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Abstract

In this study, we presented several Cholera mathematical models. Our model
formutation is based on SIR model and is modified from the model proposed by Jin Wang
and Chairat Modnak. The epidemic and endemic analysis including the calculation of the
reproductive number are conducted. Optimal vaccination plan for two different clusters of
Susceptibles, S1 and $2, are investigated. The results show that with a well vaccination plan,
the number of infections for both group can be reduced and eventually an outbreak will be
stopped. We will extend to multigroup for our future work.

Keyword: Cholera model, Disease control, Stability, Optimal control, Multigroup
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Chapter 1

Introduction

Key facts
. Cholera is an acute diarrhoeal disease that can kill within hours if left untreated.

. There are an estimated 35 million cholera cases and 100,000-120,000 deaths due to

cholera every year.
- Up to 80% of cases can be successfully treated with oral rehydration salts.
. Effective control measures rely on prevention, preparedness and response.

. Provision of safe water and sanitation is critical in reducing the impact of cholera and

other waterborne diseases.

. Oral cholera vaccines are considered an additional means to control cholera, but should

nof replace conventional control measures.

Cholera is an acute diarrhoeal infection caused by ingestion of food or water contaminated
with the bacterium Vibrio cholerae. Every year, there are an estimated 3--5 million cholera cases
and 100 000-120 00C deaths due to cholera. The short incubation period of two hours to five
days, enhances the potentially explosive pattern of outbreaks.

Symptoms

Cholera is an extremely virulent disease. It affects both children and adults and can kill
within hours. About 75% of people infected with V. cholerae do not develop any symptoms,
although the bacteria are present in their facces for 7—14 days after infection and are shed back
into the environment, potentially infecting other people.

Among people who develop symptoms, 80% have mild or moderate symptoms, while around
20% develop acute watery diarrhoea with severe dehydration. This can lead to death if untreated.

People with low immunity — such as malnourished children or people living with HIV — are

at a greater risk of death if infected.



History

During the 19th century, cholera spread across the world from its original reservoir in the
Ganges delta in India. Six subsequent pandemics killed millions of people across all continents,
The current (seventh) pandemic started in South Asia in 1961, and reached Africa in 1971 and
the Americas in 1991. Cholera is now endemic in many countries.

Vibrio cholerae strains

Two serogroups of V. cholerae — O1 and Q139 — cause outbreaks. V. cholerae O] causes
the majority of outbreaks, while O139 — first identified in Bangladesh in 1992 — is confined to
South-East Asia.

Non-01 and non-0139 V. cholerae can cause mild diarrhoea but do not generate epidemics,

Recently, new variant strains have been detected in several parts of Asia and Africa. Ob-
servations suggest that these strains cause more severe cholera with higher case fatality rates.
Careful epidemiological monitoring of circulating strains is recommended.

The main reservoirs of V. cholerae are people and aquatic sources such as brackish water
and estuaries, often associated with algal blooms. Recent studies indicate that global warming
creales a favourable environment for the bacteria,

Risk factors and disease burden

Cholera transmission is closely linked to inadequate environmental management. Typical
at-risk areas include peri-urban slums, where basic infrastructure is not available, as well as
camps for internally displaced people or refugees, where minimum requirements of clean water
and sanitation are not met.

The consequences of a disaster — such as disruption of water and sanitation systems, or the
displacement of populations to inadequate and overcrowded camps — can increase the risk of
cholera transmission should the bacteria be present or introduced. Epidemics have never arisen
from dead bodies. '

Choleraremains a global threat to public health and a key indicator of lack of social develop-
ment. Recently, the re-emergence of cholera has been noted in parallel with the ever-increasing
size of vulnerable populations living in unsanitary conditions.

The number of cholera cases reported to WHO continues to rise. For 2011 alone, a total of
589 854 cases were notified from 58 countries, including 7816 deaths. Many more cases were
unaccounted for due to limitations in surveillance systems and fear of trade and travel sanctions.
The true burden of the disease is estimated to be 3-5 million cases and 100 000—120 000 deaths

annually.



Prevention and control

A multidisciplinary approach based on prevention, preparedness and response, along with
an efficient surveillance system, is key for mitigating cholera outbreaks, controlling cholera in
endemic areas and reducing deaths.

Treatment

Cholera is an easily treatable disease. Up to 80% of people can be treated successfully
through prompt administration of oral rehydration salts (WHO/UNICEF ORS standard sachet).
Very severcly dehydrated patients require administration of intravenous fluids. Such patients
also require appropriate antibiotics to diminish the duration of diarrhoea, reduce the volume of
rehydration fluids needed, and shorten the duration of V. cholerae excretion. Mass administra-
tion of antibiotics is not recommended, as it has no effect on the spread of cholera and contributes
to increasing antimicrobial resistance.

In order to ensure timely access to treatment, cholera treatment centres (CTCs) should be set
up among the affected populations. With proper treatment, the case fatality rate should remain
below 1%.

Outbreak response

- Onceanoutbreak is detected, the usual intervention strategy is to reduce deaths by ensuring
prompt access to treatment, and to control the spread of the disease by providing safe water,
proper sanitation and health education for improved hygiene and safe food handling practices
by the community. The provision of safe water and sanitation is a formidable challenge but
remains the critical factor in reducing the impact of cholera.

Oral cholera vaccines

There are two types of safe and effective oral cholera vaccines currently available on the
market. Both are whole-cell killed vaccines, one with a recombinant B-sub unit, the other with-
out. Both have sustained protection of over 50% lasiing for two years in endemic settings.

Both vaccines are WHO-prequalified and licensed in over 60 countries. Dukoral has been
shown to provide short-term protection of 85-90% against V. cholerae O1 among all age grou ps
at 4-6 months following immunization.

The other vaccine (Shanchol) provides longer-term protection against V. cholerae O1 and
O139 in children under five years of age.

Both vaccines are administered in two doses given between seven days and six weeks apart.

The vaccine with the B-subunit (Dukoral) is given in 150 ml of safe water.



Chapter 2

Basic Concepts

In this chapter, we will present some interesting mathematical models that describes the
cholera dynamics. We will start with an early compartmental mode! that includes only a few
state equations. The more complicated Cholera model then will be studied. F inally, we will
present and carefully study a model proposed by Jin Wang and Chairat Modnak. Then, we will
extend the mode! and explore strategies to control an cholera outbreak.

Basic Model
Kermack and Mckendrick proposed the following model in 1927

¥

57 bk ZE SR

Figure 2.1: The SIR model.

ds

= — _BS§I
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where
. 8 is the susceptible state,
. 1is the infected state.
. R s the recovered from the disease state,
. BN is the appropriate contact sufficient to transmit in transmit.

. v is the infectives recover rate.



Basic SIS model

This next simple model is

¢l
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L

Figure 2.2: The SIS model.

ds

T TSI K)oyl
dl

— = BSI— A
% BSI— (oo p+ %)

where
. S is the susceptible state.
. Lis fhe infected state.
- N is the total population size.
. pis natural death rate,
. K is birth rate,
. 7y is the rate of recovered individuals are removed from the infective class.
.« is the disease-related death rate from infective class.

. B is the contact rate,



Basic SIR model
The first SIR type model was proposed by H.E. Soper. He assumed that the total population

size is constant and the birth rate and death rate are constant, His model is

S ’ |

pK -

Figure 2.3: The basic SIR model.

e ST+ 11k
| PTH
df

= BSI—~I
diN B I+ uk

o = vt

where
. 8 is the susceptible state.
. Iis the infected state.
. Riis the recovered from the disease state.
. B is the contact rate.
. ‘Y is Tecovery.
. pis natural death rate.

. ptk is is birth rate.



The modified SIR model proposed by Jin Wang and Chirat Modnak
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Figure 2.4: The modified SIR model.

as
di
df
di
aB
di
dR
dt

where

. § is the susceptible state.

. lLis the infected state.

B.SB
— — B ST — puS
= BrSI—
B.SB
ST — I
k+B+ﬁh (v + 1)
el — B
v — UR

. B is the concentration of the vibrios in the environment state.

. R is the recovered human poputlation state.

. N is the total population state.

. p natural human birth/death rate.

. € is the rate of human contribution (e.g.,shedding) to V.cholerae.

. & is the natural death rate of V.cholerae.

. 7y is the rate of recovery from cholera.



- ks the pathogen concentration that yields 50% chance of catching cholera.

. Be and 3, represent rates of ingesting vibrios from the contaminated water and through

human-to-human interaction,

The SYIS model

Let us now consider a SIS type disease when a vaccination program is in effect and there is

a constant flow of incoming immigrants.

, (1-p)a A

v
k
" R
" P apvl
i
o
o,

Figure 2.5: The $VIS model.

dS

¢ (1=p)A+A—BSI— (u+ $)S+yI+ 80V
I

Z—t = pA+BSI+afVi— (ju+v+ ali

d

d—: = GS—cfVI— (L+ OV

where
' . § is the susceptible state.
. lis the infected state.
. V is the vaccinated state.
. Riis the recovered human population state.

. A is the number of immigrants.
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- p is the portion of infectives among immigrants.

. A is the birth rate.

. [ is is the contact rate.

. 7y is the recovery rate.

. ¢ is the vaccination rate.

. o is the factor by which the vaccine reduces infection.
. @ is the rate at which the vaccine wears off.

. jt is the natural related death rate.

.« is the disease related death rate.

. Ry is the basic reproductive number.

. I sis vaccination reproductive number.
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Cholera Model with Tmmigrants
Case Study

In this study we will extend a model prosed by including an immigrant state. We assume
that the immigration rate is a constant, however, the number of population in total is not a con-
stant.The immigrants can become infected individuals with the probability of p and the rest
becomes the risk group of being infected. Now, our model contains six differential equations as

follows:

fu

Jm 2]
AA f

tp S B
i o

Figure 2.6: The Cholera Mathematical Model with Immigrants by Nattawud Sornsomrit

ds .88
g\ (N -+ (1 - p)A) — BpST — us — TT B
dA

P A = pPpAl — (1 - p)A — pd

dl B.58

o Al =

7 phAT+ BSI+ Y+ B (v + )i

dB
o &l 4B

drR IR

where
. 8 is the susceptible state

. Lis the infected state
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. B is the concentration of the vibrios in the environment state

. R is the recovered human population state

. N is the total population state

. A is the immigrants

. p is the portion of infectives among immigrants

. j& natural human birth/death rate

. € is the rate of human contribution (e.g.,shedding) to V.cholerae

. 4 is the natural death rate of V.cholerae

. 7y is the rate of recovery from cholera

. k is the pathogen concentration that yields 50% chance of catching cholera

. B and B3, represent rates of ingesting vibrios from the contaminated water and through

human-to-human interaction.
. #A is the rate of immigration.

From this case study shows that with different immigration rates, the number of infections
changed. We can conclude that in order to prevent an outbreak of Cholera, precauvion in immi-
grants should be considered.

In the next Chapter, we will extend some previous models and verify the model by dynam-

ics analyses and also numerical simulations,
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Chapter 3
Methodology and Results

In this chapter, we will extend the model we have presented in Chapter 2. The modifica-
tion will be based on SIR model proposed by Jin Wang and Chairit Modnak. The study will
focus on two groups of humman populations, low-risk individuals (.52) and hig-risk individuals
(51)- They wili be vacciuated with rates of ¢y for high-risk group and ¢, for low-risk group. A
high-risk group is a cluster of those who live nearby rivers or hospitals or never had vaceine and
a low-risk group is a group of human populations who live in a well-infrastructued community;
they have clean water and food and have good health care plan and they have been vaccinated
or have experienced with the disease.

The infective class is put into two different classes.One is a low-infectious state (13) and
another is a high-infection state (/; ). The low-infectious individuals have low ability to transmit
the disease and high ability for the high-infectious individuals. We assume that they live in a
distinct place and they wiil not have a close contact to each other. The concentration of vibrios
(the cholera pathogen) in contaminated water is denoted by B.

In conclusion, we consider a human population which is divided into four classes:the
susceptibles(Sy and Sy) the vaccinated (1), the infected (I3 and ) and the recovered (R).We
assume the total population remains a constant, V.

We thus obtain the following system of differential equations describing the cholera dy-

namics with vaccination:
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Figure 3.1: The cholera mathematical model of a risk-structured two-group model and controls

by Nattawud Sornsomrit

ds,

dt (ﬁek + 5t BuI)S1 — (¢ + 11)S,

% T (ﬁek Tk ﬁhfg)Sg ~ (2 + 11)5s

% T $S1 + 65— o(Ber T+ ALY - o(Bey s g T BRIV — Y
% 3 (ﬁek + I + Brl)St + a(ﬂe B + BV (71 + Wl

% - ()66,1b =N Bnl3)Sy + O‘(ﬁe B G BuI)V ~ (s + 1)l

%? = &L+ &L, — 6B

% = iy +valy — pRR

where

. S is represents individuals groupl. They never contanct with the disease or have had

vaccine,therefore, they are considered as a high-risk group

. Sy is represents individuals group2. They have experienced with the disease or have been

vaccinated, therefore,they are considered as a low-risk group

. 1 is represents infected individuals from groupl.
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. 1y is represents infected individuals from group2.
. B is the concentration of the vibrios in the environment state.
. R is the recovered from the disease state.

. Be and 3, represent rates of ingesting vibrios from the contaminated water and through

human-to-human interaction,
. y1 and 7y is recovery.
. ¢ is natural death rate,
. 4 is the natural death rate of V.cholerae.
. & and &g is the rate of huinan contribution (e. g.,shedding)} to V.cholerae,
. 0 is adegree of protection, o= (1-€),where € is the vaccine efficacy.
. ¢ and ¢ is the vaccination rate.

.V is the vaccinated class.

3.1 The disease-free-equiliibrium

From our model formulation, we next will conduct the epidemic and endemic analysis. At

the disease-free-equiliibrium (DFE), all the states are zeros. wesetaf; = I, = B=R =10

and find S| and S5 from the model. There fore , the DFE will have nonzero states 51,55 and
Vsays g9 = (51, 82, V,0,0,0,0).

5 dSs

41,222 and 92X equal to zero, we can find S;,.5 and V:

By stting

Ey = (811821 0,0,0, 0)
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ds
PN = (d1 4+ 1))
uN
= 8
¢+ p '
ds.
—fiiﬁ—(%Jr#)Sz =0
pd = (g2 + p)S
A
= &
¢2 + 1 2
dav
d_t:¢181+¢252_'uV = 0
—pV = —(¢151 + ¢252)
P15 + a5y _ v

H
Thus now we have the DFE:

N HA 151 + 25

8 F— ) b )0)0’0?0
y (Cbl +p Gatp Iz )
or A .
0= ( N Hd ¢1(¢f+.u) +¢2(¢5:j—#) 0,0,0,0) L
0 ¢1+M’¢2+‘[L’ ,U, 1 Yy My, b

3.2 Epidemic dynamics

One of the most important concerned about any infectious disease is its ability to invade a
population.The basic reproduction number, g, is a measure of the potential for disease spread
in a population, Tt represents the average number of secondary in cases generated by any in
fected individual if introduced into a susceptible population with no immunity to the disease in
the absence of interventions to control the infection. If Ry < 1,then on average, an infected
individual produces less then one newly infected individual over the course of his infection
perioc.In this case, the infection may die out in the long run. Conversely, if Ry > 1,each
infected individual produes, on averag more than one new infection,the infection will be ableb
to spreed in a population. A large value of Ry may indicate the possibility of a major epidemic.
We first compute the baic reproduction number for this model using the method of van den

Driessche and Watmough. Here, the associated next generation matrices are given by
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The basic reproductive number is then determined as the spectral radius of 'V ~! which

yields
('Yz+u 0 0
|- + u}d 0
(r1+pe (72 + p)é (ot w)
(72+»u (m+ e (i + p)(ve + 1)
1
Ttu 0 0
. 1
- 0 e O
& & 1
(m+p)d (potp)d &
é1 (5 b (FE5)
: (i) -+ o (— e (c)ﬁ(_.lL)Jr'f’ (i)
i VAR ad t BT 2
V- = 0 )8 (qﬁ;—fy)—'_ ﬂh( @1+ - Pats )
0
. arlgihn ez
ﬁek(L) B A(_Li__z_)
(—pa ™) + ( =
B3 (= da(
Bek(1) ﬁe’t(M)
(—F) + (- = )
0
1
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1
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( kt;;]+,u)) L (O‘ﬂe ( (¢1+u)+‘352(¢2_,_“ .
IB(. ( $r{ 0= 6
( gﬂ%mﬁe(
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A — a1 —dayg —a13
det(\ —FV 1) = —a21 A aGxm —ag
-1 —azx A —ag

= ()\ - a'll)(’\ — 622)/\ - ('\(—021) - (ﬁam))
(A - (111)(A — agg))\ - aglﬂ.lg)\.

I

We set det(A] — F'V~1) equal to zero to fine eigenvalues. Thus

(A — an) (A — ase) — aar012)A = 0
A=0,(x-apn)(A—ean)—ana; =0
M — asp X ~ ap A + @y 1823 — Ga1a12 = 0

A%~ (@22 + a1)A + @103 — agra;n =0

We will use the guadratic formular ;

—b b2 — Agc

2a

to solve

pL (@22 + a11)A + ana — azay2 =0

Thus, we have the solutions,

—(—(az2 + an)) i‘\/(azz + a1} — 4(1)(ar1090 — (2112)

M = 2(1)

ar

(a2 + a11) £v/{ase + an)? — 4an109; — azia19)
2

/\1,2

Let's consider terms inside the square root.

We will show that
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2
(@22 + an)® — d{ag1as; — az1a13)
2 2
= a3+ 2aa1; + ay; — do11022 + 4ag a1
2 2
= a22 — 2(111(122 + a1 -+ 4(1210,12

= (ag — a“)z +4aza;z >0

Since all a;; for i,j=1,2 are positive, therefore, the inequality holds.

That is
Mg (o2 4 011 ) ﬂ:\/(azz +211)? — 4{ay100 — a21017)
b 2
are real numbers, IHence,
Ry = p(Fv™)
/ ?TLG,SE{ (a2 + an) £+/(ase + a;l)z — 4(a11a22 — az,012) }
where
an - [ (Br) () (P2 + p) + o Bul(d1N) (9 + 1) + (¢2A (¢1 + )] ] 1
- (bt pldat ) ntp
[ (ﬂN)(¢2 + #) + oBe(@V)(, + 1) + (¢2A)(¢1 + M) } &1
k(o1 + p)(d2 + 1) (71 + p)é
app = [ (Be) (M) (b2 + 1) + oBe[($1N) (2 + 1) + () (¢ + )] ] &
k(e + p)(do + 1) (v2+ p)d
g — [ B) () (da + 1) + aB[(1N) (d2 + 1) + (24) (1 + M)]] 3
k(g + ) (g + 12) (1 + p2)0
o = PO VOGN Gt 1) Gt + 1) .
(@1 + g2 + 1) Yo+ H
[ (Be) (ud) (2 + ) 3 o B [(A1N) (P + 1) + (¢24) (1 + H)]} §a
E(oy + p) (g + 1) (va + p)d

Theorem 3.1, The disease-free equilibrium of the model is locally asymptotically stable if By <
L1, and unstable if Ry > 1.

We mention that the basic reproduction number can also be derived by the next generation
matrix analysis,
To study the global asymptotic stabillity of DFE, one common approach is to construct an
appropriate Lyapunov function. We have found, however, that it is simpler to apply the following

result introduced by Castilli-Chavez et al.



For R:

For V:

For S7:
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[ pN = (¢1 + 1)S,
pA = (d2+ )5,
D151 + $253 — puV
| —uR

[ pN — S

pA — 5
N
-l

F(Xlao) =

R(1) = R(0)e™

A

ds
c“i-d—tl+c“t,uSl = ettuN

d
E(e’“-Sl) = e®uN

d
fa(e""Sl)dt = /e’”’,uth
.8 = ety

Si(t) = N+ Ce



When ¢ = 0, we have

Thus

Hence

For Ss:

When ! = {J, we have

thus

Hence
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C = $(0)— N.

Sit) = N+ (S(0) — N)e.

2

dsS.
e’dﬁ +etnS, = eftuAd

d
ﬁ(e"’t-Sz) = e"uA

d
fa(e’”'&’g)dt =2 fe“*,uAdt

et - Sy = ;t_l.em +C

Sg(t) 7 A+067#t.

Sa(0) = A+ C,

C = S,(0)- A

Sy(t) = A+ (Sh(0) — Aye .

Clearly, () — 0,V (t) — 0,5:(f) — N and Sa(t) = Aast — oo, regardless of the
values of R(0) and S(0). Thus X} = (N, A, 0, 0). is globally asymptotically stable.
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Next consider that

(53;;% + Bnd1)S1 + U(ﬁek%g + Bph)V — (m +uth
G(X1,Xa) = (ﬁek%g + Brnk2)S2 + 0 (Begs + Brla)V — (2 + u)la
&0+ 81— 0B

‘We can then obtain

S18h 4+ —(n + ) 0 Sfﬂ
U = 0 Sab — (ra+p) 2|,
i & & 6
NBh+ —(y +p) 0 =
- 0 ABy — (ya+ py 2
I & £ —4

Thus,

~

G(X1, X3) = UXy— G(X1,Xs)

[ NBh+—(n +p) 0 Yl [n
N 0 A — {2 + 1) % | L2 | —
& & -4 B

(BerZg + Bl ) + 0(BezZs + Bl )V — (m + )
(BeiZs + Bul2)S2 + 0(Begls + Aula)V = (ma+ i) fa
| &1, + &ly— OB

INBR+ —(n+ wlh + [ B
- [AB = (va+ plilz + [2E)B | —

L+ &1, - 6B

(BerZs + Bul)S1 + o(Begis + A1)V — (m + )y
(BerZg + Bul2)Sa+ 0 (Be g + Bul2)V — (ma + )Ny
| L+ &l — 68

Ng I + [Nfe]B - (ﬁeﬂiﬁ + Bp11)S1 + J(ﬁeHLB + Brl)V

= | APwlz+ [2]B — (BeiZs + Bila) S + 0 (Berly + Bul2)V
0
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First,we consider row one of the matrix (7.

B
Ny h+ + Bu11)S1 + U(ﬂ +/6.':Il)

—(Ber——

k+ B

= Nt N%B - ,lfisé — Bnh51 — ?f} —ofphV
= Bhy(N =8 —oV)+ (NB.B)(k + B}g(;fegiglk — oV B, Bk

2 L :
= BN =S —oV) + (NB.Bk) + (J‘Vﬁﬁk)+ gilea oV 8, Bk
= BL(N = 51— ov) . DB _;;S(}C;GIBV)) +NBB

Similarly,row two of the matrix is
~ (e + Bul)Sa + o (B s BB

= JfE A%B B fiS; BnlsS; — Jllvf} — otV
= Bpla(A— S, —oV)+ (AP B)(k + B)(L f_ﬂﬁf’zk — oV BBk

2 h 4
= Bab(A ~ 8 — oV 4 AP + (Aﬁef(g + ge)BSZA oV B, Bk
= Bl(A—S,  oV)+ B BE(A —l:S;;;—JFfTBV)) + AﬁeBz'

Now we can write the matrix in the form

L~ e o A 2
Buly (N — (Sy+0V))+ Be BE(N (:(?;;;)HN.B B

. - -
G(X1,Xz) = | Bula(A— (83 4 oV)) 4 BeBhlA= CatoV)) sl
0

Since 0 < 5\ + oV < Nand0 < 55 -+ oV < A ,it's obvious that
G(X,Z) >0
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3.3 Endemic Equillibrium Points

When the diseasc is present in the population, /* # 0, there may be several critical points
where /* 2 0, which are the endemic equilibrium points (EEP) of the model. These points will
be denoted as E., = (S}, V*, I}, 53,13, B*, R*)" which are determined from the model as

follows.We begin with setting the equations to zero.

(ﬁe;" T TAIS (i + )57 =0 G.1)
pd — (ﬁekJr e + Brlz) S5 — (¢a + 1) S; (32)
T s * * B %
f,blbl +¢282 (ﬁeh+B* +ﬁhl )V *J(ﬂc}”‘FB* +ﬁh12) —,LLV =0
(3.3)
* * pu B* * * *
(ﬁekJr T T B I)ST + a(ﬂek e ALV~ (n =0 (4
) * * B* *
(Ber 5 + Bn)S5 Folfer T ALV (=0 (5

I + &I —6B* =0
i+l ~pR* =0
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We will solve the EEP from these equations.
It is easy to see that we have

SURRIIN

B* =
d

DN

o
57 =

117 +e073
(e,

iBE +ﬁhIik+ (‘,bl +PJ)

jin
g, + Ol (é )
&
HN
e T; o ls N
Petsrmmres T O 01 + (61 + 1)
S* o~ [_LA
Y = alf+il
Pegroarbrart+ Bli b (g2 + )

LI\ U Wm— T
L E1Ip &l
k+(—15—2-
1%

(611‘1 +£212‘)
e(k&Tfs*‘*_ EITTAN + BnI; + (¢a + 1)
&
N A
P g RV I
chrET e | Anls + (da 1)

Next we combine the equations (3.1),(3.2),(3.3).(3.4) and (3.5) together and thus we have

IF+eq12
k+(£1 1 652 2)

(£1f]*+6212‘)

ﬁﬂ(

PN+ pA — pSy — pSy — pV* — (n+ @I — (e +p)l; =0
(v1 4 pME = (2 -+ p)I3 = muN + pA — pSy — pSy — pv*
M+ i = (e +p)ly = p(N +A-Sf— S5 -V*)
N+A—((%+”)I{7(72+#)I;):S’{+S;+V*.

In
Let
—— {r+ )
I
and
y = (v2 + 1)
i
Then

N+A—(nli —75)=5/+8;+V*
First consider ST :

UN
B E1if+Ea 13 + BuIr + (¢ + )
eRSHE T +EaD3) PN LT

57 =

(3.6)
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We next will simplify the denominator. That is

LRSS *
: ¥
PRt @t v iy O

Belily + Bebaly + (Budy + (b1 + ph) (kS + (&7 + 6215)
kS + (§117 + &13)
= (Bebrd] + Bl + Brdkd + kb + pkd + B 16T + 1611}

&7 + Bl s+ & ls + plaly) + (k0 4 (G1] + &al3))
= (Bub)IT? + (Beli + Prkb + 1&y + péy + Br&a )T + (Belo
P&z + &)1 + (drkd + pekd) + (k6 + (&17 + &13))-

Let
Al Ir ﬁhfl
By = Bk + Bukd + p1& A+ pby 4 Brlals
Cy = (Belo+ &+ pb)l;
. where j . ,
0 - AT =B AR + Dy
' ko + (617 + &13)
Hence
N
Pl
1
Then
—— puN
St = AL B G RDL
ké+(€11] +HE213)
Second consider S5 :
A
Sy = a

I} +eals *
Be ety + Buls -+ (62 + 1)
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and the denominator can be simpiified as

611T+€2L: "
e J’
A ké + (&1F + &13) + Brly + (d2 + 1)

Bebily + Bebols + (Buls + (o + p)) (kS + (6117 -+ £313)
ké + (6117 + &13)
= (Be&il} + Bebals + Brlsks + ¢okd + pukd + BrI36 I} + b I + &y Iy

013615 + §2lals + p&a13) + (k6 + (&117 + &13)) |
= (Br€a)3® + (Bes + doby + ply + Bréi T + (Bela + Brkd + ¢ata
+1€2) 15 + (k6 + pikd) = (ko + (& 17 + &13)).

Let

A'.Z — ﬁhfz

By = B&i+ by + p&i + Br&aly

Co = Bebo+ Bukd + dala + 11&

Dy = ¢okd + pkd
where

0 AgI3® + Bylt 4 CoIt + Dy

\ kS + (617 + &l3)
Hence
A
St
(2
Then
g _ pA
2 Bt Bel}CRI4Dy
ké+(&1 1T +€213)

Next, we turn to VV* that is .

(n +pHi - (ILHB. + Bud7)ST

v
J(ﬁe k+B* + ﬁh—{*)
&11] +epl3
(’Yl + ‘U.) (ﬂeW + ﬁhfik) A11f2+31.‘1?|0115+91
k& {614y +€al])

£ 1§ +6375
G‘(ﬁe k+.5115*! -;-5212* + ﬁhf’f)
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Consider that
i +&13

Be—5r + B}
. alitel 1
o

G+ &1 .

T Prvnan O

Bebr Iy + Beboly + Bukd I} + Br€idy + Bréals
k6 4+ (§udt + &215)

(Bely + Brkd + Brné) I} + (Beba + Brba) 5

ké + (&1 + &15) -

Let

Az = B.& + Bpkd + By
By = Bla+ Buéo.
where
Asly + Baly
ké + (&df + &135)

Qs =

Hence

N
(,Yl + P:)If T (Q3) A11{2+B1?{+01L§+D1

kEF(EL I} +Ea13)

o (Qa)

1454 -

Thus
* AsIy+ 8315 uN
(yo )3 R E T 1E13) AL B GLI5 D,
K6+ (& IF+ETS)

Vo=

- Agf:{»BaI‘;
kd+ (611 +E213)
w __ pN(Asi{+Baly)
(n + 1 I+ B T4 Gl 1 Dy
A31f+8315
RS+ 1T +H6213)

:=[Qm+umuﬁ+mui+M&nﬁ+wﬁas+7¢n+#ag

AT} 1 Byl ]
+D + . )
l)] {Uk‘s + (&I + 615)

Let

Ei = (m+p)i

By = yB+upby

Ey = yClIy +y D+ pCly +pDy — pNA;
Ey, = —uNB;.
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Then

B TP v B iy v B3y +Ea 1
Vo= AR+ B IO+ Dy
- 0!1311* +CIB;3L£
Ré+(&111+E213)

Let's consider the risht handside of equation(3.6). We have S} + S5 + V* =

B I By I} By I+ By T}

UN uA A AR GG+ Dy 3.7)
AP B O I 4 Dy A3+ Bali+Cal3+ D oAsdf+oB3i] ! )
RO+H(E1 I +Ea13) kd+(€1 T +Eal}) k(1) +Eal3)

Consider the first term. We have its numerator

AI3? + Byli + Gyl + D, _odgl} +oBylg
kd + (&1} + &13) ko + (6} +&:13)
= (UNA AT I + uN Ago By I3® 4 uN Byo As ¥ + uN Byo By I I +

pNCao As I 1T + uNCao Bals® + pN Dy A I} ++ uN Dyo ByT3)
+(kd + (G 17 + &13))°,

and the numerator of the second term is

AP A B+ CUi+ Dy adsl} +0BI
kd + (§1d7 + £a13) ké 4 (& 1F + 613)
= (nAMGAT |+ pAA G BT - pABo AT+ pABya Byl IE +

uAC’lcrAaI;If + j_LAC’]O‘B;;I; + [_LADlﬂ'A;;Ir +‘U,AD10'B3I£)
(k6 + (&t + &)

and the numerator of the third term is
EAIP + Bl + Byl + Eqly; A2 + Byl 4 C\ 13 + Dy
ko + (Gt + &a13) ko + (&1t + &13)
Asly® + Bol} + CoI} - Dy
ko6 + (§udf + &ai5)
= (B A + B\BoIi + BiCol I + By Dyl + By An I3t - EyByI3®
FECo I 1 + By ApIy® + By ByIt? + EsColi I + BsDolt + Ey A 7212

+E B I I} + BaColy® + EyDoly) + (k3 + (617 + &13))°
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Then the equation (3.7) becomes

Let

Fy

= [(BvAE® + (B By + A}t + (HAA 0 Ay + FrCoIs + By Dy

+193 By + B3 Ao)I7° + (uN Boo Ay + pAA0 ByI; + pABLA; + ByCy I
+E2 Dy + BaBy + EsApI3) 1% + (WN Ago A3 132 + uN Byo By I
+uNCoo A3ty + uNDyo Ay + pAB B3I + pAC o Ayl + pAD o Ay
+L3Coly + EsDa + EyBaI) T + (uN Ago B3) I3 + (uN Cao 1y

+E Co)I3? + (UN Do By + pAC10Bs + pAD1oBs + EyDu)i5]

+[k (a1} + 613

Ey A,
E\B, + EyA,

pAAYG A+ BE\Colf + B\ Dy + EsBy + Ey Ay

uNByo Ay + pAA 0 Byl + pAB1 Ay + ByCoIi + BaDy + EsBy

+E4 AL

uN Apo A3 I3 + N Bao B3I + pNCyo A3l + N Dso Ay

+pABL By Iy + pAC 0 Ay Ty + pAD 0 Ay + EsCol} 4 E3Do + EqByI}
uN AyoBs

uNCooBs + FyC,

uNDyoBs + pAC 0By + pAD o Bs 4 Fy Dy

Then the numerator of the above equation becomes

FI) + BT + Fs(I5%) + F(I82) + By(17) + Fo(I3®) + F(I3%) + Fa(I3)

(k8 + (613 + &13))



37

Next we will consider the denominator of equation (3.7). We have

[A2 Ao As 32113 + Ay Bio AP 172 A AsCho AISP IS + AsDio AsT3 I} +
Ay Ao B3I 12 4+ AyBio B IR IF + AyCioBs It + Ay Dio By I3 +

By Ao Agls* + ByBia Aslr® + ByClo Asl3 1T + By Dyo Agl} +
BoA1o By 1 + BoBio By 51 4+ ByCioBy3*IT + ByDo Balb Iy +
CoA o A3 4 CyBa AR T+ CoClo AT} + CoaDyo As I 15 +
Col1oBs 212 -+ CyByo Byl 1T 4 CoCho By I3 + CoDyo B3Iy +

Dy A g AgT® + Dy Bio AT + DyCro A3 I} + Dy Do AT+

Dy Ao By 1Y + Dy Bio B3I 4 DoCiaBsly? + DoDioBily] +

(k6 + (65 + &13)).

Rearrange terms,we have

= [(BeA10As) ;" + (AsAiody® + ByBioAs + BoAyo Byl + CaA10 Asly
+ D9 A10 A + (AaB1oAsI3® + BaCioAsly + BaDyo Ay + B2 B1o Byl
+CoBio Agly + CoAo BoX® 4 AyA1o Baly® + Dy Bio Ay + Dy Ao Bsly)
I 4 (AgCioAsD}® + AaDyo AsD* + A3Bio B3Iy | ByCI3?

+By D10 Ba i + CoCioAsly + CoD o Asly + CoBioBsli” + DyCio Ay}
+DeDyo Ag + Dy Bio Bs )T + (A,C0 By) I3 + (A3 D10 By
+CyC\o B I3 + (Ca D1 By + DaCro By 32 + (Do Do Bs) ;]

< [kd 4+ (60 + 1)),
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Gl
Gr
Gl
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= ByAyoAs

= AAo 3%+ ByBioAy + ByAyo Byl + Colio AsTE + DyAyo As

= A:BioAsls? + ByCloAsly + ByDioAg + ByBio Byl + CaBro Ayl
CoA1oBsI3? + Ay Avo BaIy® + Dy Bro Ay + DyAva Byl

= ACioAgly® + AgDyo Asly® + Ay Bio By I + ByCh I3 + ByDho Bl
+CoCha A3l + CoDyoAzly + CyB10BaIy? + DyC o AL + DyDyoAs
+D, BBy T3

= A,C\oB;

= Ay Dh1oBs+ CyC 08,

= Coly0Bs + DyC\oBy

= IhyDioB;.

Then the denominator of the equation above becomes

G+ GaIE) 1 GalI) + GalI}) + GalI5") + ColI3?) + Gell5®) + Gallp)

(k6 + (€17 + &13)]°

Therefore now equation (3.6) becomes

N+A-(nl} —7L)=Sf+8S;+V*
N+A-(nl} —7E) =
FUIP) B (T Y+ Fa (I3 )+ Fu(13 *)+ Fo (1) +-Fo( 133+ Pe (13 %)+ Fa(13)
[r6+(r 1 +621)] :
GrUF ) +G2(47°) +Ga{l} )+ GaUD+Cs 13 ) + Go(I3? )+ Gr{132) + Ca (13
[so+er+eary)]
Nt A—(nl—7I) =

[ (F1 (%) + Fa(IY) + (15 + Fy(12) + Fy(I7) + Fa(12%) +

FW%+&@0+@M$HGmﬁ+%mﬁumm+@@ﬂ+

c%w%+cmecMGQ}[w+@ﬁ+@qﬂ
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NG} + NGy IT? + NG I + NGuI} + NGB+ NGoI3® + NG I

FNGsly + AGII + AGL I + AGRIE + AGAL; + AGsI* + AG1*

FAGI + AGI; — G\LY — Gl — mGal® — nGLI? — 1 G 1T
~nGel3 I} — MG I} — GBI — mG I Y — Gl 1 — 1,G3 2 1
—T2G4Iik[; - T2G5I;5 —_ TQGGI;4 - T2G7I;3 — TQGSI;2

= PR - kS 1Y + Fakd1y® + Fikd 132 4 FshS1] + Fek013 + Fok6 1% 1 FokO I3
G+ BRI + RO+ B I + B I + Fe& I + R 12T

ARG LT + PG T + BRGELL + BG4+ Rl I + RT3

+FRED + F6 1+ Fpba I,

(Flfl)ffﬁ + (F1ké + o8 + FR&E + 7’1Grl)iﬁk5 + (Fokd + F38) + 115
+1Gy+ mGLl; — NGy — AG)IT! + (F3ké + Fa&s + Fa&al} + 11Gs
+1aGa Iy — NGy — AG)IT® + (Fykd + Fséy 4 Fy& I + nGy + 1Ga 3
~ NGy — AG)IT? + (Fskd + Fobi I Fo6 132 + Ryl I o F&od;
+nGs I+ nGel3® 4 G+ Gyl + TG I ~ NGy — AG)?
(MG + (Fobs — NG 4 maCls — ACS)IE + (Fyts + Fakd + maGo
~NGs — AGe)I3® + (Faba + Frkd + 1aGs — NGq — AGHI? + (Faké
~NGs — AGg)I} = 0.
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Let

H = K4
Hy = Pké+ F6 + P& +nG
Hy = Bk + Fyé + &I + nGy + nGi I — NGy — AG,
Hy = F3k6 + Fy&y + F3&I] + nGs + nGali — NGy — AG,
Hs = Fikb + F5€, + Fi& Iy + Gy + 1Galy — NGy — AGs
He = Fykd + Feb1 I3 + F6 1357 + Fol I3 + Fy&oli + 1Gs !
Gl 4+ nG I + 1 Gl + mGaIi — NGy — AGy
 Hy = mGs
Hy = Fgby— NG5+ 1Gs — AGs
Hy = Fuly+ Ik + 7G7 — NG — AGy
Hy = Fp&+ Fokd + 715G — NGy — AGy
Hy = Fgké — NGs— AGs
Hy = Hy+ Hg+ Hy + Hap.

Then the equation above becomes
HL® + Ho I - Hy I3+ Hy I + HyIX: 4 HoI! + Hy, =0

ROUTH'S STABILITY CRITERION
Consider a closed-loop transfer function
H(s) = bos™ 4+ bys™ 1 4 b1+ by B(s)
aps™ +as" Mt a, 18 ta,  A(S)

where the @;'s and b;'s are real constants and m < 7. An alternative to factoring thr denomi-

nator, Routh's stability, criterion, determines the mumber of closedloop poles in the right-half s
plane.
Algorithm for applying Routh's stability criterion The algorithm described below, like the
stability criterion, requirion, requires the order of A(s) to be finite.
L. Factor out any roots at the origin to obtain the polynomial, and multiply by -1 if necessary,
to obtain

s+ a5 T+ 4 an15+a, =0

where ag 7 0 and a,, < (.

2.1f the order of the resulting polynomial is at least two and any coefficcient a; is zero
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or negative, the polynomaial has at one root with nonnegative real part. To obtain the precise
number of roots with nooegative real part, procrrd as follows. Arrange thr coefficents of the the

polynomial, and values subsequently calculated from them as shown below:

Qp a9 a4 g
s*! ay, az as o
Sn_2 bl bg b3 b4
Cl C3 C3 4
sh1 d, dy ds dy

L) ey €9

i
3 fi
0
g 9o
where the coefficients b, are
10z — Qoag
bl M S
431
a1d4 — Apan
by = — 2 _
o 3 ai
» a1dg — Qpay
b3 T O may
a

generated until all subsequent coefficients are zero. Similarly, cross multiply thr coefficents of

the two previous rows to obtain the c;, d; etc.
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bias — a by

cy, = —
b

bias — a1as

g = ———
b,

ba7 — (1154

g = ——
b

c1by — bieo

dl =
1

c1by — bics

dp = ——=2
4]

until the 7th row of thearray has been completed! Missing coefficients are replaced by zeros.
The resulting array is called the Routh array. The powers of s are not considered to be part of
the array. We can think of thei as labels. The column beginning with ag is considered to be the
first columm of the array.
The Routh array is seen to be truangular. i can be shown that multiplying a row by a positive
number to simplify the calculation of the next row does not affect the outcomr of the application
of the Routh criterion.

3. Count the number of sign changes in the first columm of the array. It can be shown that
a necessary and sufficient for all roots of (2) to be located in the left-half plane is that all the ai
are positive and all of the coefficients in the first column be positive.

Examples

Given a system with characteristic equation
2 —
azs" +a15+ayp=20

determine which values of will make the system and which will make the system unstable.

Arranged in matrix form, the coefficients are

S ay

1 alag/az
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The Routh-Hurwitz criterion states that all of thr coefficients in the first column of coeffi-
cients must be positive, so for this case we must have as > 0and a; > 0. Since a3 and o, ag

must be greater than Q as well,

As another example, consider the system with characteristic equation
3, .2 94 —
74+ 8" +25+24=0

Arranged in matrix form, the coefficents are

3 1 2

e

s —22 ap
24

Since at least one of the coefficients (-22) is less than zero, this system is unstem is unstable. In

fact, it has two roots in the right half-plane.

As a final example, consider the system with characteristic equation

s+ 25t + 25 + 452 + 115 +10 =0

We construct the matrix as in the other examples,

s 1 2 11
st 2 4 10
Firrd=retl

At this point, we cannot continue since we have a 0 in the first column. We are interested only in
the sign of the coefficients, so the workaround is to replace the 0 with a small, positive number,

call it E. Then we have

s 1 2 11
st 2 4 10
s B 0
s ¢ 10
st d; 10
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== I’I]z
= Hs, a5

= Ifg,, i —

= Iy, a4

= Hj, as

- H‘Z’az —

=H,u

Letag =

b]_:

62:

¢l =

Cz =

— Qpls
Qz
) . 1\ H,
Hy — H,
H, 0
as
ajiy — ag
. I
HeHs — Hy
Hy
g — ag(0)
a3
-
HIZ - i
H, -
?33 — albg
1

— 1111
(H H, —21 1 )
bl L H4 - H2 o
(HgHH2H1I4)
2dplig— Ay Mg SpHs— il fig

H
Hy—Hy
Ha = 4

— M)
— Hy(I Hy
131}¥4);;%‘}¥1114
3 3
= HoL i
HyHy 0
HyHy — H,
a5 — alb3
b Y

a—il Hp
Hy(Haflay
Hy—il H4)H6 _
il

HyHy(

Hz— 11y )
(H2 H2H2H12

T
Hy
-,
(Hs — Hl)(H2H3
6
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Clbg — szg
Cy
Holls — H\Ho\\  HyHs — HyHg,  HyHs — HyH,
nn e R e e A
HoHys mm—mm}
((Hs — Hi) (222 )| = [HyHo(RE 5~ 2108
(WDHMmm—mmM [4ﬂmm—mm
HyHy — Hy Hy HyHys — Hy Hg HyHis }
S 2 TRy (A VY ((H. — HM 1122
( H, )h Hy ) - ((Hs Mmm—mmn
. HyHs — H Hy
E [H4H2(H2H3 ~ L,
(3153 — b1C3
C1
(Hy Hy (JH= [8)) (Hyp) — (HalaHiHy ) ()
HaHz—H 1 Hy 3
HiHs (55
H12
d1(32 —3 Cldg
d;
£, Cldg
7 .
1, H mmmm}_
s — H ) (e Y — (Hyp) | HyH (B8 T 2106y
WbHMmmﬁmm)(uﬁ4“mmgmm
HyHy — 1, Hy HyHs — H\Hyy (0 HyHis J
[( AN [( , e Mg =)
. HyHs — H Hg ]
{m%%ﬂamm)
Cldg — d182
€1
(illlr]_g — d](O)
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Numerically, We have the values of these unknow us as follows:

% 1.9366 x 107°

i 0.3098
I 1.0194 x 103
¥ 2.7112 x 104
I 1.9898 x 10!
IYo2.7112 x 101
;P 0.0031

1.0196 x 10* 1.9918 x 10* 0.0031
27118 x 104 27.6067 0
1.9918 x 101 0.0031 0
27.6067 0
0.0031
0

Form the ROUTH'S STABILITY CRITERION, we conclude that there exists a unigne positive

epuillibrium point.

Theorem 3.5. The positive endemic equilibrium exists and is unique if and only if Ry > 1.

Theorem 3.6, When Ry > 1, the positive endemic equilibrium of system is locally asymptoti-

cally stable

Proof. Consider the Jacobian at the endemic equilibrium. To make the algebraic manipu-

lation simpler, we set

BB . BB \ BB )
_k_i_B*_i_ﬂhIl, F—k+B*+ﬂhIZ, H—J(k+B*+ﬁhII)
B.B* StkB, StkB,
A = L S EI* , J = = Nf = 8"
Gy T (k - B')? (k -+ B*)?
ckf N *
2 e R — S* — * .R I lV*
(k+B*)2’ 2 ﬁh 1 Q ﬁh.Sza U/BI

Notethet G, F, H, I, J, M, N, P, Q and R are all positive. The Jacobian matrix then becomes
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—G = (&1 + 1) 0 0 _pP 0 —J 0

0 —F —($2 + p) 0 0 -Q —Ar 0

@ @2 M —F—pu - —-R —aN 0

JE = e 0 1 PLR-u—m 0 JEN 0
1] F I 1] QI R-p—v2 M+AN 1]

0 0 0 £1 £ -4 0

0 0 o T 2 0 -

Since for this undergraduate project we have a very limit of time to study and to com-

plete the positive definite proof, we will aproximate the eigenvalues of the 7 x 7 matrix numeri-

cally. In order to have the EEP stable, we need to have negative real parts of all eigenvalues, We

conducted a few numerical approximations with different time sets (100, 500, 1000, 4000, 8000

days) resulting all eigenvalues have negative real parts. Therefore, numerically, we conclude

that there exists a unique positive solution and it is locally asymptotically stable.

For T=100:;
" —0.0001
0
0
Cio0 = 0
’ 0
0
. i 0
For T=500:
[ —0.0001
0
0
- €500 = 0
' 0
0
| 0

0
—0.0440
0

0
0
0
0

0
—0.1575
0

0
0
0
0

—0.0553 4+ 0.01783

0

0
—0.19G7

0

0
0
0

0

0

0

0

0

0
]
0
0

—0.0311

0
0

0

0 0 0

0 0 0

0 0 0
—0.0322 0 0

0  —03958 0

0 0 —0.2238

0 0 0

0 0 o ]

0 0 0

0 0 0

0 0 0
—0.0173  © 0

0 —0.0099 0

0 0 —0.0045




For T=1000:
[ —0.0001
0
0
€1000 = 0
0
0
|0
For T=4000:
I
—0.0001
0
0
E4p00 — 0
0
0
| 0
For T=80G00:
[ 0.0001
0
€gonp —

o o o o o

0
—0.1709

oo o o

0
—0.1715
0

0
0
0
0

0
—-0.1702
0

o o o O

0

0
—0.1942

0

0
0
0

0

0
—0.1740

]

0
0
0

0

0
—0.1461

0

0
0
0
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0

0

0
—0.0322

0

0

0

0

0

0
—0.0313

0

0

0

0

0

0
—0.0293

0

0

0

0 0 0

0 0 0

0 0 0

0 0 0
~0.0031 0 0

0 —0.0023 0

0 0 —0.0010 |

0 0 0 |

0 0 0

0 0 0

0 0 0
—0.0001  © 0

0  —00001 O

0 0 —0.0001 |

0 0 0 ]

0 0 0

0 0 0

0 0 0
—0.0001 O 0

0  —00001 O

0 0 —0.0001
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3.4 Optimal control study

3.4.1 The Basic Problem and Necessary Conditions

In our basic optimal control problem for ordinary differential equations, we use u(t) for the
control and x(t) for the state. The state variable satisfies a differential equation which depends

on the control variable:
(1) = g(t, a(t), w(1)).

s the control function is changed, the solution to the differentiat equation will change,
Thus we can view the control-to-state relationship as a map u(f} + & = z(u) (of course, x
is really a function of the independent variable t; we write x(u) simply to remind us of the de-
pendence on u). Our basic optimal control problem consists of finding a piecewise continuous
control #(%) and the associated state variable x(f} to maximize the given objective functional,
1.e

"

max fttl S, 2(t), u(f))dt.

subjectto  2'(t) = g(¢t, (), u(t)), z(to) = mo and z(ty) free.

Such a maximizing control is called an optimal control. By x(l1) free, it is meant that the
value of x(t) is unrestricted. For our purposes, fand g will always be continuously differen-
tiable functions in all three arguments. Thus, as the control(s) will always be piecewise contin-
uous, the associated states will always be piecewise differentiable,

The principle technique for such an optimal control problem is to solve a set of ““necessary
conditions” that an optimal control and corresponding state must satisfy. Tt is important to under-
stand the logical difference between necessary conditions and sufficient conditions of solution
sets.

Necessary Conditions : If 4* (¢}, *(¢) are optimal, then the following conditions hold ...
Sufficient Conditions : If u*(}, *({) satisfy the following conditions ..., then w*(t), z*(¢)
are optimal.

We will discuss sufficient conditions in the next chapter. For now, let us derive the necessary

conditions. Express our objective functional in terms of the control:

J(u) = f (), u(®)d,

where x = x(u) is the corresponding state.

The necessary conditions that we derive were developed by Pontryagin and his co-workers
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in Moscow in the 1950's. Pontryagin introduced the idea of “adjoint” functions to append the
differential equation to the objective functional. Adjoint function have a similar purpose as
Lagrange multipliers in multivariate calculus, which append constraints to the function of several
variable to be maximized or minimized. Thus, we begin by finding appropriate conditions that
the adjoint function should satisfy. Then, by differentiating the map from the control to the
objective functional, we will derive a characterization of the optimal contro! in terms of the
optimal state and corresponding adjoint. So do not feel as if we are “pulling a rabbit out of the

hat" when we define the adjoint equation.

3.4.2 Pontryagin's Maximum Principle
These conclusions can be extended to a version of Pontryagin's Maximum Principle.

Theorem 3.7, Ifu*(t} and *(t) are optimal for problem {3.4.1), then there exisis a piecewise
differentiable adjoint variable A(t) such that

H(t, 2" (1), ut), M) < H(t, 2*(t), u*(t), M2))
Jor all control u af each time t, where the Hamiltonian H is
H o= [(&,3(8), ut)) + Mgt 2(1), w(t)),

and
Ny~ PG, x*(t()r):ﬂ:u*(t), (L))

Theorem 3.8. Suppose that f(t, v, u) and g(t, x,u) are both contintously differentiable func-

A(f) =0

tions in thier three arguments and concave in u. Suppose u* is an optimal control for problem
(3.4.1), with associated state x*, and X a piecewise differentiable function with A > 0 Jor all ¢,
Suppose for all 1o <t < i,

0 = I, (t, 2*(8), u* (1), A(L)).

Then for all controls u and each 1y < t < 1,, we have

H(t, 2" (), u(t), A(t)) < H{,2*(t), v (1), AE)).

Now we turn to the more general model with time-dependent control v(t). We consider the
system on a time interval [0,T]. The function v(t) is assumed to be at least Lebesgue measurable

on [0,T]. The control set is defined as

Q= {’U(t)lo < 'U(t) < Uma.r}
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where vy, denotes the upper bounds for the effort of vaccination. The bound reflects practical
limitation on the maximum rate of control in given time period.

The presence of time-dependent controls makes the analysis of our system difficult. In fact,
the disease dynamics now depend on the evolution of control. In what follows we perform an
optimal control study on this problem. We aim to minimize the total number of infections and

the costs of control over the time interval [0, 77; Le.,

(i f [(8) + L) + endr()Su(8) + cradalt)S5)

e (1)1 + Conbo(1)2]dt (3.8)

Here, the parameters cyy ,c2 , €2 and o2 with appropriate units, define the appropriate
costs associated with these controls. Quadratic terms are introduced to indicate nonlinear costs
potentially arising at high intervention level. The minimization process is subject to the differ-
ential equation of our system, which are now referred to as the state equations. Correspondingly,
the unknows S, So, I1, I3, V and B are now called the state variables, in contrast to the control
variables ¢y and ¢by. Our goal is to determine the optimal controls ¢} (¢} and ¢5(t) ,s0 as to
minimize the objective functional in (3.8).

“We first establish the following theorem on the existence of optimal control.

Theorem 3.9, There exists v*(t) € § such that the objective functional in (3.8) is minimized.

Proof. Note that the control set £2 is closed and convex, and the integrand of the objective
functional in (3.8) is convex. Hence, based on the standard optimal control theorems in [2] the
conditions for the existence of the optimal control are satisfied, as our model is linear in the
control variables. Indeed, the optimal control is also unique for small 7" due to the Lipschitz
structure of the state equations and the boundedness of the state variables[2, 3].

We wiil follow the method described in [4],{3] to seek the optimal control solution. This
method is based on Pontryagin's Maximum Principle [6] which introduces the adjoint functions
and represents an optimal control in terms of the state and adjoint functions. Essentially, this

approach transfers the problem of minimizing the objective functional (under the constraint of
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the state equations} into minimizing the Hamiltonian with respect to the controls.
dS,
dt
dS;
5 = =B
dv
dt
dl B B
53=(mr;§+mM&+d@?:§+mMV—hﬁwm

dl,
P (ﬂ“’A+B

= N — (fer——= + B 11)S — (¢ + 1) 51

L—i—B
B
F+ B + Brla)S2 — (o + 1) Sy
B
= B B 0B 4 ALY 0B+ ARV — Y

+ Bub)Sy + 0y D+ BBV~ (a4 )

dBb

== I I, —

di VIR

di

a = vh+vlh-—uR

Let us first define the adjoint functions Ag,, Ag,, A, Ay, Av and Ap associated with the
state equations for Sy, Sy, 11, f5, V amd B, respectively. We then form the Hamiltonian, H, by
corresponding state equations, and adding each of these products to the integrand of the objective

functional. As a result, we obtain

H = L+ DL+engiSit + ciadaSat + e + eppd?

+As, [N 1)8]

g [pA — (Aﬁjr 77 15+ (052 + 1£)S5)]

+Ay [¢131 + $252 — (ﬂe + Ah)V J(ﬂek fB "
mbw+nﬂ

A [ﬁe =+ Bul)S+ a(ﬂc " 5 IV = (]

B
+An [ﬂe B 57t Brlz)Sa -+ U(ﬁe 7t Brl2)V — (72 + p)a]
+f\B [&1’1 + Ezlrz - 5.8]
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To achieve the optimal control, the adjoint functions must satisfy

d;? = —g—gl = —cnup1(t) + )\S[fjﬁ + Buli 4 (0 + )]
afa] AL s
% = —g—g = — Cmﬁbz(t) + )\S[fii + ﬁhI2 + (¢'2 +.u‘)]
Mol AP 4 )
d\y  OH B B
dt‘ - 35 )\v[a(kﬁ+ B + Brdi) + U(kﬁ_'_ B + Bpha) + ]
B B
— Ap [a(kﬁ+ 7 )] = i [G(kﬁ_l_—B + By )]
A\, O
d; = —8—]_1 ==1+ /\31 [ﬁhSl] 7 )\V[ — O-JBh,V]
= A [BnS1 + 0BV — (m + w)] — As[&1]
d\,  OH
‘d—tI = *TB =—14 ASz [ﬂhSQ] o ’\V[_ Uﬁhv]
— AL [BuS2 + 0BV — (2 + )] — Ag[&a]
s | OH . Sip.k Syfk
=38 g apl el gk el
_Ix [_ QO'Vﬁzk] o [ Slﬁek O’Vﬁek ]
LUk B2 Yk B2 (k+ BY

SQﬁek Gvﬁek
(k+ B)? ' (k+ B)?

—An| ] 2al -]

with transversality conditions (or final time conditions):
AS[(T) =10, /\Sz(T) =0, ’\Il(T) =0, )\12(T) =0,

Av(T) = 0,A5(1) =0
The characterization of the optimal control ¢} (£} and ¢3(¢) based on the condition

oH o _
¢, O

respectively, subject to the constraint 0 < ¢y < (10, and 0 < ¢g < ¢ho,0a Specifically, we

0

have

#1 (L) = maz]0, min(d1(t), 1maz)]
$3(t) = maz]0, nin{d2(L), P2maz)]
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where

qﬁl(t) i[(/\gl Sl — /\VSI — Cn)Sl(t)]/(Q(Jm)
P2(t) =[(As, 52 — Av Sz — €12)S2(8)]/ (2022)

The following graphs show that with vaccination in the model, the number of infections are

reduced to lower than that of the original. This study shows that in order to control an outbreak,

vaccination plan should be deployed in the early of outbreak.

Table 3.1: Cholera model parameters and values.

Parameter Symbol  Value References
Total population Group 1 N 2,000 [L1]
Total population Group 2 A 1,000 [
Natural human birth and death rate 1 (43.5yr)™! [t]
Rate of recovery from cholera Group 1 " (5day)™ [11]
Rate of recovery from cholera Group 2 Yo (Sday)‘l [11]
Rate of human contribution to V. cholerae Group- | & 10 cells/ml-day -[H1]
Rate of human contribution to V. cholerae Group 2 Ea 18 cells/ml-day [1t]
Ingestion rate through human-human interaction Br 0.00011/day [
Bacteria death rate ) (30day) * [t
Half saturation constant {less-inf.) > 108 cells/ml [11]
Ingestion rate (hyperinf.) Be 0.075/day [11]




56

N Wihaud centrol
180§~ “ —+—With canlrol
1600 ~ i
1400 N R

1200 ~— ]

Susceptlble Indiwiduals Group 1
1
1
1]
]
I
]
i
]

a 0 2 3 40 S50 & 70 680 9@ 10
Days

Figure 3.2: Susceptible Individuals Group 1 VS Days

o T T T T T ¥ T .

Toee P Wilhout conlrol
T ——\\ith cantrol
.

—
B0 Rl T

700 1

BM 1

Susceptible Indlvlduale Graup 2

1] 10 2 30 40 il L= S B (1] 1] 90 10
Days

Figure 3.3: Susceptible Individuals Group 2 VS Days

Infected Individuals Group 1

Figure 3.4: Infected Individuals Group |1 VS Days



57

15 T 4 T T T T T

//-“-“-\ ‘Withaut conlrol
/( ™ ——With control
/4

Va ~

=]

wn

Infected Individuals Group 2

x 10
25 T T T T T T T T L] 1
- T~ ——With corirol
) //’ -y
4 . i
7 ™
f ~
K =
16} / ~4
8 /
=2 i
> ’
1t / 1
7
i
[
as y i
0 N L . L . L . L 1
i 20 < U ] 80 8 A B0 90 10

Figurc 3.6: Vibrios V8 Days

ar T T T T T T

== == Condrel for Group 1
~—— Caonlrol far Graup 2

06}

1
]
\
1
L]
1
1
L]
]
1

04}

Ceraral

Dar

02t

Figure 3.7: Control for Group 1 and Conirol for Group 2 VS Days



58

According to our numerical simulations, the infected plots show that the numbers of
infections for both group are not surprise. With vaccination for both group, the dark line,the
numbers of infections are lower than those without vaccination. Thus, with a good vaccination
plan,when an outbreak occurs it will be a good strategy to confrol or stop the disease from

spreading. In addition, isolating susceptibles at early of an outbreak helps in planning to deploy
vaccine in optimal costs.



Chapter 4

Conclusions

In this study, we have explored several Cholera mathematical models. We also presented the
important of optimal control theory applied to a biological model. Qur interest in this study is
that dividing human populations into two clusters; low-risk and hi-risk of being infected from the
disease. .S1 and S represent a high-risk and a low-risk susceptibles, respectively. With some
rates, 51 and Sy are infected and becomne infectious individuals; /; and [, respectively. The
infected populations are isolated, therefore, they will not have a close contact to each other. As
a result, they are considered as two different clusters.We have explored vaccination strategies
to these two clusters and found that with a good vaccination plan, an outbreak can be stopped
and the plan should be deployed immediately after the outbreak. Optimal control theory is very
important in this study to gain optimal control solution; optimal vaccination cost. This would

be benefit to some countries that lag of funds for having a mass vaccination plan.
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We propose a general mulligroup model for cholera dynamics thal involves bolh direct
and indirect transmission pathways and thal incorporates spatial heterogencity. Under
biologically feasible conditions, we show that the basic reproduction number Hp remains
a sharp threshold for cliolera dynamics in multigroup scttings. We verily the analysis
by numerical simulation results. We also perform an optimal control study Lo explore
optimal vaccination strategy for cholera outbreaks.
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1. Introduction

Cholera epidemics continue to devastate impoverished populations with limited
access to clean water and sanitation resources. Cholera, an infectious waterborne
disease caused by the bacterium Vibrio cholerae, can spread rapidly and lead to
death within days or hours if left untreated. Recent years witnessed an increasing
number of cholera outbreaks worldwide, including one of the largest cholera epi-
demics in modern history that took place in Haiti from 2010-2012 with more than
930,000 reported cases [22]. Major cholera outbreaks also include those in Sicira
Leone (2012), Ghana (2011), Nigeria (2010), Vietnam (2009), Zimbabwe (2008), and
India (2007), among others. These outbreaks have increased in frequency, severity,

1650001-1
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and duration, implying that current knowledge in cholera dynamics and public
health guidelines to control the disease are not adequate.

A major limitation of current quantitative studies (e.g. [3, 8, 9, 15, 18, 21}]) on
cholera transmission and control is that spatial heterogeneity and dispersal are not
sufficiently addressed, resulting in poor understanding of the spread of cholera infec-
tion. In paper [12], basic reproduction numbers were estimated for the 10 provinces
in Zimbabwe. The results were highly heterogeneous, showing that the underlying
transmission pattern varied widely throughout the country. Similarly, in the work of
Tuite et al. [19], very different basic reproduction numbers were established for the
10 administrative departments of Haiti. Although relatively simple mathematical
models were used in these studies, they did imply, that spatial heterogeneily takes
an essential role in cholera transmission and the design of control strategies. Con-
sequently, the cffects of dispersal and movement among different spatial regions,
including the communication of human populations and dispersal of vibrios, are
critical in shaping the global epidemics and endemism of cholera.

One of the most successful approaches to investigate spatial heterogeneity in
mathematical epidemiology is the multigroup modeling [7, 17], where the entire
population is divided into n(n > 2} distinct groups and disease transmission oceurs
both within the same group and between different groups, reflecting the movement
of human hosts and/or the pathogen from one region to another. In this paper,
we construct a general multigroup modeling framework for cholera, based on which
the complex dynamics and the control strategy of cholera can be carefully investi-
gated. This work is based on a recent sludy by Wang and Liao [21] where a general
cholera model was proposed that incorporates general incidence and pathogen fune-
tions and unifies many of the existing cholera models. However, one weakness for
the model in [21] is that spatial homogeneity was assumed; i.e. the entire popilation
being studied must exist under the same conditions in the same environment. In
this paper, we make a significant extension of the model in [21] to a heterogeneous
environment with arbitrary number of groups representing different spatial regions.
We analyze the essential dynamical properties of the model, including local and
global stabilities of the epidemic and endemic equilibria, with an emphasis on the
interaction among the multiple transmission pathways of cholera and the interac-
tion between within-group and inter-group dynamics. We present numerical simu-
lation results to validate our analysis. In particular, we conduct an optimal coutrol
simulation to highlight the design strategy of cholera controls based on spatial
heterogeneity.

The remainder of the paper is organized as follows. In Scc. 2, we introduce
the multigroup cholera model and present necessary (and biologically reasonable)
assumptions. We then derive the basic reproduction number in Sec. 3 and prove
the global stability of the disease-free equilibrium (DFE) in Sec. 4. The existence of
the endemic equilibrium is establishied and its global stability is analyzed in Sec. 5.
Then, we conduct numerical simulation and optimal control study in Sec. 6. Finally,
conclusions are drawn in Sec. 7.
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2. Mathematical Model

The total population N is divided into n distinct groups each partitioned into a
susceptible compartment S, an infectious compartment I, and a recovered compart-
ment R, where the population in each group is assumed to be a constant and given
by Ni =S8+ I; + R;, for i = 1,...,n. Since the case fatality rates for cholera are
typically pretty low (at or below 1%) [22], we asswimne cholera-induced mortality can
be neglected in this work. Once an infected individual enters the recovered con-
partment, the newly recovered individual no longer influences the dynamics of the
system. Also, since R; = N; — S; — I;, we can remove the recovered compartments
from the system. The pathogen concentration in the contaminated water is denoted
by B; for each groupi=1,....n.

The incidence function is given in the form 2?:1 Fid;, 3;), where susceptible
ndividnals can be infected cither by interacting with infectious individuals (lniman-
to-human dirvect transmission) or by ingesting contaminated water (environment-
to-human indivect transmission). The rate of change for the pathogen concentration
in each group is denoted by the function h;(7;, B;) fori = 1,... n.

Based on these conditions and building on the cholera model in [21], a general
multigroup model can be fornulated as the following system:

dS{ - N

7 I LS B) 15, |
(fL' " A A

d?‘ I E »\SLfJ(IjaB,?) I (’YI +b)Ih 1= 1"""”’ (2)

o =T

dB3;
‘.i — i’ I’-, 1) 3

dt e ) Y

where the parameter b represents the natural human birth and death rate and ;
represents the rate of recovery from cholera in each group. We assume that f;(;, B;)
and h;(I;, BB;} satisfy the following biologically sensible properties fori = 1,...,n:

(A2) fi(L;, Bi) = 0 and f; ouly vanishes at (0,0).

(A3)
(r)f,' (')fi 8h¢ Bh,-
270, Bi) 20, =, B;))>0, —(,,B;))>0, —-(I,B;)<0.
(Ad) fi(f;, B;i) and h;i(1;, B;) are both concave; i.e. the matrices
*f; d%f; ?h; 9?h;
12 o5 OB; Y aI? o608,
sz-i = and D°Nh; =
62]‘! '()in Bzhi 82]”
af; OB, B2 oL,aB;  oB2

are negative semidefinite everywhere.
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It follows from (A1) that the model adnits a unique DFE, denoted by

n

PO = (S]DIT(?!B?J . SO IO Bg) = (l\ﬁ,0,0,...,N,”0,0), (4}

and (A2) guarantees a non-negative force of infection. The inequalities in (A3)
respectively state that the rate of new infection increases with rises in infections
population size or bacterial concentration, increased infection population also leads
to a higher growth rate for the pathogen, and the vibrio cannot independently
thrive in the absence of the inflow from contaminated sewage [3, 8]. Finally, assump-
tion (A4) is based on the saturation effect. We mention that another multigroup
cholera model was recently proposed in [16], yet our model is more general in both
the incidence representation and the pathogen dynamies.
Under these assumptions, Eq. (3) yields

di3; hL dh; ah; dh;
= g IH — ’ i
I = h;(1;, B;) (0 O + — a8, — (h0) By < oI —(0,0)N; + — 9B, (0,0)B
which implies that
. (90 /01:)(0,0)
0< B; < ?Ni. i |
<B <w with w (91 /3B3)(0, 0)

Therefore, the feasible region is given by
I'= {(S i, .,S,“IH’B") c R
DSSi-i-L'SNz,OSB;:Swu’\fi,izl,...,n} (5)

and it is positively invariant in R37?.

3. Basic Reproduction Number

Following the next-generation matrix theory [20], the basic reproduction number,
Rg, is mathematically defined as the spectral radius of the next-generation matrix.
In order to determine the next-generation matrix of our model, we first consider
the compartmentalized infectious subsystem:

[ d1 /dt ] Z; S1filli; By) [ (v + )1,
dIn (H} " T + b In
fdi | _ > Sufilli, By)| — (i +0) =F -V, (6)
dBl/dt i—1 _h'l(II)Bl)
0
ﬁd,Bn /dt_ : __h'n(In) Bn.)_
0
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where F denotes the rate of appearance of new infections, and V denotes the rate

of transfer of individuals into or out of each compartment. For convenicnce, let:
Ifi
— (0, = p;,
o, (0,0) = pi
afi
B,
Oh;
—(0,0) = "y
ar, 00 =7
Oh;

'3??(0: O) = U,

1

(01 0) =,

fori=1,...,n. Then, the 2n x 2n Jacobian matrices evalnated at %, the DFE,
are given by:

[Nipr - Nipp Nt - Nigy |
ii\'rnj”l =T anr Nn‘]l T Nn(In
F = DF(Ry) = L , (7)
dw [ LN 0  .-- 0
| 0 0 0 0
’-/')/]+b 0 - R ca o ol P 0 7]
0 -'YQ_I_b 0 5 ot . A . r. . . 0
] 0 ' - O an_l_b 0 e PR P 0
V = DV(I%) =
—r 0 0 —t; 0 e e 0
Q —79 o - 0 —tg 0 - G
0
L0 e 0 or D e e 0 —up

(8)
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Hence, the next-generation matrix is defined as

[_ M (p] _ o 7"1) M ( - Q'n'?‘n) VAR A 1)
Y1+ b Uy Y+ b Uy Y Up
Y r N r
> —f—b (pl—q; l) S Jib (pn_-—q; ﬂ') —Ngz—l _]\125_"
1 1 i n 1 n
vl = .
N, r N, ™
n (Pl _an o N (Pn _Gnfn —N, q1 .. —N, 4n
y1+ b 1 M+ b Un iy Up
0 0 0 ¢
| 0 e 0 0 e 0 J

(9)
To find the spectral radius of 'V, we proceed to determine its characteristic
equation, For convenience, let

1 GLrk
A S
: ’Yk—l-b(pk uk)

Then,
A-N4, . —NA,
det(A — FV 1) = )\®
N, A - A—N,A,

Denote

F]\TIAI N1A2 i~ NlA'n_

A’Yg/-ll IVQAQ Lo NQA”

X, =

_ATnAl NnA'B e NnAnJ

Claim.

det(M — FV—1) = 32! (,\ - ZNJA.,-) , (10)
i=1
or, equivalently,

det(AI — Xl) = An_l (A - ZNLAI) -
i=1

Proof of claim. We prove the claim by induction. When n = 2, it can be casily
verified that (10) holds. Now, assume (10) is true for n. Let us test the case n + 1.
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Then, we have

det(AI — FV 1) = X" det(M — X))

A-—Np4y - —Ni A, _NlAn+1
— ATH»I
_Nn,Al e A= NnAn *NnAn-i-l
*Nn+1Al o _Nn+]An A— Nn—l-lAnJrl

Let us split up the last column so that the determinant can be written as the
sum of two determinants,

A—=N A o =NyA, 0
det(A\ — X} =
-N A1 - A—=N,A, 0
—Nygdy - —Nap1dn A
A— ]VlAl e -N A, —NlAn+1
+
*NnAl W /\ e j\'T1'14’41r1 *NnAn+1
\ 11+1Al o TV An "‘l\rn—l—]An+l
= Y| +]2,.

From our assnuiption on n, it is clear that the fivst determinant is the following

Y= [A'”l (,\ A ZNjA,-)

=1
i=1

For the second determinant [Z, |, note that the elementary row operation (€5 «—
C,' - (Ai/An+]) ' On+1), i = 1, R T yields:

Ao 0 Ny A
A N, A
_ et R — A" Ny Anyr
0 ... A _N, An+1 0 ‘“Arn+1An+1
0 -+ 0 —-N,14.4
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Therefore,
det(Al — X1) = |Y1]| + | 4]
=\ (,\ - N.iA.i) ~ NNy 1 Aps
i=1
n+1
= A" (A =) NiAi).
i=1
Thus,
n41
det(A] — FV 1) = \2r+l)— (A ZNA)
aid the claim holds. O

Hence, the basic reproduction number is given by

Ry = p(FV™)

i N; @i
Vi +b P Uy

I

SR 1) Ofi e Ofy - O RPYA| R
. | E%M {BI (0,0) — 7B, (0,0) (83 (0, 0)) 6—12_(0,0)}. (11)

Note that g—gf_ < 0 from assumption (A3). Equation (11} clearly shows that the
basic reproduction number Iy for the entire system is the summation of indivicdual
reproduction numbers from all the n groups, Within each group, the reproduction
number consists of two parts: one is the contribution from the direct (or, hmman-to-
human) transmission, %‘LB%I&(O 0); the other is the contribution from the indirect
(or, environment-to-human) transmission, % gg (0,0)(—%:}(0,0) 10 57+(0,0).
Bascd on the work of [20], we immediately obtain the following lesult on the

local stability of the DFFE.

Theorem 1. Let Ry be defined as (11), then the DFE Fy of the system (1)-(3) is
locally asymptotically stable if Ry < 1, and unstable if Ry > 1.

4. Global Stability of DFE
Indeed we can establish a stronger result below regarding the stability of the DFE.

Lemma 2. Assume (A1l)-(A4). If By < 1, then the DFE Fy is globally asymptoti-
cally stable in I'. Additionally, if Ry > 1, the system (1)-(3) is uniformly persistent.

Proof. Let
['wl et Wy Woyy o 1”2;:] = [pl P 1 q-n] vl (12)
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I
- Iy
:ZNiTUz[Pl P 1 - qrz] B
i=1 1
_Bn_
[ 1, ]
In
o @ qn] B,
_Bn—
’_Il-
LAY b SUR BN o . b,
i=1 . B By~ S T
_BPIH
That is,
53
, I, )
L'<sfo—Wpr - w0 @+ Gnl 5 (15)
1
_BTI_

Now, note that ' = 0 if and only if either:

(ﬂ) Ro<land h =B =---= n=2D58r=0,or
(b) Rpy=1and S; =N;fori=1,...,n.

Let K be the largest compact invariant subset of
G = {(Sl, II,BI! AN ,S',,:L?,Bn) cel: I/ = 0}

In case (a), each solution in K satisfies S] = bN,;—bS; fori = 1,..., n, and obviously
the solution converges to S; = N; for i = 1,...,n. In case (b), note that S; = N,
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satisfies

S/ =bN; — > Sifi(I;, By) — bS;
3=1

which implies
n
ijUﬁ BJ) =0.
J=1

Hence, from assumption (A2}, it is obvious that [} = By = ... = I,, = B, = 0.
Therelore, all solutions in T' converge to the DFE; that is, the largest compact
invariant set where L' = 0 is the singleton {P}. By LaSalle’s Invariance Principle,
Fy is globally asymptotically stable in I" if Ry < 1.

If Ry > 1, then L' > 0 in a neighborhood of Py in the interior of T Thus,
solutions in the interior of T sufficiently close to Py move away from P,. implying
that By is unstable. Consequently, the instability of Py (which is on the boundary
of the domain I'} implies uniform persistence of the system [5]. a

5. Endemic Equilibrium

The dynamics of the system (1)-(3) when Ry < 1 has been completely described by
Theorem 1 and Lemma 2. Now, we conduct an endemic analysis when Rg > 1. The
following theorem shows the existence and unigueness of the endemic equilibrium.

Theorem 3. For the system (1)(3), if Ry > 1, there exists ¢ unique positive
endemic equilibrium, ond if Ry < 1, there is no positive endemic equilibrium.

Proof. Under assuniption (A3), the equation h;(J;, B;) = 0 implicitly defines a
function B; = g;(1;) with g/(I;} > 0, for i = 1,...,n. In addition, differentiating
h:(I;, B;) = 0 twice with respect to I; yields

82}11‘ 82]1‘.,'

L g or:  o1;0B; 1 dh; L) =0
11 g\ di oo i i) =
92h; on; | g )| 9B
ol,0B;  0B?
Using assumption (A4), we can readily sec that ¢/ (L) <0, fori=1,...,n.
Then, sctting the right-hand sides of Eqgs. (1)-(3) to zero, we obtain:
ble
Sk = 7 v (16)
b+ i filli, gi(1i))
7. oL ool
L { 2y Sl 5u(1s) } (17)
Ve kb Ld+ >, fills, g:(1:)
By = gr(I1.). (18)
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In particular, from Eq. (17), it follows that
I WNk mtb _ mA4b N

LI = =, k=1,...,m
5 T +b bV v +b Ny
implying that
m+b N
. — - =c¢ -0, kE=1,...,n 19
E= b 1=¢Cr- 4y Yoo (19)

Note that ¢x > 0 and thus ; > 0 implies that I, > 0 forall k = 1,...,n. Also, it

is clear that ¢y = 1.
Let us define the following

H(L) =1,
_ b { filln, g1(I) + faleadi,galeads)) + - + fulends, gn(endr)) }
v+ b b+ filly, g1 (1)) + faleads, ga{caIy)) 4+ o« o+ falendy, gu(eadn))
(20)
Note that H(0) = 0 and H (1)) > 0 for all f;, > 0 with k£ =1,...,n. Denote:
Pi(h) = fHi(h,a(I)),
Po(h) = falealr, ga(ea1n)),
o) = falendr, gnleads)).
Then we have,
R o s e ey i nd B G

and taking the derivative we find that

bNy { WP+ Py(L)+ -+ PL(1h)) } (22)
'Tl‘i‘b (b+P1(Il)+P2(I1)++P,,(I1))2

H'(I) =
where
, o o ,
Pp(h) = e {dI (extr, gr(endh)) + 75 7B, a5 (endy, ge(endy)) 'Qk(ckfl)} >0, (23}

for k =1,...,n Therefore, H'(1y) > 0 for I = 0. In particular, note that

Ny
nt+b

N - A O
— %er{kzc (m (0, 0)+6?(0 0)-g (0))}
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- {E e  (Bon oo o))
S O 20 <o,o>-g;(o>}+$(:;;ii-%j)
{%(0 0) + ;’;2(0 0) -9 (0)}*"*71]\21)(1],1?,'%)
{f’)l’:(o 0) + gé (0,0)-9 (0)}
%‘T\ib {g§1(0 0) + ggl (0,0) - g1(0 )}
+h/:\iib {ai(() 0) + &()9};22 (0,0) -93(0)}
ny / +%fv+b{g§:(o,0) 31]; (0,0) - g, (0 )}

’(Il) S
= 2P(h) 4t P(T))? . @)

B & 1‘\7;; Bf;‘ af& 7
=3 P {00+ E0.0) 60

(24)

+ B0+ Pi(Iy) +-- -+ Po(dh))

k=1
= Ry.
Next, we have
bEN. St
H'(L) = —
v+ b
where

oI

Pl(h) = {Of (CRII1GL(CAII))+2 gi(crdy) -

s 2

(b+P1(Il) = e PR(II))S

2

ad
A &J)CB {exd1, gx(erdr))

o5,
D)) o5 ')B2 (pkll’gk(fkfl))+ BJJBC (exdi, grlendr)) - qik(('.i.I])}
9 -
. | 3;2 (cedy; gie(culr)) ﬁ(akh,qk(ckh))
1 gulerd
rlcrlr) s (e ]y ge(endh)) a_gfﬁ(p[ (ce1n))
dIABB kA1 GRiCk L &BIE “ed1y Gr(Crdq
! 2 af"‘ "
LIS )
g [gk(cul)]+c*‘ ag, 9 (celt); (26)
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for k = 1,...,n. From assumption (A4) and the fact g{/(Ix) < 0, it follows that
Pl(h) <0 f01 k=1,...,n And therefore, H"(I;) < 0 for I, > 0. That is, the
function H(I;) is increasing and concave on {0, 00) with H'(0) = Ry. If H'(0) =
Ry > 1, there is a unique positive fixed point I} for H(I}}, and thus, from Eq. (19),
unique positive fixed points I3, ..., I}, Furthermore, with I, > 0 for k=1,...,n
and Egs. (16) and (18), it follows that there exists a unique endernic equilibrium
denoted by

P = (81,11, By..... S I, Br). (27)

In contrast, if H'{0) = Ry < 1, there is no positive fixed point for H (I} and thus
no endemic equilibrivm. O

We proceed to show the global asymptotic stability of the endemic equilibrium.
By Theorem 3, the endemic equilibrium P* = (S* Ir. By, ....5:. 1, ;) exists
and is unique when Ry > 1. Note that ST, 17, BY...., 55, 1, B"‘ are positive and
satisfy the following equilibrinm equations:

bN;, = 25 ) +bSE. (28)
N 1 (b = Zskf;, (7. B;) )
b (1%, Bi) = 0, (30)

fork=1,...  n

To study the endemic global dynamics, we introduce another assumption here.
We assume that the solutions to the system (1)-(3) implicitly define a function
By = Bj(1;) with B(1;) > 0 and BY(f;) <0, for j = 1,..., n. Biologically, this
means that the bacterial concentration will increase with the risc of the infected
human population, but the rate of the increase will slow down when the infected
population is high due to saturation. Let us denote

Q;I;) = f;(L;, B; (L)), i=1,...,n

Int. J. Biomath. Downloaded from www.worldscientific.com
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Then we have

o 0
Q) = 57+ G B 20 (1)
and
of; af;
" , f)]f 813 (r)BJ 1 afj ”

oI,0B; 0B}
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_ G Sk Sifily, By) I
= Gp(lk) GJ(I;,)+<D(Sk)+<I)( - ) Ik)

Sifi (15, B;

LB 15 £ By) _LUGBY) L
e (f,(I,B) I,’?‘) * (fj(I;,B;) U TR B T

< Gr(dy) — G;(45), (37)

—

where
I I
Gy —— +1In—. 38
w(I) = I + I {38)

Note that

Dy =3 g Py Sk, Iv, By, I3, B;)  and
=1

ij(Sk,Ik,Bk,Ij,B ) GA(IA) (I )1

if and only if

SN v Bj
(1_5:.)(5*'_5’“)_0’ (1—B—) hx(Tx, Bi) =0,

_ (fj (1;: B5) S ) (1 :,fj( B?) I_1) : e i
£ (L. By) (0, B) I
Let A = [ax;] and ¢x be as given in [16, P1'0position 3.1] for the weighted digraph
(G, A); see also Appendix A. For k =1,.
d- (k) = d+(k,) =n—1
Then, for n > 2,

7 1t

ZC;‘D}‘ < ZZC&GMFLJ

k=1 3=1

< Z Z CRpbpg [G,lh (IA) - GJ(IJ)]

k=1 j=1
(Lol
S (ot )
Pt i Iz I
= 0.

Hence, D is a Lyapunov function.
Now. suppose n = 2. Since d* (k) =n—1=1 for k = 1,2, by [16, Theorem 3.3],
2

2
CROL; = E ciaqi;  thabis, ¢ = E Citi [ Q.
i=1

i=1
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—Tvo)=10 1.5745F ) j ‘ —12(0-10
1.595F H
5 - - -I{o}=100 \sral - - - I2{0)=100

1.50- - = H(0)=1000 - - ~ 12{0)=1000
- o 15735}
3 | _— g 1.57af
E 1.58, e .;g
2 1575 ( 2 167251
E - 3 1.672 ‘—‘—D

E 2 " { I

g 1 2 ) S
3 1] | [
E 1.565 L TAL]

1561 1571

1565 B 1.5705

3.62 a.64 3.66 3.68 a7 .72 ENL 6.0235 B.024 65,0245 6.025
Susceplblo Number S1 Susceplible Numbar §2
(a) (b}

IFig. 1. Phase portraits (zoomed-in} for the two-group cholera model with different initial con-
ditions, and fig > 1. (a) [y vs. S1. All the curves converge to the endemic equilibrinm with
IT a2 1.572, ST & 3.664. (b) f2 vs. S3. All the curves converge (o the endemic equilibrium with
I3 = 1572, 55 ~ 6.024.

will consider vaccination as the only control measure. Tt is worth mentioning that
the World Health Organization (WHO) recently emphasized and recommended the
use of vaccines in cholera endemic places and pre-emptively during outbreaks and
emergency sebtings [2].

We assume that susceptible individuals in groups 1 and 2 are vaccinated, respec-
tively, at rates v () and uy(t). Correspondingly, the equations for the susceptibles
in system (39) are modificd as: ‘

dS . .
d—tl = N1 — (M1S1B1 + A25:1B3)
= (BuSihi + PioS11z) — paSt —ua(t)5h, (40)
ds
d—: — ugl\r Sy ()\218281 + /\2232B2)

—~ (B2182d\ + 0225210) — 1282 — ua(t)So {41)

and there are no changes to othier equations in the model.
In our optimal confrol study, we aim to minimize the total number of infections
and the (linear) costs ol vaccination for both groups over a time domain [0, T); i.c.

T
( (glin (t))f (L (2) + cwr (8)S1(E) + Lo (6) + cua(£)Sa(t))dt, (42)
ui(l), us 0

where ¢ denotes the unit cost of the cholera vaccines. We refer to this as a global
control strategy. The control set is defined as

{(ur(t), wa(®)) |0 < w1 (8) < Ui, 0 S unlt) <uap b (43)

where ;. and wug, . denote the upper bounds for the effort of vaccination in
groups 1 and 2, respectively. These bounds reflect practical limitation of resources
to implement the controls in a given time period.
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Fxistence of the optimal contrel solution directly follows the standard optimal
control theorems [4], by noting that the control set is closed and convex, the inte-
grand of the objective finctional in (42) is also convex, and the model is linear
in the control variables 4, and us . Furthermore, the optimal control is unique for
small T' due to the Lipschitz property of the state cquations and the boundedness of
the state variables [4}. Then, following Pontryagin’s Maximum/Minitmum Principle
{13, 14|, we introduce the adjoint functions and represent the optimal control in
terms of the state and adjoint functions. Essentially, this approach transfers the
problem of minimizing the objective functional (under the constraint of the state
equations) into minimizing the Hamiltonian with respect to the controls.

Let us first define the adjoint functions Ag,, Az, and Ap, (i = 1, 2) associated with
the state equations for S5y, I; and B3;, respectively. We then form the Hamiltomian, H,
by multiplying each adjoint function with the right-hand side of its corresponding
state equation, and adding each of these products to the integrand of the objective
functional in (42). As a result, we obtain

ds S
H =1 (t} + CTLl(I’,)Sl('L) + IQ(L) + Cug(t)Sg(t) + /\31 (%)—F )\32 (E%)

dIl' dIg dBl ng
A (W) =k (‘d?) i (T) e (T)

= T1(8) + cur (DS () + T2 (t) + cuq(t)S2(2)
+ As, [N — (A1S1By -+ AiaS1B2) — (8BS +B12S112) — 118y — ua(£)Si]
+ Mg, [palNy — (Ao159B1 + A22S2Ba) — (O21S0lh + 8aaSals} — 11283 — ua(t).Sa)
+ AL [(M1S1B1 + A2 S1Bo) + (8115151 + A28 B) — (i + )]
+ A (A1 S2 By 4 Mgz S2Ba) + (a1 Saly + 8228210) — (12 + 72) o)
+ Ag, [6]) — 6 B1] + Ap, [€2ds — 02B2).

To achieve the optimal control, those adjoint functions must satisfy

dhs, QU dAs,  OH  di, Ol

dt 98 di 88, dat oI, (14)
and
dAg, Z_H_H dAp, :_BH dAp, :_BH. (45)
dt ay’ dt OB’ et OBy
For example,
dAs, 0H

= ——— = —cuy + Ag, (A1 B1 + A2 Ba+ S hy + Bials + g + wy)
dt a5,

— A (AL B+ AleBa + i + Bhala).
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and
8H
aug

uhy =un,,, M — <O uy=0 if

0.
s > {49)

In our numerical tests, we have found that the values of the switching functions
% (i = 1,2) are never zero on a non-empty time interval. Hence, singular control
docs not occur in our optimal control study.

Based on this optimal control model, we have performed several runs in numer-
ical simulation. In particular, we have chosen cross transmission rates in such a
way that B12 > Ba1 and A1z > Az, while keeping other transmission parameters
the same between the two groups: £ = = £, A1 = Ass = Ay = fia = g, 11 =
N2 =%, 81 = 82 = 8,11 = Paz = J. See Table 1 for all these parameter_values. ‘This
simple sctting allows us to investigate the impact of human and pathogen disper-

B . - .
g . sal (through distinct cross transmission rates) on the optimal control strategy for
‘é‘g cach group. In addition, we set the time period T = 100 days. The results for this
.g’ 3 scenario are presented in Fig, 2. As can be naturally expected, the higher disease
'é@ transmission from group 2 to group 1 (than that in converse route) results in higher
2 % levels of infection and pathogen concentration in group 1, which necessitates longer
E g duration of vaccination in group 1. Note that we have set the maximum vaccination
T
£
:;-S 3500 T e . ] i
(=3} n * ~ =
23 o f =Ry .y =)
B8 it M .
g %“ sl t r2fo .,
Az = wp 1
‘ﬂ“_g‘ 1500} | .“. o :.' ~ .
) 85 1000} 4 L : /
ﬁ,ﬁ" 500 | “\“ E 5| l-'
E ° 0 1L0 ZD-- 50 A0 50 ﬁLD 70 80 a0 100 g 1] 10
Time
(a) (b)
o7
o8 :
05
04
! 02
of |
. . )

(e)

Fig. 3. Results for the two-group cholera model with optimal control on group 1 only: {a) infected
populations T; and fg; (b) vibrio concentrations By and Bz; (c) optimal control profiles vy and
g = 0.
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