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ABSTRACT

Project Code: R2560B078

Project Title: Existence of solutions for quasi-equilibrium problems on complete
metric spaces with applications to minimax thecrem

Researcher: Assistant Professor Dr. Kasamsuk Ungchittrakool

Project Period: October 1, 2016 ~ September 30, 2017

We study the solution set of variational like-inequdlities (in this sense we are called

11 -variational inequalities) and introduce the notion of a weak sharp set of solutions to 77—
variational inequality problem which related to eqguilibrium problems in reflexive, strictly
convex and smooth Banach space. We also present sufficient conditions for the relevant
mapping to be constant en the solutions. Moreover, we characterize the weak sharpness of
the solutions of 7 —variational inequality by primal gap funciion.

We introduce the concept of (/7,4y} -rational type contraction and solve a fixed point
problern for such mappings in a complete metric space endowed with two partial orders,
Some examples are given to illustrate the usability of the established concept. Three
applications to dynamic programming, fractional differential equation and integral equation are
included here to highlight the usability of the obtained results. Using the derived results
gpplication to the system of dynamic programming along with an example s discussed. We
also explain an iustrative example with graphical representation to validate the appilication of
our result to integral equation, which includes some surfaces demonstrating the justification of
approximate solution of the integral equation along with error function. Along this
implementation, we give an entrance fo the theory of fixed point with some relevant and

innovative applications.

Keywords: 7 -variational inequality, Gap function, Weakly sharp solution; Constraint

inequalities; particl order; F —contraction; Fixed point.



CHAPTER I
EXECUTIVE SUMMARY

Variational ineguality has shown to be an important mathematical model in the study of many
real problems, in particular equilibrium problems. It provides us with a tool for formulating and
qualitatively analyzing the equilibrium problems in terms of existence and unigueness of solutions,
stability, and sensitivity analysis. The subject of variational inequalities has its origin in the calculus
of variation associated with the minimization of infinite dimensional functionals.

Given a Banach space E, a subset K of F, and a functional F : K — E* where E* is the
dual space of E, the Stampacchia Variational Inequality problem is the problem of solving for the

... variable & € K such that (F(z),y —#} >.0,. forally € K (SVI) where (:,:): B* x E. = Ris. ... ..

the duality paring while in the case of the Minty Variational Inequality it is to find the variable
z € K such that {F(y),2 — 3} <0, forallyc K (MVI). Historically, (SVI) was introduced by

study of the other problem (MVI) goes back to Minty, who studied the relationships of (SVI) and
(MVI) in the case when F' is a monotone operator. New impetus has been given to the field by the
recent paper of Giannessi.

Burke and Ferris introduced the concept of a weak sharp minimum to present sufficient con-
ditions for the finite identification, by iterative algorithm, of local minima associated with mathe-
matical programming in space R7. Patriksson has generalized the concept of the weak sharpness
of the solution set of a variational inequality problem (in short, VIP). Their concepts have been
extended by Marcotte and Zhu to introduce another the notion of weak sharp solutions for varia-
tional inequalities. They also characterized the weak sharp solutions in terms of a dual gap function
for variational inequalities. The relevant results have been obtained by Zhang et al.. It is further
study by Wu and Wu. Hu and Song have extended the results of weak sharpness for the solutions
of VIP under some continuity and monotonicity assumptions in Banach space. They also introduce
the notion of weak sharp set of solutions to a variational inequality problem in a reflexive, strictly
convex and sniooth Banach space and present its several equivalent conditions. Liu and Wu studied
weak sharp solutions for the variational ineguality in terms of its primal gap function. They also
characterized the weak sharpness of the solution set of VIP in terms of primal gap function. Re-
cently, AL-Hamidan et al. give some characterization of weak sharp solutions for the VIP without
considering the primal or dual gap function.

Motivated and inspired by the research mentioned above, we provide some general two concepts
of Liu and Wu and Hu and Song to study the weak sharpness of sclution set of g-variational
inequality problem in Banach space. We also give some characterizations of weak sharp solutions
for the 7-VIP and also present its several equivalent conditions.

In recent times, many results developed related to metric fixed point theory endowed with a
partial order. An early result in this direction was established by Ran and Reurings, where they
presented a fixed point result, which can be considered as a junction of two fixed point theorems:
Banach contraction principle and Knaster-Tarski fixed point theorem. Moreover, the result achieved
by Ran and Reurings was extended and generalized by many researchers. On the other hand,
Wardowski introduced the notion of #-contraction. This kind of contractions generalizes the Banach
contraction. Newly, Piri and Kumam enhanced the results of Wardowski by launching the concept
of an F-Suzuki contraction and obtained some curicus fixed point results. Several extensions of
this result have appeared in the reference therein. Very recently, Jleli and Samet presented a fixed
point problem under two constraints inequalities.

Following this direction of research in this project, we introduce the concept of (F,)-rational
type contraction in the setup of metric space and examine the existence of fixed points for such type
of contraction. Some examples and applications are given to illustrate the realized improvement.



CHAPTER 11
CONTENTS OF RESEARCH

In this project, we obtain two papers. One is published in the international journal, and the
other is submitted in the international journal as the following:

1

-~ Natthaphon - Artsawang; Ali - Farajzadeh and- Kasamsuk -Ungchittrakool;: Characterization”of

weak sharp solutions for generalized variational inequalities in Banach spaces, Journal of Compu-

tational Analysis and_Applications, 2018, VOL, 25 NO 4_._738.750, Impact-Hactor 2016=0600- . __

Lemma 1.1. Assuine that E is o reflexive, sirictly conver and smooth Banach space. Let C be a
closed convex subsel of £ and & € . Then the following are equivalent:

(i) & is a best approzimation lo x |jy(z, )| = igé”n(a;,y)“.
¥

(i) the inequality (J(n(z, %)), n(y, %)) <0, Vye C holds.
Proposition 1.2. Consider a set C C E and T € C. Then the following hold:
(i) TA(E) is closed;

(ii) If C is convex, T3(Z)} is the closure of the cone generated by n(C x {%}), that is,
TI(@) = cone(n(C X {1))

Let € be a nonempty closed convex subset of veflexive, strictly convex and smooth Banach space
E. For a mapping I from F into K%, the 5j-variational inequality problem [7-VIP] is to find a vector
a* € ¢ such that

(F{x*),n(z,2™)) > 0 for all z € C. {1.1)

We denote the solution set of the 7-VIP by &7
The n-dual variational inequality problem [n-DVIP] is to find a vector o, € C such that

{(F(x),n(z,2:)) > 0 for all z € C. (1.2)

We denote the solution set of the 7-DVIP by C;,.
Now, we define the primal gap function g(z) associated with #-VIP (1.1) as

g(z) == sup{{F(z),n(z,¥)}}, forallz € E,
yeC

and we setting
Iz} :={y € C: (Flz,n(z,y))) = g(z)}-
Similarly, we define the dual gap function G(z) associated with 5-DVIP (1.2) as

Gla) = ;gg{(F(yLn(ﬂayJ)}, for allz € F,

and we setting
A(w) = {y € C: {(Fly,n(z, 1)) = G(z)}.
Proposition 1.3. Let & € C. Then



(i) 3 C" & g(8) =0& 3 € T(3);
(ii) € 0, & G(@) =06 & € AR).
Proposition 1.4. If F' is n-pseudomonotone on C, C7" C C,).
Proposition 1.5. Let F be n-pseudomonotonet on C7. Then F is constant on C7,

Proposition 1.6. Let F be n-pseudomonotonet on C and 2* € C7. Then C" = A(z*) and F is
constant on A{x”).

Proposition 1.7. Suppose that F' be n-pseudomonotone on C and z* € C". If F is constant on
T(z*) then F is constant on C. And hence

On = C, = T(a*) = Alw*).

Proposition 1.8, Let F be n-pseﬁdcﬁionotone* on €. Then, fora* € O, F is constant on T'(z*)
if and only if
Chr=(C, =T{")=A@").

Proposition 1.9. Let F' be n-pseudomonotone’ on €. Then the following ave equivalent:
(i} F is constant on T{(z*) for each 2* € C".

(it} C" =C,, = (") = AMz*) for each z* € C1.

(iit) C" =T(a*) = A(z*) for each z* € C.

(iv} C" =T{(z*) for each z* € C".

Lemma 1,10, Let C be compact. If F' is n-locally Lipschitz on C7, then g is also n-locally Lipschitz
on C7,

Proposition 1.11. Let /' be n-monotone on X and o* € C%. Suppose that g is finite on X and
n-Gateaus differentiable af x*. Then O,g(x*) = {F(2*)}.

Theorem 1.12, Let F be n-monotone on E and constant on I'(2*) for some 2* € C?. Suppose
that g is n-Gateauz differentiable, 1p-locally Lipschitz on C", and g(z) < +oo for allx € E. Then
C" is weakly sharp if and only if there exisis a positive number o such that

adby(@) < 9(z) forall v C, 3)
4] b} o— 3 .
where di, (z) == ylenc'fn [l (z, w1}

Corollary 1.13 ([1]). Let ¥ be monotone on R" and constant on ['(z*) for some a* € C*. Suppose
that g is Gateaux differentiable, locally Lipschitz on C*, and g(z) < +oo for all z € R*. Then C*
s weakly sharp if and only if there exists a positive number o such that

ade-(z) < g{z) forall z e C.

2

Warut Saksirikun, Deepak Singh, Varsha Chauhan, and Narin Petrot, (Submitted). Computa-
tional and applicative approach through (F,1)-rational type contraction for existence of non-linear
problems with two partial ordering.

Fixed point problem under two constraint inequalities for (F,)-rational type contraction. The
following problem will be discussed: find 2 € X such that



z =T,
Az <, Ba, (2.1)
G:’C jg Dz,

The dynamic processing gives fruitful tools for mathematical optimization and computer pro-
gramming, We suppose that 1% C U is a state space, D C V is a decision space, where I and V are
Banach spaces. In aforesaid system, the problem of dynamic programming associated to multistage
process reduces to the problem of solving the functional equations:

h(z) = Sug{f(rv,y) + G,y bz, 1))}, €W,

g,'(.’E) = Sug{f(may) + Gi("“:y: g,—(p(a:, y)))}) T e ﬂf: i= 112:334:

o

where p: W xD oW, f:WxD— Rand G,G,,G2,G3,Gy - WxD xR R
Let B(W) denote the set of all bounded seal valued functions on 1¥ and for an arbitrary
h € B(W), define

[I72f] = sup |A(z)].
zeiy
Clearly, the pair (B(I¥), [|.|[) with the metric d defined by

d(h, k) = sgi;? h{z) — k(z)],
z I

for all h, k € B(1V), is a Banach space. Precisely, the convergence in the space B(W) with respect
to ||.|| is uniform and thus, if we consider a Cauchy sequence {h,} in B(W), then {h,} converges
uniformly to a function, say h*, that is bounded and so h* € B(W).

The mappings T, Hy, Hy, Hs, Hy : B(W) — B{(W) which are defined as follows:

T(h){(z) = 3gg{f(ﬂ:,y) + G2y, h(p(z, 1)}

Hi(K)(a) = sup{(0,0) + Gilo, v, ol ), 23

forall hyk € B(W) , 2z ¢ W and i = 1,2,3,4. Also consider B(W) is equipped with two partial
orders <; and <5 in the following sense:

h(z) %1 k(z) implies Az} < k(2);
h(z) 22 k(z) implies h{z) > k=),
for all b, k € B(W).

Theorem 2.1, Let (X,d) be a complete metric space endowed with two partial orders <; and <q.
Let TVA,B,C,D : X — X are given operators. Assume that the following assumptions are true:

1. =i (i =1,2) is d-regular ;

2. T,A,B,C, D are continuous;

3. there exists x9 € X such that Axg <1 Bxy;
4- T is ({A, B, %1),(C, D, %2)}-stable;

5. T is ((C,D,=3), (4, B, <1))-stable;

6. T is (F,1))-rational type contraction on X.



Then, the sequence {T"x0} converges to some u € X and such u € X is a solution of the problem

(2.1).
From Theorem 2.1, i A = D = Ix and B = C =T then we deduce the following corollary

Corollary 2.2, Let (X,d) be a complete metric space endowed with two partial orders <; and <5,
Let T : X = X be a given operalors. Assume that the following assumptions are true:

1. % (i=1,2) is d-regular;
. T is continuous;

, there exists xg e X such ﬂmt zo =1 T,

2
3 _ .
4. for allw € X, we have x %, Ta = T2 <y Tx;
H for all w € X we have Ta =y v = Te Xy T}
7]

. if there exist ' ¢ Ap, v >0 and o € ¥ such that for all 2,y € X with Tz # Ty, we have

& <1 T, Ty =p y — F(d(Tn;,Ty)) < F(¢ (M(:c,y))) — (2.4)

where M (z,y) = max {d(:ﬂ, y), 4 Tff;a‘fs Tz)] dlv, Tfj_&?’ﬁf )]

Then, T has a fized point,

Remark 2.3. Theorem 2.1 gencralizes, improves and exlends the Theorem 2.1 of H. Piri and P.
Kumam (8] for two partiel orders <Xy and <2 along with rational type F-contraction.

Remark 2.4. By introducing Theorem 2.1, we generalized the results of Jleli et al. [3] and obtained
the F-contraction version of [3].

Theorem 2.5. Suppose that the following conditions are satisfied:
(1} G(.,.,0),G:(.,.,0),Ga(.,,0),G5(,,.,0),G4(.,.,0) : Wx D — Rand f : WxD o R are
continuous and bounded functions;
(23) H(h)(®) < Ha(h)(w), Ha(R)(z) > Hy(k)(z) ==
G(2,9, h(2)) — Gle,y, k(2))] < e""(|h(z) — k()])
Jor all h{z), k(z) € B(W), x ¢ W and y € D. Where 1) € ¥ is defined as in Theorem 8.1 and
7 = {|h{x) — k(z)|, |h(z) — Th(z)|, |k(z) — Tk(z)|, |k(z) — Th(z)[]} > 0

(3) for every sequences {hy},{kn} C B(W) and h,k € B(W), if 1Lm supgew (@) — h{z)| =
N—>x)

nli—l)rolo SupP, ey [kn(2) — k(@) = 0 and hy(z) < kp(2) for alln € K, we have h <.

{4) there exists kg € W such that

sup{f(z,y) + Gi{x, y, h{p(xo, )} < sup{f(z,y) + G2z, y, h{p(20, 1))}
yeD yel

(5} there exists h,k € B(W) such that
my(h)(z) < Ha(h){(z) = HT(h)(z) > HyT(h)(z);

Hy(k)(2) > Hy(k)(z) = HT(k)(z) < HoT(k)(z).
Then the functional equation (2.2) has a bounded solution.



Consider the following fractional houndary value problem
Dru(t)+ f(t,u(®)) =0, 02t>2L1<a>2;
w(0) = (1) =0, (2.5)

where f:[0,1] xR — R is continuous function and ¢D® represents the Caputo fractional derivative
of order a and it is defined by
C 14} tt(n)(s) 5
I‘(n—a) (t—s)a—ntl

Consider the following integral equation:

@
: u(t)—p(t)+/ (& 8) (5,0 (8))ds. gy

o u.,.l‘\‘v.’c,.wﬁSld&t:ﬁ%}&:Spﬁt&rXxﬁ(:{B;ﬂ};ﬁz}:of:aﬂrcontinuouS'-fum;{:iansTdeﬁrredfonr{ﬂ;rﬁ};:@bvim;g1y.,:t}mm:::::::-: e

space with the metric given by
du,v) = sup |u(t) —v(t)], w,veX
te[0,0]
is a complete metric space. Consider on X = ([0, ], ) equipped with the natural partial order
relation, that is,
wv€X, usy & u(t) <v{t), t€[0,9).

Theorem 2.6. Consider, the nonlinear fractional dsﬁ‘erentml equation {2.5). Assume that the
Jollowing assertions hold:

(i) there exist 1 € U and 7 > O such that for al u,v € R, u < v
fltu) — f(t,v) >0 and [f(t,w) — f(t,0)| <e "¢(jv —ul), for allt € [0,1];
(ii) there exisis ug € X with X = C([0,1],R) such that

wmsﬂa@maw@Wa

(iii) sup [y G(t,5)ds < 1.

t€(0,1]
Then the problem (2.5) has at least one solution in X.
Theorem 2.7. Consider the problem (2.6} and assume that the following conditions are satisfied:
(1) F:[0,2] xR — R is continuous;
(it} p: [0,Q] — R is continuous;
(iit) X : [0,8] x B — [0, 00} is continuous;
(iv} there are ¥ € ¥ and v > 0 such that for allu,v € B, u < v,

f(s,u) — f(s,v) =2 0 and {f(s,u} — f(s,0)} < e "P(jv —ul);
{v) assume that

Q
sup f Alt,s)yds < 1;

tefo.n] Jo

(vi) there exists a 29 € X with (X = C(J0,Q,R)) such that

£
zo(t) < p(t) +/0 Alt, 8) f(s,20(s))ds.

Then the integral equation (2.6) has a solution in X with (X = C([0, f}], R)).
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Abstract

In this paper, we study the solution set of variational like-inequalities (in this sense we are calted
n-variational inequalities) and introduce the notion of a weak sharp set of solutions to 5-variational
inequality problemn in reflexive, strictly convex and smooth Banach space, We also present sufficient
conditions for the relevant mapping to be constant on the solutions. Moreover, we characterize the
weak sharpness of the solutions of %-variational inequality by primal gap function,

Keywords: 1j-variational inequality, Gap function, Weakly sharp solution

1. Inmtroduction

Burke and Ferris [2] introduced the concept of a weak sharp minimum to present sufficient con-
ditions for the finite identification, by iterative algorithm, of local minima associated with mathe-
matical programming in space R*. Patriksson [7] has generalized the concept of the weak sharpness
of the solution set of a variational inequality problem (in short, VIP). Their concepts have been
extended by Marcotte and Zhu [6] to introduce another the notion of weak sharp solutions for
variational inequalitics. They also characterized the weak sharp solutions in terms of a dual gap
function for variational incqualities. The relevant results have been obtained by Zhang et al. [12].
It is further study by Wua and Wu [9-11]. Hu and Song [4] have extended the results of weak
sharpness for the solutions of VIP under some continuity and monotonicity assumptions in Banach
space. They also introduce the notion of weak sharp set of solutions to a variational inequality
problem in a reflexive, strictly convex and smooth Banach space and present its several equivalent
conditions. Lin and Wu [5] studied weak sharp solutions for the variational inequality in terms of
its primal gap function. They also characterized the weak sharpness of the solution set of VIP in
terms of primal gap function. Recently, AL-Hamidan et al. [1] give some characterization of weak
sharp solutions for the VIP without considering the primal or dual gap function.

In this paper, we provide some general two concepis of Liu and Wu [5] and Hu and Song [4] to
study the weak sharpness of solution set of g-variational inequality problem in Banach space. We
. also give some characterizations of weak sharp solutions for the 5-VIP and also present its several

equivalent conditions. Owr purpose in this paper is to develop the weak sharpness result in space
R®.
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The paper is organized as follows. Section 2 discuss the new concepts of the Gateaux differen-
tiable and Lipschitz continuity of the primal gap function and we also introduce the main definitions.
Several equivalent conditions for F' to be constant are discuss and present some relationship among
C1, Oy, T(a*), and A(x*) in Section 3. Finally, section 4 addresses the weak sharpness of C7 in
terms of the primal gap function is characterized,

Let I be a real Banach space with is topological dual space B and (-, -) denote the pairing

between £ and E7 respectively, For a mapping from n: B x £ to &£ . Let g be a mapping from
E into Banach space ¥, The mapping g is called directionally differentiable at a point g € Fina
direction v € ¥ if the limit ( ~ ) o)
. -+ tv) — gle
Mo )= iy LT U] — G\

| 4S9 Ay
exists. We say that g is dircctionally differentiable at g, if g is directionally differentiable at & in
every direction v € F.

The mapping g is called Gateaux differentiable at © if g is directionally differentiable at © and
the directional derivative ¢'(z, v} is linear and continuous in » and we denote this operator by
Vg(z), ie. (Vglz),v) = g'(w,v).

Definition 2.1. Let g be a mapping from F into Banach space ¥. The mapping g is called 7-

Gateaux differentiable at x if g is Gateaux diffeventiable at & and there exists a unique ¢ € E* such

that {£.n(v,0)} = (Vg(#),v) Vv € E. We denote this operator by V,g(z) ie. (V,g(z),n(v,0)} =
J

g'(z,v).

We defined #-subdifferential of a proper convex function f at z € F is given by
0, (8) = (a* € B : (", n(w,2)) < 1(y) — (), Yy € B},
Let C be a closed convex subset of 5. The mapping Pg : B - 2 defined by
Pole) :={y € C: ||z — yl| = d(=, C)},

is called the metric projection operator.
We known that if F is a reflexive and strictly convex Banach space, Pe is a single-valued

mapping.
The duality mappings J : & — 27 and J* : E* — 28 are defined by

J@)={e" € B (", 2) = &'} = [=l*}. Ve € B
and
J(@) =o€ B (3,0%) = ol = o7}, Va* € 5.
We know the following (sce [8])

(i} if £ is smooth, then J is single-valued;
(it} if F is reflexive, then J is onto;
{iii) if F is strictly convex, then .J is one-to-one;
(iv) if ¥ is strictly convex, then J is strictly monotone.
T]lougllt out this paper, we let n7: £ x E to F be satisfy the following condition;
{i} 5 is continuous on K x F;
(11) for any ny €L, U(m, y) = —77(% :E);
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(iif) for any #,y € F and «, § are scalars, n{az + By, 0} = anlz,0) + Bn(y,0);
(iv) there exists k > 0 such that |[n(z, v} = k||lz — y|| for all z,y € E;
(v) n(E x {0}) = E.

For & mapping g from a Banach space F into Banach space Y, we say that g is n-locally Lipschitz
on E if for any T € F there exist § > 0 and L > 0 such that

lla(z) — gl < Liln(z, )i, for all =,y e B(Z,6).

The following results are importance:

=l

Lemma 2.2 ([3]). Let E be a Banach space, J : E — 25" a duality mapping and ®(||«||) =/ ds,
JEETRE Sl Moy LEL D DB G Danach space, J B et A 4 mApPIg GRS PN = f G

0#x e X. Then J(x) = 80(||z|)).

closed convex subsel of E end & € C. Then the following are equivalent:
(i} & is a best approzimation o x |n(z.2)|| = lielg ln(z, )i
y =
{ii) the ineguality (J(n(z, %)), n(v,&)) <0, Vy & C holds.

Proof, (ii) = (i) For each z € F. Let & € ' such that

(J(ﬂ(%f))aﬂ(ya j}'» <0 Vy e .
Then

I DT = (oot 2)(e, )
< {Jn(=, &), 77(56?5:)) + {J(n(z, 8),n(&,y)), Yyel
{(J(n{z, 8)),n(z, )}, YyeC

SO @Dl ), Yy € C.

Il

A

Heauce, [l7(w. )l = inf (v, )1
(£} = (it) For each = € E. Suppose that 2 € C such that

iz, 2)l| = inf [lnlz, .
Since C is convex, we obtfain that
e, &) < Iz (1 - )2 +ty)ll, Yue C and ¢ ¢ [0,1],
which implies that

(|In(z, )} — 2(|ln(z, (1 - &+ ty)l). VyeC and te]0,1],

X

where @ : Ry — Ry give by ®(z) = [ ds, forall zcR,.
0
By Lemma 2.2, J{z) == 8%(]|z|). It follows that
(e (1 - )2 +ty)), 0z, &) - nlz (1 -2 +ty)) < 2(nlza) — S(|nl, (1 - )+ ty)l)
< 0, YyeC and te[0,1],

that is,
I (n(z, (1 -2 + 1)), nly,4)} <0, Yye € and te0,1]
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Therefore,
(J(n(z (1 — )&+t oly, )y <0, Vyed and te0,1]

Taking t — 0, we have
(J(nlz, 2)).nly, ) <0, YyeC.

O

Reark 2.4. By definition of 4 for each & € B if & = Po(a) then {fn(x, 2)| = mf [l =~
Y

1 Cis-aclosed convexsubset of B and Te (€

hen-the n-tangentcone to Coat = has the form

T2(@) = {d & E:there exists a bounded sequence {d;} C X with np(dy, 0} = d,tz L0
such that T+ tpdy € C, ¥k € N}

In the above, denote zp = T+ #xd). € C. Taking the limit as & — +oo, ¢ — 0, which implies
that t3.dy. — 0, thereby leading to zx — %. Also from counstruction,

ﬂ(mk’%) _

Hdr, 0) — d.
12

Thus, the n-tangent cone can be equivalently expressed as

Ta(@) = {de F:there exists sequence {4} CC with % =+ %, tx 1 0
such that F(i;-’_ﬂ — d}.
k

Proposition 2.5. Censider a set C C I¥ and & € C. Then the following hold:

(1) TA(®) is closed;
(ify If C is conves, TA(T) s the closure of the cone generated by n(C x {F}), that is,
T (@) = cone(n(C x {z}))

Proof. (i} Suppose that {d} C TA(T) such that dr — d. Since dx € TEL(T), there exist {zf} C C
with z}, — 7T and {t}} € Ry with £} — ( such that

T =
M—»dk, Vk € N.
'

For a fixed k, there exists 7 such that

ke E 1 _
“M —di| < E' Vr = T
- ‘

Taking & — 400, one can generate a sequence {a} C C with 2 — T and i | 0 such that

UG —=d.
43
Thus, d € TA(7). Hence, TA(T) is closed.
(ii) Suppose that d € T4(%), which implies that there exist {zx} C C withzr — Tand {f} C Ry
with &, — 0 such that
(k. Z)
ty
Observe that n(ex, %) € n(C x {x}). Since & > 6, ;- > 0. Therefore,

—d.

e F)

€ cone P(C x {T}).
2]
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Thus, d € cone(n(C x {&})). Hence, TA(%) C cone(n(C x {T})).
Conversely, for each @ € C. Define a sequence

xk:5+%(m—?§), Yk e N

By the convexity of €, it is obvious that {z;} C C. Taking & -+ 400, Tx — 7, by construction, we
obtain that :
kn(zi, @) = nl{z, T).

Set & = § > 0, {x — O such that ﬂ%_ﬂ — 712, %), which implies that 7(z, %) € TA(T).
Since » € C'is arbitrary, n{(C'» {ZT}) C T4 (%). Because T7)(Z) is cone, we have cone(n{C x {%})) C

T&(w)- By (), T5(®) is closed, which implies that cone(n(Cx TH) € Tg¢@). O

The -normal cone to C at T is defined by N (%) := [T4(®)]°, where

AT =zt € BT (ot ) <0,Vx € A).
If C is convex, then
x* F T < - if T A
NI(5) = {&* € B* : {z* ,ne,B)} < 0 for all e € C} ifzeC
B, fz ¢ C

Let C' be a nonempty closed convex subset of reflexive, strictly convex and smooth Banach space
E. For a mapping £ from E into F5*, the n-variational ineguality problem [n-VIP] is to find a vector
% € ¢ such that

(Flz*),n(z,z*))y >0 for allx € C. (2.1)

We denote the solution set of the 5-VIP by C7
The 5-dual variational ineguality problem [p-DVIP] is te find a vector @, € €’ such that

{F(z),n{z,z.)) = 0 for all z € C. (2.2)
We denote the solution set of the #-DVIP by C),

Definition 2.6. The mapping £ : E — E* is said to be:
(i} y-monotone on C if (F(x) — F{y), nly,z)) > 0 for all 7,y € ¢,
(ii) 7-pseudomonotone at & € C if for each y € C there holds

{F(=)sn(y, =) > 0 = (L), 1y, z)} = 0;
(iif) n-psendomonotone™ on C' if it is 7-pseudomonotone at each point in C and, for all x,y € C,

20 | > T@= 0

Now, we define the primal gap function g(x) associated with 5-VIP (2.1) as
g(=) == sup{(F(z),n(x.1)}}, forall x € E,
yeC
and we setting
V() = {y € C: (F(z,n(z,y))) = g(=)}.
Similarly, we define the dual gap function G(z} associated with 5-DVIP (2.2} as
Gz} = sup{{#{¥), n{z, y)}}, for all 3 € E,
yel

and we setting
Alw) = {y € O+ (Fly.n(e,v))) = G()).
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3. Sufficient condition for constancy of F on C"7 and some properties of the primal
gap function

In this section, we discuss about relations among €7, Y, T(z*}, and A(z*). We study suf-
ficient condition for F' to be constant on C" and also study the y-Lipschitz continuity and -
subdifferentiability of the primal gap function ¢ in terms of the mapping F.

- Proposition 3.1 Let &€ C." " Then "~
(i) e C" o g(@)=0& 2 e (i)

Proof. (i) Consider
FeC? o F@),ny,E) =0, Vel
& (F@Ehq@Ey) =0, WeC
& gl@=0.
And we also consider
gel(®) & (F@)n# )= g(@)
& 0 =g(2).
Similarly, we can obtain (if}. O
Proposition 3.2. If F is n-pseudomonotone on C, C? C C)).
Proof. Tramediate from the definitions. 0
The following proposition we present a sufficient condition for ¥ to be constant on C7.

Proposition 3.3. Let I be n-pseudomonoionet on O". Then F is constant on O

Proof. Let @1,72 € C7. Since I is n-pseudomonotonet on C7, we have
(F(z1),nlwa.21)) > 0 and (F(z2), (e, v2)) > 0.
By pseudomonotonicity of I on €7, we have
(F(z),p(z1,22)y = 0 it follows that (F(z1), n(z1,®2)} = 0.

Since F is 5j-pseudomonotone’ on C7 and (#(w2), p{zy,x2)} = 0, implics that #(w1) = F(za).
Hence, F is constant on C7, (]

Proposition 3.4, Let F be n-pseudomonctone® on C and &* € C7, Then C" = A(z™) and I 45
constant on A(a*).

Proof. First, we prove that F is constant on A{z*). For z* € C" and ¢ € C, we have
{F(z*},n(e,z*)) = 0. Since F is pseudomonotone, we get that

{F(e),n{e,2*)) > 0,Ve € C. It follows that G{z*) = 0.
For ¢ € A(z*), we have

{F(c),n{c,=*)) = —G(z*) =0 and hence F(c) = F(z*).

743 Natthaphon Artsawang et al 738-750



J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO,

o
=
1
S
=
3

It sufficient to show that C" = A(z*).
(S): Let y* € O Then {I"(y*),n(x*,y*)) > 0. Since 2* € C C ¢, we have

(I"T(Z), ﬂ(z,’ﬂ*)) =10, Vze C.

1t follows that G(z*) =0, and (F(y*),7(y*,&*)} = 0. Therefore,
(F@ )", y')) =0=C(=*), thatis, y" € A(z"). Thus C7 C Az*).
(2) Let y* € A{z™). Then (F(y*),5(z*, ")) = G(x*) > 0. Since 2* € C", we have
(F(z" ) n(y,2*)) 2 0,¥y € C.
Note that z* E'A:(:c‘)', we have F(z*) - F(y”) Coﬁsidef, for all y€ C’, o

FA%Y

=T EITE)

O-<AF )ty
), (3, ¥%)) Yy € C. Therefore, C7 = A(z*). O

implies 0 < (F(y*},n(z*, y*)) < (I(y

Proposition 3.5. Suppese that ' be y-pseudomonotone on € and ©* € C". If F is constant on
[(z*} then F is constant on C7, And hence

C" =Gy, =T (z*) = Alz*).
Proof. Since I is 5-pseudomonotone on C, we have C7 ¢ Cy. Let * € €. Then
{(F(z)nlz",y)) 2 0.
By assumption, we obtain that g{z*) = 0 and hence {F(z*), n(y*,2*)} > 0. It follows that
() m(a*,y")) = 0 = g(a"). Thus y° € T(&").

Therefore C" C €, C T'(@*). Let z* € I'(x*). Then {(F(z*).9(z*,2")} = g(z*) = 0.
From above z* € C7 C T'(¢*) and F is constant on I'(z*), we obtain that F(z*) = F(2*). Since
z* € C7, we have (F{z*),n(z,2%)) > 0,Vz € C.
It follows that, for all 2 € C,

0 (F(z")in(z,27))
(F(2),0(z.2)) + (F(" )=, 27))
(F(=n(z.2°)) + (F(=*)yn(=", z7))
(F(="), n(z,2*))-
This fnplies that 2* € C7. Thus I'(z*} C €' and hence

[ B VN

f

C"=C, =TI{z").
1t sufficient 1o prove that I'(z*) = A(z*). For ¢ € I'(z*), we have
(F(z")n(e”,c)) = g(z*) = 0,
so (F(c},n(z*.c)} = 0 = G(a*). Therefore,
¢ € A{z”), which implies that I'{z*) C Alz*).

Now let ¢ € A(z*). Then
(Flc}, iz, )y = G(z*) = 0.
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The psendomonotonicity of F on C implies that {F(z*),n(z*,¢)} = 0. In this case,
{(F(z*),nl{z",c}} = 0 = g{z") since z* € O,
Thus ¢ € I'(z*} and hence A(z*} C I'{(z*}. Therefore
C"=C, =Tz = Alz").

O

Prop osition 3.6. Let F- bg.n,_pseudomonoton.et, on G1 'l?en;for T =3 (/uf’ I‘Lfsconstﬂntonl‘(ﬂ:‘)

if and only if
C" =0, =D{z") = A(z").

Proof. (=)Suppose that F is constant on I'(z*). By Proposition 3.5, we obtain that
C"=C, =T{x"} = Alx").
(<)Assume that C" = C)) = T'(z*) = A{z*). Let @1, 22 € ['(z*). Then
(1), n(we, 1)} = 0 and {F(z2), nlz1,22)) = 0 , because z1, 22 € C7.
Since I' is p-pseudomonotone and (F(z2),n{z1, x2)} = 0, we obtain that
(F{z1),n{my,32)) > 0, that is, {F{x1),n(xe,51)) < 0.

Thus {I(z1), n(ze, z1)) = 0. Since F is #-pseudomonotone™ on ', we have F(z,) = F(z3).

Proposition 3.7. Let F be y-pseudomonotone™ on C. Then the following are eguivalent:

(i) F is constant on I'(z*) for each z* € C".

(i) C7 = Cy =D (x”) = A(z™) for cach x* € C7.
(i) C" =1'(z*) = A(z*) for each z* € C7.
(iv) C% = I'(x*) for each z* € C7.
Proof. (i) = (if) = (ifi) = (iv) are immediate. It suffices to show (iv) = (4). Suppose that C" =
T'(z*) for each & € C7. Let =* € C" and %1, %2 € I'(z*}. Then z1, 2 € C and {¥F(z1), n(ze, 21}) =
0 and (F(w2),n(w,22)) = 0.

Since F is n-pseudomonotone and {F(z2), #(z1,x2)) = 0, we obtain that

(F(ZB]),??(:E]_,QIz)) =0 f that is 3 (F(.’L‘l),‘n(ivz,:l?l)) < 0.

Thus {I(z1), n{2, T1)} = 0. Since I is 7-pseudomonotone™ on C, we have
Flzt) = Fz2). Qa

Next we prove that if I is 5-locally Lipschitz on C7, then so is g.

Lemma 3.8. Let C be compact. If F is n-locally Lipschitz on C", then g is also n-locally Lipschitz
on C7,

Proof. Suppose that I is p-locally Lipschitz on €. Let &* be any element in C7. Then there exist
d > 0 and Lg > 0 such that

1F(z) - F@)Il < Loln(e,9)l| and {|F(z)|| < Lo forall z,y € B(z",d).

745 Natthaphon Artsawang et al 738-760



J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO 4, 2048, COPYRIGHT 2018 EUDOXUS PRESS LLC

Let ¢ € I'(w) with z € B(z*,4). Then

(F(z),nlz, ) — (Fy)ynly, e))

= ({F(z),n(z,y) + (Fl),nly, ¢)) — (@), 5y, o))
= {n(z.y)) + (F(z) ~ F(y),n(y,c))

< NFEEInG 9 + 1F @) = F@lllnty, ol

< LollnCz, p)ll + Lolln(e, w)linty, )l

By the compactness of C' and definition of 5 implies that there exists a constant A > 0 such that

IA

g(z) - 9(y)

Iy, c}ll < M forall ye B(z*,8) and ce C.

 We set I = Lo + LoM, we obtain that

glar—glyr=blintzryi—
We can conclude that g is p-locally Lipschitz on C7. ]

The following Proposition 3.2 we present the g-subdifferential of g at ©* € C" is a singleton
under sufficient condition.

Proposition 3.9. Let F be n-monotone on X and x* € C. Suppose that g is finite on X and
n-Gateauz differentiable et ©*. Then 8,g(z") = {F{z")}.

Proof. Since z* € €%, we have g(z*} = 0. For cach y € X and IV is n-monotone, we obtain that
9}~ 9(=*) = (F@)nly, #7)) = (F(="), n(y,="))-

Hence F(z*) € 8,9(z*).
Let z € 8,g9(z*). Then for cach v € X and ¢ > 0, we get that

9la” +1v) - g(a”) 2 (7,9(z" + tv,27)) = i{z,9(v.0)),

that is,
gl + ) — gzt
LA =9E) 5 (oo 0.
By the np-Gateaux differentiability of g at &* implies that

g(e” + tv) — g(=*)
t

(Va9(e"): (v, 0) = fim > (5n(,0)-

Therefore, (z — Vyg(z*),n(v,0)) < 0, for all v € X. By definition of 5 we can set n{»,0} =
2 — Vpg(z*), we have ||z — V,g{z*}[i> < 0. This implies that z = V,g(x*), and hence 8,g(z*) =

{Vagle™)} = {1(«")}

]

4, Weak sharpmness of C7

Throughout this paper, we assume that C7 and C; are nonempty and that F is a reflexive,
strictly convex, and smooth Banach space. We introduce the notion of weak sharpness solution for
generalized variational inequality(n-VIP).

Definition 4.1. The solution set C7 is said to be weakly sharp, if F' satisfies

~F(z*) € int [ [Te(z) N J*Neu(2)]° forall z* e C™.
zECn
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Theorem 4.2, Let F be p-monotone on F and constant on T'(z*) for some 2* € C", Suppose that
¢ is n-Gateaus differentiable, 51-locally Lipschitz on C", and g(z) < 400 for all x € E. Then C7 s
weakly sharp if and only if there exists a positive number o such that

adl.(z) < g(z) forall z€C, {4.1)
.whered (1:) = mf ||n(1: J)ﬂ

Proof. On the given assumption and by Proposition 3.5, we obtain that

If C7 is weakly sharp, then for any ©* € C" there exists a >> 0 such that

aBg. C F(z)+ (] [Ta(x) N J* Neo(2)]", (4.2)
reld7

where Bg- is the open unit ball in &%,
Since F is constant on ['{z™), o satisfies {4.2) for all z* € C". Therefore, for every y € Bg., we
have
ay — Flz*) e ﬂ [Te(@)nJ’ New(z)]° C [Tolz®) 0 J* Nox(27)]°.
TECH
Thus, for every z ¢ [To(x*) N J* Nen(2*)). Tt follows that

(oy— I(z"),2) < 0. (4.3)

Taking y = ﬁ in (4.3), we get that, for each x* € O,

allJzlh = (Jz,2) < (F(27),2)-

||J B
This implies that for every z € [Tz(%") N J* Now(*)], we have
aflz|l < (F(z%), 2).

For any & € O, sct & = FPon (@), we have glz, %) € To(x) N J* Ney (7) by Proposition 2.5 and lemma
2.3. Therefore,
(F(*),n(z, %)} 2 allnlz, D)l = adg, (z)-

Conversely, suppose that there exists o > 0 such that
add, (z) < g(z) for cach zeC.
We claim that
aBg: C F{a*)+ [To{z*) N J Nen(2¥)]° for each z* € O {4.4)
If To{z*) N J* Nga(z®) = {0} for * € C1, then [Te(z*) N J*Ngn (2*)|? = E and aBg- C F{z*) +
[Te(z*) N J* New ()7, trivially. So it suffices to prove (4.4) to hold if T(a*) N J* Neu(2*) £ {0}

for #* € G Now let 0 # z € To(z*) N J*Neow(x*). By definition of 5 there exists a unigque v € E
such that z = n{w,0). Then

(J(n(v,0)),1(v,0)) >0 and (J(n(v,0)),n(y",2")) <0 for cach y* € C7,
which imnplies that C" is separated from z* 4 v by the hyperplane

={z € &: (J(n(v, 00,0z, x")) = 0} = {w € E: {(J(n(v, 0)), n(x, 0)} = {J(n(v,0}), n(=",0))}-
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~

Thus we can write

Hy ={z e B: {J(n(v,0),n(=.0)) = B}, where 8= (J(n{v,0}),n(z*,0)).

Since 7(v,0) € Te(x*), for each positive sequence {t;} decreasing to 0, there exists a sequence {v;}
such that {5(v;,0)} converging to n{v,0} and z* + ¢{;1; € C for sufficiently large i . By definition of
7, we obtain that v; converging to v. Thus {J(n(v, 0}), n{v;,0)} > 0 holds for sufficiently large i, and
hence we suppose that =* + ;v; lies in the open set {z € E : {J(n(v,0)), n(z, z*}) > 0}. Therefore,

di (2 + tivg) > dfy (" + tvy). (4.5)

For each x € £. We set
AR ;J;'-;?c'"m"'[(J("('“’O»"'"(m’ﬂ)> 'B]v
ERCOIR

A straightforward computation show that (J (n(v,O)),-q(y, 0)) =3, i..e., ye H,.
Furthermore, for any 2 € H,, we have
{(J (v, 0)), (=, 0)) ~ 8
2
[| (ntw, oD,

<mmwmm@>:[
e i

] (T, 0)),1(2,0)) — (J (n(x, 00, n(y, 0))

By Lemma 2.3, we have
diy (=" +tw) = [n(z” + v, )|
y_ ti(J("?(T’: 0))* 77(‘“:’»0» v. 0
110 0| [z, O
t; (J(n(v, 0y), n(vi, 0))
G0} "

and hence, by (4.1),

* * (Jn(vr 0)»’7("’:'1 0))
glx® + Ly} = adon (2" + tivy) > afj——m—r—F——— 11,
WA SR EQUL
By Proposition 3.1, g(z*) = 0 for any z* € C7, so
. (In{v, 0). p(vs, 0)) )

glz* + i) — g(s*) = g(z* + tiwy) > at

lin(e, 0}
Since g is 7-locally Lipschitz and #-Gateaux differentiable on €7, there hold

lg(z" + tiv:) — gl + tv)|| < Ltsln(w:, v)||

for some L > 0 and all sufficiently large 7 and
glz* + tiv) — g(=*)

(qu({c*), -q(‘uj 0)) = lli_);g »
* carY — *
= lim g((D +tivz) g(.'[' ) > Q“n(ﬂ,o)”_
i—oo t}.

By Proposition 3.9, V,g(a*) = F(z*). Thus

{F(=*)yn(v, 0)) = e|ln(v, 0}I.
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This implies that for each w € Bg:,

{aw — F(x*), (v, 0)) = {aw, n{v,0}) — (F (2" },n(v,0)) < e|ln(v, 0)l| — alpnlv, 0)]f =0.

Hence aBg: — F(z*) C [Te(z*) N J* Now(x*)]°, that is,

aBpe GF(E Y+ [Tolwt) Nd Noa(e? JJoes o s o i we

This shows that C" is weakly sharp since F is constant on C7, O

Corollary 4.3 ([5]). Lel I be monotone on B™ and constant on I'(2*} for some &% € C*. Suppose
that g is Gateavs differentiable, locally Lipsehitz on CF, and g(z) < +oco for all x € R*. Then C*
s weakly sharp if and only if there exists a positive number o such that

ado«(z) < glx) forall z €C.

Proof. By applying above Theorem 4.2, if we define p(z,y) = = — y, for all 2,4 € E and space
FE = R" then € can be reduce to C'F, where € is the solution set of variational inequalities.
Moreover, the mapping g is Gateaux differentiable and locally Lipschitz on C*. O
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1 Imtroduction

In recent times, many results developed related to metric fixed point theory endowed with a

partial order. An early result in this direction was established by Ran and Reurings {1], where

they presented a fixed point result, which can be considered as a junction of two fixed point

theorems: Banach_contraction_principle and Knaster-"Tarski fixed point-theorem.-Moreover;the
result achieved in [1] was extended and generalized by many researchers, some of which are in
([2]-{4}, {71, [9]).

On the other hand, Wardowski (5] introduced the notion of F-contraction. This kind of
contractions generalizes the Banach contraction. Newly, Piri and Kumam [8] enhanced the
results of Wardowski [5] by launching the concept of an F-Suzuki contraction and obtained
some curious fixed point results. Several extensions of this result have appeared in the reference
therein; see in ([9], [10], [12])

Very recently, Jleli and Samet [11] presented a fixed point problem under two constraints
inequatities. Following this direction of research in this manuscript, we introduce the concept of
{F,3)-rational type contraction in the setup of metric space and examine the existence of fixed
points for such type of contraction. Some examples and applications are given to illustrate the

realized improvermnent.

2  Preliminaries

Let us introduce some definitions and recall some basic preliminary results which will be
needed in the following scctions. Throughout the article, we denofe by B the set of all real

numbers, by R the set of all positive real numbers and by N the set of all positive integers.
Definition 2.1. Let X be a nonempty set and let < be a binary relation on X. We say that 2
is a partial order on X if the following condilions are satisfied:

(1) For everyz € X, we have x < z.

(i9) For every m,y,2€ X, we have = 3y, y<z— x=1.

(i30) For every w,y,z € X, we have x <Xy, y2z=— x=<z

Definition 2.2. [11] Let (X,d) be a metric space and = be a partial order on X. We say that

the partial order < is d-regular if the following condition is satisfied:



For every sequences {an}, {bn} C X, we have
lm d{ay, a) = lim d(b,,b) = 0,a, = by, for all n == a <5,
n—od 1—oo
where {a,b) € X x X.
Definition 2.3. [11] Let X be a nonempty sct endowed with two partial ovders < and <. Let

T,A,B,C,D: X — X be given operators. We say that the operator T is {(A, B, <1), (C, D, <3))-

stable, if the following condition is satisfied:

Vee X, Ar =Xy Brxr=— CTz =y DTz

In this paper, we will denote Ap for the set of all functions F : BT — R satisfying the

following conditions:
(F1) F is strictly increasing, that is, for a,f € R such that o < 8 implies F(a) < F(8);
(F2) for each sequence {ay}52, of positive real numbers,

lim F(ay) = —oo if and only if lim ay = 0;
=3 n—od

(F3) F is continuous on (G, co).

Remark 2.1, From [6], condition (F'2) from above may replaced by
(F2") inf F = —co
or, also, by
(F'27) there is {an} € RT such thai lim Flay) = —o0
n—od
For more information on the class of Ap mappings, the reader may see [5, 6, 8]

Furthermore, we will also use the following notation
¥ = {th:{0,00) — [0,00) : ¥ is upper semi continuous and non-decreasing with (¢} < ¢ for each ¢ > 0}.

3 Fixed point problem under two constraint inequalities for (F),)-rational

- type contraction
In this section, the following problem will be discussed: find z € X such that
=Tz,

Az <1 Bz, (3.1)
Cx <9 Dz,



Now, we introduce the following definition:

Definition 3.1. Let (X,d) be a melric space endowed with two partial orders <1 and <3, Let

T A B,C,D: X — X are given operators. We say that T is (F,¥')-rational type contraction

. on @ melric space Xy if there exist F.€ Ap; v > 0 and .6V such that.for all x;y. € Xowith. o e

Tz £ Ty, we have

Aw <4 Bw, Cy <3 Dy = F(d(’f‘:n, Ty)) < F('(/) (I\f[(a:, y))) _r (3.2)

where

dy T+ d 1) A TSI T

M(z,y) = max {d(w, v 1+ d{z, y) i 1+ d(e,y)

The following examples are presented, in the favour of alorementioned notion.

Example 3.1. Let X == [0,00) be equipped with two partial orders ® <1=>" and” <9=<".

Define @ metric d on X by

g, if w=1y.
Thus (X,d) i3 a complete metric space. Let A, B,C,D,T : X — X be given by

d(z,y) = { asteah L3

Az = log((V 2 4 3)Y®) -+ bz; Bz = log((z* +2)Y%) + =;
Cz = log({z® 4 7¢7%)%); Dx = 10log{z + 3¢€%);
T = e where n = {1,2,3,4,...,70}.

Y150 + ¢

Simple caleulations show that Az > Bz and Cy < Dy, foer all x,y ¢ X. That is,
Ax 2y Bz and Cy 29 Dy, forallz,y € X

Now, we claim that T is (F,)-rational type contraction on a metric space X with

100t +5
106

With out loss of generality we assume that 2 > y. Then it follows from inequality (3.2) that

F(t) =log(t? +1),t > 0 and ¥(t) =

F(TTy) = F (d( {/1502 Ve q/150y+ W))

)
x 2 T
(v ve) * T




wheren = {1,2,3,4,...,70}. In view of the inequality (3.3), it is easy to verify that M(z,y) = .

Consider,

Fp(M(z,3))) 1= F() -7

100z + 5
T ) s
A T +
=lo (( 106 O) 1::]6 )‘

" It'is easy to calculate that for n =1,2,3,4,...,70, there exist some T such that inequality (3.2)
h 9!dg—fe3‘—0!H—:B—%X—,—g"}fe,—fe—w—c-hﬂices—of—n-E—{—l—,—?,—'&,—4,—.r-,—'?{}}—aﬂd—fh CoCOTTCS] paﬂdfﬂg.:ﬂalues Iﬂf“%v—““—“—

T are given in the Tuble 1.

Table 1: Few choices of n and 7 for the verification of inequality (3.2)

b L m T " T

(0,2.3] 10 (0,0.25] 19 (0,0.15]
(0,1.2) 11 (0,0.25] 20 (0,0.15]
(0,0.85) 12 (0,0.2] 21 (0,0.1]
(0,0.65] 13 (0,0.2] 30 (0,0.08]
(0,0.5] 14 (0,0.2] 40 (0,0.05)
(0,04] 15 (0,015 50 (0,0.03]
(0,04] 16 (0,0.15] 60 (0,0.02]
(0,0.3] 17 (0,0.15] 70 (0,0.02]
(0,0.3) 18 (0,0.15)

=

w0 =~ O e L N




Our main result runs as follows,

Theorem 3.1, Let {X,d) be a complete metric space endowed wilth two partiel orders %1 and
=9. Let T, A, B,C, D : X — X are given operators. Assume that the following assumptions ure

Ctruel

I = (%”21, 2)1sd-7‘egulai',
2 T A, B,C,D are continuous;

3. there exists xpy € X such thal Axg <1 Bxy;
4. T is ({4, B, 241), (C, D, 3))-stable;

4. T is ((C, D,=4). (A, B, =))-stable;

6. T is (F,4)-rational type contraction on X.

Then, the sequence {T"xq} converges to some 1w € X and such v € X is a solution of the problem
(3.1).

Proof, By assumption (3), there exists a point zg € X such that Awg = Bzg. We construct a
sequence {z,} by

Tppl = LTn for all n € NU {0}.

In veiw of assumptions (4), we will have Czy <5 Dxy. Subsequently, by assumption (5), we get

Axs < Bra. By repeating the process above, we derive
Axsy %1 Bre, and Cropqy =2 Dzgpy1, ne NU {0} (3.4)

If there exists n € NU{0} such that &,,41 = @n,, then &y, is a solution of the problem (3.1},
which complete the proof. Consequently, we will assume that @,41 # @, for all n € NU {0}. by

assumption (6), we obtain that

F(d(:cn, a:n+1)) - F(d(Tmn_l,T:un)) < F(¢ (}\ff(a;n_l,mn))) _r (3.5)

where

d(@'m -'EnJrl)[l + d($n~1;$n}] d(mm $n)[1 + d(mrHlu $n+1)] }
1+ d(:l,‘nul, $n) ' 14 d(mn—lumn)

= nmax {d(ﬂ:n—lafcn), d(wm $n+l)}-

M(@n_1,%,) = max {d(:r:n_1, Tn)s



-

We will claim that M(xy_1,%n) = d{wp-1,%s), for all n € N. If there is n € N such
that M(zy_1,%,) = d(Zn, Tnt1). Then by using the definition of function 1 together with the

incquality (3.5), we would have

F(d(x,,,:c,,+1)) < F(-l,b (d(ﬂ;n. :c,l+1))) —T.

This implics
e F(d(:r:,,,:t:nH)) < F(d(:ﬂn,fvn+1}) .

which leads to a contradiction.

Therefore for each n € N, by repeating the same technique as mentioned above, we speculate

that

F(d(wmwui)) < F($(d@n-1,20) )} = 7

< F(d(rcn_l,:c,,)). 39

Thus, since F is strictly increasing, we obtain
(T, Try1) < d(zn_i, Tn)-

That is {d(zn, Tn41)} is a decreasing sequence of positive real numbers, Moreover, from (3.6)

since P(t} < ¢, for all ¢ > 0, we have
F(d(mn,:vnﬂ)) < F(d(mnﬁl, :Ifn)) —7. fornel, (3.1
Noted that, by the repeated use of (3.7), it establishes that

F(d(:cn,:v,,ﬂ)) < F(d(m,;_l,mn)) -7

< F(d(:c,;_g,:cn_l)) — 2r

< F(d(:r:g, a:l)) —nr.

Which implies that
F(d(mn,:cn+1)) < F(d(zg,ml)) — T,

Letting the limit as n — oo, the above inequality turns into lil)‘ﬂ F (d(:c,,,.’e:n+1)) = —oo.
n—oed

Subsequently, by F € Ap, we have

lim d(zy, Tp1) = 0. (3.8)

=00



Next, we are going to prove that {z,} is a Cauchy sequence in (X,d). We argue it by
contradiction. Assume that {x,} is not a Cauchy sequence. In this case, there exists ¢ > 0
and two subscquences {wn)} and {z,} of {z,} such that for all positive integer k with
- lk) > k) > k, we have P
A&y Tngry) Z € (3.9)

and
d(@ (k) Tngiy—1) < €.
Now, inequality (3.9), turns into
€ < ATy Ta)—1) + A(Tnky=1Tn(k))
< e+ d(Tagh) 10 Tar))-
By taking the limit as & -+ co in above inequality and using (3.8), we obtain
?‘111}1;0 AT (k) Tn(k)) = € (3.10)

Further, from inequality (3.10), it is easy to see that

len;o d(xm(k)-—ls wn(k)—l) =& {3.11)
and
Jim (@)1, Emay) = € (3.12)

On the other hand, from (3.8), there exists a natural number I{ € N such that for all k > K,

we have

€ €
Wiy Tmeyra) < 5 and d@ngry, Fngyrs) < - (3.13)
Next, we will show that
ATy TEngy)} = HTmay 11 Tngryr1)s (3.14)

for all £ > K, reasoning by contradiction. Assume that, there exists r = K, such that

d(ﬂ"rrt(l')+11$n(r)+l) =0 (3.15)

In account of (3.9}, (3.13) and (3.15), we arrive at

€< d(:cm(r)aztn{r)) = d(:!"nz(r)amn(r)-J;-I) + d(:cn(r)—Hs mn(r))
= d(xm(r)a "cm(r)+1) + d(mm(r‘)-l-l! :Bn(‘r)+1) + d(mn(r)+1: $n(r))

S04 =2
1

<1 7y



o

which is impossible. This means that (3.14) is proved. Thus, from (3.2), we have

F(d(xm(k)-{-lsxn{k)-kl)) - F(d(T:Em(k)-Txn(k)))

(3.16)
B

in which,

d(:r:n(k}, :c,,(k)ﬂ)[l + d(-Tm(k)w $m(k)+1)]
1+ d(wm(k}s xn{k})

¥

N[(‘Tm(k)a -'En(k)) = max {d(Tm(L)s :cn{k));

1+ d(@ @) Tagr))

deduce to
I.]B)Tc}o j\{[(:E‘m(.f:)i (En-(k)) =€ (3.17)

Making the limit as k& — co in (3.16) and using (3.10), (3.17) and upper semi-continuity of 1,
we gef

o) £ F(yle) — 7
< Fley -,

which is impossible, since 7 > 0. This contradiction must verify that {z,} is a Cauchy sequence
in a complete metric space X.

Next, the completeness of X assures that there exists u € X such that

lim z, =u. (3.18}

n—c
Due to continuity of A and B, from (3.18), we obtain that

él_)ngﬁ d{Azon, Au)=0= nan;o d(Bxzan, Bu).

As =4 is d-regular, in view of (3.4}, we got

Au <1 Bu.
By repeating the same technique as mentioned above, one can get

Cu <9 Du.

Moreover, by {3.18), the continuity of T asserts that

d(Tu,u) = nlg]ga d(Twp, Tn) = nlgzgo {Tn41,Tn) = 0.
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This means

Tu = u.

Hence, we conclude that u € X is a solution of the problem (3.1). This completes the proof.

- From-Theorem 3:1, if A= D-=1x and-B = C =T then we deduce-the following corollary- .- =

—Corollary=-8:t—Fet- (A5dp-bea-completeneiric-space-endowed-with-two-partial-orders—truand

<o, Let T : X — X be a given operators. Assume that the following assumptions are true:
1. =; (i=1,2) is d-regular;
2. T s continuous;
8. there exists zgp € X such that =g <1 T'zo;
4. forallz € X, we have xz <1 T — Tz <o Ta;
5. for all z € X, we have Te <y © == T < T%;

6. if there exist F € Ap, 7> 0 and ¥ € ¥ such that for all m,y € X with T £ Ty, we have

& <1 Tio) Ty oy —> F(d(T:c,Ty)) < F(-r,b(M(:a,y))) s (3.19)

dyTy)i+d(z,T2)] dy,To)[Lid(Ty)] }

where M{z,y) = max {d(:c, ¥, Ty o

Then, T has a fived point.

Remark 3.1. Theovem 3.1 generalizes, improves and extends the Theorem 2.1 of H. Piri and

P. Kumam [8] for two partial orders <1 and <9 along with rational type F-contraction.

Remark 3.2. By introducing Theorem 3.1, we gencralized the results of Jleli et al. [11] and

obtained the F-contraction version of {11].

4 Applications

In this section, we will apply the Theorem 3.1 to obtain the existence theorems of some well

known problems



4.1 Application to dynamic programming

The dynamic processing gives fruitful tools for mathematieal optimization and computer pro-
gramming. We suppose that W C U is a state space, 1) C V is a decision space, where I/ and
V are Banach spaces. In aforesaid system, the problem of dynamic programming associated to
multistage process reduces to the problem of solving the functional equations:
hz) = sup{f(z,y) + Gz, y, h(p(z,y)))}, = W;
(4.1)
gi(ﬂ:) = sup{f(a:, y) + G!‘(ﬂ:v Y, g;(p(a:,y)))}, zeW, i=1, 253:4:“

FeD
where p: W x D= W, f-WxD 3 Rand G,G4,G, G, Gy - Wx Dx R R,
Let B(W) denote the set of all bounded real valued functions on W and for an arbitrary
h e B(W), define

IAll = sup [A{z)].
zelV

Clearly, the pair (B{W),||.||) with the metric d defined by
d(h? k) == sup lh('ﬂ) A\ k('ﬂ)l,
e

for all k,k € B(W), is a Banach space. Precisely, the convergence in the space B(W) with
respect to ||.[| is uniform and thus, if we consider a Cauchy sequence {h,,} in B(W), then {h,}
converges uniformly to a function, say A*, that is bounded and so h* € B(W¥).
The mappings 7', H,, Hg, Hg, Hy : B(W) — B(W) which are defined as follows:
T(h)(=) = sup{f(z,y) + G(z,y, h(p(=, y)N};
yelt
(4.2)
Hi(k)(x) = Sgg{f(:ﬂ, v) + Gilm,y, k(p(z, m)},
¥

forallh k€ B(W) ,zec Wandi=1,23,4 Also consider B{IW) is equipped with two partial

orders <1 and =q in the following sense:
hiz) =1 k(z} implies A(z) < k(z);
h(x) <5 k(z} implies h(z) > k(z),
for all &,k € B(W).

Theorem 4.1. Suppose that the following conditions are satisfied:
(1} G(.,.,0),G1(,,.,0),G2(.,.,0),G3(.,.,0),Ga(, ,O} : WX D -+ Rand f : Wx D — R are
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continuous and bounded functions;

(2) Hy(h)(w) < Ha(h)(z), Ha(k}(@) > Ha(k)(z) =

G, h(x)) — G,y h@))] < e (|A() — k()

" Jor all h(x), k(x) € B(W), 2 ¢ W and y € D. Where ¢ € U 1s defined as in Theorein 3.1and ™

T @ T = L@ @)= Ky =T ()07
(3} for every sequences {h,},{kn} C B(W) and h,k € B(W), if nlglc}o supgoyy [hnfz) — hiz)} =
nlgrolo supey Pen () — k()| = 0 and ha(x) < kn(x) for alin € N, we have h < 1.
(4) there exists xg € W such that
sup{f(z,y) + G1(x, y, h(p(0, ¥)))} < sup{f(z,y) +Galz,y, Ma(wo, ¥)))}
yelb yel
(5) there exists h, k € B(W) such that
Hy(h)(z) < Ha(h)(x) = H3T(h)(x) > HyT{(h)(z);
Hy(k)(w) = Hy(k)(z) = T (k)z) < HoaT(k)(z).

Then the functional equation (4.1} has a bounded solution.

Proof. Tt follows from condition (1} of Theorem 4.1 that T, Hy, Ha, Hz, Hy : B(W) — B(W) are
continnous mappings. Moreover, condition (5}, we have T is ((Hy, g, <), (Hs, Hy, >))-stable
and also it is {((H3, Hy, =)} (H1, He, <))-stable. Moreover, by virtue of condition (3) the relation
<1=< and <o=> are d-regular.
Let A be an arbitrary positive number, € W and hy,he € B(W). Then there exist
11, y2 € D such that Hi{(h1)(z) < Ho(h1)(z), Ha(ha)(z) > Hy(ha){z) imply
T{h1)(z) < f(z, 1) + Gz, y, halp(z, m))) + A,
T(ho)(x) < flz,y2) + Clz, y2, halplz, 12))) + A,
T{hi){z) Z f (=, y2) + G(z, y2, (o, y2)))s
T{he)(w) = f(z,y1) + G, y1, ha(plz. 31)))-
Which yields
T(h1)(x) — T(ha)(x) < Glw, y1, lalp(m, 1)) — Gl y1, halp(w, 11))) + A
< 16, y1, (ol 01))) — G, ool v+ X
< e TP{|h{x) — ha(z)) + A,



where 7 is defined in assumption(2).

In a same manner, we arrive at
T(ha)(z) — T(h1)(=) < e P(lha(e) — ha(=)]) + A

Therefore
[T(h)(zc) — T(Ra) ()| < e h(Jh() — ha(z)]) + .

As a'consciquence,

AT, T(""”:jgg I OOE OISR ¢ (TN E S

Which yields
d(T(h1), T(ha)) < e (M (hy, ha)) + N,

where

M(hy, hy) = max {rl(h,h ha), dlhg, Tho)lL + dhy, Tha)) d(a, Tha)[L + (s, Tho)] }

14 d(hy, ha) ' 14 d(hy, ha)

Since the above ineqguality does not depend on z € W and A > 0 is taken arbitrary, then we
conclude that

d(T'(h1),T(ha)) < e” (M (hy, ha)).

By using the property of logarithm function, the above inequality furns into the following
log d(1'(h1), T(ha)) < log(M(hy, ha)) — 7.

Hence, we conclude that 7" is an (F, i)-rational type contraction. Notice that from condition (4),
we have Hi(h)(wo) < Ha(h)(ze). Thus all the conditions of Theorem 3.1 are satisfied. Due to
Theorem 3.1, 7" has a fixed point h* € B(W), that is h* is a bounded solution of the functional

equation (4.1), ]

4.2 Application to fractional differential equation

Firstly, we present some definitions from the theory of fractional calculus.

The Reiman-Liouville fractional derivative of order 8 > 0 for a function u ¢ C10,1] is defined

' _ 1 d* [t u(s)ds
Do) = gy i | [t = s)p=nr

by
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provided that the right hand side is pointwise defined on [0,1]. Where n = [8] + 1 and [8] means
the integral part of the number 3 and I' is the Euler gamma function.

Consider the following fractional boundary value problem

b
(%]
ot

e

—_

where f : [0,1] x B — R is continuous function and ©D" represents the Caputo fractional
derivative of order o and it is defined by

x 1 b a(s) .
T Dn—-a) fy syt

CDO.
We consider the space X = C([0, 1],IR) of all continuous functions defined on {0,1] and
|Je|l = sup |u(t)f, forall uc X.
te[0,1}
Obviously, this space with the metric given by
d{u,v) = sup |u(t) —v()|, wveX
te[0,1]

and it is a complete metric space.

Theorem 4.2. Consider, the nonlinear fractional differential equation (4.3). Asswmme that the

Jollowing assertions hold:

(i} there exist v € ¥ and 7 > 0 such that for allu,v e R, u < v
Ft,u) — f(t,v) > 0 and |f(t,w) — f(t,0)| € e TY{jv —u|), forallt € [0,1);
(it} there exists ug € X with X = C([0,1],R) such that
un(t) < fo ' (1,8 (5, 10(5)) ds;

(iii) sup fy G(t,s)ds <1,
1€f0,1]

Then the problem (4.8} has at least one solution in X.

Proof. The problem (4.3) is equivalent to the integral equation

1
u(t) = ./0 Gt,s)f(s,u(s)) ds,



R Y
%)
(4133
1550

for all u € X and ¢ € [0,1], where

ft(r—g))2 Y- (g—5)2 1
Clt,s) = §O) : 0<s<E<T,
e 0st<s<T

Consider the mapping T : X — X defined by

1
=f0 G(t, s) (s, u(s)) ds.

It is.easy. to note that if u* € X is a fixed point of T then «7 is.a solution of the problem (4.3). ... ...

By the routine caleulation from condition (i), for v € X with u(t) < Tu(t), for all ¢ € [0,1], we

whave
1 1
Tut) — T?u(t) = fo Gt 5) (s, u(s))ds — [0 G(t, ) f (s, Tu(s))ds
s
= [ et oo ute - o, zuls)s >0,

which yields that
Tu(t) > T?uft),  for allt € [0,1].

Similarly, one can show that for all v € X, with Tu(t) < uft), ¢ € [0,1] implies
Tu(t) < T?u(t) for all £ € [0, 1].
Now, for u,v € X with u(t) < v(t) for all ¢ € [0, 1}, we obtain
[Tu(t) — Tv(t)] = [/: G(t,8)f(s,u(s))ds — ful G(t, 5) f(s,v(s)) ds]
< [ st u(e) = sls, (o)l
< [ a9 91ue) - uisas
Since, ¥ is non-decreasing function, therefore we cbtain
#(1o(s) = uls)) < o sup fuls) ()]
=1 (d(u, v)) .
Hence, from the above inequality, we arrive at

d(Tu,Tv) = sup |Tu(t) —Tv(t)| < B_T’l,b( u U) sup / G(t, s)ds
tef0,1] te[0,1]

< (d(u, 'u)) e "
<4 (M(u, u)) e,
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where M (u,v) = max {d(u, V), d(v’Tﬂ[igf:(:)"Tu)]’ d(v'Tig[clra?‘a(:t)j’Tvﬂ }

By passing through a logarithms, we have

log d.(Tu,Tv) <log tp(d(u, v)) -7

This implies

F(d(Tu,T’u)) <F (v'l (d(u,v))) T,
for F(t) = logt. This concludes that the contractive condition of Corollary 3.1 is satisfied.
Also, by the condition (ii) of Theorem 4.2, we deduce that up < Tug.
Thus, as a result of Corollary 3.1,we can assert that 7" has a fixed point in X. That is, the
fractional differential equation (4.3} has a solution. ]

4.3 Application to integral equation

Consider the following integral equation:

144
u(t) = p(t) -+ ; Alt, ) f(s,u(s))ds. (4.4)

We consider the space X = C([0,],R) of all continvous functions defined on [0, €2]. Obviously,

the space with the metric given by
d(u,v) = sup |u(t) —v(#)], u,veX
t€[0,0] :

is a complete metric space. Consider on X = C([0,02}, R) equipped with the natwral partial

order relation, that is,
v X, u<v <= ult) <u(t), t€[0,9]

Thecrem 4.3, Consider the problem (4.4) and assumne that the following conditions are satisfied:
(1) f:{0,9] xR = R is continuous;

(it) p: [0,8 = R is continuous;

(i} A [0,Q] x R = [0, c0) is continuous;

(iv} there are ¥ € ¥ and 7 > 0 such that for all u,v € R, u <,

flsiu) — f(s,0) 2 0 and |f(3,u) — f(s,)| < e (|v — ul);



(v} assume that

{1
sup/ A, s)ds < 1;
s[04 Jo

(vi) there exists a xp € X with (X = C([0,9],R)) such that

0
zo(t) < p{t) —|—f0 AlL, ) f(s,z0(s))ds.

Then the integral equation ({.4) has a solution in X with (X = C([0,9],R)).

'""""P]"‘OﬁﬁwG’C"ﬁSfﬁE’f" the mapping X=X defined by

)
Tu(t) = p(¢) + fﬂ Alt, 8) fs, u(s))ds,

for all w € X and ¢ € [0,92]. We will prove that all the conditions of Corollary 3.1 are satisfied.
Clearly, < is d-regular and by the condition (iv) of the Theorem 4.3, for x € X with x(t) <
Tx(t), t € [0,9), we have

Ta(t) — T?a(t) = S Alt, s} fs, x(8))ds — /n)\(t,s)f(s,T:c(s))ds
0 0

2
= 5 Mt s f(s,2(s)) — f(s, Te(s)})ds 2 0,

which yields that
Ta(t) > T?x(t), foraltte [0,9)].

Similarly, one can show that for all z € X, with Tx(t) < x(t), ¢ € [0,0] implies
Ta(f) < T2z(t) for all ¢ € [0, Q).
Now, for 4, v € X with u < v, we obtain
Q 0
Tu(t) — To(t) = / Nt ) s uls)ds — [ AL, 8) (s, v(s))ds
0 0
0
= 0 A(f-,S)(f(S, ‘H-(S)) o f(S,'U(S)))dS
Q
<o [ asplinGs) (o)
0
As 1 is non-decreasing function, we have

¥(los) —uls)) < 9( sup futs) —v()l)

€[0,82

= T,b(d(u, U))
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Hence, from the above inequality, we arrive at

§2
(T, Tv) = sup [T-u(t)—Tv(t)|ge_’w(d(u,v)) sup | Alt, 9)ds
0,53 tejo,8l) Jo

< (M v))e,

where M (u,v) = max {d(u,v), d('U,Tilzr[;ai(}t)l.Tu)]’ d(v.T;lJ)r[;(%;i(j‘l)ﬂ,Tv)] }

Consequently, by passing to logarithms, one can obtain
logd(Tu, Tv) < logy (d(u,v)) — T

This twrns up to

F(d(Tu,Tu)) < r(g(dwv))) -

This show that the contractive condition in Corollary 3.1 is satisfied.
Also, from condition {vi} of Theorem 4.3, we know that g < T'zp.
As a result of Corollary 3.1, T has a fixed peoint in X, that is, the integral equation has a

solution. O
The following example demonstrates the superiority of Theorem 4.3.

Example 4.1, Consider the following integral equation in X = C([0,1], ).

12 P/~ B8 1
"0~ 3751 +5 fy wenEE (<0 =

Qbserve that this equation is a special case of (4.4}, in which

241

1
plt) =
P = o1

At 8) = T

s% p
—— and f{s,t) =
(t+1) (5:t)
Indeed, the function p, A and [ arve continuous. Thus the assumptions (i)-(iii) are satisfied.

Further, for all u,v € R with u < v, we get

1 1

0< |f(s,u) —f(s,’U)f = |3(1+u) N 3(1+'U)

|
1

< -l

< e 42 (o —u)

<e TY(jv—ul)



Jor 7 =0.1 and (t) = 3. Hence, condition (iv) of Theorem 4.3 is fulfilled. For condition (v),

we have

1 12
s 1
su Alt, s)ds = sup/ ——ds = sup — < 1.
ze[ol,)z}./o t.9) tepo,ijJo E+1) telo,) 3(t+1)

Thus, condition (v) is proved. Consider zo{t) = 1, then we arrive at

1 2 1 82
o0+ [ s =gt [ ey

T B340 t+1)

?+1 11 2

04 E[ f4|1\d8 ________
{ Fowimct . ¥ L,,g,,,,,,,,,,u,ﬂdﬂ \g,,—r_l,}”,,,,, T T S PSS AP RS ero

41 L1

T #3401 ' 18(t+ 1)

>1

= Glg(t),

for all, t € [0,1]. This shows that, all the conditions of Theoremn 4.3 ure satisfied. Hence, the
integral equation (4.5) has a solution in X = C{[0,1],R). Further,the approzimate solution of
the integral equation (4.5) is

ult) = 1.02733¢ - £ | ¢ 4 1.002733
K @ +0.1)@E+1)

The approzimate solution of the integral equation (4.5) is represented by the following figure.

(4.6)

Figure 1: Approximate solution of (4.5)
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For the justification of the approzimate solution, from (4.5) with (4.6), we arrive at

21 1 t s*(s+ 1)(s* 4+ 0.1)ds
Wty = ; teo,1]. 4.
“= +017" 3(t+1) Jy st 120273383 4 5%+ 1.1s + 1102733 0.1 (“.7)

Figure 2: Plot of equality (4.7)

From Figure 1 and 2, one can easily deduce that the plot of approzimate soluiion with purple
surface is almost coincide with the value of u(t) with dark blue surface(sce Figure 2). Hence,
Figure 1 and 2 confirm the validity of the approximate solution,

The error between the approzimaie solution and the value of u(t) is given by the following figures.

Figure 3: View 1 and view 2 for error function
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