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ABSTRACT

Project Code: R2561B081

Project Title: Some fixed point theorems for generalized adlpha-eta-psi-
Garaghty contractive type mappings in partial b-metric spaces

Researcher: Associate Professor Dr. Anchalee Kaewcharoen

Project Period: October 8", 2017 — October 8" 2018

setting of partial rectangular metric spaces. The existence of fixed point thearems for
generalized contractions with triangular dlpha-orbital admissible mappings with respect to
eta in the complete partial rectangular metric spaces is proven. Moreover, we also give

the example for supporting our main result.

Keywords : Partial rectangular  metric spaces, trigngular  alpha-orbital - admissiple

mappings with respect to eta, alpha—orbital attractive mappings  with

respect to eta.
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CHAPTER I
EXECUTIVE SUMMARY

In 2000, Branciari presented a class of generalized {rectangular) metric spaces
and proved the interesting topological properties in such spaces. The anthor also
assured the Banach contraction principle in the setting of complete rectangular
wmetric spaces, After that, many authors extended and improved the existence
of fixed point theorewns in complete rectangular tnebric spaces.

Recently, Arshad et al. extended the results proved by Jleli ct al. in the
setting of complete rectangular metric spaces. On the other hand, Matthew pre-
sented the concept of partial metric spaces as a part of the study of denotational

_ S_Bman_tics_fo_f:f_]ﬂt_ﬂ:_ﬂ(_lw:n"%t‘wol."k'*—.hkt’_l_li-‘!i?ﬂﬂc‘i‘if_tihe?uﬁHﬂlim&bricﬁﬂep]dwd by—

a partial metric with an interesting property that the self-distance of any point
of a space may not be zero. Later on, Shukla introduced the partial rectangular
metric spaces as a generalization of the concept of rectangular metric spaces
and extended the concept of partial metric spaces.
Let X be a nonempty set. We say that a mapping d : X x X - Risa
Branciari metric on X if d satisfies the following:
(d1) 0 < d(z,y), for all z,y € X;
(d2) d(z,y) = 0 if and only if z = y;
(d3) d{z,y) = d(y, z), for all 2,y € X;
(d4) d{x,y) < d{z,w) + d{w, 2) + d(z,y), for all T,y € X and for all
distinct points w, 2 € X\{w,y}.
If d is a Branciari metric on X, then a pair (X, d) is called a Branciari metrie
space (or for short BMS). As mentioned before, Branciari metric spaces are
also called-rectangular metric spaces in the literature.A-sequence {7, } in X
converges to a € X if for every € > 0, there exists ny € N such that d(z,,z) <¢
for all n > ng. A sequence {#n} is called a Cauchy sequence if for every € > 0,
there exists ng € N such that d(2,,z.,) < e for all n,m > 7p. A rectangular
metric space (X, d) is called complete if every Canuchy sequence in X CONVErges
in X.
Shukla introduced a concept of the partial rectangular metric spaces as the
following:
Let X be 2 noncmpty set. We say that a mapping p : X x X —» Risa
partial rectangular metric on X if p satisfies the following:
{p1) (=) > 0, for all &,y € X;
(p2) = = y if and only if p(z, y) = oz, ) = ply,y}, for all o,y € X;
(p3) p(z, ) < p(z,y), for all z,y € X;
(pd} p(w,y) = p(y, =), for all 2,y € X;
(p5) p(x, y) < plz, w)+p(w, 2) +p(z,y) —p(w, w)-p(z,z), forall z,y € X
and for all distinct points w, z € X\{z,y}.
If p is a partial rectangular metric on X, then a pair (X, p} is called a partial
rectangular metric space.
In 2016, Chuadchawna introduced the notion of triangular e-orbital admis-
sible mappings with respect to i and proved the key lemma which will be used
for proving our main results.

'



Let T: X — X be a mapping and ¢, 7: X x X — [0, 00) be functions. Then
T is said to be a-orbital admissible with respect topif forallz € X,
afx, Ta) > n{z, Tx) implies o(lz, Tz} > 9(Tz, T?z),
Let T: X -» X be a mapping and a,7: X x X = [0, 00} be functions. Then
T is said to be triangular a-orbital admissible with respect to 7 if
{T1) T is a-orbital admissible with respect to m
(T2) for alt 2,y € X, a(w,y) > 5(z,y) and a(y, Ty) > n(y, Ty) imply

a(z, Ty) > niz, Ty).

In this project, we introduce a notion of generalized contractions in the set-

ting of partia] rectangu]a};nlgui_(;_gpaces,_%llh&gxist_e_3_1_1@e:gfzﬁxedfpointfmwua .

— for generalized contractions with triangular a-orbital achmissible mappings with
respect Lo 7 in the complete partial rectangular metric spaces is proven. More-
over, we also give the example for supporting our main result.



CHAPTER. IT
CONTENT OF RESEARCH

In this project, we obtain one publication that published in Journal of Com-
putational Analysis and Applications as the following;:

Suparat Baiya and Anchalee Kaewcharoen, Generalized contractions with
triangular -orbital admissible mappings with respect to on partial rectangular
metric spaces, Journal of Computational Analysis and Applications, vol.26 no.1
{2019}, 91-109. 5JR: Q3

1. Theorem : Let (X, p) be a partial rectangular metric space and {x,}
be a sequence in (X, p) such that p(z,,z) — plz,x) as n — oo for some
z€ X, p(z,z) =0 and lim P(Tn; Tny1) = 0. Then p(zn,,y) — p(z,y) as

n—oo
n—ocforallye X,

2. Theorem : Let (X,p) be a complete partial rectangular metric space,
T:X — X be a mapping and let a,n: X x X — [0,00) be functions.
Suppose that the following conditions hold :

(1) there exist 6 € © and A € (0, 1} such that for all z,y € X,

p(T'=.Ty) > 0 aud afz,y) > n(z.y) imply 0(p(Tz, Ty)) < [B(R{z, ).

where

pa’v Tx)p(yi,ii"?y) } .
14plz,y)

B(a, ) = mox {p(e,y), o, T, p(3, T),

(2) there exists :; € X such that o(z1,Tzy) = nw, Tey);

(3) T is a triangular a-orbital admissible mapping with respect to #; ‘
(4) if {T"21} is asequence in X such that a(T"s, Trtha) 2 9Tz, T e,)
foralln € Nand T"z, - 2 € X as n — oo, then there exists a subse-
quence {T™* )z} of {T%z,} such that a(T"®y, ) > (T "z, z) for

all k e N;

(5} @ is continuous;

(8) if 2 is a periodic peint 7', then a(z,T2) > n(z,Tz).

Then T has a fixed point,

3. Example :Let X = {0,1,2,3,4,5) and definep: X x X > [0,+00) such
that
T if =1,
PlEy)=9 2= df 2ye{0,1,2), z £y
-2"'—”;—23 otherwise.

Then (X, p) is u complete partial vectangular metric space. Since, for all
€ X and x> 0, then we have p(z,2) = & > 0. Therefore (X,p) is not



a rectangular metric space.
Define o mappingT: X - X by

TO=T1=T4=0,72=T3=2, and T5 — 4.

We can see that 0 and 2 are periodic points of T. Lelap: X x X -
(0,400} be functions defined by

| 1if z,ye{0,1,2,3);
Ot(ﬂ':. y) - { ( otherwise.

_ | 3 5ye0,1,23)

_’J‘I(.’L‘.Ul_ff l:].—'_ﬂ—“l ETses——

Also define § : (0,00) — (1,00) by 8(t) = e¥?. We next illustrate that
all conditions in Theorem 1 hold. Taking x, — 1, we have a(1,T1) =
a(1,0) = 1 > L =5(1,0) = 9(1,T1). Neat, we prove that T is a-orbital
admissible with respect to n. Let a(z, Tz) > gz, Tz). Thus z,Tx €
{0,1,2,3}. By the definitions of a,9, we oblain that

a(T0,720) = &(0,0) = 1 > = = n(0,0) = 5(T0, T20),

o(T1,T°1) = a(0,0) = 1 > = = 5(0,0) = n(T1, T?1),

a(T2,T%2) = 0(2,2) = 1> = = 5(2,2) = n(72,7%2),

o(T3,7%3) = (2,2) =1 > = = p(2,2) = n(T3,7%3).

B B = B3] = bo|

It follows that T is a-orbital edmissible with respect (o 7. Let oz, y) >
n{z. y) and a(y, Ty) > n(y, Ty). By definitions of o, ), we have z,y, Ty €
{0,1,2,3}. This yields

a(0,0) = 9(0,0) and a(0,T0) > 1(0,T0) imply a(0,70) > 5(0,T0),
®(0,1) > (0,1} end a(1,T1) > n(1,T1) imply (0, 71) > (0, T1),
a(0.2) 2 7(0,2) and o(2,72) > 5(2,T2) tmply a0, T2) = n(0,T2),
a(0.3) > n(0,3) and &(3,73) > 5(3, T3) dmply a(0,73) > y(0,T3),
a(1,0) > 5(1,0) and e(0,70) > 70, 70) dmply a(1,T0} = n(1, TV,
a(l,1) 2 9(1,1) and o(1,T1) 2 (1, T1) imply a(1,71) = 7(1,771),
(1,2) > 7(1,2) and o2, T2) > 7(2, T2) tmply (1, T2) > (1, T2),
a(1,3) > 1(1,3) and (3, T3) > (3, T3) imply a(1,73) > n(1,73),
(2,0) > 5(2,0) and «(0,70) > 5(0, T0) imply «(2,70) > 7(2,70),
@(2,1) > 9(2,1) and a(2,T1) > (1, T1) imply (2, T1) > (2, T1),

=
2

4



2(2,2) 2 n(2,2) and o2, 72) > n(2,T2) imply af2,T2) = (2, T2),
a(2,3) > n(2,3) and o(3,T3) > n(3,T3) imply (2,73} > {2, T3).
@(3,0) > n(3,0) and a0, T0) > 5(0,T0) imply (3,70) > 7(3,70),
a(3.1) > 7(3,1) and (1, T) > 9(1,T1) imply a(3,T1) = n(3,711),
a(3.2) > n(3,2) and o(2,T2) > 4(2,72) imply a(3,72) > n(3,T2),
@(3,3) = n(3,3) and o3, T3) > 1(3,T3) imply (3, T3) > n(3,73).

This implies that T is triangular c-orbilal admissible with respect to
7. Afterward, let {T"z)} be a sequence such that alT"x,, T} >
(T2, " x1) for all n € N and T"z; = = as n — oco. By the def-
initions of o, n for each n € N, we get Thx, € {0.1,2.3). We_abtain_

Tthatw e {071,2,3). Thus we have ol Tz, 2} > n(T7%,,2) for cach
neN. Letw,y € X be such that p(Tz, Ty) > 0. We could observe thal
ifz,y € {0,1,4}, then Tw = Ty = 0. This émplies that p{T'z, Ty) = 0. So
we consider the following cases:

* z € {0,1,4} and y € {2,3} or
e £€{0,1,4) andy =135 or
* x={2,3} and y = 5.

Ifr=4andye{2,3} orze{0,1,4} andy="5 orz = {2,3) andy =5,
then we have oz, y) # n(z,y). We divide the proof inte four cases as
follows:

(1) If (z,y) € {{0,2),(2,0)}, then

- 2{0,0)p(2,2) | B -
R(0,2) = max {p(o, 2, (0, 0), (2, 2), _I—HJW}

= max {1,0. 2,0}
-
This implies that
V(E(T0,72)) = $(p(0,2)) = (1) = e¥T < [V = (W27 < [p(R(0,2))]°7.

Therefore
$(p(T0,T2)} < [(R(0,2))]°™.

Since p(z,y) = p(y, z) for all z.y € X, we also obtain that
P(p(1'2,T0)) < [p(R(2,00)]0™.
(2) If (z,y) € {(1,2),(2,1)}, then

R(1,2) = max {p(l, 2}, p(1,0), p(2,2), Ii(ls_O)PM}

14+ 9(1,2)
) 2

= max {2, 1,2, 5}

=2



This implies that

V(p(TL, T2)) = (p(0,2)) = (1) = &¥" < V707 = [p(2)]>7* < [p(R(1,2))]"7".

Therefore
#(p(T1,T2)) < [p(R(1,2)))".

Since plz,y) = ply, =) for all 2,y ¢ X, we also oblain thal
H(p(T2,T1)) < [p(R(2, )7
(3) If (z.y) € {(0,3),(3,0)}, then

R(0,3) = max { 2(0.3}.(0,0). p(3,2), (0_0)!’@

p{0:3)=

= max {4, 0, g, 0}

This implics that
P(o(T0,T3)) = $(p(0,2)) = (1) = e < [VE]?5 = )1“*" < [(R(0,3)]°°,

Therefore
H(p(T0,T3)} < [P(R(0,3))]"".

Since p(z,y) = ply,x) Jor all x,y € X, we also oblain that
B(13,70)) < W(R(, NI,
(4) If (z,v) € {(1,3), (3, 1)}, then
(1,0)p(3,2) }

P

R(1;8) = max {p(l, 3), p(1,0), p(3, 2), = Y
9 9 9
m"“‘{ 211}

This tinplies that
P(p(T1,T3)) = (p(0,2)) = (1) = VT < [VEPS = [v,b( )05 < [, 3))]°S.

Therefore
W(p(T',73)) < [(R(1,3)))"°.

Since p{z,y) = p(y,x) for all x,y € X, we also oblain that
B(p(T3,71)) < (R, 1))

It follows that if z,y € X, p(Tx,Ty) > 0 and o(x,y) = nlz,y), Then
P(p(Tz, Ty)) < [P(R(z, y))]’\ Hence all assumptions in the main result
are satisfied and thus T has o fized point which are £ =0 and z = 2.

6



4. Theorem : Lot (X,p) be a complete partial rectangular metric space,
T:X — X be a mapping and let a,n: X x X — [0,00) be functions.
Suppose that the following conditions hold :

(1) there exist # € © and A € (0,1) such that for all T,y X,

p(T®,Ty) > 0 and a(z.y) = plz.y) imply O(p(Tz, Ty)) < [6(R(z, y))(];).
where

¥

Rz, y) = max {p(:c, y), p{z, T'z), p(y, Ty), f%f%ﬂ}

“(2)thereoxists T, € X such that a(zy, Tz1) >0z, Tz1) and alz,, 7o) >
n(z1, T2z, );

(3) T is an a-orbital admissible mapping with respect to n;

{4) T is an a-orbital attractive mapping with respect to #;

(5) ¢ is continuous;

(6) if = is a periodic point of T, then olz,Tz) = n(z,Tz).

Then T has a fixed point.
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Generalized contractions with triangular
a-orbital admissible mappings with respect to n
on partial rectangular metric spaces

Suparat Baiya' and Anchalee Kaewcharoen?*

P ———————— ' 1

“Department of Mathomatics, Faculty of Science, Naresuan University
Phitsanulok 65000, Thailand
E-mails: s.baiya20@hotmail.com, anchalecka@nu.ac.th

Abstract

In this paper, we introduce a notion of generalized contractions in the
setting of partial rectangular metric spaces. The existence of fixed point
theorems for generalized contractions with triangular a-orbital admissible
mappings with respect to » in the complete partial rectangular metric
spaces is proven. Moreover, we also give the example for supporting cur

- — - e— - mainresult.- - - - m— ——

Keywords: Partial rectangular metric spaces, triangular a-orbital admissible
mappings with respect to n, a-orbital attractive mappings with respect to .

1 Introduction and preliminaries

In 2000, Branciari [2] presented a class of generalized (rectangular) metric spaces
aud proved the interesting topological properties in such spaces. The author
[2] also assured the Banach contraction principle in the setting of complete
rectangular metric spaces. After that, many authors extended and improved
the existence of fixed point theorems in complete rectangular metric spaces, see
[4, 5, 6,7, 8,9, 10, 11, 15] and the reforences contained therein.

Recently, Arshad et al. [1] extended the results proved by Jleli et al. [6, 7] in
the sebting of complete rectangunlar metric spaces. On the other hand, Matthew
[12] presented the concept of partial metric spaces as a part of the study of
denotational semantics of data flow network. In this space, the usual metric is
replaced by a partial metric with an interesting property that the self-distance of

*Corresponding autlor.
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any point of a space may not be zcro. Later on, Shukla [16] introduced the par-
tial rectangular metric spaces as a gencralization of the coneept of rectangular
metric spaces and extended the concept of partial metric spaces.

In this paper, we introduce a notion of generalized contractions appeared in
11} in the setting of partial rectangular metric spaces. The existence of fixed
point theorems for generalized contractions with triangular a-orbital admissible
mappings with respect to  in the complete partial rectangular metric spaces is
proven. Moreover, we also give the example for supportilg our main result.

We now recall some definitions, lemmas and propositions that will be used
in the scquel.

Definition 1.1 [2] Tet X be a nonempty set. We say that a mapping d :

X %X — Ris-a Brarciari metric on-X it @ satisfies the following:

(d1) 0 < d(z,y), for all z,y € X;

(d2) d(z,y) = 0 if and only if 2 = ¥;

(d3) d(z,y) = d(y, ), for all 2,y € X;

(d4} d(z,y) < d(z,w) + d(w,2) + d(z,9), for all 2,y € X and for all
distinet points w,z € X\{x, y}.
If d is a Branciari metric on X, then a pair (X, d) is called a Branciari metric
space (or for short BMS). As mentioned before, Branciari metric spaces are
also called rectangular metric spaces in the literature. A sequence {z,} in X
converges to & € X if for every ¢ > 0, there exists np € N such that d(x,,z) < ¢
for all n > ngp. A sequence {z,,} is called a Cauchy sequence if for every € > (],
there exists ng € N such that d(z,,,z,) < ¢ for all n,m > ng. A rectangular
metric space (X, d) is called complete if every Cauchy sequence in X CONVErges

in X.

Shukla {16] introduced a concept of the partial rectangular metric spaces as
the following:

Definition 1.2 {16] Let X be a nonempty set. We say that a mapping p :
X x X — R is a partial rectangular metric on X if p satisfies the following:

{pl) p(x,y) > 0, for all &,y € X;

(p2) = =y if and only if p(z, ) = p(z, ) = p(y, y), for all 3,y € X;

(p3) plz. 2) < pla,y), for all 2,y € X;

(pd) p(=z, v} = p(y, =), for all 2,y € X;

(p5) p(=, y) < p(w, w)+plw, 2)+p(z,3) —plw, w)—p(2,2), forall 7,y € X
and for all distinet points w, z € X\{=, y}.
If p is a partial rectangular metric on X, then a pair (X,p) is called a partial
rectangular metric space.

Remark 1.3 [16] In a partial rectangular metric space (X, p), if 2,y € X and
p(z,y) =0, then = = y but the converse may not be true.

Remark 1.4 [16] It is clear that every rectangular metric space is a partial
rectangnlar metric space with zero self-distance. However, the converse of this
fact need not hold.
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Example 1.5 [16] Let X = [0,d],a > d > 3 and define a mapping p: X x X —»

[0, 00) by
T ife =1y
plo,y) = ¢ 20 Gfe y e (1,2}, 2 £y
utwty

9 otherwise.

Then (X,p) is a partial rectangular metric space but it is not a rectangular
metric space. Moreover, (X, p) is not a partial metric space.

Proposition 1.6 [16] For each partial rectangular metric space (X,p), the pair
(X, dp) @5 a rectangular metric space where

dp(z.y) = 2p(w,y) —p(w.2) Py y),

for d_n -$,y € x.
Definition 1.7 [16] Let (X,p) be a partial rectangular metric space, {z,} be
a sequence in X and # € X. Then,
(i) the sequence {z,,} is said to converges to z € X if lim P2y, ) = p(z, z);
200
(ii) the sequence {2, } is said to be a Caucly sequence in (X, p)if lim  p(ze,Tm)
n,m—ox
exists and is finite;

(iii} (X, p) is said to be a complete partial rectangular metric space if for
every Cauchy sequence {z,} in X, there exists z € X such that

i P(Tn, Tm) = lim p(ien, 2) = ple, z).

Lemma 1.8 [16] Let (X, p) be e partial rectangular metric space and let {z,}

— = ——— = — ——— ——be-asequence in-X. Then limdp(zn, ©) = 07if and only if “lim plz,,z) =
) nm—o0 n—o)
"]Hgop(xnawﬂ) = p(=. ;C)

Lemma 1.9 [16] Let (X,p) be a partial rectangular metric space and let {x,}
be a sequence in X. Then the scquence {z,} is a Cauchy sequence in (X,p) if
and only if it is @ Cauchy sequence in (X, d,).

Lemma 1.10 [16] A pertiol rectengular metric space (X, p) is complele if and
only if a rectangular meiric space (X, d,) is complete.

In 2014, Popescu [13] introduced the definitions of a-orbital admissible map-
pings and triangular a-orbital admissible mappings including a-orbital attrac-
tive mappings.

Definition 1.11 [13] TLet T: X -3 X be a mapping and o : X x X — [0, 00)

be a function. Then T is said to be a-orbital adinissible if for all & € X,
a{z, Tz} > 1 implics «(Tz, T?2) > 1.

Definition 1.12 [13] Let T : X — X be a mapping and a : X x X — [0, 00)
be a function. Then T is said to be triangular a-orbital admissible if:

{T3) T is c-orbital admissible;

(T4) for all 2,y € X, af{z,y) > 1 and a(y, Ty) > 1 imply a(z, Ty) > 1.
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Definition 1.13 [13] Let 7: X — X be a mapping and o : X x X — [0,00)
be a function. Then 7 is said to be a-orbital attractive if for all z € X,
oz, Tx) > 1 implies a(z, ¥} > 1 or oy, Tx) > 1 forall y € X.

We denote by 6 the set of all functions & : (0, 00) — {1,00) satislying the
following conditions:
(©1) ¢ is non-decreasing;
(92} for each sequence {¢,} C (0,00),

lim 6{¢,) =1 if and only if lEn L, =07;

N0

(©3) there exist r € (0,1) and £ € (0,00].such that Jim 201 ¢
— - = R e

Example 1.14 [6] The following functions 8 : {0, cc) — (1. cc) are in O:
(1) 0(t) = ¥
(2) 6(t) = ete;
@By ot)y=2— %arctan(t%) where 0 <y < 1.

Very recently Jleli et al. [G, 7] established the following generalization of
the Banach fixed point theorem in the setting of complete rectangular metric .
spaces.

Theorem 1.15 [6] Let (X, d) be a complete rectangular meiric space and T
X — X be a mapping. Suppose that there exist 0 € © and X € (0,1) such that
forall 2,y e X,

d(Tx, Ty) # 0 implies §(d(Tz, Ty)) < [0(d(z, y)]>.
Then T has o unique fized point.

Theorem 1.16 [7] Let (X, d) be a complete rectangular metric space and T :
X = X be a mapping. Suppose that there exist 6 € © and ) € (0,1) such that
forallz,ye X,

d(Tz, Ty) # 0 implies O(d(Tx, Ty)) < [0(M (=, 1)),

where
M(z,y) = max{d(z, y), d(z, Tw), d(y, Ty)}.

Then T has a unique fired point,

Later, Arshad et al. [1] extended the results proved by Jleli et al. [6, 7] by using
the concept of triangular a-orbital admissible mappings.

Theorem 1.17 [1] Let (X, d) be a complete rectangulor metric space, T 1 X —
X be a wmapping end « : X x X — [0,00) be a function. Suppose that the
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following conditions hold :
(1) there exist 0 € © and )\ € (0,1} such tha! for all z,y € X,

d(Tz, Ty) # 0 implies oz, y) - 0(d(Tz, Ty)) < [B(R(z, )},
where

y

Rla,0) = max { (o, ), e, Te), iy, Ty), 570000 )

(2) there exists x1 € X such that a(z),Tz:) > 1 and alz), Ta) > 1;
(3) T is a triengular a-orbital admissible mapping;

(4) 4 {T"z:} _is a_sequence in-X_such-that.o(Trey, T g,) > 1 for-allp-eN

and ¥, — = € X asn -3 oc, then there exisis a subsequence {72y} of
{T"21} such that o«(T"®xy,2) > 1 for all k € N;

{(5) 0 is continuous;

(6) if z is a periodic point T, then w(z, Tz) > 1.

Then T has a fized point.

Theorem 1.18 [1] Let (X.d) be a complete rectengular metric space, T: X —
X be e mapping and o : X x X — [0, co) be a function. Suppose that the
Jollowing conditions hold :

(1) there exist f ¢ © and X € (0,1) such that for all z,y € X,

d(T%, Ty) # 0 implies a(z.y) - 6(d(Tz, Ty)) < [O(R{z, )],

where

R(z,y) = max {d(x, v}, d(z, Tz}, d(y, Ty),

@M}
L+d(z,y) T

(2) there ewists z; € X such that o(z,, T#1) > 1 and alz), T%e1) > 1;
{3) T is an a-orbital edmissible mapping;

(4} T is an a-orbital attractive mapping;

(5) & s continuous;

(6) if z s a periodic point T, then oz, Tz) > 1.

Then T has a fired point.

In 2016, Chuadchawna (3] introduced the notion of triangular a-orbital ad-
missible mappings with respect to 5 and proved the key lemma which will be
used for proving our main results.

Definition 1.19 [3] Let 7': X -» X be a mapping and o, 77 : X x X — [0, 00)
be functions. Then 7" is said to be w-orbital admissible with respect to 7 if for
alz e X,

a(z, Tx) > i(x, Tr) implies a(Tz, T?z) > n(Tr, T?z).

Definition 1.20 (3] Let T': X — X be a mapping and &,7: X x X — [0,00)
be functions. Then T is said to be triangular a-orbital admissible with respect
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to n if
(T1) T is o-orbital admissible with respect to 7,
(T2) for all ,y € X, oz, y) > n{x,y) and aly, Ty) > n(y, Ty) imply

afz, Ty) > nx, Ty).

Remark 1.21 If we suppose that n(z,y) = 1 for all 2,y € X, then Defini-
tion 1.19 and Definition 1.20 reduces to Definition 1.11 and Definition 1.12,
respectively.

Lemma 1.22 [3] Let T : X — X be e triangular o-orbital admissible mapping
with yespect to . Assume that there exvists ©; € X such that a(r,Tx)) =2

(my, Tie1). Define a sequence {x,} by 01 = Ty, Then we have afE,, Tm) >

Ty for—allamm e Romthn—m——— =

Definition 1.23 Let T: X — X be a mapping and a,: X x X — [0,00)
be functions. Then T is said to be a-orbital attractive with respect to 7 if for
allz € X,

a(x, Tx) > n(x,Tx) implies a(z,y) > n(z,y) or a(y, T'x) > 5y, T'z) for all
yc X

2 Main results

We now prove the following lemma needed in proving our result. The idea comes
from [10] but the proof is slightly different.

Lemma 2.1 Let (X,p) be a partial rectangular metric space and {z,) be a
sequence in (X, p) such that p(z,.,z) - p(z,2)-as-n —_co for somez-€-Xy———ooo— .
p(z,2) = 0 and Km p(zn,2ag1) = 0. Then p(w,,y) = plz,y) s n - oo for
allye X.
Proof. Suppose that z # y. If z, = y for arbitrarily large n, then p(y, x) =
p(z,3) = p(y,y). Therefore = = y. Assume that y # =, for all n € N. We also
suppose that z, # z for infinitely many n. Otherwise, the result is complete.
It follows that we may assume that @, # zm #  and =, # z, # y for all
m,n € N with m # n. By the partial rectangular inequality, we have
p(ya 3:) < P(y, 9-771) + p($m$u+1) + P(Sﬂn+1)3«') —a p(ﬂ-"u‘ mn) —~ P(ﬂfn+1 B mu+1)
<P wn) + p(@n, Tatr) + p(Tatr, 2)
and
P(y, -'En) < p(yl :B) + P(-'L', En+1) ils p(-rk"n+l s mn) - p(x‘ -7;) - p(mn+1) $n+l)
S p(yl :E) + p(m? In+1) +.'p($n+l: :Ert)-

Since lim p(wn, ®ns1) = 0 and taking the limit as n — oc in the above inequal-

n—oo

ities, we have
limsup p(y, zn} < p(y. ©) < liminf p(y, x,).
n mn

Hence the proof is complete. m
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Theorem 2.2 Let (X,p) be a complete partial rectangular metric space, T :
X = X be a mapping and lel o, 53 X x X — (0,00} be functions. Suppose that
the following conditions hold :

(1) there exist 0 € © and A € (0,1) such that for all z,y € X,

p(Tx,Ty) > 0 and oz, y) > nlz,y) imply 0(p(Tz, Ty)) < [0(R(z,y)]*,
(2.1)

where

R(x, y) = max {p(:c, y),P(ﬂ:, T:E),p(y, Ty)? &ﬁ%}

—(%)-there-ezists-z1-€ Xosuch-that- o (wrdirr) 2 e rleri—— —

(3} T is a triangular c-orbital adinissible maopping with respect to n;
(4) i {T"z1} 45 o sequence in X such that o(T™z), T™ z,) > (T, T )
Jorelln € N and T"zy = 7 € X as n — oo, then there exists a subsequence
{1"®)g)} of {T™x1} such that a(T" Mgy, z) > p(T"®)g), 2) for all k € N;
(5) 8 is continuous;
(6) if z is a periodic point T, then oz, T'z) > 1z, T'z).
Then T has a fized point.

Proof. By (2), there exists z1 € X such that a{z1, Tz1) = n(z1, T1). Define
the sequence {z,} in X by z, = Tx,—y = T"a; for all n € N. By Lemma 1.22
we obtain that

a(T a1, T zy) > (T, " a;) for all n € N, (2.2)

= = —1ETMey = T gy for some n € N, thein 7"z is a fixed point of 7. Thus ‘we
suppose that T"z; # Tt for all n € N, That is p(T"z, T"z,) > 0.
Applying (2.1), for each » € N, we have

O(p(T" 21, T" 1)) = (p(T(T™ 21, T(T"))))
< BRI 2y, T z))Y, (2.8)

where
R(Tn_lml‘ anl) = Inax {p(TH71$1 ’ Tﬂml)l p(Tn71$15 T(Tn_lml)))p(Tnmla T(T".’nl)),
(T iy, T(T" 22 ))p(T 21, T(T21)) }
T4p(Tr=1zy, Tr2y)
= max {p(T"_l:cl, Ty ), p(T ey, T, (T, T ),
P(‘T"_liﬂlj T”:cl)p(T"atl, Tn+1$1) }
1 +p(Tn_l:E1, T"{El)
= max{p(T" oy, "), p(T"w1, T" )}

If R(T" 1z, T"z;) = p(T"z,, T 1z1). By (2.3), we have
(T 1, T 1)) < [O(p(T 721, T 1))
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This implies that
CIn[o(p(T7F1, T '2)))] < Al[0(p(T"zy, T 20))],

which is a contradiction with A € (0,1). This implies that R(T™lz;, Tha) =
p(I™ g1, T"x,) for all n € N. Trom (2.3}, we obtain that

Op(T" ey, T w)) < [B(p(T" Y1, T"xy))* for alln € N.
It follows that

10Tz, T"Hey)) < - - < (B(p(21, Tx)))N forallmeN.  (2.4)

ﬁkﬁlgt}leh;{nt_asn%oé m tile:dbo_v;a _i_neqllaiits;,- we obfain tha-L_ -
lim (p(T"®,, T ay)) = 1. (2.5)
n—oo
By using condition (©2), we have
lim p(T7z,, T g) =0, {2.6)
Ll de ]
From condition (©3), there exist r € (0,1) and ¢ € (0, oo] such that

O(p(T"zy, T e )y —1 - ¢

i
- @z, T )

Assume that £ < co. Let B = % > 0. It follows that there exists np e Nsuch-—— ——
that :
B(p(T"y, T a)) — 1

[p(T":cl,T"Hg;l)]r ~€ < B foralln > Tig.

This implies that

G(p(T":nl, T"+1$1)) -1
[p(T 72, 70 )T

>f{—B=2158 foraln>ng

Thus we have
alp(T"z, T ey))” < Anf0(p(T"2), T z1)) — 1] for all n > ng,

where A = %. Assume that £ = co. Let B > 0 be an arbitrary positive number.
It follows that there exists ng € N such that
OO0, T 12)) ~ 1
[])(T":Ih , Tn+1$1)]r

> B foralln > ng.

This implies that

a[p(T" w1, T a)|” < An[0(p(T 2y, T" 1)) — 1] for all n > ng,
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where 4 = %. From the above two cases, there exist A > 0 and ng € N such
that

nlp(T" @y, T lay)|™ < Anf@(p(T" 21, T 2))} — 1] for all n > ny.
Using (2.4}, we have
nfp(T"z1, T 2)]” < An([0(p(z1, Tz ) — 1) for all n > ng. (2.7)
Taking the limit as » — oo in the above inequality, we get that

. ; e n+1 Fo__
iy Mo 1)) =0

This implies that there exists n; € N such that
1
p(T7x, T ) < s for all n. > n;. (2.8)
T r
We now prove that T has a periodic point. Suppose that T does not have pe-

riodic points. Thus T"z; £ T™z, for all n,m & N such that n # m. Using
Lemina 1.22 and (2.1), we get that

Op(T" 1, T 221)) = B(p(T(L™ 21), T(T*H 1))
< [E(R(Tnila:ll Tn+la71))]A=

__ where ~w< T N _ \ 44N

R(T"_I:ul,T“Hu:l) = max {-p(T"‘lzcl,T"+1:1:1),p(T“_1$1,T(T"_lazl)),p(T”“:cl,T(T"'Hml)),

p(I" T L Y)p(T oy, T (T 3y)) }
14 p(Tr 1z, Trtto)
= max {p(T"_la:l,T"“a:l),p(T""larl,T”wl),p(T”+1$1,T"+2$1),
p(T Vg, TP ) (T, T""‘za:l)}
L+ p(Ta gy, Totlg)
= max{p(T" 12y, 7" La1), p(T" Lar, T2 ), p(T" 2y, T22,)}.

Thus we have

Op(T" e, T 1)) < [0(max{p(T™  an, T ), p(T" Loy, T ), p(T™ ey, T2 )P

It follows that

O(p(T"w1, T 21)) < max{8(p(T" V1, T 1)), 0(p(T" t21, T21)), 0(p(TH ey, T 1 )}

(2.9}
Let I be the set of n € N such that
ty = max{@(p(T" ey, Tz ), 0(p(T" ), T"21)), B(p(T" 1z, T 22,))}
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= Bw(Tn_lﬂll,TnJrlﬂS])).
If |[7] < oo, then there exists N € N such that, for every n > N,

wax{#(p(T™ 1z;, T" z,)), G(p(T"_lml,T"a:l)),0(p(T"+13;1,T"+2:c|))}
= max{B(p(T" " zy, T 1)), 8(p(T" ey, T2 ).
For all n > N, from (2.9), we obtain thai
1 < O(p(T" 21, TP my)) < [max{8(p(T" o1, T"21)), B(p(T™ Ly, T 220 1))
Taking the limit as n — 0o in the above inequality and using (2.5), we get that
nlggo B(p(T" 2, T 22,)) = 1.

[ ="co; then we can fird a"subséqience of {1, }, dénoted by {7}, such that
Un = B(p(T" 1z, T"+1z1)) for large n. From (2.9), we have
1< 0(p(T" 1, T" )y < [0 o, T e )P < [0(p(T" 201, T21))]Y
<o £ [0(p(2n, TP )Y,
for large n. Taking the limit as n — oo in the above inequality, we obtain that

lim #(p(T"z1, T 22,)) = 1. (2.10)

n—oo

Then in all cases, we obtain that (2.10) holds. By wsing (2.10) and (82), we get
that
n]HI;Gp(Tn:Bl,Tﬂ+2$1) =0.

As an analogous proof as above, [rom (©3), there cxists ny € N such that

p(T“:cl,T"+2$1) < IL/ for all n > n,. (2.11)
n %

Let M = max{n1,ns}. We consider the following two cases.
Case 1: If m > 2 is odd, then m = 2L - 1 for some L > 1. Using (2.8), for
all n = M, we get that

(T 2y, T M z1) < p(Thay, T y) + p(T" iy, T Egy) + p(T7 2, T3+ 5 )
(T T 3y) — p(T™ 22, T 20)
ép(Tnml,T"+1$1) +p(Tﬂ+1.’E1,T"+2$1) +j‘)(Tn+2271,T"+2L+1:L‘1)
< p(Thy, T M) + p(T7 e, 17 22)) + (T2, T 32 )+
POV Py Y g (T gy, T2 )

< (T2, T ) + p(T"H 2y, TP 20) 4 - 4 p(T gy, TP H2 41
LA S 1
nl/r (n+1)1/r (n+2L)I/r

— 1
<2
i=n

iA

(2.12)

10
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Case 2: If m > 2 is even, then m = 2L for some L > 2. Using (2.8} and
(2.11), for all n > M, we get that

p(Thay, Tz} < p(T7xy, T2} + p(T 2y T 3m)) + p(T 3y, T 25,)—
PT™ 2y, T 2a,) — p(T™ ey, T a,)
< p(Tz, T"+2:1:1) + p(T”+2a:1. T"*S:t:.) + p(T"*a:cl ,T2Ley
Cp(T ey, T 22y + p(T7 22, T3y ) 4 p(T" P32y, T M )+
DTz ToH50,) 4 p(T7 53, Tay)

e 11 bt e et o 1 b G g S iy ) o mma oy o it v o it )
S R !
“nl/r  (n42)Vr (n+2L — 1)1/

=)
SZHT-
i=n

From Case 1 and Case 2, we have

(2.13)

1
p(T"-’L‘l, T"+m(£21) <

1
= ol + W forall n > M.

(2.14)
7= Is convergent (since + > 1) and (2.14), we have

lim p(T"z,, T ™z,) =0.

Pl T —+00

Tt mrar

oo
i=n

Since the series Y

This implies that {I™z} is a Cauchy sequence in (X,p). By Lemma 1.9,
we have {T™z,} is a Cauchy sequence in (X,d,). Since (X,p) is complete,
then (X,dp,) is complete. This implies that there exists z € X such that
nh_l}rgo dp(I'"zy, z) = 0. Using Lemma 1.8, we have

B g 1L . H o (L R
nlnglQp(T Z1,2) = nlg](}cp(T zy, T"21) = p(z, 2).
By applying Proposition 1.6, we obtain that
2p(T" g1, 2) = dp(T7 %1, 2) -+ (T2, T"21) + p(2, 2)
L dp(T &1, 2) + p(T7 2y, T 1) + p(T" w1, 2).

Therefore p(T"x1,2) < dp(T" %1, 2)+p(T" %1, T ' 21) for all n € N. Taking the
limit as n — co, we obtain that p(z, z) = lim p(T"%;, z) = 0. We now suppose
H— o0

that p(z, Tz} > 0. By condition {4), there exists a subsequence {7T""z,} of
{T"z1} such that a{T"¥Fhey, 2) > p(T7 Wz, 2) for all & € N, Since 77z, #
Ty for all n,m € N with m # n, without loss of generality, we can assume
that T8+ £ T». And applying the condition (2.1), we obtain that

0(p(T™ 8z T2)) = 0(p(T (TP an), T2))
< [B(R(T" Ry, 2))],

11
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where
R(T" Mg, 2) = max {p(T"U")ml,z),p(T"("").’vl,T(T"(k):r:l)),p(z, Tz),
p(T™" Oy, (TR g (2, T) }
1+ p(T" 3, 2)
max{ (T W)y, 2), p(T" Wy Tty 1), p(z, Tz),

p(T7Frgy, TG (2, I‘z)}
1+ p(T7®)xy, 2)

Thus we have

DT F g T2 < Mnm{ (K, 2), p{ TP, TP EF T Y i T2),

p(T"(Uml, i’"'(k)"'l.’t:l)p(.?.’, Tz) })] X
1+ p(I"8)zy, 2) '

(2.15)

Taking the limit as k — oo in (2.15), using the continuity of # and Lemma 2.1,
we obtain that

B(p(=. 1)) < [B(p(z, T2)) < 0(p(=,T2)),

which is a contradiction. Thus we obtain that p(z, T2} = 0. By Remark 1.3,
we have T'z = z, which contradicts to the assumption that 7 does not have a
periodic point. Thus 7" has a periodic point, say z of period ¢. Suppose that
the set of fixed points of T"is empty. Then we have ¢ > 1 and p(z ] z) > 0. By

using (2.1) and condition (6), we get _that } ¥/ T

B(p(z,T2)) = O(p(T72, T 2)) < [B(p(z,Tz))])‘q < Hp(z,Tz)),

which is a eontradiction. This implies that the set of fixed points of T' is non-
empty. Hence 7" has at least one fixed point. =

Example 2.3 Let X = {0,1,2,3,4,5} and define p: X x X — [0, +c0) such
that
© if =1y
pla,y) =<4 28 Gt g ye{0,1,2), = £y,
HL;QE otherwise.

Then (X, p) is a complete partial rectangular metric space. Since, for allz € X
and z > 0, then we have p(z, ) = z > 0. Therefore (X, p) is not a rectangular
metric space. Define a mapping T': X — X by

MN=T7T1=74=0,T2=T3=2, and TH = 4.

We can see that 0 and 2 are periodic points of 7", Let e, X x X — [0, +00)
be functions defincd by

lif z,y € {0,1,2,3};
0 otherwise.

oz, y) = {

12
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3 if 2,y € {0,1,2,3);
1 otherwisc.

n(z, y) = {

Also define § : (0,00) — (1,00) by 8(t) = e¥!. We next illustrate that all
conditions in Theorem 2.1 hold. Taking @y = 1, we have «(1,T1) = e(1,0) =
1> 4 = 7p(1,0) = n(1,T1). Next, we prove that T is a-orbital admissible
with respect to . Let oz, T's) > n(z,T2). Thus =, Tz € {0,1,2,3}. By
the definitions of a,7, we obtain that a(Tz,T2x) > n(Tz, T z) for all z €
{0,1,2,3}. It follows that 7' is a-orbital admissible with respect to . Let
oz, y) = n{z,y) and aly, Ty) > 7y, Ty). By definitions of a,n, we have
x4, Ty € {0,1,2,3}. This yields a(z, Ty) > p{x. Ty) for all z,y € {0.1,2.3}.
This implies that 7" is triangular a-orbital admissible with respect to 7. Let

———— ———————my-eA-bemhtEtp( T Ty j=-0=We-could-observe-that-if-Try | 0, I 4], ————— =

then T2 = Ty = 0. This implies that p(Tz,Ty) = 0. So we consider the
following cases:

» z€{0,1,4} and y € {2,3} or
sze{0,1,4andy="5or
o x={2,3} and y =5,

Ifz=4dandy e {2,3} orw e {0,1,4} and y =5 or z = {2,3} and y = 5, then
we have o (x,y) # n(x,y). We divide the proof into four cases as follows:
(1) If (=,9) € {(0,2), (2,00}, then

RO = max{5(0,2),000,0,0(2.2), BB o 1,0,,0) <2

This implics that

W(p(T0,T2)) = $(p(0,2)) = (1) = V" < [V = [(2)]°™ < [W(R(0, 2)]°7".
(2) If (=, y) € {(1,2), (2, 1)}, then

\ p(LOp(2.2)y 2y _
R(1,2) = max {p(1,2),p(1,0),p(2, D l—ﬂiw} = mnax {2, 1,2, 5} =2

This implies that
P(p(T1,T2)) = $(p(0,2)) =9(1) = ¥" < [e¥2%" = (WD) < [H(R(L, 2))]7.

(3) If (z,v) € {(0,3), (3,0)}, then
{0,0)p(3,2) . 9 9
R{0,3) = max {p((), 3),p(0,0), p(3,2), pl——l—m—} = max {4,0. 5,0} =5

This implies that

$(p(T0, T3)) = w(p(0,2)) = (1) = e < [eVE]*5 = [ g)l"-“‘ < W(R(O.311"

13

103 Suparat Baiya et al 91-109



J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.1, 2018, COPYRIGHT 2019 EUDOXUS PRESS, LLC

{(4) It (x,v) € {(1,3), (3, 1)}, then

— , p(1,00p(3,2) 9 9 91 9
1(1,3) = max {P(L 3},»(1,0),p(3,2), m} = max { o 1, 3 -—1} =5

=

This implies that
YT T = v(p(0,2)) = p(1) = 7 < VIS = [P < B(ROL AN

It follows that (p(Tx, Ty)) < [¥{R(z,%))]*. Hence all assumptions in Theorem
2.1 are satisfied and thus T has a fixed point which are z =0 and = = 2.

- — —— — —— = ——\Wenow provethe cxistonce o} the {ixed poini-theorem Dy Teplacing- triongu | ar—
mappings and condition (4) in Theoremn 2.2 by a-orbital attractive mappings.

Theorem 2.4 Lel (X,p) be a complele partiol rectangular melric space, T :
X = X be a mapping and let a,n: X x X — [0, 00) be functions. Suppose that
the following conditions hold :

(1) there exist € © and X € (0,1) such that for all z,y € X,

p{Tz,Ty) >0 and o(z,y) 2 9(x.y) imply 0(p(Ta, Ty)) < [B(R(m.y))%". N
2.1
where

)

plz, T'z)ply, Ty) }

Rt 1) = (ot )1 o) T, P TR

T T T{8) ihere ewists vy € X such thot oz, Twh) = nlwy, Tar) and ale, T221) =
n(wy, TP };
(3) T is an a-orbital admissible mapping with respect to n;
(4) T is an a-orbital atiractive mapping with respect to 1,
{5} 8 1s continuous;
(6) if z is @ periodic point of T, then a(z, Tz} = p{z, Tz).
Then T has a fized point.

Proof. By (2), there exists 71 € X such that a(z1,Tz1) = n(z1,Tz1) and
al(z1, T%21) 2 n{z1, T231). Define the iterative sequence {x,} in X such that
€, = Tx,—y = Tz for all n € N. Sinee T is an a-orbital admissible mapping
with respeet to n, we obtain that

a(z, Tz} > 9z, Txy) implies o(Tz1, T221) = 0(Tx1, T2x))
and

alzy, T?z1) > oz, T%x1) implies a(Tz, T3z)) > n{Tz, Tqxy).
By continuing this process, we get that

(T, T a) > plT 2, 1" 2y) forallncN (2.17)
and
(T 2, T 2e) > (T2, T 2x) forall n e N. (2.18)
14
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If Tmzy = T7F g for some n € N, then 7%z, is a fixed point of 7. Thus we
suppose that 7"z, # T"+lz) for all n € N. That is p(T"z,, T %) > 0.
Applying (2.16} and (2.17), for each n € N, we obtain that

O(p(T" w1, T™ ' 21)) = 8(p(T(T" 1), T(T"21)))
< [B(R(T™" 2y, T )], (2.19)
where
R(T" Y2y, T"z;} = max {p(T"’l.'cl, T"z1), p(T" Yy, T0), p(T" @y, T ),
Pz, T )p(T ey, Tz ) }

—lelp(Tr=ley Iy

— max{p(T"*lzcl,T".’cl),p(T"ml,T"“:cl)}.
If R(T" Yy, T ) = p(T%xy, T" *liy). By using (2.19), we get that
O(p(T" 1, T 2,)) < [B(p(T"22, T 21))

This implies that
Inf8(p(T72,, 7"+ %1))] < An[@(p(T 21, T 51))),

which is a contradiction with A € {0,1). It follows that R(T™ 'z;, T"2) =
p(T™ 2, Th2y) for all » € N. From (2.19), we obtain that

Op(T" 51, T )y < [0(p(T" tzy, T 2, )] for all m e N.

- — - — — -If follows that — — — - i
1< 0Tz, T" ) < - < [B(p(y, Tz )N for all n e N, {2.20)
Taking the limit as n — co, we obtain that

lim O(p(T"z,, T ) = 1. (2.21)

n—00

By using condition (©2), we have
lim p(T"%, T ) = 0.
n—300
As in the proof of Theorem 2.2, we can prove that there exists n; € N such that

p(T"xy, T* ) < for all n > n;. (2.22)

1
nl/r
We now prove that 7' has a periodic poink. Suppose that T does not have

periodic points. Thus Tz, # Tz for all n,m € N such that n # m. Using
(2.16) and (2.18), we get that

Bp(T™ 1, T™2,)) — O(p(T(T"121), T )
S [9(R(TH—1$1, TII+1:B1))]A,

15
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where
H(Tﬂ_l.’rl. T"+1$1) = max {p(T"ﬁlfCl,T"+1$1),D(T”_lml,T".’Bl).p(T"Jrl.’L'].T'Hr?'ﬂ:l).

p(T"ﬁlml, T"$1)p(T"+]:r1 , T"+2$l) }
1+ p(T7 g, Trtle)
= max{p(T" zy, T*Hay), p(T" ey, T o), p(T" iy, T ).

By the analogous proof in Theorem 2.2, we have

lim p(T™x), T"221) =0

H—CO

—and-tiere-oxistE g€ N such-that —

1

i for all n 2 na. (2.23)

p(Th2y, 17 2 <

Let b = max{ni,n2}. We consider the following two cases.
Case 1: If m > 2 is odd, then m = 2L + 1 for some £ > 1. By using (2.22),
for all n > h, we obtain that
])(T":’El,T"+mﬂ:1) g p(Tnthn-r—lxl) + p(T”—’-l:El, T"+2CL':1) + p(T"+2!E1 , T"+2L+12;1)—
])(T"+l$1 . Tn+1$1) r p(TH+2:L‘1 - T"+21:1)

Sp(T"a:l,T"H:rl} +p(T"+1w1.T"+2:I:1) L T +p(T"+2L$1,Tn+2L+1.’B1)
- T I | ] - 1 +' 1 N + 1T A\ 11 i T T T
M (n 1)U (n+2L)47

X
EZillr'

Case 2: If m > 2 is even, then m = 2L for some L > 2. By using (2.22)
and (2.23), for all n > h, we get that

T)(TRKEI,T"JF"‘.T]_) < p(T"ml,T"+2:c1) +p(Tn+25[:1.Tn+3$1) +p(T“+3fF1,Tn+2L-TI)_
p(TnJr2I1. Tﬂ+2$1) vt p(T"+3.’E1,T"+3$1)

< ])(T”:El, T"+2.’171) + p(T"*le,T"“wl) 4o p(T"+2L_1.’I‘1, T"+2L.’B1)
1 1 1

<
St (n+2)2/r ot (n+2L)1r
1
<D
t=n
16
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From Case 1 and Case 2, we obtain that

1 1

1
nl/r + (n + 1)1/7 +--- 4 for allm > h.

(n+2L)/7
(2.24)

Since the series }7.° - is convergent (since 1 > 1) and (2.24), we have

(T" Tn+m ) S

im  p(T"z, T ") = 0.
nm-—-oo
This implies that {T™z;} is a Cauchy sequence in (X,p). By Lemma 1.9,
we have {T"w1} is a Cauchy sequence in (X,d,). Since (X,p) is complete,
then (X,dp} is complete. This implies that there exists z € X such that

— 1m dﬁ(T—:Lr )=0=Using-Eermnz=1-8—we-have—

"111}1;1019(1“"3:1, 2} = ul_iP;op(Tnﬂ"l’ Tray) =p(z, 2).
By applying Proposition 1.6, we obtain that
2p(T w1, 2) = dp(T", 2) + p(T 21, T™21) + plz, 2)
< (™01, 2) + (™01, Tay) 4 p(T, 7).
Therefore p(T"21, 2) < dp(T"21, 2} +p(T" %1, T" 1z, ) for all n € N. Taking the
limit as n — 0o, we obtain that p{z,z) = ]_i}n (T2, 2) = 0. We now prove
n o0
that z = T'z. Suppose that z # T'z. Since 7' is c-orbital attractive with respect

to 1, we obtain that for all n € N,
a(T"wy, z) 2 n(T"21, 2) or alz, T"Hay) > n(z, 7" g).

‘We divide the proof in two cases as follows. o

(1) There exists an infinite subset .J of N such that a(T"{"‘)'El z) > n(T"”‘)wl z)

for every ke J.

(2) There exists an infinite subset L of N such that a(z, 7% 1g,) > gz, T W+ g )
for every k € L.

For the case (1), since Tz, # T™, for all n,m € N with n # m, \Vlthout loss

of the generality, we can assume that T"”‘)'Hml # zfor all k € J. Applying the
condition (2.16}, we get that

YT 21, T2)) = O(p(T(T" Mz, ), Ta))
< O@RT" Bz, ),
where
R(I™®z) | 2) = max {p(Tn(%l, 2), p(T" By, T(T*F 1)), p(z, T2),
P W, T(T" My ) )p(z, Ta)
1+ p(T¥z), 2) }
= max {P(T"(k):h, 2), (T Mgy, TEH g ) p(2, T2),
p(T Ry, T8y Yp(2, T2) }
1+ p(T7)gy, 2) '

17
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Then we have

Bp(T® g T2)) < [B(max {p(T"(k).’Bl, 2), p(T" "y, T 1) p(z, T2),

p(T" Rl gy T+ (2, T) })] A
C 14 p(TR) gz, 2) '

Taking the limit as k — oo in the above eqnality, using the continuity of 8 and
Lemma 2.1, we obtain that

B(p(2 T2)) < [0(p(z, TN < 0(p(2.T2)),

which is 4 contradiction. For the case (2),-the proofis similar_Therefore 2= Tz

" “which 15 a contradiction with the assumption that 7" does not have a periodic
point. Thus T has a periodic point, say z of period g. Suppose that bhe set of
fixed points of T is empty, Then we have ¢ > 1 and p(z,T2) > 0. Applying
{2.16) and condition (6), we get that

8(p(2,T2)) = 0(p(T72, T 2)) < [0(p(z, T < O(p(2,T7)),

which is a contradiction. Thus the set of fixed points of 7' is non-empty. Hence
T has at least one fixed point. m

Since a rectangular metric space is a partial rectangular metric space, we
immediately obtain Theorem 17 and Theorem 19 in {1] by applying Theorem
2.2 and Theoremn 2.4, respectively.
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