary condition, we can obtained the transmission (T) and reflection (R) proba-
bility which is conservation of electrie current at the interface,

An electrical current Howing through a solid, and having unit of charge per unit
area which mean a measuvement in a perpendicular to the flow direction. For the

number of free electron charge per unit volume n, flowing to a solid with velocity v,



resulting in vohune current J is given by

Jd = Z CNLUL (13)
i

where ¢ is the charge on an electron. Since the current is independent of @, we consider
the current density as a function of applied voltage V' in the ROSC system as
J= Y ol PENFBr=eV) — /(). (14)
3 E:;EJ,L':
where f(I) is Fermi distribntion function. By changing the integration variable
and setting temperature to zero for simplicity, one can obtain the expression for the

electric current as

) e A pr /2 eV )
JV) = = / e, / dE - T(E) (f(E — V) — [(E)) (15)
(2m)* /2 0

where A = a % « 18 the avea of lattice network, thus the differential conductance at
zero temperature is,
o i
LdV
« e

(_,2A wf2
63

("')'“ ) —7 /2

dley T () (16)

Note that, the applied voltage was considered in both positive and negative value and
the effeets of finite temperature on the conductance spectrum is a sinear feature, ie,,

it not change the position of conductance spectrum.
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The metal and eubic semiconduetor with Dresselhaus spin-orbit interac-
tion is modeled by an infinite two-dimensional (2D) system which lies on
plane. The region at = < 0 is occupied by metal while the Dresselhaus sys-
tem is in 2 > 0. These two regions are separated by a flat interface at « =0
where interfacial seattering (we are only interested in the elastic scattering)
is represented by a Dirac-delta function potential [45]. The Hamiltonian in
the one-band effective mass approximation with exchange interaction in the
metal and Dresselhaus spin-orbit coupling has the following form

= o XL ~ W .
H={p——p+V(x,2)}H + Hp(x). (1)
2m(a)

The Sehrodinger vqunri(m is expressed ina 2 x 2 matrix acting on the
spinor s*tat(“s' [ is 2 x 2 identity matrix and the momentum operator p =
—1}'2(1 0 1293, The oftccm e mass m(x) is position dependent; i.e., fm(x)]7' =

1()(-—r) 4+ (m*) " 1O(x), where m and m* are the effective clectron mass
in the metal and the Dresselhaus system, respectively. O(x) is the Heaviside
step function. V(x,z) is also a position dependent function, modeled by the
expression

Vdyz) =Hi(z)“ Ep(O(=e)). (2)

where H represents the scattering potential at the interface. The diago-
nal elements of H, HIT and HY correspond to the non-spin-flip scattering
put(_‘mial ni’ the junction while A™ = I deseribe the spin-flip scattering,
Ep = (RPqF )/( )i ) is the Foermi energy of the metal. The Dresselhaus Hamil-
tonian term HD( ;) 1s written as

I’ID = 18(0'2 ks — O—J:k-l’): (3)
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Figure 1: The sketches of the energy contour (top) and energy spectra (bottom) of electron
in metal {on the left) and in the Dresselhans system (on the vight). Ez = hk3,/(2m*) is

the Dresselliaus energy. Ep is the Fermi energy in the metal. The parameters ave defined

in the text.
We then write the magnitude of the wave veetor as a function of the carrier

density by using the relationships in Eqs.(6) and Eqs.(7). For E > 0, k* are
(8)

on
i!‘:*::/fD( H_”*l:f:j;)
V np

The — and -+ signs in the right hand side of equation above are for the plus
and minus branches, respectively. For E < 0, the wave vectors are obtained
(9)

11

as
k= ko (1 =1
nn
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The — and + signs in the right hand side of equation above are for |k| < kp
and kp < |k| < 2kp, respectively.

Finally, we can obtain both conductance and the spin polarization of
current as a function of the electron carrier density across the junction by
using the scattering method. In this method, we first consider an incoming
clectron from one side of the junction, and calculate the reflection and trans-
mission probabilities, which are Iater nsed to obfain the current density of
the junction. We point out that these quantities are at zero temperature.

The wave function of electrons on the metal side with energy F is therefore
written as a linear eombination of incident momentum states and reflected
states of the same energy and the momentum along the surface k.. Because
there are equal number of eleetrons with opposite spin directions, there are
two possibilities of the wave function. For simplicity, we clioose the spins
of incident cleetrons along the z-axis. The wave function of electron in the
netal side can be written in two cases, depending on the spin orientation of
then, as

] J— [ (o A — iyt iz 2 -
!::"‘f\l[) =) [) :l {,l Jac i + ).Jlll e Ut e =z Z (l())
1(2) 0 i o 2y e A=z 1t

YiM 1/ 1F oy ‘ ‘S (11)

where ¢, = qeos@ and ¢, = ¢sinf. 0 is the angle between g and @ axis and
q = npy/ 14 E/Byp, where np = ¢ /2m is the carrier density at Fermi level.
rjo is the reflection coefficient of electron reflection with spin o in case j of
incident electrons,

Similarly, the wave function of the Dresselhaus system is obtained as a
linear combination of two outgoing eigenstates of the same cnergy and k.

sy, =, ShTF 008 (B3 T g, |
S (m e sin (2t 47| (1)

H .
o j—

e Y r_;f.-_,..-) ik

cos (g_ + )

where j=1, 2 refer to the wave functions of the Dresselhaus system corre-
sponding to the two cases of spin orientation of incident electrons. ¢+ are
the angles between J* and the x-axis. For E > 0, tjy and 7;_ are the trans-
mission amplitudes for plus and minus branches, respectively. When E < 0,
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t;4 and t;_ refer to the transmission amplitudes of electrons for |k < kp and
kp < |k| < 2kp, respectively. The upper and lower signs in the Eq.(12) are
for £ < 0 and E > 0 respectively. &F = k¥ cosppe and kF = k¥ singpe.
The relationship between the angles ¢+ and 6 is k, = k¥singgs = ¢sind
as shown in Fig.1.

We now apply the matching conditions to the wave functions on both
sides to obtain the transmission and reflection amplitudes: the continnity
of the wave function and the discontinuity of its slope (0v/dx), due to the
delta~-function like barrier at the intertace ave,

:‘{‘"})( a0 290 1) };)( B D7, 2=/ (0) (13)
e ()L' ” ()z 51) 1 o N
L 2kp 2 +ikp— ) A0, '
e ()1 ().a. ( : D 47k (0); (14)

(8]

where Z = 24L Jotermines the strength interfacial seattering. The diagonal
}E qrF o =4 o

. ol el JH]’;IM H!!{!; .
components are Zy = P and 2y = . We assume Zp = 7 = Z.
. e . H, i
For the oft-diagonal components, we assmne Z‘ﬂ = Bt 3 7.0% TRt —
- h }i Uiod 1 f| qr

Zp. From these matching conditions, we can calculate the reflection and
transmission probabilities (1., 1) which satisty the conservation of electric
current at the interface.

From the transmission probabilities, the differential conductance at zero
temperature and at the zero-applied voltage is

L. Jon 2
Ch( Vs /, ZZ_" / dcosty " (17(V. ) +T-(V,0))  (15)

Um f: i

where £2 is the area of the metal and ¢, = sin™'[k(n) /q(n)] is the maxi-
mum angle incident electron from the metal. 75, (V. 0) and T;_(V, 8) are the
transmission probabilities for plus and winus brauches in the Dresselhaus
system, respectively.

We define the spin polarization of current P, which measures the differ-
ence in the current densities of the carriers between up spin and down spin
in unit time, normalized to the total particle current. Thus, the spin po-
larization of current in the Dresselliaus system in terins of the transmission
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probabilities is written as

df cos HZ (T;-(V.0) cos - — T4 (V,0) cos pp+)
P= (16)
f ., 0 cos Hz (T;—(V,8) + T;5(V, 0))

i=1
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Article history: We theoretically study the charge conductance across a metal/
Received 29 July 2013 cubic semiconductor with Dresselhaus spin-orbit coupling junc-
Accepted 5 September 2013 tion. The conductance at a zero-applied voltage is calculated by
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A metaljcubic semiconductor with dul o Lk featuravbtiict hene Rl [l
Dresselhaus spin-orbit coupling junction uctance appears a kink feature which occurs when the Fermi leve
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Spin polarization of current interaction. The Dresselhaus coupling strength increases, the con-

ductance decreases until the strength reaches a critical value.
Beyond this value, the conductance gradually increases with the
coupling strength. The conductance can be enhanced when both
types of interface spin scattering (spin-flip and non-spin-flip) are
risen under certain condition. The spin polarization of current in
the Dresselhaus system at a zero-applied voltage is also studied.
We found that its magnitude is large by increasing the carrier den-
sity and it weakly depend on the interfacial scattering. However, at
the low carrier density, the sign of spin polarization switches when
both types of interface spin scattering are taken into account.
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1. Introduction

The advantage of large spin degrees of fieedom, including the magnitude and direction, provides a
large possibility for the design of spintronic devices [1-8]. The starting point of spintronics is the
appearance of spin aligned with a certain direction, the electron flow can give rise to spin-polarized
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current. One of the important devices is a ballistic spin field effect transistor (SFET) that was proposed
by Datta and Dass. It consists of two Ferromagnetics (FM) separated by a semiconductor (SC) [9], based
on the spin precession controlled by an external gate voltage via a spin-orbit coupling. A source and
drain are FM acting as the injector and detector of electron spin.

Recently, the large spin polarization can be found in a non-magnetic semiconductor due to the
spin-orbit interaction. It is known that in a SC, lacking inversion symmetry gives rise to the Rashba
effect [ 10-12], resulting in an imbalance spin-dependence of charge conductance and spin-polarized
current. In addition to the Rashba effect in a SC, the Dresselhaus spin-orbit coupling caused by the bulk
inversion asymmetry exists widely in 1ll-V compound semiconductor with Zinc-blende crystal
structure [13]. The significant progresses have been made in both theoretical and experimental inves-
tigations of spin-dependent tunneling through the heterostructures consisting of the Dresselhaus
spin-orbit coupling {8,14-22]. An important parameter to determine the efficiency of spin-dependent
across such heterostructure is the interface properties (i.e., spin-flip and non-spin-flip scattering
potentials) [23-26]. They can cause significant madification of spin current and spin accumulation
near the interface [27]. Furthermore, the combining effects of both types of spin-flip and non-spin-flip
scattering can enhance the charge conductance [28,29] and the magnetoresistance [30,31}]. These
studies aim to utilize spin-dependent current to develop such devices in the future. When the optimal
design of the next generation devices based on the Dresselhaus system, one needs to understand and
characterize properties of semiconductor materials in tunneling junctions. In addition, the improve-
ment methods to find the alternative spin polarization of Dresselhaus spin-orbit coupling using a junc-
tion conductance measurement are the challenge research.

In this work, the charge conductance and the spin polarization of current across a metalfcubic
semiconductor with Dresselhaus spin-orbit coupling in a ballistic limit are investigated. The electron
density of Dresselhaus system is varied to consider the overall conductance. We found that the con-
ductance at a zero-applied voltage exhibits a characteristic kink and gets a maximal value of the spin
polarization of current when the Fermi level hits the intersection of the Dresselhaus splitting band.
The interface spin scattering is taken into account by using the normal and spin-flip potential barriers.
We show how both types of scattering barriers affect on the conductance and spin polarization of cur-
rent. We first describe this paper as following, the quantum tunneling model and assumptions are
introduced in Section 2. The results and discussions are in Section 3, and the last one is conclusions.

2. Model and assumptions

A metalfcubic semiconductor with Dresselhaus spin-orbit interaction is modeled by an infinite
two-dimensional (2D) system which lies on xz plane. The region at x <0 is occupied by metal while
the Dresselhaus system is in x > 0. These two regions are separated by a flat interface at x = 0 where
interfacial scattering (we are only interested in the elastic scattering) is represented by a Dirac-delta
function potential [32]. The Hamiltonian in the one-band effective mass approximation with exchange
interaction in a metal and the Dresselhaus spin-orbit coupling system has the following form

H= {pT;()(—)ﬁJrV(x,z)}huHD(x). (1)
The Schriodinger equation is expressed in a 2 x 2 matrix acting on the spinor states. I is 2 x 2 identity
matrix and the momentum operator p = —ii(X2 + ZZ). The effective mass m(x) is position dependent;
ie, [mx)] ' =mO(-x)+ (m*)"'@(x), where m and m" are the effective electron mass in a metal and

the Dresselhaus system, respectively. @(x) is the Heaviside step function. V(x,z) is also a position
dependent function, modeled by the expression

V(x,2) = Ha(x) — EF(O(-X)), (2)
where H represents the scattering potential at the interface. The diagonal elements of H, H'' and H!!

correspond to the non-spin-flip scattering potential of the junction while the off-diaganal elements,

H' = H' describe the spin-flip scattering. Er = (h®q%)/(2m) is the Fermi energy of metal. The
Dresselhaus Hamiltonian term I‘-jl(x) is written as
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HD = ﬁ(o'zkz = Jxkx), (3)

where j3 is the Dresselhaus coupling parameter of the junction. oy, oy are the Pauli spin matrices, and k
is the wave vector.
From the Hamiltonian, we can obtain the eigenstates and eigenenergies for electrons in each
region. The electron eigenenergy in a metallic side (x < 0) is therefore
hq?
—_ —_— E 3
E(q) ==, — Er (4)

where q = /g2 + g2 is the magnitude of the 2D electron wave vector.
In the x > 0 region, the eigenenergies are obtained as
E* (k) = L [J<2 & 2!<Dk] (5)
2m ?
where k = \/ki - k§ is the magnitude of the 2D wave vector and kp=m*gfh is the strength of the
Dresselhaus system (If kp = 0, the system becomes a normal SC).

The free electron energy dispersion is split into two branches due to the Dresselhaus spin-orbit
interaction: plus and minus branches. The two branches meet at the momentum k =0, this point is
called the crossing point. The energy from the minimum point to the crossing point is the Dresselhaus
energy, defined as E; = hzkf,/(Zm*). The sketches of the energy spectra of the electrons in a metal and
the Dresselhaus system are shown in Fig. 1.

In this work we goal to obtain the conductance and the spin polarization of current as a function of
the carrier density of the Dresselhaus system at zero temperature. The carrier density is obtained by

]

0

Metal * Dresselhaus system

Fig. 1. The sketches of the energy contour (top) and energy spectra (bottom) of electron in a metal (on the left) and in the

Dresselhaus system (on the right). Eg = hzkf_-,/ (2m?*) is the Dresselhaus energy. E¢ is the Fermi energy in a metal. The parameters
are defined in the text.
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integrating the density of states over the energy range from the bottom of the energy spectrum to the
Fermi energy. For the Fermi energy below the crossing point, the electron density is

n<(E) = np 1 +E£,;' (6)

where np = k /7. For the energy above the crossing point, the electron density is related to the energy
by

n> () = o (1 +%) (7)

We then write the magnitude of the wave vector as a function of the carrier density by using the rela-
tionships in Egs. (6) and (7). For E> 0, k* are

k* ~J<D(\/%1¢1). (8)

The plus and minus signs on the right hand side of the equation above are for the plus and minus
branches, respectively. For E < 0, the wave vectors are obtained as

Ikt —ko (1 $§) 9)
D

The plus and minus signs on the right hand side of the equation above are for |k| < kp and
kp < |k| < 2kp, respectively.

Finally, we can obtain both conductance and the spin polarization of current as a function of the
electron carrier density across the junction by using the scattering method. In this method, we first
consider an incoming electron from one side of the junction, and calculate the reflection and transmis-
sion probabilities, which are later used to obtain the current density of the junction. We point out that
these quantities are at zero temperature.

The wave function of electrons on a metal side with energy E is therefore written as a linear com-
bination of incident momentum states and reflected states of the same energy and the momentum
along the surface k. Because there are equal number of electrons with opposite spin directions, there
are two possibilities of the wave function. For simplicity, we choose the spins of incident electrons
along the z-axis. The wave function of electrons in a metal side can be written in two cases, depending
on the spin orientation of them, as

Ty F < 3
e
5\211 _ (\10“' el 4 [].ZE ]eiq,.x) pld:Z
1 I

where ¢, =q cosf and g,=q sin0. 0 is the angle between q and x-axis and q = ny v/ 1+ E/Er, where
ng = q2/2m is the carrier density at Fermi level. rj; is the reflection coefficient of electron reflection
with spin ¢ in case j of incident electrons.

Similarly, the wave function of the Dresselhaus system is obtained as a linear combination of two
outgoing eigenstates with the same energy and k;

il S i (P 4 @
: Feos (457 _, sin(@e+3y7 .\ .
g)(x| Z) — (I_H_l’ ( 2 4) :l e:F’kxx + tj— [ ( 2 4) ]elkxx) e[kZZ,

+sin (% +1) cos (%-+3)

where j = 1, 2 refer to the wave functions of the Dresselhaus system corresponding to the two cases of
spin orientation of incident electrons. ¢, are the angles between k™ and the x-axis. For E > 0, t;» and t;_
are the transmission amplitudes for plus and minus branches, respectively. When E <0, ;. and ¢;_ refer
to the transmission amplitudes of electrons for |k| < kp and kp < |k| < 2kp, respectively. The upper and
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lower signs in Eq. (12) are for E < 0 and E > 0 respectively. k; = k* cos @« and k; = k* sin ¢,.. The rela-
tionship between the angles ¢,. and 0 is k, = k* sin ¢ = qsing as shown in Fig. 1.
We now apply matching conditions to the wave functions on both sides to obtain the transmission

and reflection amplitudes: the continuity of the wave function and the discontinuity of its slope (9]
dx), due to the delta-function like barrier at the interface are,

Jx=0"2) =y (x=07,2) =y (0), (13)
m oy ovy 0
— —— 0
(m' x x| ( )‘l’" (0), (14)
where 7 = ﬂ determines the strength interfacial scattering. The diagonal components are Z;; = L:i:T'
F

and Zliﬁ':f*. We assume Z;,=Z; =Z,. For the off-diagonal components, we assume

Zy = "’”“ =27 ’;]'f’“ = Zr. From these matching conditions, we can calculate the reflection and trans-

m:ssmn plobabllltles (Rjo. Tjz) which satisfy the conservation of electric current at the interface.

From the transmission probabilities, the differential conductance at zero temperature and at a
zero-applied voltage is

eEqF

G(V=0)= f” dOcosUZ i+ (V,0) + T;-(V,0)), (15)

where £2 is the area of a metal and 0y, = sin” '[k(n)/g(n)] is the maximum angle of incident electron
from a metal. T;(V,0) and T;_(V,0) are the transmission probabilities for plus and minus branches in
the Dresselhaus system, respectively.

We define the spin polarization of current 7, which measures the difference in the current densities
between up spin and down spin in unit time, normalized to the total particle current. Thus, the spin

polarization of current in the Dresselhaus system in terms of the transmission probabilities is written
as

’n docos 037, (T (V, 0) cos ¢ — Ty, (V,0) cos - )

3 o : (16)
et docos0y 2, (T;- VU)+F (V,0))

3. Results and discussions

In this section, we show and discuss how the carrier density (n) of the Dresselhaus system, the
Dresselhaus spin-orbit coupling strength (kp), and the interfacial scattering potential (i.e., non-spin-
flip (Zo) and spin-flip barrier (Z)) affect the conductance and the spin polarization of current at zero
temperature. In our numerical plots, we set infm” =10 and explore the effect of variation of other
parameters. All conductance plots are in units of €?£%q;/h27.

The plots of differential conductance at a zero-applied voltage G(V =0) as a function of the carrier
density of the Dresselhaus system for different Zg (Zg = 0) are shown in Fig. 2(a). One can see that the
impact of the carrier density influences the conductance, an increasing of n can enhance the G(V = 0).
There are two distinguish features at n=0and n = np = kQD/TC. corresponding to the electron filled up
to the energy at the bottom and the branch crossing of the Dresselhaus splitting band, respectively. At
n= kf, /7, the carrier density depends on the Dresselhaus coupling strength or the parameter
kp. Effects of interface spin scattering on the overall conductance can be clearly seen in the figure,
As expected, the spin scattering suppresses the G(V = 0) because the particle transmission probability
is reduced by the potential barrier. Fig. 2(b) shows the plots of G(V = 0) vs n for combining the effects
of both kinds of spin scattering at the interface. When Z; = 0.5, the small increase of Zr < 0.5 slightly
affects the conductance. For Zr> 0.5, the conductance get suppressed. In Fig. 2(c) where Zy=2.0, one

can see that the G(V =0) can be enhanced when Zr increases from 0 to 2.0. The conductance usually
decreases when Zr is greater than 2.0.
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Fig. 2. Conductance at a zero-applied voltage G(V = 0) as a function of the carrier density nin case of (a) Zy =0, (b) Zy = 0.5, and
(c) Zo = 2.0 for different values of Zr.

Both effects of interface spin scattering can clearly seen in Fig. 3(a) and (b). We plot the conduc-
tance G(V=0) as a function of normal interface spin scattering Zo for various values of spin-flip scat-
tering Z. The carrier density n slightly below and above the crossing point of Dresselhaus energy band
is considered. It is seen that the conductance can be enhanced with increasing Z¢ until a maximum
value at Zg ~ Zr.

In Fig. 4, the plots of G(V=0) as a function of kp for selected values of the carrier densities are
shown. We see the conductance exhibits unusual behavior, it does not always increase with the
strength of Dresselhaus spin-orbit coupling. For the high transparency regime Zp =0, the G(V=0) is
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Fig. 4. Conductance at a zero applied voltage G(V=0) as a function of Dresselhaus spin-orbit coupling strength parameter kp for

selected values of the carrier density n. ng is defined as ng = g3/, (a) Zo =0 and (b) Zy = 1.0.

suppressed with increasing kp. The suppression continues until kp reaches the value of vnm. Beyond
the critical value, the G(V=0) can gradually enhance. For the high barrier potential (Zp=1.0 in
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Fig. 5. Spin polarization of current at a zero-applied voltage G(V =0) as a function of the carrier density n in case of (a) Z, = 0 and
(b) Zp = 1.0 for different values of Z.

Fig. 3(b)) or a tunneling limit, the increase of kp from 0 to \/n7 barely changes the conductance. How-
ever, the conductance linearly increase when kp is larger than +/n7. Noftice that in this plot we ignore
the effect of spin-flip scattering.

Finally, we consider the spin polarization of current of the Dresselhaus system at a zero-applied
voltage as shown in Fig. 5(a). This quantity tells us about the imbalance of the spin-up and spin-down
particle current densities at the Fermi level. Increasing of the carrier density can enhance the magni-
tude of the spin polarization of current. Its maximum value occurs at n = np. When the carrier density

o
th

0.4

03

Spin polarization of current

02 L 1
0

Fig. G. Spin polarization of current at a zero-applied voltage as a function of Z, for various values of Zg This plot we use the
carrier density 11=1.25 % 10~*ng
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is larger than np, the magnitude is decreased. Either increasing of normal or spin-flip scattering poten-
tial has small effect on the spin polarization of current in the Dresselhaus system. Unlike in a metal
[33], both Z, and Z strongly affect the spin polarization. However, the combination effect of Zy and
Z can switch the sign of spin polarization for the low carrier densities (see Fig. 5(b)). To clarify the
effect of Zg and Zr on the spin polarization in the Dresselhaus system, in Fig. 6 we plot the spin polar-
ization as a function of Z, for different values of Z at the carrier density n=1.25 x 10~%n It is shown
that the increasing of Z can enhance the spin polarization. When increasing effect of Z, the spin polar-
ization is suppressed.

4. Conclusions

In this paper, the charge conductance and the spin polarization of current across a metal/cubic
semiconductor with Dresselhaus spin-orbit coupling are calculated in a two-dimensional system via
a free electron approximation and the scattering method. The impact of the carrier density and the
coupling strength of Dresselhaus system on the conductance at a zero-applied voltage are considered.
There is a distinguished change in the conductance when the Fermi level meets the crossing point of
Dresselhaus energy dispersion. The increase of Dresselhaus coupling strength suppresses the conduc-
tance until the strength reaches a critical value /nm, (n is the carrier density of the Dresselhaus
system). Beyond this value, the conductance gradually increases with the coupling strength. The
conductance can be enhanced up to the maximum value when both types of interface spin scattering
are increased under certain condition. We also consider the spin polarization of current at a zero-
applied voltage as function of the carrier density. The maximal value of the spin polarization of current
is also found when the Fermi level hits the intersection of the Dresselhaus splitting band. The increase
of barrier potential slightly enhances the spin polarization in the Dresselhaus system. However,
including both types of interface spin scattering, the sign of spin polarization of current in the
Dresselhaus system can be switched at the low carrier density.
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Abstract

We theoretically study the charge transport in an infinite two-dimensional
system of normal metal and two-dimensional electron gas with Rashba spin-
orbit coupling. We used the lattice model to describe the electronic properties
in each region and developed an appropriate way to take into account the
quality of the interface to calculate the transport properties of particle in the
junction. We focus on effects of two kinds interfacial scattering on the overall
conduetance spectrum; i.c., spin-conserved and spin-flip scattering potential.
It found that an increase of interfacial scattering is suppressed the conduc-
tance spectrum but it can be enhanced by increasing equally both types of
interfacial scattering probabilities under certain conditions. When the Fermi
level reaches the coincidence of Rashba band interaction for both top and
bottom of the band, the conductance spectrum appears the characteristic
kink features. The kinks reflect the difference in nature of the electron-like
and hole-like energy contours of the energy band. In addition, the energy
spacing between the onset and kink of electron-conductance spectrum pro-
vides to predict the Rashba energy as determine from the hole-conductance
spectrum.
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1. Introduction

A material with Rashba spin orbit coupling (RSOC)[1, 2, 3] is of interest
for an application in spin transport as spintronic devices [4, 5, 6]. RSOC
in a system arises from the presence of a structure inversion asymmetry
which caused by a confining potential of a quantum well of a two-dimensional
electron gas (2DEG) along the perpendienlar direction of the interface of
two-dimensional (2D) plane. A heterostructures of different combinations
of 2DEG with RSOC have thus been studied rigorously in order to gain
more understanding and in hope of obtaining new ways of controlling spin
transport in such systems as spin injection (7, 8,9, 10, 11, 12, 13], and spin
precession [14, 15]. Many theoretical studies of electron and spin transport in
these systems, [ree electron approximation and the continuity equation at the
interface are used (11, 12, 13, 14, 15, 16, 17, 18, 19]. However, the assumption
of the [ree electron model is that electron propagates almost freely. It can
also take a different point of view by considering the electron that would be
in atomic levels localized at lattice sites. It is a tight binding approximation
which reconciliate between the apparently contradictory feature of localized
atomic orbital on the one band and free electron-like plane wave levels on
the other.

A tight binding or lattice model is also used to study particle and spin
transport in heterostructures of 2DEG with RSOC in a quantum wire along
with the Green’s function method [15, 20, 21], the interface potential barrier
is assumed an infinitely high, i.e.. it is in a tunneling limit. However, in
reality the quality of the interface can be made arbitrary and can strongly
influence the particle transport in a heterostructures which introduced both
type of spin-conserved and spin-flip interfacial scattering as discussed in the
junction of metal/ferromagnetic [22, 23], metal/semiconductor with spin-
orbit coupling [17, 24], semiconductor/superconductor [25], and a magnetic
tunnel junction [26, 27, 28, 29, 30, 31]. In order to obtain the most complete
understanding of particle transport properties of Rashba-based junctions,
it is important to study states at all Rahba band width. Practically, the
state near (above and below) the band intersection exhibit the important
characteristic qualitative effects of the RSOC. The measnrement qualitative
effects on the conductance of the heterostructures composed of a metal and
the 2DEG with RSOC is considered.

In this paper, a theoretical approach is developed to calculate the charge
transport in a metal/2DEG with RSOC junction by using a single-band lat-



tice model with explicit equation of motion for wave function amplitude.
We find an appropriate way to consider an effects of interfacial scatter-
ing on the conductance spectrum. The numerical solution of electron- and
hole-tunneling conductance were generalized for a 2-dimensional structure.
We show that the different conductance shape between the electron- and
hole-conductance spectrum were affected by the interfacial scattering (spin-
conserving and spin-flip seattering) on overall RSOC band width. The con-
ductance exhibits a characteristic kink that occurs when the Fermi level reach
the interaction of Rashba splitting band. The kink near the voltage close to
the bottom of the band is pointing down, whereas the kink near the top
of the band is pointing upward. The different natures of the kinks reflect
the difference in nature of the electron-like (close to the bottom) and hole-
like (close to the top) energy contours of the energy band. Furthermore,
the energy spacing between the onset and the kink of electron-conductance
spectrum provides to predict the Rashba energy as determine [rom the hole-
conductance. We also consider effect of RSOC strength on the conductance,
it is enhanced with increasing the strength, however, the energy around the
middle band, the conductance is slightly decreased with the strong presented
spin-coupling.

2. Model and Assumptions

We present both a normal metal and the RSOC system in an infinite
9D square lattice in a axy plane (see Fig 1). The simplest tight binding
Hamiltonian that includes the influence of Rashba spin-orbit coupling in a
square lattice {15, 32] is obtained by discretizing the free electron Hamilto-
nian: p?/2m* + Moyp. — 0zpy), m* is the electron effective mass and p is
the electron momentum, A is the Rashba parameter. oy, 0, are the Pauli’s
matrices. For simplicity we assume there are only nearest-neighbor hopping
energy. It can be written as

HI{S = Z(ETHHD‘ e J”’)Cr:l;;:ngcnluo' F tR Z(Crl+1‘mg—c,nnm‘ + c'r.l;,;n+1’o-cﬂmo’ + HC’)

nmo nmao

— tso Z {C:[z-i—l.mo’ (igy)aa’ . Ci_ (io‘fu)ga' Cumo + HC‘}

i
n,m+1,0
/
nmaoo

(1)

where the subscripts n and m indicate the column and row indices of the
square lattice site. CJ,,;(Cumo) 18 the creation (annihilation) operator of an

3



electron at indices (nm) at lattice site with spin o =11, €ame 15 the on-site
energy; tr = h?/2m*a is the hopping energy (nearest-neighbor) for a lattice
constant a (see Fig.1), pt is the chemical potential, 5, = A/2a denotes the
RSOC strength in the lattice representation (ts, = 0, the Hamiltonian is
reduced to that of electrons is in a normal metal or a 2DEG without spin-
orbit coupling).

The Hamiltonian can transform into the momentum space by using the
Fourier transform and can be obtained the eigenstates and cigenvalues by the
standard quantum mechanics, thus the energy dispersion relation of electron
in the Rashba system are

E(k) = Eo(k) £ 25 \/Sillg(kxa] + sin? (kya) (2)

where Eo(k) = (cr — 1) — 2tg (cos(k.a) + cos(kya)) is the eigenvalue for a
9DEC without spin-orbit eoupling. The plus and minus signs in Eq.(2) are
for plus and minus branch of Rashba energy spectrum, respectively. = k()
is the wave vector in x(y) direction. The sketched of energy dispersion of
the model as see in Fig.2. Notice that this is a spacial case for the Fermi
level of the metal coincides with the intersection of the bottom splitting
bands. The plus and minus branches meet when ke = k, = 0 and k; =

+r/a,k, = 0. The E(k, = 0,k, =0) is ff—;’;’ above the bottom of the band,

whereas F(k, = trfa,k, = 0) is f—jf below the top of the band. These
two levels are called the 15" and the ond erossing point of two branches,
respectively. Note that Eri(k,) = (er—pt) — 2 (1 + cos(kya)) — 2tsosin(kya)
and Eps(k,) = (er —p) = 2tr(—1 + cos(kya)) + 2ts0 sin(kya). The energy
below and above two crossing points are the Rashba energy; roor -fj—ﬂg

Assuming an incoming electron from the normal metal side, the electronic
wave function of electron with the energy / in the metal is written as a linear
combination of incident momentum- states and reflected states of the same
energy and k,. Based on the spin part of the wave function, we again have
two equally likely incident states. In the absence of the applied magnetic
field, we write the two cases of the wave function in the metal side as

. i 1 —i r ithyma

Uyt (n,m) = [ ( . ) | gminean ( o )] ekt (3)
- o 0N i 72 ]

U‘;{}”z(n,m) _ l:e"htm ( 3 ) e igzan ( ?.zl-T )] e:kyma’ (4)
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Figure 4: Plots of contour energy of RSOC system (left) Fermi levels in minus branch and
(right) for plus branch, note that the energy is multiply ty.

surface in the metal to be smaller than that along the direction perpendicular
to the surface, i.e., ti\, — 0.1ty This choice of the parameter results in the
encrgy contours as shown in Fig.3. The parameter Iy = (11— en)/2(tn +ty)
is called the filling parameter. In this work, we use the half-filling Fermi
surface (Fiy = 0) represented as the thickest energy contour in the figure.
Also, in most cases the energy band width of a metal is about an order of



magnitude larger than that of a Rashba system, we therefore set our energy
parameters accordingly. That is, we set the hopping energy in the Rashba
system to be tg = 0.1ty. The spin-orbit coupling energy that causes the
spin-splitting states is ty,, which is set to be t;, = 0.4dtg = 0.04¢y, unless
we state otherwise. Similarly, we define the filling parameter for the Rashba
system as Frg = (1t — €r)/ (4l r T 2v/2tss), the F means the filling parameter
for minus and plus branch, respeetively. Each filling level is shown in Fig.4,
where the left panel is for the minus branch and the right panel is for the plus
branch. However, we also consider effect of 5, on the conductance spectrum
as will discuss later.

For wave function of the Rashba region, There are three forms of the
electronic wave function, depending on the energy. For & < E Hl(ky),

i isin(—k¥a)-Fsinkya
k, T s = ~
URJ (‘FI, ??1) e tj_'_ef( kf)an _— /sin?(—kFa)+sin? kya

V2 1

1 __ isin(ky a)t+sinkya
ot et — Ven(kra)4sin?kya | | eFema o (5)

V2 1

1 isin ki atsin kya
Sl \/.;in? kit a+sin? kya
V2 1
1 isin(ky a)+sin kya

B \/sinz(k;ﬂ}-l-sinz kya ei.f.'ynm , (())

V2 1

Sikpan
+ f.j,{,

1 isinkTatsinkya
k ikTan RN
UR‘J (ﬂ., ?H) = LJ.+G ol v/sin? ki a+sin® kya

V2 1

'l isin(—k; a)tsinkya
+ t;,‘_ei(ik; Jan _— \G:lz(fk;n)-l-siuz kya ei.f.‘,_,mu
' 1

. (D)

where Egi(k,) and Epa(k,) are defined in the Fig.2, j =1, 2 refer to the two
cases of different incoming states in a metal, ;4 correspond the transmission



amplitudes of plus and minus branch in case j, respectively, and k¥ are
defined as

1 n =
cosliEa) = = tr(L + 2Lz cos(kya))
2 2+ 12,

tso (4R (Lr — E cos(kya)) + 612, = 152 — 2 (2t + (%)) cos(2k,a))'’”
2(!?’? + [’30) .

=

(8)

The + signs are for the plus and minus branch.

All wave funetion have positive group velocities or the vector momen-
tum k, have a positive imaginary parts. As mention above we developed
the snitable way by making the quality of interfacial scattering to calculate
the transport properties of particle. With the translational symmetry of
the system, the component along the surface (k) of a momentum is con-
served within a reciprocal-lattice vector corresponding to the translation of
a distance between the lattice networks. Therefore, we can used the Bloch’s
theorem to write the eigenstates of Eq.(1) in the following form

U(n, m) = e™ vk (n) 9)

where n and m indicated the column and row indices as see in Fig. 1,
~7/a < ky < m/a. Substituting Eq.(9) into Eq.(1), the 2D equations are
reduced to the following 1D equations for each &y

ST (n, 0 UK () = BUM (n)). (10)

T*s(n,n') is the suitable (2 x 2) energy matrix between two ions with column
indices n and n’. By following the procedure used to obtain the conditions for
a metal/superconductor junction in a lattice model [33]. In each system, we
have to set of a different equation to describe both bulk states of a normal
metal and the Rashba system, these equation still provide the matching
condition for two wave functions Uy () and UL (n) at the interface.

Uk (0) — Uy4(0) =0 (11)
INUTY (1) = TooUpt (—1) + VUE(0)=0 (12)



W V, g
where V = \ /i \ /F . The diagonal elements of V from now on mean
0
Vo = V44 = V|, which is a spin-conserved that relates to the potential barrier
of the junction, the off-diagonal elements are denoted by Vp = V4 = Vi,
th’ Htso

tso t‘R
After substituted the wave function of both a normal metal and the RSOC

into the boundary conditions, we ean obtain the transmission (1) and reflec-
tion (R) probability which is conservation of electric current at the interface.

For the mumber of free electron charge per unit volume n. flowing to a
solid with velocity v, resulting in volume current J is given by

g = Zer‘z,e'u;;, (13)
E

which means the spin-flip interfacial scattering and Ty, =

where e is the charge on an electron. Since the current is independent of
@, we consider the eurrent density as a function of applied voltage V in the

ROSC system as
I="3" eon(T(BW) f(Bx — eV) = [(B)], (14)
hr>0,ks

where f(F) is Fermi distribution function. By changing the integration vari-
able and setting temperature to zero for simplicity, one can obtain the ex-
pression for the electrie current as

J(V) (% /_rﬂdﬁly/ dE - T(E) (f(E=eV) = f(B),  (18)

where A = a X @ is the area of lattice network, thus the differential conduc-
tance G(eV) = dJ/dV at zero temperature is,

(2m)?

Note that, the applied voltage is considered in both positive and negative
value and the effects of finite temperature on the conductance spectrum is a
smear feature, i.e., it not change the position of econductance spectrum.

2 /2
G(eV) = AN / dle, T(E). (16)
—7 /2



3. Results and Discussions

By assuming the energy band of the Rashba system is empty, we use
Iq.(16) to caleulate the conductance for different values of interfacial scat-
tering potential at column n = 0. We consider how two kinds of scattering
potential effect the conductance spectrum at zero temperature (i.e., V4 which
is the spin-conserved scattering potential, and Vp the spin-flip scattering po-
tential). All conductance spectra are plotted as a function of energy in the
unit of e?a?/(2x)2. l

08 T T T T T T T T T T T

Conductance
o o
i3 for}
T T

o
[\
T

Figure 5: Plots of conductance spectra as a function of energy for 14 = 0 and V5 = 0.5(x.
Vr is zero in these plots.

First, we show Fig.5 the plots of conductance spectra for the voltage
range cquivalent to the whole band width of RSOC system, when V = 0,
Vo = 0.5ty, Vo = 1.0y and 1V = 2.00y. As can seen, the conductances are
zero until the applied voltage reaches the bottom of the Rashba band. It is
increased and reached the maximum near the middle of the band, which ap-
pears as two double peaks symmetric in voltage positions around the middle
of the band, and then it decreases to zero at the top of the band. According
to the density of states of 2DEG with RSOC, there are shown four Van Hove
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Figure 6: Numerical solution of total density of state of RSOC system as a function of
energy by setting the tp = 0.4ty E, is the Rashba energy.

singularities as seen in Fig.6. We will also show the magnified plots of con-
ductance spectra in three regions, i.e., the voltage near the 1°* crossing point,
the middle of the band, and near the 2"¢ crossing point. The conductance
spectrum was suppressed with increased the spin-conserved scattering poten-
tial in case of absent the spin-flip value as can clearly seen in Fig.7. Unlike in
the continuous model [17, 18], one can see that there is no kink in the spec-
trum at the crossing points when increasing of only V4. The double peaks
at the voltage near the middle band vanishes when V5 is a tunneling limit or
Vo > 0.5ty. We also consider effect of increasing Vp by setting Vo =0, the
conductance spectrum does not a king at the crossing points. The suppres-
sion of conductance does not surprise because the potential barrier is know
to reduce the transmission probability.

The conductance was affected by both types of interfacial scattering we
show in Fig.8 and Fig.9 as discus following. For a small value of 14 (Vo =
0.5ty), the increase in Vp, suppresses the conductance spectrum. The kinks
also appear at the energies corresponding to the crossing points. The higher

11



Conductance

Figure 7: Magnified plots of conductance spectra as a function of energy for several values
of ¥ near the bottom, middle, and top of the band. Vp is zero in these plots.

the value of Vg, the more prominent the kinks, It should also be noted
that the kink near the voltage close to the bottom of the band is dip-like
or pointing down, similar to the kink in the conductance spectrum that was
obtained by using the continuous model, whereas the kink near the top of
the band is sharp and pointing upward. The different, natures of the kinks
reflect the difference in nature of the electron-like (close to the bottom) and
hole-like (close to the top) energy contours of the energy band.

The effect of the presence of both Vp and Vp can also be seen around
the energy corresponding to the middle of the band, i.e.; the double peaks
of conductance spectrum near the maximum point are shifted towards the
bottom of the band. They are no longer symmetric around the middle of the
band (sce Fig.8). When Vj is high value, the double peaks are invisible. For
high barrier strength, i.e., Vo = 2.0ty (see Fig.9), the conductance reaches
maximum value when of Vi ~ V4.

For the around bottom of RSOC band systei the energy different belween
the onset and the discontinuity of the slope of conductance spectrum can

12
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Figure 8: Magnified plots of conductance spectra as a function of energy for several values
of Vg in case of V5 = 0.5t .

also be used to determine the Rashba energy [17]. It has been predicted
by using a free electron approximation. But it cannot investigated out of
arca because of a limit of the model. In this work, it has an advantage in a
tight-binding approximation so we can predict the Rashba energy by using
the energy different between the discontinuity of slope and the offset of the
hole-conduetance spectrum around top of the RSOC band.

For an high barrier strength, i.e., Vg = 2.0ty (see Fig.9-all), the conduc-
tance spectrum is a maximum for all applied voltage at the value of 14 = Vi
and the shape of electron conductance spectra are exactly different with the
hole conductance.

In order to more clear the effect of spin-flip scattering on the conductance,
we plot of conductance as a function of ¥ at the Fermi levels as for example,
E = —10.125¢t,,, E = —9:5tsp, 15-=-0:5tgand Lo.=10.125t, ( see Fig.10),
which lead to the Fermi energy at around boltom to top of the band. All
plots are the conductance as a function of Vp for different values of Vp. One
can see that for the small value of Vi all plots of conductance decrease with
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Figure 9: Magnified plots of conductance spectra as a function of energy for several values
of Vg in case of = 2.0t y.

V, as expected. But for Vr is higher than 0.3ty the tendency of conductance
change to increase until it reaches a maximum at Vo =~ Vp. After that when
the value of Vi beyond its V4 the conductance is suppressed as mention
early. This surprising has been reported as well as in a limit of free electron
approximation in a metal/2DEG with RSOC junction [17].

The conductance spectrum as a function the hopping energy that cor-
responds to the strength of RSOC is showed in Fig.11. We consider the
different constance energy 2 as showed in the picture. The conductance is
enhanced with increasing the strength of RSOC. However, the conductance
for the encrgy at the middle of RSOC band is slightly decreased with strongly
presented spin-orbit coupling of Rashba systeni.

4, Conclusions

We theoretically study a junction of a metal and the 2DEG with RSOC
by using a lattice model. We find an alternative way to take into account
the interface quality to calculate the transport properties of electron in our
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system. The numerical solution of electron- and hole-tunneling conductance
were generalized for a 2-dimensional structure. We find that the conduc-
tance spectrum depends on the barrier strength as, an increased either spin-
conserving or spin-flip scattering the conductance was suppressed, however,
both types of interfacial scattering are taken into account, the conductance
exhibits a characteristic kink that occurs when the Fermi level reach the
interaction of Rashba splitting band. The encrgy spacing between the two
distinguish features of the conductance’s slope either considering electron-
or hole-conductance can be determined the Rashba energy. The conduc-
tance spectrum of electron and hole are exactly different shape. They can be
enhanced by increasing the strength of spin-flip which slightly equal the spin-
conserved value. For effect of Rashba spin-orbit eoupling strength, the tun-
neling conductance is increased with the strong Rashba spin-orbit coupling
strength but the energy is approached the middle band energy of Rashba
system the conductance is quietly independence with the Rashba strength.
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metalferromagnetic (M/FM) junction were theoretically studied by using the free eleciron approximation. We

focused on effect of the Rashba spin-orbit coupling at the interface of the junction. It found that the conductance

shows the prominent kink when the appliad voltage reaches the battom of the minority band of ferromagnetic. A
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