

BHUTANESE SIGN LANGUAGE HAND-SHAPED ALPHABETS AND DIGITS

DETECTION AND RECOGNITION

KARMA WANGCHUK

A Thesis Submitted to the Graduate School of Naresuan University

in Partial Fulfillment of the Requirements

for the Master of Engineering in (Computer Engineering - (Type A 2))

2020

Copyright by Naresuan University

BHUTANESE SIGN LANGUAGE HAND-SHAPED ALPHABETS AND DIGITS

DETECTION AND RECOGNITION

KARMA WANGCHUK

A Thesis Submitted to the Graduate School of Naresuan University

in Partial Fulfillment of the Requirements

for the Master of Engineering in (Computer Engineering - (Type A 2))

2020

Copyright by Naresuan University

Thesis entitled "Bhutanese Sign Language Hand-shaped Alphabets and Digits

Detection and Recognition"

By KARMA WANGCHUK

has been approved by the Graduate School as partial fulfillment of the requirements

for the Master of Engineering in Computer Engineering - (Type A 2) of Naresuan

University

Oral Defense Committee

Chair

(Dr. Choochart Haruechaiyasak, Ph.D.)

Advisor

(Assistant Professor Dr. Panomkhawn Riyamongkol, Ph.D.)

Internal Examiner

(Associate Professor Dr. Panus Nattharith, Ph.D.)

Internal Examiner

(Associate Professor Dr. Phongphun Kijsanayothin, Ph.D.)

 Approved

(Paisarn Muneesawang, Ph.D.)

 Dean of the Graduate School

 C

ABST RACT

Title BHUTANESE SIGN LANGUAGE HAND-SHAPED

ALPHABETS AND DIGITS DETECTION AND

RECOGNITION

Author KARMA WANGCHUK

Advisor Assistant Professor Dr. Panomkhawn Riyamongkol, Ph.D.

Academic Paper Thesis M.Eng. in Computer Engineering - (Type A 2),

Naresuan University, 2020

Keywords Bhutanese Sign Language, BSL Dataset, Convolutional

Neural Network, Visual Geometry Group, Image

augmentation

ABSTRACT

The communication problem between the deaf and the public is an emerging

concern for both parents and the government of Bhutan. The parents are not able to

understand their children. The deaf students are not able to communicate with the

general public. Therefore, deaf school and government is urging people to learn

Bhutanese Sign Language (BSL) but learning Sign Language (SL) is not easy.

However, Computer Vision and machine learning applications have been solving

communication gaps. It has been easy to learn and understand SL with the help of signs’

translation apps. The basics of all sign languages are alphabets and numbers. The

purpose of this study is to develop a suitable machine learning model to detect and

recognize the BSL alphabets and digits using BSL hand-shaped alphanumeric datasets.

In this study, the first BSL hand-shaped alphanumeric dataset was created

with different augmentation techniques. Different SL models were evaluated with the

dataset. However, the Convolutional Neural Network (CNN) based architecture

outperformed them. Using six layers of CNN with the batch normalization and different

dropout ratios, 20000 digits dataset, and 30000 alphabets dataset obtained better results

compared to LeNet-5, SVM, KNN, and logistic regression. Furthermore, ResNet with

43 convolutional layers obtained the best training and validation accuracy of 100% and

98.38% respectively on 60,000 alphanumeric datasets. This research is the first of its

 D

kind to study the possibility of machine learning integration with the BSL to detect and

recognize hand-shaped alphabets and digits. It was found that machine learning models

can be deployed to develop Computer Vision applications to make BSL learning easier

and accessible to the general public. Further studies are needed to create a video-based

dataset and study BSL dynamic gesture recognition for word translation.

 E

ACKNOWLEDGEMENT S

ACKNOWLEDGEMENTS

This study would not have been possible without the scholarship from the Office

of the Gyalpoi Zimpon and Naresuan University. Therefore, I would like to extend my

sincere and profound gratitude to His Majesty the King of Bhutan and the Department of

Electrical and Computer Engineering for allowing me to pursue a master's studies. And

thanks to the College of Science and Technology and the Royal University of Bhutan for

believing in me and allowing me to pursue higher studies. Moreover, I am indebted to the

following people, without whom I would not have been able to complete this thesis and

master's degree. I would like to thank my advisor Assistant Professor Dr. Panomkhawn

Riyamongkol and Lecturer Mr. Rattapoom Waranusast for their timely guaranteed help

and support, critical feedback, patience, and encouragement. Additionally, I would like to

extend my heartfelt gratitude to the department and faculty secretaries, who have

supported me relentlessly for the smooth completion of the study.

Furthermore, I would like to extend special appreciation to international students

at Naresuan University, who allowed me to capture images and record videos patiently,

and without whom I would not have collected enough BSL dataset. Besides, I would also

like to thank lab members for their unwavering help and support especially Mr. Yonten

Jamtsho (GCIT) and Mr. Sittisak. And my roommates, Mr. Thongley (JNEC) and Mr.

Ongpo Lepcha Sukommu (CNR) for sharing happiness, stress, and excitement. Above all,

withstanding our morning alarm was the toughest of all.

Lastly, I would like to extend my biggest gratitude to my wife Rinchen T. Peldon

for giving me much-needed moral support and upbringing our sons to the best of her

ability. I understand the difficulty she has gone through all these years. She has been

amazing. For my sons, Tandin Gawa Wangyal and Sonam Norbu Tshering, I am sorry for

not being able to video call often lately. I will see you soon and spend quality time with

you all. Promised!

KARMA WANGCHUK

TABLE OF CONTENTS

 Page

ABSTRACT .. C

ACKNOWLEDGEMENTS .. E

TABLE OF CONTENTS ... F

List of tables ... I

List of figures ... J

CHAPTER I BACKGROUND OF THE STUDY ... 1

1.1 Introduction .. 1

1.2 Purposes of the Study .. 9

1.3 Statement of the Problems ... 9

1.4 Scope of the Study ... 10

CHAPTER II LITERATURE REVIEW .. 11

2.1 Introduction .. 11

2.2 Early Gesture Recognition Techniques ... 11

2.2.1 Image Acquisition .. 12

2.2.2 Image Segmentation ... 13

2.2.3 Feature Extraction .. 14

2.2.4 Gesture Recognition ... 15

2.3 Sign Language Recognition Algorithms ... 15

2.3.1 Supervised Classification Algorithms .. 16

2.3.2 Unsupervised Clustering Algorithms ... 17

2.3.3 Convolutional Neural Networks ... 18

2.4 Recent Trends in Sign Language Recognition .. 20

CHAPTER III RESEARCH METHODOLOGY ... 21

3.1 Introduction .. 21

3.2 System requirements .. 21

 G

3.3 System overview .. 22

3.3.1 Data acquisition .. 23

3.3.2 Data Preprocessing ... 25

3.3.3 Features Extraction and Classification ... 27

3.3.3.1 Introduction .. 27

3.3.3.2 Convolutional Neural Network .. 27

3.3.3.2.1 Feedforward Neural Network .. 28

3.3.3.2.2 Back Propagation Algorithm ... 31

3.3.3.2.3 Loss Functions ... 32

3.3.3.2.4 Optimizers.. 32

3.3.3.3 Components of CNN .. 35

3.3.3.3.1 Convolution Layer ... 37

3.3.3.3.2 Activation Functions .. 41

3.3.3.3.3 Pooling Layer... 42

3.3.3.3.4 Batch Normalization .. 43

3.3.3.3.5 Dropout .. 44

3.3.3.3.6 Fully Connected ... 45

3.3.3.4 Visual Geometry Group ... 46

3.3.3.5 Residual Network (ResNet) .. 47

3.3.3.6 LeNet .. 49

3.3.3.7 Support Vector Machine .. 50

3.3.3.8 K-Nearest Neighbours .. 52

3.3.3.9 Logistic Regression .. 54

CHAPTER IV RESULT AND DISCUSSION ... 55

4.1 Introduction .. 55

4.2 BSL Digits Detection and Recognition ... 55

4.3 BSL Alphabets Detection and Recognition ... 59

4.4 Alphanumeric Detection and Recognition ... 63

4.5 Real-time Detection and Recognition Using Webcam 70

 H

CHAPTER V CONCLUSION .. 73

5.1 Introduction .. 73

5.2 Summary .. 73

5.3 Limitation of the study ... 74

5.4 Future Work ... 75

REFERENCES .. 76

BIOGRAPHY .. 87

List of tables

 Page

Table 1 Total number of teaching staff in 2020 .. 2

Table 2 Total number of students in 2020 .. 2

Table 3 Dzongkha Alphabets Transcription, vowels, and word formation 3

Table 4 A single syllable formation by the addition of superscribed and subscribed

alphabets to the root letter .. 5

Table 5 System requirements .. 22

Table 6 Volunteer signers from different countries .. 24

Table 7 Configuration of different models of VGG ... 47

Table 8 VGG-8 network configuration ... 56

Table 9 Evaluation of different models .. 57

Table 10 Digits confusion matrix ... 58

Table 11 Precision, Recall, and F1-Score for each digit ... 58

Table 12 Accuracy analysis with different parameters ... 60

Table 13 Tabulation of precision, recall, and F1-score of alphabets 63

Table 14 Evaluation of deep learning models on BSL dataset 64

Table 15 Number of convolutional layers in ResNet-44 .. 64

List of figures

 Page

Figure 1 BSL Dzongkha hand alphabets .. 4

Figure 2 BSL Digits 0-9 .. 4

Figure 3 BSL four vowels ... 4

Figure 4 Rago Chunyi ... 5

Figure 5 Lago Chu .. 6

Figure 6 Sago chuchi .. 6

Figure 7 Yata dhuen .. 7

Figure 8 Rata chuzhi ... 7

Figure 9 Lata dru ... 8

Figure 10 Four phases of sign recognition .. 21

Figure 11 System overview .. 23

Figure 12 Data acquisition .. 24

Figure 13 Sample of BSL videos data .. 25

Figure 14 Data pre-processing steps ... 26

Figure 15 Augmented Images ... 27

Figure 16 Feedforward neural network with one hidden layer 28

Figure 17 Backpropagation algorithm flowchart .. 31

Figure 18 Loss computation with feedforward network ... 33

Figure 19 Weights update with Back Propagation using Gradient Descent 34

Figure 20 Different perceptions of images by human and computer 36

Figure 21 Image matrix is flattened and fed into the network 36

Figure 22 Components of Convolutional Neural Network ... 37

Figure 23 Convolution on an image with one filter to produce a feature map 38

Figure 24 Receptive field and feature map ... 38

Figure 25 Convolution operation with different filters ... 40

Figure 26 Graphs showing a respective range of activation functions 42

 K

Figure 27 Average pooling ... 42

Figure 28 Max pooling.. 43

Figure 29 Dropout neural network: (a) Neural network with 5 inputs, 2 hidden layers,

and 2 outputs, (b) Implementation of dropouts and displaying reduced parameters of

the neural network.. 45

Figure 30 Flatten feature maps into a vector and feed into FC 46

Figure 31 Building blocks of Residual Learning .. 48

Figure 32 Residual blocks: a) Identify block, b) Convolution block 49

Figure 33 The architecture of LeNet-5 ... 50

Figure 34 Linearity and non-linearity data ... 51

Figure 35 Selection of the optimal hyperplane ... 51

Figure 36 Transformation of non-linearity 1-D data to 2-D 52

Figure 37 Class assignment to the new data point .. 53

Figure 38 Architecture of VGG-8 network ... 56

Figure 39 Accuracy and loss of train and test ... 57

Figure 40 Architecture of CNN model ... 60

Figure 41 Analysis of accuracy and loss with varying epoch 61

Figure 42 Alphabets’ confusion matrix .. 62

Figure 43 Skip connection with identity-block and Conv-block 65

Figure 44 The ResNet-43 architecture .. 65

Figure 45 Graph showing model accuracy and loss with varying epochs 66

Figure 46 ResNet-43 confusion matrix ... 67

Figure 47 Graph displaying false positive and negative over true positive 68

Figure 48 Analysis of predicted class with actual class .. 68

Figure 49 First row displays the actual class and the second row shows predicted

class .. 69

Figure 50 Augmentation changes classes: (a) La, (b) Nya, (c) with shift converted (a)

to (b) ... 69

Figure 51 Real-time detection and recognition of Zha ... 71

Figure 52 Real-time detection and recognition of La ... 71

 L

Figure 53 Real-time detection and recognition of Three .. 72

Figure 54 Real-time detection and recognition of Nine .. 72

CHAPTER I

BACKGROUND OF THE STUDY

1.1 Introduction

Bhutan is one of the smallest Himalayan kingdoms, landlocked and sandwiched

between two gigantic countries namely China and India in the North and South

respectively. Bhutan remained happily self-imposed isolation for centuries untouched

and unexplored. She has 71% of the country under forest cover and the constitution of

Bhutan mandates 60% of the land under forest cover for all times to come. She is the

only carbon-negative country in the world. However, to keep on par with modernization

and globalization, Bhutan gradually started to open to the outside world by joining the

Universal Postal Union and United Nations in 1961 and 1971 respectively.

Bhutan is enhancing both regional and international cooperation by establishing

foreign relationships and cross-border connectivity. In addition, with the introduction

of the Internet and television in 1999, Bhutan is developing and modernizing at a faster

rate while keeping customs and traditions intact. Surprisingly, in the era of technology,

Bhutan is the only country in the world that does not have a single traffic light even in

the capital city and is directed by policemen (Walcott, 2009). Further, to accelerate

socioeconomic in the country, modern infrastructures such as international airports,

roads, bridges, and schools were constructed.

In 1914, Gongzim Ugyen Dorji supported by the first King of Bhutan, Gongsa

Ugyen Wangchuck, established the first school in Haa (Dorji, 2008). This marked the

beginning of modern education in Bhutan. Some of these students were selected and

sent to schools in Kalimpong and Darjeeling in India on the government’s scholarship

to pursue higher studies. The first batch of 46 boys was sent to India to joined at

Graham’s Homes, a Scottish mission school in Kalimpong to study (Wangmo &

Choden, 2010). These scholars returned to Bhutan and served the King and the people.

They worked tirelessly, in their different capacities, to help the government in planning

and developing modern Bhutan. The tremendous progress in the education system, over

the years, saw the increased number of schools and colleges in the country with the best

teaching and learning facilities. The schools are being upgraded to higher secondary

 2

schools and colleges. Besides, the Royal Government of Bhutan has given due

importance to the Deaf Community by establishing the Deaf School and urge people to

learn the sign language.

The Deaf Education Unit (DEU) is the only deaf school in Bhutan located about

12km from Paro. The institution was established in 2003 with Drukgyel Lower

Secondary School but in 2014, DEU became a standalone school and named it Wangsel

Institute for the Deaf. The institute has students with moderate to severe to profound

hearing loss. The mode of communication and teaching is through Bhutanese Sign

Language (BSL). The institute provides an opportunity for both deaf children and

parents to study BSL.

Table 1 Total number of teaching staff in 2020

Teachers Instructors Volunteers Linguist Contract Teacher Total

26 6 2 1 1 36

The Research Team at the institute is working since 2003 with support from the

Thailand linguistics team to study and document sign language. There are around 2800

signs formally documented and persistently working on sign language to standardize

BSL. The documentation of sign language would assist teaching staff to improve

teaching and learning pedagogies. Currently, there is 36 teaching staff which includes

26 teachers, six instructors, two volunteers, a linguist, and a teacher on contract as

shown in Table 1. The number of students in the institute is 103 (55 boys and 48 girls)

as shown in Table 2. The classes start from preparatory to class XI. Students are taught

in both Dzongkha and English like any other students in the school but the medium of

instruction is in sign language.

Table 2 Total number of students in 2020

Class Male Female Total

Preparatory 2 0 2

PP 1 2 3

I 3 5 8

II 0 5 5

 3

III 5 3 8

IV 3 5 8

V 7 9 16

VI 5 4 9

VII 7 3 10

VIII 6 3 9

IX 7 4 11

X 5 2 7

XI 4 3 7

XII 0 0 0

Total 55 48 103

The Dzongkha hand-shaped alphabets and digits are illustrated in Figure 1 and

Figure 2 respectively. There are 30 Dzongkha Alphabets (Wangchuk, Riyamongkol, &

Waranusast, 2020a) and 4 Vowels as shown in Table 3. The hand-shaped vowels are

shown in Figure 3. Different syllables are formed by adding alphabets and vowels either

on top (superscribed) or bottom (subscribed) of the root letter to form a word. Words

are separated by a delimiter called Tsha (period).

Table 3 Dzongkha Alphabets Transcription, vowels, and word formation

Alphabets Vowels Words

ཀ

ka

ཁ

kha

ག

ga

ང

nga
ཅ

ca

ཆ

cha

ི ་ ི ་ ི ་ ི

ཇ

ja

ཉ

nya

ཏ

ta

ཐ

tha

ད

da

ན

na
པ

pa

ཕ

pha

བ

ba

མ

ma

ཙ

tsa

ཚ

tsha
ཛ

dza

ཝ

wa

ཞ

zha

ཟ

za

འ

a`

ཡ

ya
ར

ra

ལ

la

ཤ

sha

ས

sa

ཧ

ha

ཨ

a

 4

Figure 1 BSL Dzongkha hand alphabets

Source: Wangchuk et al. (2020a)

Figure 2 BSL Digits 0-9

Source: Wangchuk, Riyamongkol, and Waranusast (2020b)

Figure 3 BSL four vowels

 5

Table 4 A single syllable formation by the addition of superscribed and

subscribed alphabets to the root letter

 Type of Joins Joining

Letters

Alphabets Syllabus formation

 Superscribed

ར ཀ་ག་ང་ཇ་ཉ་ཏ་ད་ན་བ་མ་
ཙ་ཛ།

རྐ་རྒ་རྔ་རྗ་རྙ་རྟ་རྡ་རྣ་རྦ་རྨ་རྩ་རྫ།

ལ ཀ་ག་ང་ཅ་ཇ་ཉ་ཏ་ད་པ་བ་
ཧ།

ལྐ་ལྒ་ལྔ་ལྕ་ལྗ་ལྟ་ལྡ་ལྤ་ལྦ་ལྷ།

ས ཀ་ག་ང་ཉ་ཏ་ད་ན་པ་བ་མ་
ཙ།

སྐ་སྒ་སྔ་སྙ་སྟ་སྡ་སྣ་སྤ་སྦ་སྨ་སྩ།

 Subscribed

ཡ ཀ་ཁ་ག་པ་ཕ་བ་མ། ཀྱ་ཁྱ་གྱ་པྱ་ཕྱ་བྱ་མྱ།

ར ཀ་ཁ་ག་ཏ་ཐ་ད་ན་པ་ཕ་བ་
མ་ཤ་ས་ཧ།

ཀྲ་ཁྲ་གྲ་ཏྲ་ཐྲ་དྲ་ནྲ་པྲ་ཕྲ་བྲ་མྲ་ཤྲ་སྲ་

ཧྲ།

ལ ཀ་ག་བ་ཟ་ར་ས། ཀླ་གླ་བླ་ཟླ་རླ་སླ།

 There are six different ways to add alphabets as superscribed or subscribed with

root letters to form a single syllable as shown in Table 4. The alphabets ར, ལ, and ས are

used as superscribed to join on top and ཡ, ར and ལ as subscribed to join beneath the root

letter. There are 12 different ways in which letter ར is added as superscribed to

ཀ་ག་ང་ཇ་ཉ་ཏ་ད་ན་བ་མ་ཙ་ཛ alphabets to form various syllable root letter

རྐ་རྒ་རྔ་རྗ་རྙ་རྟ་རྡ་རྣ་རྦ་རྨ་རྩ་རྫ as demonstrated in Figure 4.

Figure 4 Rago Chunyi

 6

 Similarly, the letter ལ is superscribed with 10 different alphabets

ཀ་ག་ང་ཅ་ཇ་ཉ་ཏ་ད་པ་བ་ཧ to form ལྐ་ལྒ་ལྔ་ལྕ་ལྗ་ལྟ་ལྡ་ལྤ་ལྦ་ལྷ as shown in Figure 5.

Figure 5 Lago Chu

 The letter ས is superscribed with 11 numerous alphabets ཀ་ག་ང་ཉ་ཏ་ད་ན་པ་བ་མ་ཙ

and form various syllable སྐ་སྒ་སྔ་སྙ་སྟ་སྡ་སྣ་སྤ་སྦ་སྨ་སྩ as illustrated in Figure 6.

Figure 6 Sago chuchi

 7

 Similar to superscribed syllables, there are three different subscribed

combination. There are 7 different ways in which letter ཡ is added as subscribed to

ཀ་ཁ་ག་པ་ཕ་བ་མ to form ཀྱ་ཁྱ་གྱ་པྱ་ཕྱ་བྱ་མྱ as demonstrated in Figure 7.

Figure 7 Yata dhuen

 Similarly, there are 14 different ways in which letter ར is added as subscribed

to ཀ་ཁ་ག་ཏ་ཐ་ད་ན་པ་ཕ་བ་མ་ཤ་ས་ཧ to produce root letters ཀྲ་ཁྲ་གྲ་ཏྲ་ཐྲ་དྲ་ནྲ་པྲ་ཕྲ་བྲ་མྲ་ཤྲ་སྲ་ཧྲ

as demonstrated in Figure 8.

Figure 8 Rata chuzhi

 There are 6 different ways in which letter ལ is combined as subscribed with

alphabets ཀ་ག་བ་ཟ་ར་ས to form the root letters ཀླ་གླ་བླ་ཟླ་རླ་སླ as demonstrated in Figure 9.

 8

Figure 9 Lata dru

Teaching and learning environment would be livelier by using technology in

classrooms. Gestures can be digitized visually on the screen with the written text while

teaching signs in the classroom. Apart from teaching and learning in the classroom, it

will also address the communication gap within society. For instance, the English

language is translated into several languages and vice-versa. Tremendous works have

been done for Natural Language Processing such as Text to Speech, Speech to Text,

Spell Checker, Optical Character Recognition, etc. Similarly, these techniques can be

applied to sign languages as well. The popular sign languages such as American and

Australian Sign Languages have implemented technology to recognize signs and

Bhutan is no exception now. There is a communication gap between the deaf

community and the public in Bhutan. The possibility of addressing this issue can be

achieved with the help of technologies. BSL can be translated into text or speech in

real-time.

This study will be beneficial to the deaf community and the general public in

the future. The study aims to explore the possibility of integrating technology and

introduce the machine learning foundation with the BSL. The proposed system

translates the BSL Dzongkha hand-shaped sign alphabets and digits to text in real-time.

This is the basic building block of Natural Language Processing (NLP) for the

development of advanced systems such as signs to text to speech and vise-Versa. The

research in BSL is gaining momentum with the government and Ministry of Education

prioritizing the Deaf community. According to (Rinzin, 2019b), former president of the

World Federation of the Deaf, Collin James Allen, said that Bhutan is giving

importance to the sign language by developing BSL and must be given equal

significance as the national language.

 9

However, no one has attempted to use Machine Learning techniques for BSL.

The integration of Artificial Intelligence with the BSL would address the issue of the

communication gap in society. The deaf community is not able to communicate with

the public and at times with their parents as well. (Rinzin, 2019a) discussed that

Wangsel Institute for the Deaf provides sign language workshop to the parents for one

hour on Fridays. To include the wider section of the society, it is time to integrate and

harness the power of technology in sign language.

1.2 Purposes of the Study
The main objective of this study is to develop a machine learning model for

Bhutanese Sign Language hand-shaped alphabets and digits detection and recognition.

This research discusses the following purposes:

1. Bhutanese Sign Language hand-shaped alphabets and digits (BSL) dataset

preparation.

2. Selection and modification of Machine learning models to train with the

BSL dataset.

3. Identify suitable algorithm for real-time detection, recognition, and

translation of BSL Hand-shaped alphanumeric into Dzongkha text using

the trained model with webcam.

1.3 Statement of the Problems

The emerging communication problem between the deaf and the public is a

concern for both parents and the government of Bhutan. One of the priorities of the

government is education and it is provided free. The number of schools is upgraded to

higher secondary schools and colleges. Bhutan also drafted the national policy for

disability and established a school for the deaf. The government urges people to study

BSL but learning sign language is difficult. The deaf institute in collaboration with the

Ministry of Education is prioritizing the issue by conducting BSL research and

workshops.

 According to (Rinzin, 2019b), the development of a standard BSL and the

documentation of sign language tasks have been progressing very well for the last three

years by the research team comprising of a consultant, two teachers, and eight deaf

 10

adults at the Wangsel Institute. The author described the research environment set up

with cameras, lightings, tripods, and a green board in the classroom for written and

video documentation of the BSL. However, no one has attempted the develop a BSL

recognition system. In the era of technology, the communication gap can be resolved

by translating sign language into either text or speech. Having such a system would

allow deaf people to learn visually and interact with the public more easily.

In response to this problem, the study proposes to study the feasibility of

technology integration with BSL for designing a basic system that can detect,

recognize, and translate Dzongkha hand-shaped alphabets and digits to text in real-time.

The study plans to investigate several machine learning algorithms that are suitable to

implement in BSL translation, choose the best model for BSL, and lay the foundation

for artificial intelligence in BSL.

1.4 Scope of the Study

The scope of the study is to develop the machine learning model for Bhutanese

Sign Language which can detect, recognize, and translate both hand-shaped Dzongkha

alphabets and digits in real-time using the webcam. The aspects of the research look

into the preparation of the BSL dataset, testing different algorithms with this dataset,

and identification of the best machine learning model that is suitable for the BSL.

However, the study does not cover BSL word detection and recognition. The

word recognition requires motion captures and video processing approaches that

require intensive computing resources and experts to record dynamic sign videos

dataset.

 Key Words

Bhutanese Sign Language, BSL Dataset, Convolutional Neural Network,

Visual Geometry Group, Image augmentation.

 11

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

 The advancement of technology has been helping humanity for decades and is

improving every day. Machine learning algorithms have the ability to learn from the

data without requiring explicit human intervention. The learning improves

automatically with the experiences and makes a better decision. Different algorithms

are developed by the emulation of body sensory responses such as hearing, speech, and

vision (Khan, Sohail, Zahoora, & Qureshi, 2019). Computer vision and image

processing are focusing on the vision. The various techniques are implemented to

recognize gestures, image segmentation, classification, detection, object recognition,

and video processing.

 The development of computer vision applications is challenging. This challenge

has been addressed by the introduction of a new neural network architecture called the

Convolutional neural network (CNN). In the late 1980s, Y LeCun et al. proposed CNN

and was implemented for image recognition but it has limitations such as lack of

computing power and the scarcity of labeled data. The CNN remained dormant but the

researchers used Support Vector Machine (SVM), Principle Component Analysis

(PCA), Hu’s moment, K-Nearest Neighbours (KNN), and Hidden Markov Model

(HMM) to study computer vision. However, CNN revived in 2012 with the usage of

the Graphics Processing Unit (GPU), Tensor Processing Unit (TPU), and the

availability of huge labeled datasets (Rawat & Wang, 2017). According to Krizhevsky,

Sutskever, and Hinton (2012), deep learning, by increasing the number of layers of the

networks, enhances algorithms with state-of-the-art performance on the ImageNet

dataset. CNN is considered one of the best algorithms for understanding image content.

2.2 Early Gesture Recognition Techniques

 The researchers are using different algorithms for their studies. The choice of

the algorithms is dependent on the nature of the studies, the availability of the system

requirements, and the dataset. The early gesture recognition methods used by the early

 12

researchers are based on the four utmost important phases: Image Acquisition,

Segmentation, Feature Extraction, and Gesture Recognition.

 2.2.1 Image Acquisition

 Sign language recognition uses sensor-based and vision-based

approaches to collect data and develop sign recognition systems. The latter approach

has the potential to communicate naturally between the human and the computer by

supporting intuitive and efficient interaction with powerful tools (Murthy & Jadon,

2009). There are lots of studies conducted on sensor-based approaches such as

Accelerometer, Wi-Fi, Radar, and wearable sensors .), implemented Data Glove for

hand gesture recognition using a learning vector quantization classifier. They have

collected 7800 right-hand gestures from people of different gender and physique. The

proposed model obtained 99.31% accuracy on the testing dataset. The development of

the Kinect sensor gave researchers renewed opportunities for Human-Computer

Interaction (HCI) studies. Ren et al. explained Finger-Earth Mover's Distance, a novel

distance metric, to handle the noisy hand shapes. The Kinect sensor was used to collect

data for robust part-based hand gesture recognition. They have obtained 1000 gestures

for the first 10 natural numbers from 10 different people. The accuracy of the model

was 93.20%. The gestures are recognized with the measurement of electrical pulses.

According to Camastra and De Felice (2013), the car was controlled by gestures

performed with one hand. The authors developed an electromyogram (EMG) based

real-time bio-signal interface for hand gesture recognition. The system was evaluated

by 30 subjects in 40 test sessions using an RC Car. The proposed model achieved 94%

accuracy. The development of different sensor technologies facilitated researchers to

develop HCI systems, however, the disadvantages of having to wear sensors

continuously are not feasible in real-time applications and the sensors are expensive

(Jonghwa Kim, Mastnik, & André, 2008; Verma, Srivastava, & Kumar, 2015).

Therefore, researchers are shifting their focus and concentration on vision-based

approaches.

 The images, in vision-based, are collected using cameras, smartphones,

Leap Motion Controller (LMC), Microsoft Kinect devices, and body marker gloves.

The images are extracted from videos that are recorded either by camera or smartphones

 13

and used for image recognition. The prior studies on gesture recognition used LMC

(Nikam & Ambekar, 2016). The LMC device can generate 200 frames per second for

the hand movement (Koul, Patil, Nandurkar, & Patil, 2016). The low-cost Microsoft

Kinect provides synchronized color and depth images. It is initially used for the Xbox

gaming console but later extended for computer vision applications development

(Mohandes, Aliyu, & Deriche, 2014). J. Han, Shao, Xu, and Shotton (2013), used LMC

for Arabic sign language recognition. They have collected 2800 frames from a person.

The signer posed 10 samples for every 28 Arabic alphabets. The LMC provided 23

values, but only 12 frames were chosen for the representation. The authors combined

the proposed method with Nave Bayes Classifier and Multilayer Perceptron (MLP).

The proposed method with MPL obtained more than 99% accuracy. The Microsoft

Kinect generated 3D depth information from hand motions that were used to recognize

hand gestures by applying a hierarchical conditional random field (Mohandes et al.,

2014). The proposed model yielded a success rate of 90.40%.

 2.2.2 Image Segmentation

 Image segmentation is a vital phase of image processing and pattern

recognition. It partitions an image into several segments based on some criteria to locate

boundaries and objects (Yang, 2015). The partitions provide small but meaningful areas

in the image for information extraction. According to Cheng, Jiang, Sun, and Wang

(2001), there are four techniques for image segmentation: thresholding, boundary-

based, region-based, and hybrid techniques. Thresholding is

based on the intensity and variance of the pixel. It is a tool used for separating objects

from the backgrounds (Nimbarte & Mushrif, 2010). Sezgin and Sankur (2004),

explained that the threshold-based image segmentation uses the histogram of the image

to detect thresholds. Naidu, Kumar, and Chiranjeevi (2018), grouped various

thresholding methods according to information exploitation such as histogram shape-

based, clustering-based, entropy-based, object attributed-based, spatial, and local

methods. The histogram shape-based method has different thresholding techniques

namely convex hull, peak-and-valley, and shape-modeling. Similarly, clustering-based

thresholding types are Iterative, Clustering, Minimum error, and Fuzzy clustering

thresholding. Different types of entropy-based thresholding are Entropic, Cross-

 14

entropic, and Fuzzy entropic thresholding. Moment preserving, Edge field matching,

Fuzzy similarity, Topological stable-state, maximum information, and Enhancement of

Fuzzy compactness are various types of object attributed-based thresholding. Spatial

thresholding methods are Cooccurrence, Higher-order entropy, Random sets, 2-D fuzzy

partitioning. Similarly, different types of local adaptive thresholding are Local

variance, Local contrast, Center-surround schemes, Surface-fitting, and Kriging

thresholding.

 Boundary-based thresholding is based on the sudden change in pixel

properties such as intensity, color, and texture between different regions in an image,

but region-based has similar neighbouring pixels value in the same region (Sezgin &

Sankur, 2004). Shih and Cheng (2005), explained that the edge-based finds edges in the

image or active contours for segmentation. The region-based segmentation depends on

the thresholding values and the edges of the input images. The optimum thresholding

is achieved by a combination of these thresholding methods. The combination of

boundary detection and region growth results in better segmentation (Iannizzotto &

Vita, 2000).

 2.2.3 Feature Extraction

 Image features are of paramount importance for the analysis. The

features can be contour, shape, rotation, angle, coordinates, movements, and

background data of an image (Deng & Manjunath, 2001). Detection of these features

plays a vital role in pattern recognition. According to Mingqiang, Kidiyo, and Joseph

(2008), the main aim of the feature extraction is to get the most relevant information

from the data and represent that into designated classes. The widely used feature

extraction methods are Contour profiles, Deformable templates, Fourier descriptors,

Geometric moment invariants, Gradient features, and Gabor features, Graph

description, Unitary image transform, Template matching, Projection histograms,

Zoning, Zernike moments, Spline curve approximation (Kumar & Bhatia, 2014).

 In addition, one of the prior extraction methods used was the Scale

Invariant Feature Transform (SIFT) (Cheung & Hamarneh, 2009; Kumar & Bhatia,

2014; Lindeberg, 2012). There were limitations for the prior methodologies such as

hand detection because of low resolution and different light intensity. The development

 15

of new and hybrid algorithms addressed these limitations. The neural network

algorithms are increasingly used for pattern recognition. The multiscale convolutional

neural network solves prior hand detection problem (Lowe, 2004). However, Yan, Xia,

Smith, Lu, and Zhang (2017) explained that SIFT was robust against rotation,

translation, or scaling variation, and best for the collection of large local feature vectors.

 2.2.4 Gesture Recognition

 The final phase of image processing is gesture recognition. The decision

of class detection and recognition, after analysis of features, is made by assigning a

label. Gurjal and Kunnur (2012) described two types of recognition: recognition using

extracted features and machine learning classifiers. The template matching is one of the

methods which uses extracted features to recognize gestures (Alvi et al., 2004; Ariesta,

Wiryana, & Kusuma, 2018; Yun, Lifeng, & Shujun, 2012). The geometric moment also

uses features to recognize gestures. Mahbub, Imtiaz, Roy, Rahman, and Ahad (2013),

used skin color as the feature of the hand to detect gesture using geometric moments.

The graphs are used for hand gesture recognition as well. The graphs are formed based

on a group of template images. The features of the images are assigned to the nodes of

the graph for recognition (Priyal & Bora, 2013). Fourier descriptors and Hu moments

are implemented for hand gesture recognition based on features extracted from the hand

region. Li and Wachs (2014) compared Four descriptors and Hu moments for hand

posture recognition.

 In recent times, the trend for image processing and pattern recognition

are using machine learning classifiers such as Convolutional Neural Network and

Hidden Markov Model for the development of applications. The detail about these

algorithms and their hybrids would be explained in the following sections.

2.3 Sign Language Recognition Algorithms

 The system hardware has been improving daily, and the market availability

encourages researchers to pursue continuous studies on images. The evolution of sign

language recognition algorithms has been tremendous. The progress has been started

from supervised learning to unsupervised recognition. The learning in supervised

classification is based on labelled training data but unsupervised learning does not need

 16

labelling on training data (Conseil, Bourennane, & Martin, 2007). The algorithms such

as SVM, KNN, PCA, HMM, ANN, and CNN are used in Computer Vision for detection

and recognition.

 2.3.1 Supervised Classification Algorithms

 The supervised algorithm teaches the system to detect patterns from the

input data and predicts unseen future data. The labels of the training dataset are assigned

properly to train the mapping function. The input is fed to the mapping function to

generate the desired output. Some of the supervised algorithms used for sign language

recognition are SVM, KNN, and Artificial Neural Network.

 Sathya and Abraham (2013) performed dynamic hand gesture

recognition of Indian Sign Language by combining the SVM and the Hu's Moments.

The video frames of the gestures were converted to HSV color space and segmented

based on skin pixels. The proposed model obtained 97.50% accuracy. Similarly,

Raheja, Mishra, and Chaudhary (2016) described hand gestures tracking of American

Sign Language (ASL) using SVM. The static gestures of six letters (A, W, H, O, L, I)

were trained by providing their coordinates. The classifier gave an accuracy of 92.13%.

Furthermore, Bag-of-Features and multiple SVM were used for real-time hand gesture

detection and recognition (Sinith et al., 2012). The authors presented a novel system for

interaction with videogame via hand gestures. The classification accuracy of the

proposed model was 96.23%.

 The adaptive network-based fuzzy inference system and KNN were

implemented for ASL hand gesture recognition (Dardas & Georganas, 2011). The

authors separated 26 gestures into 3 groups: fingers gripped, fingers facing upward, and

fingers facing sideways. The classification of these gestures by the KNN classifier

obtained 80.77% accuracy with 10 epochs. Similarly, Mufarroha and Utaminingrum

(2017), classified Indian Sign Language gestures based on the correlated neighbour.

The features of single-handed and double-handed gestures are extracted using

Histogram of Oriented Gradients (HOG) and Scale Invariant Feature Transform (SIFT).

They have combined extracted feature matrices into a single matrix and trained using

KNN. The accuracy was 97.50% for single-handed gestures and 91.11% for double-

handed gestures respectively. Bengali Sign Language recognition system in real-time

 17

was presented using the KNN classifier (Gupta, Shukla, & Mittal, 2016). They have

collected 3600 images from 10 signers for 6 vowels and 30 alphabets. The recognition

accuracies for vowels and alphabets were 98.17% and 94.75% respectively.

 Artificial Neural Network (ANN) processes information similar to

biological neurons. It has three prominent steps: input layers, hidden layers, and output

layers. The input neurons receive data and process it to hidden layers. The weights are

calculated and passed to the activation function in the hidden layer followed by giving

expected output. Rahaman, Jasim, Ali, and Hasanuzzaman (2014), implemented a

single feed-forward ANN to detect New Zealand sign language. They used 7392 gesture

signals to train 13 gestures with 45 inputs and 14 outputs using two hidden layers. The

accuracy of 96.02% was obtained. Similarly, ANN was used for recognition of

accelerometer and electromyography-based hand gestures, recognize virtual reality

driving with hand gestures, and hand directions using gestures (Ahsan, Ibrahimy, &

Khalifa, 2011; Akmeliawati et al., 2009; R. Xie & Cao, 2016; Xu, 2006).

 2.3.2 Unsupervised Clustering Algorithms

 The unsupervised algorithms are similar to supervised algorithms but

formal does not require labelled data. The output is predicted based on learning features

from the input data and no prior set of categories is needed. Some of the unsupervised

clustering algorithms are K-mean, PCA, and HMM.

 According to Murthy and Jadon (2010), K-mean clustering is commonly

used for gesture recognition. Cheok, Omar, and Jaward (2019), described the

recognition of hand gestures using K-mean clustering based on features of the hand

shape such as orientation, centroid, and finger status (raised or folded). The author used

450 images and achieved a training accuracy of 94%. Similarly, Panwar (2012), applied

K-means for object classification and localization based on features extracted from the

images.

 There are limitations to the algorithms. These limitations can be solved

by combining different algorithms. The hybrids algorithms perform better and can be

applied in the development of various applications involving different datasets. The

dynamic gestures are recognized with the motion trajectory of a single hand using

HMM (Schmitt & McCoy, 2011). They have recorded 30 video gestures from the

 18

number 0 to 9. The accuracy of 200 training and 98 testing sequences achieved 94.29%.

Similarly, Elmezain, Al-Hamadi, Appenrodt, and Michaelis (2009) described a real-

time tracking method and HMM for hand gesture recognition. The proposed model

tracked the moving hand and extracted the hand region. The spatial and temporal

features are characterized by using Fourier Descriptor. They have collected 60 images

from 20 people and 1200 images are used for training. The HMM classifier obtained

98.50% accuracy. Furthermore, Chen, Fu, and Huang (2003) used PCA and HMM to

recognize gestures. The PCA described spatial shape variations and HMM portrayed

temporal shape variations. It has been found that the hybrid algorithm recognized 18

different continuous gestures.

 2.3.3 Convolutional Neural Networks

 The active research in images and gesture recognition has been

promoting different models’ architecture design and the contributing evolution of

existing algorithms. CNN is considered one of the best algorithms used for computer

vision applications (C.-l. Huang & Jeng, 2001). However, the initial phase of the

inception was not popular due to various limitations. Khan et al. (1989) implemented

CNN but required more computing resources and humongous labeled data. Therefore,

it remained dormant. However, in the late 2000s, researchers used the Graphics

Processing Unit (GPU) and parallel processing. In 2012, CNN revived with the

implementation of GPU, Tensor Processing Unit (TPU) and availability of huge

labelled data (Y LeCun et al.). The deep CNN on the ImageNet dataset outperforms

previous performances (Rawat & Wang, 2017).

 The revival of CNN garnered the development of computer vision

applications based on object detection, image recognition, classification, segmentation,

and robotic vision. Frontrunner companies such as Google, Facebook, and Microsoft

are using computer vision for application developments. Some of the machine vision

applications in the market are IBM Watson, Google Cloud Vision, AWS Rekognition,

Microsoft Computer vision, Kairos, EmoVu, ImageVision, and Animetrics. The Tech

companies motivate and encourage researchers to take part in ImageNet Large Scale

Visual Recognition Challenge (ILSVRC) which is conducted annually. This

competition evaluates object detection and image classification on a large scale.

 19

 The CNN based architectures won series of ILSVRC competitions from

2012 onwards. The researchers have been taking inspiration from the LeNet, CNN-

based architecture, to design their model (Krizhevsky et al., 2012). Yann LeCun et al.

(1989) implemented a network similar to LeNet but was deeper with more

convolutional layers and GPU accelerated hardware. The network was called AlexNet

and won the 2012 ILSVRC. The top 5 test error of AlexNet was 15.3% compared to

26.2% of the runner-up which brought limelight and popularized CNN in Computer

Vision. Krizhevsky et al. (2012), won ILSVRC 2013 competition and the network was

known as ZFNet. The architecture of the ZFNet was the improvement of AlexNet by

fine-tuning hyperparameters. The authors observed better performance compared to

AlexNet on the ImageNet benchmark. The winner of the ILSVRC 2014 was

GoogLeNet (Zeiler & Fergus, 2014). The network reduced the number of parameters

to 4 million from 60 million with the development of an Inception Module. There are

different versions of GoogLeNet (Inception: V2, V3, V4, and Inception-ResNet)

(Szegedy et al., 2015). The runner-up of ILSVRC 2014 was VGGNet (Ariesta et al.,

2018). The network was made of 16 convolutional layers. The VGGNet demonstrated

that the depth of the network was critical for better accuracy. In 2015, ResNet was the

winner of ILSVRC (Simonyan & Zisserman, 2014). The network uses skip connections

and batch normalizations. The Recurrent Neural Network (RNN) and Long Short-Term

Memory (LSTM) are used for temporal sequence analysis.

 The dynamic hand gesture recognition needs both spatial and temporal

information of the image sequences (He, Zhang, Ren, & Sun, 2016). CNN analyses the

spatial features of the images and RNN for the temporal relation of the image

sequences. However, long sequences cannot be handled by RNN. It suffers from short

term memory due to vanishing gradient. Therefore, LSTM is used for learning long

term dependencies. Shin and Sung (2016) described the detection of key points in the

human body for sign language recognition. They have extracted key points from the

face, hand, and body parts. These features are trained using RNN and achieved the

classification accuracy of 89.5% for 100 sentences. Similarly, Ko, Son, and Jung (2018)

recognized large-scale continuous gestures using two-stream RNN (2S-RNN). The

continuous gesture is segmented into individual separate gestures based on hand

position using Faster R-CNN. Then each isolated gesture is detected and recognized

 20

using 2S-RNN based on fuse multi-modal features such as RGB and depth channels.

Furthermore, many researchers have been working on dynamic sign language

recognition using a hybrid of these algorithms (Chai, Liu, Yin, Liu, & Chen, 2016; Edel

& Köppe, 2016; Hu et al., 2018; Lefebvre, Berlemont, Mamalet, & Garcia, 2013).

2.4 Recent Trends in Sign Language Recognition

 In recent years, the studies are based on dynamic action recognition using

videos. The evolution of algorithms and ability to extract spatiotemporal information

from the videos allowed researchers (Haseeb & Parasuraman, 2017; Ji, Xu, Yang, &

Yu, 2012; Kar, Rai, Sikka, & Sharma, 2017) to move from static to dynamic gestures

detection and recognition. However, video processing required huge resources than

static images.

 Baccouche, Mamalet, Wolf, Garcia, and Baskurt (2011) described trajectory-

based Persian sign language recognition using HMM. They used a white glove to record

1200 videos from 12 persons for 20 signs. The time-varying features trajectories of

hands were extracted. The proposed model obtained 97.48% average accuracy.

Similarly, the novel deep learning-based architecture using Single Shot Detector (SSD),

2D and 3D CNN, and LSTM were proposed by Azar and Seyedarabi (2020). The model

was trained on 10,000 videos of 100 Persian sign words and achieved an accuracy of

99.90%. Furthermore, two-stream attention and LSTM architecture are used for human

activity recognition. Rastgoo, Kiani, and Escalera (2020) presented two-stream

attention-based LSTM by training on different datasets. The UCF11 dataset has 1600

videos, UCFSports consist of different sports actions featured on BBC and ESPN

television channels, and Joint-annotated Human Motion Database (JHMDB) has 923

videos. The proposed method obtained an accuracy of 96.90% for UCF11, 98.60% for

UCFSports, and 76.30% for JHMDB.

 21

CHAPTER III

RESEARCH METHODOLOGY

3.1 Introduction

 In this chapter, the detailed modification of the neural network architecture for

the Bhutanese Sign Language alphanumeric detection and recognition is discussed.

There are four prominent gesture recognition phases such as Data Acquisition, Data

Pre-processing, Feature Extraction, and Gesture Recognition as shown in Figure 10.

Each phase is significant for robust gesture detection and prediction systems. The

system requirement is presented first followed by the overall system flowchart. The

following sections discuss each phase with a precise block diagram.

Figure 10 Four phases of sign recognition

3.2 System requirements

 The system requirements of the BSL alphanumeric recognition is illustrated in

Table 5. In this research, both hardware and software were used. The hardware used

was a laptop and camera, whereas software such as PhotoScape X, Visual Studio (VS)

Code, high level (TensorFlow), and low level (Keras) training APIs were used. Python

3.7 is used as the programming language.

 22

 The model was trained using a free cloud service called Google Colab. It is the

virtual machine operated on the NVIDIA Tesla K80 GPU using the Intel Xeon

processor. Colab provides 12 hours of free uninterrupted training online.

Table 5 System requirements

System Name Specs/version

Hardware Laptop

Dell, 8GB RAM, Intel Core i7-7500U CPU

@ 2.70GHz 2.90GHz

Cameras Canon/Phone Canon M50/Redmi Note 4

Programming Python 3.7

Editor VS Code 1.45.1

Backend TensorFlow 2.x

ML Library Keras 2.3.0

Photo Editor PhotoScape X 4.0.2.0

Cloud Service Google Colab online

Drawing Software DrawIO Online

3.3 System overview

 The overview of the proposed system is shown in Figure 11. The digital camera

and smartphone were used to capture images and videos. The number of frames was

extracted from the recorded videos. In addition, images were further augmented to add

variations to the BSL dataset. The augmentation generates more images from a single

image with variations such as the addition of pixels, colors, top and black hat, and so

on. Different image classification algorithms were evaluated on BSL data and the

suitable model was selected for further hyperparameter fine-tuning. The model was

trained until the desired accuracy was obtained. During the training stage, prominent

features of the images were extracted and accordingly classified every image into one

of the classes.

 The model was saved and deployed with the laptop using the VS Code,

OpenCV, and TensorFlow as the backend. The webcam was used to feed real-time BSL

alphanumeric data to detect and predict signs with the deployed model. In the following

sections, data acquisition, pre-processing, feature extraction, and model deployment are

discussed.

 23

Figure 11 System overview

3.3.1 Data acquisition

 Data is the most significant part of Machine Learning and Data

Analytics. Artificial Intelligence (AI) systems are consistently learning, inferring

information, and making decisions to help humanity. Data mining and analytics further

enhance AI systems. A careful and substantial selection of data can significantly

improve the generalization of machine learning performances (Dai, Liu, & Lai, 2020)

for information extraction, prediction, and pattern recognition. According to Attenberg,

Melville, Provost, and Saar-Tsechansky (2011), the analysis of data allows knowledge

discovery and support decision making. There are dataset repositories online such as

Kaggle, UCI Machine Learning Repository, Github, Google Public Datasets, and many

more. However, the BSL dataset is not available for the study.

 The BSL dataset was created from international students based at

Naresuan University. Figure 12 shows the detailed procedure used for data collection.

In the initial stage, the International Student Office was contacted for international

 24

student information. The volunteers were requested from different countries as listed in

Table 6. The images and videos dataset were collected.

Figure 12 Data acquisition

Table 6 Volunteer signers from different countries

Country Male Female Total

Bhutan 14 3 17

Burundi 1 0 1

Cambodia 7 1 8

Nepal 2 0 2

Thailand 4 8 12

Total 28 12 40

Source: Ge, Song, Ding, and Huang (2017)

 The videos were recorded ranging from 18-25 seconds for every 40

alphanumeric classes from 40 volunteers. The images and videos were recorded with

different angles, positions, various backgrounds, camera distances, and lighting

conditions to add variations to the dataset. Therefore, 1200 videos from 30 actors with

40 classes were recorded as shown in Figure 13. The frames were extracted from videos

at the rate of 10 fps. The images were pre-processed by augmentation techniques.

 25

Figure 13 Sample of BSL videos data

3.3.2 Data Preprocessing

 Data preprocessing is an important phase of machine learning. It

transforms raw data into a machine-understandable format. Usually, real-world data are

inconsistent, noisy, incomplete, and in different formats (Wangchuk et al., 2020a).

Figure 14 demonstrates the BSL data preprocessing steps. The images were both

manually and programmatically pre-processed using a photo editor called PhotoScape

X and python respectively. The images were resized to 200x200 pixels and horizontally

flipped 50% of the images. After rescaling, 40 images from each class were randomly

selected for the augmentation.

 26

Figure 14 Data pre-processing steps

 The main purpose of augmentation is to increase images and add

variations to the dataset. The augmentation techniques used were erosion and dilation,

padding, black and top hat, blurring, sharpening, color and light addition, saturation,

rescaling, multiplying pixels, flipping, and inverting. The augmentation on a single

image created 50 images by using the aforementioned methods as shown in Figure 15.

Therefore, 2000 (40 classes x 50 images) augmented images were generated after

performing augmentation.

 The final BSL image dataset was prepared with 1500 images per class

that comprised of 1000 randomly selected images from each class and 500 augmented

images. Therefore, the BSL dataset consisted of 60,000 images from 40 alphanumeric

classes. The dataset was partitioned into 70% training and 30% validation sets. These

sets were uploaded in Google Drive and using Google’s Colab, the model was trained.

The feature extraction and model training are explained in the next section.

 27

Figure 15 Augmented Images

3.3.3 Features Extraction and Classification

 3.3.3.1 Introduction

 In image processing, features of the image play important roles

in classification and recognition tasks. According to Clark and Niblett (1987), the main

purpose of feature extraction is to extract the most relevant information from the image

and represent it in lower-dimensional space. The authors described two types of feature

extractions: Local and Global Features. Local features are based on geometry such as

concave/convex, endpoints, branches, joints, and shapes. However, topological features

are based on lines, edges, curves, connectivity, and the number of holes. These features

from the images are extracted using deep learning algorithms such as Convolutional

Neural Network (CNN), Visual Geometry Group (VGG), ResNet, and LeNet-5. The

features are also extracted by using supervised machine learning algorithms such as

SVM, KNN, and logistic regression. In the following sections, aforementioned

algorithms are discussed in detail.

 3.3.3.2 Convolutional Neural Network

 CNN is one of the deep learning algorithms used for image

content analysis. It captures both spatial and temporal dependencies of the images using

the relevant filters. Deep CNN consists of two phases: feedforward and

 28

backpropagation. In the feed-forward phase, all the data are feed from the input layer

to the output layer and the loss is calculated. The loss/error needs to be reduced for

better prediction accuracy. Therefore, the loss is minimized with back-propagation by

updating the bias and weight (Kumar & Bhatia, 2014) using different optimizers. The

detailed discussion is described in the following sections.

 3.3.3.2.1 Feedforward Neural Network

 Artificial Neural Network (ANN) is inspired by

the human brain. Tripathy and Anuradha (2017) presented a computational ANN model

that was capable of learning, recognizing, and solving complex problems. According

to McCulloch and Pitts (1943), Feedforward neural network (FNN) is based on ANN

and capable of speech and signal processing, pattern recognition, clustering, and

classification. The architecture of FNN comprises several neurons as input layers,

hidden layers, and output layers as shown in Figure 16. The neurons (processing unit)

have connections (weights) with each layer and bias is added in each neuron in the

hidden nodes.

Figure 16 Feedforward neural network with one hidden layer

 In the FNN, the features (x1, x2, x3, x4) and

weights from input nodes are fed to the neurons in the hidden layer. The neurons are

the processing unit of the network and perform two important operations: weight

calculation and activation. The weights are calculated in every neuron by the

summation of an element-wise product as derived in Equation 2 and pass to the

 29

threshold function called the activation function. The final output is the predicted value

from the input data. The predicted output may have higher losses. FNN aims to estimate

some function f(x) to predict y output from the given x input, and defined as,

 𝑦 = 𝑓(𝑥) (1)

 Equation 1 maps the input x with the output

category y. Initially, the random weights are initialized to all weights w1 to w18 from

the normal distribution (~N(0,1)) and biases to 1.0. Calculation of summation of

weights for hidden nodes H1, H2, and H3 are given below:

𝐻1 = (𝑤1. 𝑥1 + 𝑤4. 𝑥2 + 𝑤7. 𝑥3 + 𝑤10. 𝑥4) + 𝑏1

𝐻2 = (𝑤2. 𝑥1 + 𝑤5. 𝑥2 + 𝑤8. 𝑥3 + 𝑤11. 𝑥4) + 𝑏2

𝐻3 = (𝑤3. 𝑥1 + 𝑤6. 𝑥2 + 𝑤9. 𝑥3 + 𝑤12. 𝑥4) + 𝑏3

Therefore, the general equation for the weight calculation is defined as,

𝐻𝑛 = ∑(𝑤𝑖

𝑛

𝑖=1

⋅ 𝑥𝑖) + 𝑏
(2)

 Where n is the number of data points, wi is

weights, xi is features, and b is bias. After the summation of weights in each hidden

node, the calculated weights are passed to the threshold function called the activation

function. The detailed of activation functions is discussed in the following sections but

for illustration purpose, the sigmoid function is used to squash values between 0 and 1,

and defined as,

𝑓(𝑥) =

1

1 + ⅇ−𝑥

(3)

 Now, calculated weights H1, H2, and H3 are

passed to the sigmoid activation function as,

 𝐴1 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝐻1)

 𝐴1 =
1

1+ⅇ−𝐻1

 𝐴2 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝐻2)

 𝐴2 =
1

1+ⅇ−𝐻2

 30

 𝐴3 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝐻3)

 𝐴3 =
1

1+ⅇ−𝐻3

The output of hidden nodes 𝐴1, 𝐴2 , and 𝐴3 become the inputs of output nodes 01 and

02. The weight of the output nodes is calculated as,

 𝑂1 = (𝑤13. 𝐴1 + 𝑤15. 𝐴2 + 𝑤17. 𝐴3) + 𝑏4

 𝑂2 = (𝑤14. 𝐴1 + 𝑤16. 𝐴2 + 𝑤18. 𝐴3) + 𝑏5

Now, selecting the linear output activation function from Equation 1

 𝑦 = 𝑓(𝑥) = 𝑥

Therefore, output 01 and 02 are passed to the activation function as,

 𝐴4 = 𝑂1

 𝐴5 = 𝑂2

 Therefore, 𝐴4 and 𝐴5 are the predicted outputs.

Now, let 𝐴𝑖 be the predicted output and 𝑦𝑖 be the desired output from Equation 1. The

error is measured using mean square error (MSE) but the selection of loss function

depends on researchers. So, the total error is defined as,

𝑀𝑆𝐸 =
1

𝑛
 ∑(𝑦𝑖 − 𝐴𝑖)2

2

𝑖=1

(4)

The general equation is defined as,

𝑀𝑆𝐸 =

1

𝑛
 ∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

(5)

 Where n is the number of data points, 𝑦𝑖 is the

actual observed values and �̂�i is the predicted value. In the first forward pass, the error

is higher. However, this error can be reduced by using the backpropagation with

optimizer that updates the weights and trains the model iteratively.

 31

 3.3.3.2.2 Back Propagation Algorithm

 One of the most important algorithms in machine

learning is Back Propagation (BP). In the 1970s and 1980s, researchers independently

studied BP learning with the multilayer perceptron (Ojha, Abraham, & Snášel, 2017)

and tried to modify the learning equation. However, the publication of the paper by

Kariniotakis (2017) about back-propagating errors to represent learning revitalized the

implementation of BP and was popular.

 The main purpose of the BP is to reduce the error by

adjusting the weights from the training data until the difference between the actual

observed value and the predicted output is minimum. The difference between the

predicted output and the actual value is calculated by using the loss function. During

the training, the error should be minimize using an optimizer. To reduce the error, the

network should backpropagate and update the weights and biases as shown in Figure

17. After the updating of parameters, the second phase of feedforward training begins

with the updated values and computes the error again. Therefore, the model is trained

iteratively until the error is minimum over a fixed number of iterations. The loss

function and optimizer play an important role in backpropagation.

Figure 17 Backpropagation algorithm flowchart

 32

 3.3.3.2.3 Loss Functions

 The loss function evaluates the performance of the

algorithm on the dataset by comparing the prediction and the true value. The difference

between predicted and actual value will be either higher or lower depending on whether

the learning of the model is bad or good. Different types of loss functions are Mean

Absolute Error (MAE) also known as L1 loss, Hinge, Huber, and Kullback-Leibler.

The most popular loss functions used for the image classification are Mean Squared

Error (MSE) and Cross Entropy. MSE is also known as L2 loss. The MSE equation is

given in Equation 5 and cross-entropy is defined in Equation 6 below,

 𝐻(𝑝, 𝑞) = − ∑ 𝑝(𝑥)𝑙𝑜𝑔𝑞(𝑥)

𝑥

(6)

 Where p is the true label and q is the predicted label. The

difference between p and q is reduced using one of the optimizers in backpropagation

during the training to update the parameters of the network such as weights and biases.

 3.3.3.2.4 Optimizers

 An optimizer is an algorithm that calculates the minimum

value of the function. It reduces the loss by fine-tuning the parameters of the neural

network such as weights, biases, and learning rates during the backpropagation. There

are different types of optimizers such as Gradient Descent, Stochastic Gradient Descent

(SGD), Adagrad, RMSprop, Adam, Adadelta, Adamax, Nadam, and Ftrl. Many

researchers have been describing Gradient Descent as the mother of machine learning.

It is the main workhorse of the features of learning. Figures 18 and 19 show the loss

calculation and weights update using gradient descent respectively.

 33

Figure 18 Loss computation with feedforward network

 The loss is calculated by finding the difference between

the true value (𝑦) and the predicted output (�̂�). The predicted output is computed by

the hidden neurons in two important steps. In the first step, all the inputs and weights

which are connected to the neuron are multiplied and a bias is added as defined in

Equation 2 as,

 𝐻 = ∑ (𝑤𝑖
𝑛

𝑖=1
⋅ 𝑥𝑖) + 𝑏

Therefore, the summation of weights at hidden neurons H1 and H2 are:

 𝑓1 = (𝑤11. 𝑥1 + 𝑤21. 𝑥2 + 𝑤31. 𝑥3) + 𝑏

 𝑓2 = (𝑤12. 𝑥1 + 𝑤22. 𝑥2 + 𝑤32. 𝑥3) + 𝑏

 𝑓3 = (𝑤41. 𝑜1 + 𝑤42. 𝑜2) + 𝑏

In the second step, these calculated weights are passed to the activation function

(sigmoid) and defined in Equation 3 as,

 𝑓(𝑥) =
1

1+ⅇ−𝑥

Therefore, passing f1 and f2 in the sigmoid activation:

 𝑓(𝑥) =
1

1+ⅇ−𝑓1

Output from H1 𝑜1 = (𝑓1)

 𝑓(𝑥) =
1

1+ⅇ−𝑓2

Output from H2 𝑜2 = (𝑓2)

 34

 𝑓(𝑥) =
1

1+ⅇ−𝑓3

Output from f3 𝑜3 = (𝑓3)

Therefore, the final predicted output is 𝑜3 = �̂�.

The loss is calculated by using MSE and defined in Equation 5 as,

 𝑀𝑆𝐸 =
1

𝑛
 ∑ (𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

Therefore, 𝑙𝑜𝑠𝑠(𝐿) = (𝑦 − �̂�)2. This loss needs to be minimized by one of the

optimizers such as Gradient Descent or Adam.

Figure 19 Weights update with Back Propagation using Gradient Descent

The weight update formula is defined as,

𝑤(𝑡+1) = 𝑤(𝑡) − 𝜂

𝜕𝐿

𝜕𝑤(𝑡)

(7)

 Where 𝑤(𝑡+1) is a new weight, 𝑤(𝑡) is the old weight,

𝜂 is the learning rate which decides the rate of convergence to the global minima, and

𝜕𝐿

𝜕𝑤(𝑡)
 is the derivative of loss (slope) to the old weight that decides the direction of the

descent to the global minima. All the weights are updated in the back propagation. For

the weight update illustration purpose, let’s take weights w41 to replace in Equation 7

as,

 35

𝑤41𝑛𝑒𝑤

= 𝑤41 − 𝜂
𝜕𝐿

𝜕𝑤41

(8)

 The values of 𝑤41 and 𝜂 are known in the feedforward

training. Therefore,
𝜕𝐿

𝜕𝑤41
 needs to be computed to calculate the new weight 𝑤41𝑛𝑒𝑤

. The

loss (L) is affected by the output O3 and O3 in turn is impacted by w41 as shown in

Figure 16. It is calculated by applying the chain rule as,

𝜕𝐿

𝜕𝑤41
=

𝜕𝐿

𝜕𝑂3
 .

𝜕𝑂3

𝜕𝑤41

Similarly, the weight w11 is updated by the following equation,

𝑤11𝑛𝑒𝑤

= 𝑤11 − 𝜂
𝜕𝐿

𝜕𝑤11

(9)

 From the impact analysis, the loss (L) is affected by 03,

and O3 is affected by O1, and O1 in turn is affected by w11 as shown in Figure 16.

Therefore, using the chain rule
𝜕𝐿

𝜕𝑤11
 is computed as

𝜕𝐿

𝜕𝑤11
=

𝜕𝐿

𝜕𝑂3
 .

𝜕𝑂3

𝜕𝑂1
 .

𝜕𝑂1

𝜕𝑤11

 Therefore, other weights are updated similarly as shown

in Equations 8 and 9. When all the weights are updated, the second iteration starts. The

number of weight updates is as same as the number of epochs of the training. In every

epoch, the loss is reduced. However, the loss can remain the same or become larger.

The vanishing gradient (VG) problem makes the network hard to learn and error

reduction remains almost the same or a little change but the exploding gradient (EG)

problem makes a large error by updating large weights. The VG problem can be solved

by using different activation functions other than sigmoid or tanh and the EG is solved

by appropriately initializing the weights during the training.

 3.3.3.3 Components of CNN

 The computer and human being see images differently.

The computers view images as the numbers having rows and columns of pixels as

 36

shown in Figure 20. The images are divided into shades of colours ranging from 0-255

pixels values. A grayscale image has 256 different shades of color where 0 is black and

255 is the white. However, the RGB image has three channels in which each channel

has a color ranging from 0-255 pixels. The grayscale image matrix is written as 6x6x1

and RGB as 6x6x3 assuming that the image size is 6x6. The image matrix (6x6x3) is

flattened into a 108 vector and fed into CNN as the input as shown in Figure 21.

Therefore, there are 108 input neurons in the input layer and these data are passed

through different components of CNN.

Figure 20 Different perceptions of images by human and computer

Figure 21 Image matrix is flattened and fed into the network

 37

 Different components of CNN are Convolution layers,

Activation functions, Pooling layer, Flatten Layer, Fully Connected (FC) layer, and

Loss function layer with the softmax function to classify one of the classes. The

different arrangements of these components give a new architectural design

(Rumelhart, Hinton, & Williams, 1986). CNN takes images as the input and processes

their pixel values through a series of layers for features extraction and class

classification as shown in Figure 22. These layers are discussed in the following

sections.

Figure 22 Components of Convolutional Neural Network

 3.3.3.3.1 Convolution Layer

 The convolution layer is the first

component of CNN. It extracts features (lines, edges, corners, curves) from the input

image with the number of filters. The image matrix (H x W x D) is multiplied

(convolved) with filter matrix (Hf x Wf x Df) to produce the feature map ([H-Hf+1] x

[W-Wf+1] x 1) as shown in Figure 23. For example, a square image that has H=W=50

is convolved with 10 filters of size 3x3x3. The feature map of (50-3+1) x (50-3+1) x

10 = 23040 are generated.

 38

Figure 23 Convolution on an image with one filter to produce a feature map

 The filter divides the image into smaller

slices called receptive fields. Then the filter slides over these receptive fields by

convolving with its specific weights with one unit of stride as shown in Figure 24.

However, different strides are used to move filters on the image. During the convolution

operation, the dimensions of the image are reduced and the filters do not exactly fit on

the image. These problems could be solved by using padding. By applying zero-

padding around the images, the same dimensions are maintained.

Figure 24 Receptive field and feature map

The convolution operation is defined as,

 𝑔 [𝑥, 𝑦] = (𝑓 ∗ 𝑘)[𝑥, 𝑦] (10)

 39

𝑔 [𝑥, 𝑦] = ∑ ∑ 𝑓[𝑥 − 𝑖, 𝑦 − 𝑗] ∗ 𝑘[𝑖, 𝑗]

1

j

1

i

(11)

 Where input image and filter are denoted

by f and k respectively. The rows and columns are represented by x and y. The output

of a convolution is the feature map and is marked with g. The i and j are the indexes

with which the image and filter convolve. The first cell of the feature map (g[0,0]) is

calculated by the sum of the element-wise product as illustrated by Equations 9 and 10.

The calculation of the feature map in Figure 23 is demonstrated below:

𝑔 [0,0] = 0.1 + 1.0 + 2.1 + 6.0 + 7.1 + 8.0 + 12.1 + 13.0 + 14.1 = 35

𝑔 [0,1] = 1.1 + 2.0 + 3.1 + 7.0 + 8.1 + 9.0 + 13.1 + 14.0 + 15.1 = 40

𝑔 [0,2] = 2.1 + 3.0 + 4.1 + 8.0 + 9.1 + 10.0 + 14.1 + 15.0 + 16.1 = 45

 :

𝑔 [3,3] = 21.1 + 22.0 + 23.1 + 27.0 + 28.1 + 29.0 + 33.1 + 34.0 + 35.1 = 140

Filters play a very important role in image content analysis. Filters extract different

features while convolving on the image such as edge detection, sharpening, and

blurring. Figure 25 illustrates the convolutional operations performed with some of the

filters.

 40

Figure 25 Convolution operation with different filters

 41

 3.3.3.3.2 Activation Functions

 Activation functions determine the output

of the neural network by activating (firing) the neuron based on the relevant information

from input data. The neuron would not be fired (activated) if it does not contain features

to predict desired outputs. At each neuron, the sum of products of inputs and the weights

are calculated and then the activation function is applied to get the output which is then

supplied to the next layer (Khan et al., 2019). According to the authors, there are 10

activation functions such as binary step function, linear, sigmoid, tanh, ReLU, leaky

ReLU, parametrized ReLU, exponential linear unit, swish, and softmax which squashes

the output to the finite value. However, the Rectified Linear Unit (ReLU) is the most

popular activation function used in deep learning.

 The sigmoid and Tanh functions suffer

from vanishing gradient problem where neurons either do not update their weights or

update weights very slowly. The sigmoid and Tanh take real numbers and squash

between 0 to1 and -1 to 1 respectively as shown in Figure 26. The sigmoid activation

function is defined in Equation 3 as,

𝑓(𝑥) =

1

1 + ⅇ−𝑥

(3)

The Tanh activation function is defined as,

𝑓(𝑥) =

2

1 + ⅇ−2𝑥
− 1

(11)

The ReLU takes real-valued numbers and squashes between 0 to the maximum number

and is defined as,

 𝑓(𝑥) = max(0, 𝑥) (12)

𝑓(𝑥) = {

1, 𝑖𝑓 𝑥 > 0
0, 𝑖𝑓 𝑥 < 0

(13)

 42

Figure 26 Graphs showing a respective range of activation functions

 3.3.3.3.3 Pooling Layer

 Pooling reduces the spatial dimensions of

the input images (down sampling) and operates on each feature map independently. It

reduces the number of parameters and makes computationally less expensive to

process. The pooling aims to combine the most prominent features of an image by

preserving significant information and discarding others (Sharma, 2017). There are

three types of pooling: average pooling, max pooling, and global pooling.

 The average pooling calculates the

average of the pixels present on the feature map. The total number of pixels of the

feature map on which average is computed depends on the size of the filter and stride

as shown in Figure 27. If the filter size is 2x2, there would be 4 pixels on which average

is computed. The average pooling is defined as,

𝑓(𝑥) =

1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

(14)

Where n is the total number of pixels and x is the pixel on the local pooling region.

Figure 27 Average pooling

 43

 Similarly, max-pooling depends on the

size of the filter and stride but takes the maximum number from the local region as

shown in Figure 28. It is defined as,

 𝑓(𝑥) = 𝑚𝑎𝑥𝑖 . 𝑥𝑖 (15)

Figure 28 Max pooling

 However, global pooling takes only a

single value from the feature map. It drastically reduces the dimension. Therefore, the

feature map having Nh x Nw x Nc dimension is reduced to the 1 x 1 x Nc dimension. The

global pooling can be either global max pooling or global averaging pooling.

 3.3.3.3.4 Batch Normalization

 Batch normalization (BN) is a deep

learning technique that speeds up the training process, reduces the covariance shift,

stabilizes the network, and provides a regularization which is proposed by Yu, Wang,

Chen, and Wei (2014). In the BN process, the input data are divided into a number of

batches. These mini-batches are scaled using their mean and standard deviation which

results in the introduction of noises in each layer providing a regularization effect to

solve overfitting problems. The stability of the network is increased by normalizing the

output of the previous activation layer by subtracting and dividing with the batch mean

and standard deviation respectively as shown in Equations 15 and 16. BN increases the

rate of convergence of the algorithm and reduces the covariance shift. Therefore, it

improves accuracy and accelerates the training process (Ioffe & Szegedy, 2015).

 44

 During the network training,

normalization of the input features can increase the speed of learning. The mean and

variance are expressed by Equations 15 and 16 respectively. Then normalization is

applied as shown by Equation 17. The mathematical equations of mean and variance

are defined as,

𝜇 =

1

𝑛
∑ 𝑧(𝑖)

𝑖

(16)

𝜎2 =

1

𝑛
∑(𝑧𝑖 − 𝜇)2

𝑖

(17)

𝑧𝑛𝑜𝑟𝑚

(𝑖)
=

𝑧(𝑖) − 𝜇

√𝜎2 + 𝜀

(18)

 Where 𝑧(𝑖) is some hidden unit value of

hidden layer (l) in the neural network, 𝜇 and 𝜎2 represent mean and variance

respectively. The 𝜀 is added to gain numerical stability in case 𝜎2 becomes zero while

normalizing. After normalization, every component of z has 0 mean and standard unit

variance. However, hidden units do not want to have 0 mean and one variance rather

hidden units have different distributions. The different distribution is defined as,

 �̃�(𝑖) = 𝛾𝑧𝑛𝑜𝑟𝑚
(𝑖)

+ 𝛽 (19)

 Where 𝛾 and 𝛽 are the learnable

parameters of the batch normalization which allow hidden units to select different

values of mean and variance.

 3.3.3.3.5 Dropout

 Deep neural networks are powerful

machine learning systems. However, a large number of parameters make networks slow

and when trained with the small data can overfit the training data (Bjorck, Gomes,

Selman, & Weinberger, 2018). The overfitting is the main problem of the deep neural

network and as a result, the model performs poorly on the test dataset (new data), and

the error of generalization increases. Dropout is the technique to solve overfitting

during the training of the network.

 45

 Dropout allows networks to train faster,

reduces overfitting, and improve the generalization of the deep networks. It randomly

drops out nodes in every layer during the training as shown in Figure 29. According to

Srivastava, Hinton, Krizhevsky, Sutskever, and Salakhutdinov (2014), nodes are

temporarily removed from the network including all the incoming and outgoing

connections. As a result, parameters are reduced and train the network faster and

provides a regularization effect by not learning all the data points in a single epoch to

address the overfitting. The different dropout ranges are used but a good range is

between 0.5% to 0.8%. Usually, the dropout rate of the input layer is bigger.

Figure 29 Dropout neural network: (a) Neural network with 5 inputs, 2 hidden

layers, and 2 outputs, (b) Implementation of dropouts and displaying reduced

parameters of the neural network

 3.3.3.3.6 Fully Connected

 The fully connected (FC) layer is attached

to the end of the network and detects high-level features of the data to predict one of

the classes. The lower features are learned in the convolution layers with activation

functions and pooling layers in previous layers. The feature maps have all the prominent

features of the data that are fed into the network. However, the feature map matrix is

flattened into a single column vector before feeding it to FC as shown in Figure 30. The

model is trained for a series of iteration and able to learn from the training. Finally, the

classes are predicted using the softmax activation function.

 46

 The state-of-the-art image classification

algorithms are mostly designed based on CNN with slightly different architecture by

stacking CNN components differently. The popular CNN based architectures such as

AlexNet, VGGNet, GoogLeNet, and ResNet are discussed in the following sections.

Figure 30 Flatten feature maps into a vector and feed into FC

 3.3.3.4 Visual Geometry Group

 The VGG is a deep CNN based state-of-the-art network for

visual recognition developed by Oxford's team called Visual Geometry Group (VGG).

It achieves good performances on the ImageNet dataset and other images beyond

ImageNet. VGG was the first runner up of the ILSVRC2014 image classification

competition (Srivastava et al., 2014). It is one of the mostly used architectures for image

classification and recognition tasks.

 Simonyan and Zisserman (2014) presented six different VGG

networks by stacking layers to evaluate the performances as shown in Table 7. The

RGB images 224 x 224 are feed to the VGG network consisting of convolution layers

with 3x3 filters of a stride 1 and same padding followed by max-pooling layers with

filter 2x2 of stride 2. The filter size is 3x3 but the number of filters in convolution layers

increase by double of the previous layer such as 64, 128, 256, and 512. The arrangement

of these layers is the same throughout the architecture. However, the number of layers

is different in different VGG network.

 47

Table 7 Configuration of different models of VGG

VGG11-A VGG11-B VGG13 VGG16-A VGG16-B VGG19

Conv3_64 Conv3_64

LRN

Conv3_64

Conv3_64

Conv3_64

Conv3_64

Conv3_64

Conv3_64

Conv3_64

Conv3_64

maxpool

Conv3_128 Conv3_128 Conv3_128

Conv3_128

Conv3_128

Conv3_128

Conv3_128

Conv3_128

Conv3_128

Conv3_128

maxpool

Conv3_256

Conv3_256

Conv3_256

Conv3_256

Conv3_256

Conv3_256

Conv3_256

Conv3_256

Conv1_256

Conv3_256

Conv3_256

Conv3_256

Conv3_256

Conv3_256

Conv3_256

Conv3_256

maxpool
Conv3_512

Conv3_512

Conv3_512

Conv3_512

Conv3_512

Conv3_512

Conv3_512

Conv3_512

Conv1_512

Conv3_512

Conv3_512

Conv3_512

Conv3_512

Conv3_512

Conv3_512

Conv3_512

maxpool

Conv3_512

Conv3_512
Conv3_512

Conv3_512
Conv3_512

Conv3_512
Conv3_512

Conv3_512

Conv1_512

Conv3_512

Conv3_512

Conv3_512

Conv3_512

Conv3_512

Conv3_512

Conv3_512
maxpool

FC4096

FC4096

FC1000

softmax

3.3.3.5 Residual Network (ResNet)

 In the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

classification competition, AlexNet (Simonyan & Zisserman, 2014) CNN-based

architecture obtained state-of-the-art performance and won the contest in 2012. In the

subsequent years, the winner architectures (Krizhevsky et al., 2012; Szegedy et al.,

2015; Zeiler & Fergus, 2014) used more and deeper layers to increase accuracy and

reduce the error. However, increased layers posed either vanishing gradient or

exploding gradient problem (Simonyan & Zisserman, 2014). The gradient either

becomes 0 or too large making train and test error rise. Besides, deep neural networks

require a huge amount of data to extract features and high-performance GPUs to train

complex data models. To address these issues, after 2012, a variant of CNN models

 48

(Jiwon Kim, Kwon Lee, & Mu Lee, 2016; Simonyan & Zisserman, 2014; Szegedy et

al., 2015; Zeiler & Fergus, 2014) has been developed by the researchers and took part

in the ILSVRC competition. In 2015, deep ResNet (He et al., 2016) won the ILSVRC

contest. It has been a ground-breaking and influential algorithm in the deep learning

community. The ResNet allows hundreds or thousands of layers to train the model until

better performance is achieved.

 ResNet was proposed by researchers at Microsoft (He et al., 2016). It

trains a very deep neural network without causing vanishing/exploding gradient

problems with the concept called Residual Network. The architecture of the ResNet is

similar to CNN or VGG consisting of the number of convolutional layers, activation

functions, batch normalization, dropouts, and dense layers. However, in addition to

these layers, ResNet consists of a shortcut connection (skip connection). The shortcut

connection (identity) skips training by a few layers and adds directly to the output as

shown in Figure 31. It allows a network to learn from the residual (𝐻(𝑥) − 𝑥) mapping

rather than layers learn from the underlying mapping 𝐹(𝑥). The network fits 𝐹(𝑥) =

𝐻(𝑥) − 𝑥 that gives 𝐻(𝑥) = 𝐹(𝑥) + 𝑥.

Figure 31 Building blocks of Residual Learning

Source: He et al. (2016)

 There are two types of residual block: identity block and convolutional

block as shown in Figure 30. The identity block passes input 𝑥 directly to the output

by skipping training layers as shown in Figure 32 (a). However, the size of the output

image 𝐹(𝑥) must be the same as the input image 𝑥 in ResNet. On the contrary, the

 49

ResNet with convolutional block deals with different image sizes. The input image size

128x128 with the filter size of 32 gets reduced to 64 x 64 as shown in Figure 32 (b).

Figure 32 Residual blocks: a) Identify block, b) Convolution block

 Using a 1x1 convolutional block, the input image is resized to match the

output image. The shape of the next layer is calculated by Equation. 20. However,

padding is not used. Therefore, the equation changed to Equation. 21 as shown below:

 𝑛 + 2𝑝 − 𝑓

𝑠
+ 1

(20)

 𝑛 − 𝑓

𝑠
+ 1

(21)

Therefore, the shape of the feature map is
128−1

2
+ 1 = 64

 There are different variants of ResNet such as ResNeXt (He et al., 2016),

DenseNet (S. Xie, Girshick, Dollár, Tu, & He, 2017), Deep Network with stochastic

depth (G. Huang, Liu, Van Der Maaten, & Weinberger, 2017), and ResNet as an

Ensemble of Smaller Network (G. Huang, Sun, Liu, Sedra, & Weinberger, 2016).

3.3.3.6 LeNet

 The LeNet was proposed to recognize handwritten digits in images in

AT&T Bell Labs. The LeNet was trained successfully using CNNs via backpropagation

(Veit, Wilber, & Belongie, 2016). The results obtained were outstanding similar to

 50

SVM. The architecture of LeNet comprised of convolutional layers, pooling, and dense

layers. The architecture of LeNet-5 is shown in Figure 33.

Figure 33 The architecture of LeNet-5

Source: Yann LeCun, Bottou, Bengio, and Haffner (1998)

 The LeNet-5 was trained on the MNIST database. The input size of the

images was 32x32. The first convolutional layer used six filters to extract features

followed by subsampling with six filters. The second convolutional layer used 16 filters

followed by another subsampling with 16 filters. Then the all the trainable parameters

were passed to three fully connected layers for the classification.

3.3.3.7 Support Vector Machine

 Support Vector Machine (SVM) is a supervised machine learning model

that is used in the classification (Yann LeCun et al., 1998) and regression (Burges,

1998) problems. SVM performs classification for both linearly separable or non-

linearly separable data as shown in Figure 34 by finding the best line or hyperplane.

 51

Figure 34 Linearity and non-linearity data

 The linear SVM uses hyperplane, marginal distance, and support vector

to linearly separate data as shown in Figure 35. The data points are classified by

decision boundaries called Hyperplanes. The hyperplane is either a line (two features)

or a two-dimensional plane (higher features). Different classes fall on either side of this

optimal hyperplane. The hyperplane with the maximum marginal distance classifies the

data point better. Therefore, support vectors help to maximize the margin between

classes. Support Vectors are the data points (blue and green) as shown in Figure 35(b)

that affect the position and orientation of the hyperplane.

Figure 35 Selection of the optimal hyperplane

 52

 The non-linear SVM is used to classify non-linearly separable data. A

line cannot separate non-linear data. The kernel functions (Smola & Schölkopf, 2004)

such as polynomial kernel, radial basis function (RBF) (Patle & Chouhan, 2013), and

sigmoid kernel are used to map input vectors into higher-dimensional space (S. Han,

Qubo, & Meng, 2012) to transform non-linearity data to linearity as shown in Figure

36.

Figure 36 Transformation of non-linearity 1-D data to 2-D

 SVM is used with the smaller dataset because it takes a longer time to

process. It can be implemented in various fields such as bioinformatics, face detection,

categorization of text and hypertext, handwriting recognition, and so on. Funaya and

Ikeda (2012) recognized handwritten digits with a novel method based on SVM and

Bat algorithm. The proposed method obtained an accuracy of 95.60%.

3.3.3.8 K-Nearest Neighbours

 K-Nearest Neighbour (KNN) is a supervised machine learning

algorithm, similar to SVM, used for classification and regression problems. In addition

to classification and regression, KNN is also used for imputation of missing values

(Tuba, Tuba, & Simian, 2016). KNN assumes that similar classes exist in proximity

(Zhang, Li, Zong, Zhu, & Cheng, 2017). Therefore, KNN finds the similarity between

a new data point and the classes. The new data gets a class assignment with the shortest

 53

distance. The similarity between classes is calculated by Euclidean distances. The

algorithm for KNN is given below:

1. START

2. LOAD the data

3. SELECT number of k

4. COMPUTE Euclidean distance of k number of neighbours

5. TAKE k nearest neighbours with which distance is computed

6. COUNT the number of data points in each class

7. ASSIGN a class to a new data point after voting

8. STOP

Figure 37 Class assignment to the new data point

 Figure 37 explains the identification of a class for the new data point C.

The nearest neighbour data points are selected based on the k value. There are two data

points (star) and one data point (pyramid) as shown in Figure 37(a) that are the nearest

to point C. The class for the new data C is assigned based on voting (Kotsiantis,

Pierrakeas, & Pintelas, 2003) as shown in Figure 37(b). The new data C is assigned to

star class because there are two votes (two data) when k is 3.

 KNN is simple to implement. The model building is not required. KNN

performs well with fine-tuning of several parameters. However, KNN is slower with a

higher number of classes. Babu, Venkateswarlu, and Chintha (2014) conducted

handwritten digits recognition using KNN and obtained an accuracy of 96.64%.

 54

3.3.3.9 Logistic Regression

 Linear Regression is used for assessing the relationship between a

dependent (Y) and independent (X) variables that predicts future dependent variable

(Babu et al., 2014). However, Logistic Regression (LR) is used for the multi-class

classification problem. In LR, the value of Y is either categorical or binary. The sigmoid

function is used to calculate probability values that are mapped to the number of classes.

The different types of LR are Binary LR, Ordinal LR, Nominal LR, and Poisson LR.

 Binary LR has two categorical values and 2 levels of characteristics such

as On/Off, Male/Female, Yes/No, True/False. However, Ordinal LR has three or more

categorical values and characteristics levels are ordered such as good, better, best or

agree, neutral, disagree. Nominal LR also has three or more categorical values but

characteristics levels are not ordered such as country (Bhutan, Thailand, Australia),

employee (Tandin, Gawa, Wangyal), color (Red, Orange, Blue). Similarly, Poisson LR

has three or more categorical values but characteristics are the number of events that

occurred. For instance, the total number of goals scored in each match in the football

tournament (2, 3,1,2,5,3,5).

 The researcher (Palvanov & Im Cho, 2018; Saleem & Chishti, 2020)

have used LR for the recognition of the handwritten digit on the dataset called MNIST

(Modified National Institute of Standards and Technology) that was curated by Yann

LeCun, Corinna Cortes, and Christopher J.C. Burges. However, CNN based neural

network outperformed the LR algorithm.

 55

CHAPTER IV

RESULT AND DISCUSSION

4.1 Introduction

 In this chapter, the discussion of the detailed results of the proposed study is

presented. The main purpose of the study was to develop a machine learning model for

the Bhutanese Sign Language hand-shaped alphabets and digits recognition. Besides,

the study also focused on curation and preparation of the first-ever BSL hand-shaped

alphanumeric image dataset. The dataset is evaluated with different sign language

models discussed in Chapter II and Chapter III. An appropriate model is selected and

modified to suit the BSL dataset that consisted of 60,000 images from 40 classes.

 In this study, three different BSL datasets were created. The first and second

datasets consisted of digits with 10 classes and alphabets with 30 classes respectively.

The third dataset consisted of both alphabets and digits with 40 classes. Different Sign

Language models are trained and evaluated on these datasets using Google’s cloud

service called Google Colab. The Google provides 12 hours free GPU and TPU

resources with 12 GB RAM. The size of the RAM can be optionally increased to 25

GB. In the following sections, the result discussion on digit dataset with different

models is presented first followed by an alphabet dataset. Finally, alphanumeric dataset

results are discussed.

4.2 BSL Digits Detection and Recognition

 The BSL digit dataset consisted of 20,000 images. The CNN based algorithm

was used to extract features from images. The algorithm was designed similar to

VGGNet that had three blocks consisting of two convolutional layers in each block as

shown in Figure 38. The number of filters used was 32, 64, and 128 in three blocks

respectively. The batch normalization was used after two consecutive convolutional

layers followed by max-pooing, dropout layers, and two dense layers as shown in Table

8. The batch normalization and dropout layers are used to speed up training

convergence and mitigation of overfitting respectively. The input images were resized

 56

to 64 x 64 x 3 pixels and fed into the model with a batch size of 32. Using the ReLU

and softmax activation functions, the model was trained with max-pool of stride two.

The training accuracy of the model was 99.94%.

Figure 38 Architecture of VGG-8 network

Source: Saleem and Chishti (2020)

Table 8 VGG-8 network configuration

Type of Layer Number of Filters Filter size/stride Output

Convolution 32 5x5/1 64x64

Convolution 32 5x5/1 64x64

Batch Normalization - - -

Max Pooling - 2x2/2 32x32

Dropout_20 - - -

Convolution 64 3x3/1 30x30

Convolution 64 3x3/1 28x28

Batch Normalization - - -

Max Pooling - 2x2/2 14x14

Dropout_20 - - -

Convolution 128 3x3/1 12x12

Convolution 128 3x3/1 10x10

Batch Normalization - - -

Max Pooling - 2x2/2 5x5

Dropout_20 - - -

 Flatten 3200

 Dense_512

 Dropout_50

 Dense 10

 57

 Different sign language models were evaluated as shown in Table 9. It was

observed that the VGGNet with six convolutional layers achieved the highest testing

accuracy of 97.62%. It was also observed that the precision, recall, and f1-score for the

VGG-8 is the highest. However, the minimum and maximum training time were

observed with logistic regression (175 microseconds) and SVM (825 seconds)

respectively.

Table 9 Evaluation of different models

Model Training
Time (s)

Accuracy
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

VGG-8 294 97.62 98 98 98

LeNet-5 457 91.07 91 91 91

Logistic
Regression

0.000175 67.38 67 67 67

SVM 825 70.25 71 70 70

KNN 795 78.95 80 79 79

Source: Wangchuk et al. (2020b)

 The accuracy and loss are shown in Figure 39. The model learned in the first 40

epochs but after 50 epochs, learning remained stationary. However, the loss plunged in

the first a few epochs but did not decay after 45 epochs. It has been observed that the

model stopped learning after 70 epochs.

Figure 39 Accuracy and loss of train and test

Source: Wangchuk et al. (2020b)

 58

 The confusion matrix evaluates the performance of the classification models.

The confusion matrix is shown in Table 10 that shows the correct predictions and

rejections of the digits. The digits 0 and 6 have the lowest (two times) and highest (19

times) false positive respectively. However, the highest false negative was observed

with digit 7 with 20 times misclassification. It was observed that the lowest

misclassification classes were 0, 1, and 3 having misclassified six times each.

Table 10 Digits confusion matrix

PREDICTED

A
C

T
U

A
L

 0 1 2 3 4 5 6 7 8 9

0 394 0 1 1 0 0 0 1 1 2

1 1 394 1 1 0 0 1 0 0 2

2 0 2 393 1 0 0 2 0 1 1

3 0 1 2 394 1 2 0 0 0 0

4 0 1 1 0 387 1 6 2 2 0

5 0 0 0 3 2 391 1 0 1 2

6 0 2 1 0 0 0 391 6 0 0

7 0 0 3 1 0 2 8 380 2 4

8 0 0 4 1 0 2 0 0 392 1

9 1 0 1 3 1 1 1 2 1 389

Table 11 Precision, Recall, and F1-Score for each digit

Class 0 1 2 3 4 5 6 7 8 9 Weight Avg

Precision 0.99 0.98 0.97 0.97 0.99 0.98 0.95 0.97 0.98 0.97 0.98

Recall 0.98 0.98 0.98 0.98 0.97 0.98 0.98 0.95 0.98 0.97 0.98

F1-Score 0.99 0.98 0.97 0.98 0.98 0.98 0.97 0.96 0.98 0.97 0.98

 The percentage of precision, recall, and F1-score for each class are shown in

Table 11. The lowest precision and recall for 6 and 7 was 95%. The minimum

percentage of the F1-score was 96% for class 7. Overall, the weighted average raised

to 98%. The precision, recall, and F1-score are defined as,

𝑝𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(22)

 59

𝑟ⅇ𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(23)

𝐹1_𝑠𝑐𝑜𝑟ⅇ =

2 ∗ 𝑝𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟ⅇ𝑐𝑎𝑙𝑙

𝑝𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟ⅇ𝑐𝑎𝑙𝑙

(24)

Where TP stands for true positive and FP for false positive. FN represents a false

negative.

 The VGG-8 model was trained and saved for deployment in the local system.

The size of the model is 22.949 MB. Using TensorFlow as backend and OpenCV, the

model was deployed in the local system (laptop) for real-time detection and prediction

of BSL digits as shown in Figures 53 and 54. The resolution of the images taken for

prediction was 64x64x3 pixels. It was observed that the prediction was better indoor

compared to outdoor. However, the room must be bright. The model was tested with

different backgrounds and found that varying backgrounds do not hinder the prediction.

The model was robust.

4.3 BSL Alphabets Detection and Recognition

 There are 30,000 RGB images of size 200x200 in the BSL alphabet dataset. The

dataset is further partitioned into train and test sets that consisted of 80% and 20%

images respectively. The images are further resized to 64x64x3 pixels at the time of

training the model. The images are resized to reduce the loading and training time. In

the previous section, the VGG-8 network outperformed various sign language models

with the BSL digit dataset. Therefore, VGG-8 is used with the alphabet dataset as well.

The convolutional blocks extract features and fully connected blocks classify images

into one of the classes as shown in Figure 40. The CNN and VGG-8 were compared

and evaluated with different parameters fine-tuning as shown in Table 12. Different

models with varying filter sizes and dense layers were trained by either inclusion or

exclusion of batch normalization and augmentation. However, VGG-8 with batch

normalization and augmentation obtained the best train and test accuracy of 98.27%

and 99.72% respectively.

 60

Figure 40 Architecture of CNN model

Source: Wangchuk et al. (2020b)

Table 12 Accuracy analysis with different parameters

Source: Wangchuk et al. (2020a)

 The network with one convolutional layer without batch normalization and

augmentation gave the worst train and test accuracy of 16.31% and 38.35%

respectively. However, accuracy increased to 62.08% and 86.22% with the addition of

batch normalization and augmentation in the network. The huge difference between

train and test accuracy clearly showed the underfitting during training the model. The

network with two convolutional layers performed better than one convolutional layer.

Furthermore, the difference between train (94.93%) and test (95.95%) accuracy is

reduced as shown in Table 12. It was observed that the network learns better with the

addition of convolutional layers with the different filter sizes, batch normalization, and

Layers Number of Filters BatchNorm Dropout Augmentation FC Train Acc (%) Test Acc (%)

1

32 no yes no 2 16.31 38.35

32 yes yes yes 2 62.08 86.22

2

32, 64 no yes no 2 94.93 95.95

32, 64 yes yes yes 3 38.14 45.20

4

32, 64, 128, 256 no yes no 3 96.55 98.58

32, 64, 128, 256 yes yes yes 3 94.72 99.55

6 32, 32, 64, 64, 128, 128 yes yes yes 2 98.27 99.72

 61

augmentation. However, with the addition of more layers, learnable parameters increase

and take more time to train the network.

 It is clear from Table 12 that the testing accuracies are greater than training

accuracies. Generally, it is expected that the training accuracy should be slightly higher

than the testing accuracy. It was found that the implementation of different dropout

ratios in the networks resulted in lower training accuracy compared with the testing

accuracy. The desired neurons are not activated with dropout implementation. For

example, the dropout ratios used are 0.3 and 0.5 in different network layers and dense

layers, 30% and 50% of the neurons would be dropped in respective layers and would

not participate in the training of the network.

Figure 41 Analysis of accuracy and loss with varying epoch

 Figure 41 illustrates the accuracy and loss of training and testing between 50

epochs. It was observed that the accuracy of both train and test increased sharply in the

first 10 epochs. However, learning stopped from 25 epochs and maintained constant

accuracy. The loss plummeted in the beginning but stopped declining after having

reached 20 epochs. Overall, the accuracy increased and loss decreased without showing

overfitting nor underfitting.

 62

Figure 42 Alphabets’ confusion matrix

Source: Wangchuk et al. (2020a)

 The confusion matrix is shown in Figure 42. The highest false positive was with

the class ཆ (chha) and the highest false negative was observed with the class ཅ (cha).

However, the alphabet “cha” is 5 times misclassified as “chha” which was the highest

misclassified class. The alphabets ཁ (kha) and ལ (la) are the second-highest

misclassified classes. Overall, both false positives and false negatives were 17.

 The precision, recall, and F1-score are shown in Table 13. It was analyzed that

the lowest precision and recall for class “chha” and “cha” respectively was 97%.

However, the weighted average for the precision, recall, and F1-score was 100%.

 63

Table 13 Tabulation of precision, recall, and F1-score of alphabets

Class Precision Recall F1-Scores Class Precision Recall F1-Scores

ka 1.00 1.00 1.00 ma 1.00 1.00 1.00

kha 1.00 0.99 0.99 tsa 1.00 1.00 1.00

ga 1.00 1.00 1.00 tsha 1.00 1.00 1.00

nga 1.00 1.00 1.00 dza 1.00 1.00 1.00

cha 0.99 0.97 0.98 wa 1.00 1.00 1.00

chha 0.97 0.99 0.98 zha 1.00 0.99 1.00

ja 1.00 0.99 1.00 za 1.00 1.00 1.00

nya 0.99 0.99 0.99 `a 1.00 0.99 0.99

ta 1.00 1.00 1.00 ya 1.00 1.00 1.00

tha 1.00 0.99 1.00 ra 1.00 1.00 1.00

da 1.00 1.00 1.00 la 0.98 0.98 0.98

na 1.00 1.00 1.00 sha 1.00 1.00 1.00

pa 1.00 1.00 1.00 sa 1.00 1.00 1.00

pha 1.00 1.00 1.00 ha 1.00 1.00 1.00

ba 1.00 1.00 1.00 a 1.00 1.00 1.00

Weighted average 1.00 1.00 1.00

 The trained model of size 23.027 MB was saved and deployed using laptop with

OpenCV and TensorFlow. Similar to BSL digits dataset, image of size 64x64x3 pixels

were used to detect and recognize BSL alphabets in real-time using webcam as shown

in Figures 51 and 52. The detection results were better indoor rather than outdoor.

However, indoor should be bright.

4.4 Alphanumeric Detection and Recognition

 There are 60,000 images in an alphanumeric BSL dataset. The increased number

of images takes a longer time to train the networks. Furthermore, deeper layers increase

the complexity of the network. Therefore, pickle is used for the serialization of images

that converts them into byte streams. The serialized objects are faster to transfer or read

images during the training. During serialization, images are further resized to

128x128x3 pixels that are given as input to the model. The modification of ResNet50

with 43 convolutional (Conv) layers obtained the best train and test accuracy of 100%

and 98.38% respectively.

 The deep network exhibits better accuracy compared with a fewer number of

Conv layers. Table 14 displays the evaluation of an alphanumeric dataset with deep

learning. The LeNet5 with a batch size of 512 gained 100% training accuracy but the

 64

validation of 83.08% showed that the network is overfitting. However, AlexNet,

VGGNet, and ResNet learned without overfitting nor underfitting. The highest train

accuracy of 100% was observed with LeNet and ResNet but formal overfitted the

network during the training. Similarly, the highest validation accuracy of 98.44% was

observed with AlexNet.

Table 14 Evaluation of deep learning models on BSL dataset

Model Batch Size Epochs Time(s) Train Acc. Validate Acc.

LeNet5 512 97 1648 100 83.08

AlexNet 128 37 861 99.92 98.44

VGG 256 55 2133 99.90 97.49

ResNet 128 129 16504 100 98.38

 Table 15 illustrates the configuration of the ResNet-44. The network was

divided into four stages. The first stage contained one Conv layer without Conv-block

and identity-block. However, the remaining stages consisted of one Conv-block each

followed by two, three, and five identity-blocks respectively as shown in Figure 44.

Further, the Conv-block and identity-block comprised of four and three Conv layers

respectively as shown in Figure 43. Therefore, the network was designed with 43

convolutional layers and a dense layer (ResNet-44) as shown in Figure 44.

Table 15 Number of convolutional layers in ResNet-44

stage conv conv-block Identity-Block

1 1 0 0

2 0 1 2

3 0 1 3

4 0 1 5

Total Conv 1 12 30

 65

Figure 43 Skip connection with identity-block and Conv-block

Figure 44 The ResNet-43 architecture

 66

Figure 45 Graph showing model accuracy and loss with varying epochs

 Figure 45 shows the accuracy and loss of the model with varying epochs. The

accuracy increased sharply in the first 10 epochs and was steady after 20 epochs.

Similarly, loss plummeted in the first 5 epochs. However, loss stopped declining after

40 epochs. Overall, the model demonstrated 100% training accuracy with the minimum

error. The evaluation of the classification is further illustrated in the confusion matrix

in Figures 46 and 47. The highest false positive was 22 with class EIGHT (38).

However, both the classes CHHA (5) and SEVEN (37) have the highest false negative

of 18 each. The classes CHHA and SEVEN were nine times misclassified as CHA and

EIGHT respectively as shown in Figure 46. A total of 18000 images were used as the

validation set and of which 296 images were misclassified.

 67

Figure 46 ResNet-43 confusion matrix

 68

Figure 47 Graph displaying false positive and negative over true positive

Figure 48 Analysis of predicted class with actual class

 Figures 46, 47, and 48 shows the classification result of predicted classes and

actual classes. The misclassification was due to the similar shapes, images collected

with varying angles, and augmentation. Figure 49 shows similar shapes that were

misclassified in Figure 48. For example, classes ZHA (ཞ) and CHHA (ཆ) or classes A’

 69

(འ) and SHA (ཤ) are exhibiting similar shape. Similarly, Figure 49 illustrates similar

features.

Figure 49 First row displays the actual class and the second row shows predicted

class

 The second reason for the misclassification was due to the varying angles in the

dataset. The images or videos were recorded with different angles and distances from

the actors to add variations to the dataset. The angles during image recording play a

vital role. For example, in Figure 49, the classes TWO (༢) and EIGHT (༨) or PHA (ཕ)

or SIX (༦) become similar due to the rotation of the camera during image collection.

Finally, misclassification was because of the width and height shift during

augmentation. Figure 50 shows class LA (ལ) changed to class NYA (ཉ) due to width

shift by a certain pixel.

Figure 50 Augmentation changes classes: (a) La, (b) Nya, (c) with shift

converted (a) to (b)

Source: Wangchuk et al. (2020a)

 70

 The VGGNet and ResNet models were deployed for real-time detection and

recognition of BSL alphanumeric using a laptop webcam. The size of the VGG and

ResNet models were 108.886 MB and 38.168 MB Respectively. The models take

128x128x3 resolution images for detection and recognition. Similar to BSL Digits and

Alphabet datasets, the BSL Alphanumeric models performed better in closed-door

compared to outdoor but the room must be bright.

4.5 Real-time Detection and Recognition Using Webcam

 The models were tested in real-time using the webcam. The trained models were

saved and deployed with the TensorFlow, VS code, python, and OpenCV using the

laptop. The webcam of the laptop reads the image in real-time and inferences with the

trained model to predict one of the classes. The models were evaluated both indoor and

outdoor with varying backgrounds. It was observed that the predictions were better

indoor but the room must be bright. It was also observed that varying backgrounds did

not affect classification. Figures 51 and 52 show real-time prediction of alphabets Zha

(ཞ) and La (ལ) respectively. Figures 53 and 54 show digits 3 (༣) and 9 (༩) respectively.

The outputs of the model were both in Dzongkha and English text. The English output

validates the Dzongkha output as shown in the figures.

 71

Figure 51 Real-time detection and recognition of Zha

Figure 52 Real-time detection and recognition of La

 72

Figure 53 Real-time detection and recognition of Three

Figure 54 Real-time detection and recognition of Nine

 73

CHAPTER V

CONCLUSION

5.1 Introduction

 The background of the study was presented in Chapter I followed by literature

reviews in Chapter II. The methodology details were explained in Chapter III and

discussion of results in chapter IV followed by conclusion in Chapter V. In the

conclusion section, a summary of the thesis is presented first followed by limitations

and future works.

5.2 Summary

 The study examined different sign languages that have implemented state-of-

the-art machine learning algorithms as discussed in Chapter II. It was found that sign

languages are different in each country. However, there are some common signs

between sign languages such as numbers. Besides, many countries have both static and

dynamic gestures in sign languages. Nevertheless, the BSL sign language does not have

a static sign except alphabets and digits. The BSL word requires either one hand or two

hand gestures. The main purpose of the study was to build a suitable machine learning

model to detect and recognize BSL hand-shaped alphabets and digits. Furthermore,

first-ever BSL hand-shaped alphabets and digits dataset was curated and created. There

are three different datasets created: 20,000 digits dataset, 30,000 alphabets dataset, and

60,000 alphanumeric datasets. The appropriate machine learning models are tested with

these BSL datasets.

 Based on the literature reviews in Chapter II, BSL datasets were evaluated with

different sign language models. The CNN algorithm was used to extract features from

the images with parameters fine-tuning to suit BSL datasets. For digit detection and

recognition, six convolutional layers with the batch normalization and dropout

outperformed LeNet, SVM, KNN, and logistic regression with 99.94% and 97.62%

training and testing respectively. Similarly, for alphabets recognition, the different

number of convolutional layers and either inclusion or exclusion of batch normalization

and dropout were evaluated. The VGG-8 network that consisted of six convolutional

 74

layers obtained the best training and validation accuracy of 98.27% and 99.72%

respectively. However, alphanumeric used deeper layers that were built similar to

ResNet-50 with 43 convolutional layers obtained better training accuracy of 100%

compared to LeNet, AlexNet, and VGG. The deeper layers learn better but take more

time to train the model.

 In this study, the possibility of Computer Vision applications with the BSL was

studied. This research is the first attempt to introduce Computer Vision with the

Bhutanese Sign Language. Different sign language algorithms were tested and

evaluated with hand-shaped alphabets and digits. It was observed that multiclass with

a huge number of images take a longer time to train the model. However, serialization

of images (byte streams) using pickle reduced the training time. It was observed that

the Bhutanese sign language applications can be developed using machine learning

models.

5.3 Limitation of the study

 The BSL dataset shows high accuracy in training the models as discussed in

Chapter IV. However, there are limitations in data acquisition and model training. The

limitations are given below:

1. Smartphones and webcam were also used for recording videos and capturing

images respectively.

2. Images captured with varying angles gave false classes impression. For

example, PA and PHA have similar shapes. The angles play an important role.

3. Augmentation gives variation to the dataset. However, width and height shift in

the BSL dataset gave an incorrect classification of classes. For example, LA and

NYA classes. The width shift of NYA by a certain pixel makes LA.

4. The algorithms implemented were having difficulties in correctly detecting and

recognizing classes CHHA and SEVEN. The class CHHA was misclassified as

CHA and SEVEN as EIGHT and vice-versa is true.

5. Cannot train a model with a huge number of images in the dataset. This

increases the training time and requires higher system specifications.

 75

5.4 Future Work

 In the future, high-resolution images can be collected without varying angles.

This would classify similar shape classes with better accuracy. The number of actors

can be increased with the inclusion of children's hand-shaped data. In addition, dynamic

gesture recognition using LSTM or 3D CNN can be studied by creating a video-based

BSL dataset. Furthermore, the study can be extended to gesture to voice translation with

android or desktop-based application development.

REFE REN CES

REFERENCES

REFERENCES

Ahsan, M. R., Ibrahimy, M. I., & Khalifa, O. O. (2011). Electromygraphy (EMG) signal

based hand gesture recognition using artificial neural network (ANN). Paper

presented at the 2011 4th International Conference on Mechatronics (ICOM).

Akl, A., & Valaee, S. (2010). Accelerometer-based gesture recognition via dynamic-

time warping, affinity propagation, & compressive sensing. Paper presented at

the 2010 IEEE International Conference on Acoustics, Speech and Signal

Processing.

Akmeliawati, R., Dadgostar, F., Demidenko, S., Gamage, N., Kuang, Y. C., Messom,

C., . . . SenGupta, G. (2009). Towards real-time sign language analysis via

markerless gesture tracking. Paper presented at the 2009 IEEE Instrumentation

and Measurement Technology Conference.

Alvi, A. K., Azhar, M. Y. B., Usman, M., Mumtaz, S., Rafiq, S., Rehman, R. U., &

Ahmed, I. (2004). Pakistan sign language recognition using statistical template

matching. International Journal of Information Technology, 1(1), 1-12.

Ariesta, M. C., Wiryana, F., & Kusuma, G. P. (2018). A Survey of Hand Gesture

Recognition Methods in Sign Language Recognition. Pertanika Journal of

Science & Technology, 26(4).

Attenberg, J., Melville, P., Provost, F., & Saar-Tsechansky, M. (2011). Selective data

acquisition for machine learning. Cost-sensitive machine learning, 101.

Azar, S. G., & Seyedarabi, H. (2020). Trajectory-based recognition of dynamic Persian

sign language using hidden Markov model. Computer Speech & Language, 61,

101053.

Babu, U. R., Venkateswarlu, Y., & Chintha, A. K. (2014). Handwritten digit

recognition using K-nearest neighbour classifier. Paper presented at the 2014

World Congress on Computing and Communication Technologies.

Baccouche, M., Mamalet, F., Wolf, C., Garcia, C., & Baskurt, A. (2011). Sequential

deep learning for human action recognition. Paper presented at the International

workshop on human behavior understanding.

 78

Bjorck, N., Gomes, C. P., Selman, B., & Weinberger, K. Q. (2018). Understanding

batch normalization. Paper presented at the Advances in neural information

processing systems.

Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition.

Data mining and knowledge discovery, 2(2), 121-167.

Camastra, F., & De Felice, D. (2013). LVQ-based hand gesture recognition using a data

glove Neural Nets and Surroundings (pp. 159-168): Springer.

Chai, X., Liu, Z., Yin, F., Liu, Z., & Chen, X. (2016). Two streams recurrent neural

networks for large-scale continuous gesture recognition. Paper presented at the

2016 23rd International Conference on Pattern Recognition (ICPR).

Chen, F.-S., Fu, C.-M., & Huang, C.-L. (2003). Hand gesture recognition using a real-

time tracking method and hidden Markov models. Image and vision computing,

21(8), 745-758.

Cheng, H.-D., Jiang, X. H., Sun, Y., & Wang, J. (2001). Color image segmentation:

advances and prospects. Pattern recognition, 34(12), 2259-2281.

Cheok, M. J., Omar, Z., & Jaward, M. H. (2019). A review of hand gesture and sign

language recognition techniques. International Journal of Machine Learning

and Cybernetics, 10(1), 131-153.

Cheung, W., & Hamarneh, G. (2009). n-SIFT: n-Dimensional Scale Invariant Feature

Transform. IEEE Transactions on Image Processing, 18(9), 2012-2021.

Clark, P., & Niblett, T. (1987). Induction in Noisy Domains. Paper presented at the

EWSL.

Conseil, S., Bourennane, S., & Martin, L. (2007). Comparison of Fourier descriptors

and Hu moments for hand posture recognition. Paper presented at the 2007 15th

European Signal Processing Conference.

Dai, C., Liu, X., & Lai, J. (2020). Human action recognition using two-stream attention

based LSTM networks. Applied Soft Computing, 86, 105820.

Dardas, N. H., & Georganas, N. D. (2011). Real-time hand gesture detection and

recognition using bag-of-features and support vector machine techniques. IEEE

Transactions on Instrumentation and measurement, 60(11), 3592-3607.

 79

Deng, Y., & Manjunath, B. (2001). Unsupervised segmentation of color-texture regions

in images and video. IEEE transactions on pattern analysis and machine

intelligence, 23(8), 800-810.

Dorji, K.-O. (2008). A brief history of Bhutan House in Kalimpong. Journal of Bhutan

Studies, 19(2), 9-33.

Edel, M., & Köppe, E. (2016). Binarized-blstm-rnn based human activity recognition.

Paper presented at the 2016 International conference on indoor positioning and

indoor navigation (IPIN).

Elmezain, M., Al-Hamadi, A., Appenrodt, J., & Michaelis, B. (2009). A hidden markov

model-based isolated and meaningful hand gesture recognition. International

Journal of Electrical, Computer, and Systems Engineering, 3(3), 156-163.

Funaya, H., & Ikeda, K. (2012). A statistical analysis of soft-margin support vector

machines for non-separable problems. Paper presented at the The 2012

International Joint Conference on Neural Networks (IJCNN).

Ge, Z., Song, Z., Ding, S. X., & Huang, B. (2017). Data mining and analytics in the

process industry: The role of machine learning. Ieee Access, 5, 20590-20616.

Gupta, B., Shukla, P., & Mittal, A. (2016). K-nearest correlated neighbor classification

for Indian sign language gesture recognition using feature fusion. Paper

presented at the 2016 International Conference on Computer Communication

and Informatics (ICCCI).

Gurjal, P., & Kunnur, K. (2012). Real time hand gesture recognition using SIFT.

International Journal of Electronics and Electrical Engineering, 2(3), 19-33.

Han, J., Shao, L., Xu, D., & Shotton, J. (2013). Enhanced computer vision with

microsoft kinect sensor: A review. IEEE transactions on cybernetics, 43(5),

1318-1334.

Han, S., Qubo, C., & Meng, H. (2012). Parameter selection in SVM with RBF kernel

function. Paper presented at the World Automation Congress 2012.

Haseeb, M. A. A., & Parasuraman, R. (2017). Wisture: Rnn-based learning of wireless

signals for gesture recognition in unmodified smartphones. arXiv preprint

arXiv:1707.08569.

 80

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image

recognition. Paper presented at the Proceedings of the IEEE conference on

computer vision and pattern recognition.

He, W., Wu, K., Zou, Y., & Ming, Z. (2015). Wig: Wifi-based gesture recognition

system. Paper presented at the 2015 24th International Conference on Computer

Communication and Networks (ICCCN).

Hu, Y., Wong, Y., Wei, W., Du, Y., Kankanhalli, M., & Geng, W. (2018). A novel

attention-based hybrid CNN-RNN architecture for sEMG-based gesture

recognition. PloS one, 13(10).

Huang, C.-l., & Jeng, S.-H. (2001). A model-based hand gesture recognition system.

Machine vision and applications, 12(5), 243-258.

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely

connected convolutional networks. Paper presented at the Proceedings of the

IEEE conference on computer vision and pattern recognition.

Huang, G., Sun, Y., Liu, Z., Sedra, D., & Weinberger, K. Q. (2016). Deep networks

with stochastic depth. Paper presented at the European conference on computer

vision.

Iannizzotto, G., & Vita, L. (2000). Fast and accurate edge-based segmentation with no

contour smoothing in 2-D real images. IEEE Transactions on Image

Processing, 9(7), 1232-1237.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network

training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

Ji, S., Xu, W., Yang, M., & Yu, K. (2012). 3D convolutional neural networks for human

action recognition. IEEE transactions on pattern analysis and machine

intelligence, 35(1), 221-231.

Kar, A., Rai, N., Sikka, K., & Sharma, G. (2017). Adascan: Adaptive scan pooling in

deep convolutional neural networks for human action recognition in videos.

Paper presented at the Proceedings of the IEEE conference on computer vision

and pattern recognition.

Kariniotakis, G. (2017). Renewable energy forecasting: from models to applications:

Woodhead Publishing.

 81

Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2019). A survey of the recent

architectures of deep convolutional neural networks. arXiv preprint

arXiv:1901.06032.

Kim, J., Kwon Lee, J., & Mu Lee, K. (2016). Deeply-recursive convolutional network

for image super-resolution. Paper presented at the Proceedings of the IEEE

conference on computer vision and pattern recognition.

Kim, J., Mastnik, S., & André, E. (2008). EMG-based hand gesture recognition for

realtime biosignal interfacing. Paper presented at the Proceedings of the 13th

international conference on Intelligent user interfaces.

Ko, S.-K., Son, J. G., & Jung, H. (2018). Sign language recognition with recurrent

neural network using human keypoint detection. Paper presented at the

Proceedings of the 2018 Conference on Research in Adaptive and Convergent

Systems.

Kotsiantis, S. B., Pierrakeas, C., & Pintelas, P. E. (2003). Preventing student dropout

in distance learning using machine learning techniques. Paper presented at the

International conference on knowledge-based and intelligent information and

engineering systems.

Koul, M., Patil, P., Nandurkar, V., & Patil, S. (2016). Sign language recognition using

leap motion sensor. International Research Journal of Engineering and

Technology (IRJET), 3(11), 322-325.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep

convolutional neural networks. Paper presented at the Advances in neural

information processing systems.

Kumar, G., & Bhatia, P. K. (2014). A detailed review of feature extraction in image

processing systems. Paper presented at the 2014 Fourth international conference

on advanced computing & communication technologies.

LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., & Jackel,

L. Backpropagation Applied to Handwritten Zip Code Recognition, 1989.

Dostupné z: http://yann. lecun. com/exdb/publis/pdf/lecun-89e. pdf.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., &

Jackel, L. D. (1989). Backpropagation applied to handwritten zip code

recognition. Neural computation, 1(4), 541-551.

http://yann/

 82

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.

Lefebvre, G., Berlemont, S., Mamalet, F., & Garcia, C. (2013). BLSTM-RNN based 3D

gesture classification. Paper presented at the International conference on

artificial neural networks.

Li, Y.-T., & Wachs, J. P. (2014). HEGM: A hierarchical elastic graph matching for

hand gesture recognition. Pattern Recognition, 47(1), 80-88.

Lindeberg, T. (2012). Scale invariant feature transform.

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints.

International journal of computer vision, 60(2), 91-110.

Mahbub, U., Imtiaz, H., Roy, T., Rahman, M. S., & Ahad, M. A. R. (2013). A template

matching approach of one-shot-learning gesture recognition. Pattern

Recognition Letters, 34(15), 1780-1788.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in

nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133.

Mingqiang, Y., Kidiyo, K., & Joseph, R. (2008). A survey of shape feature extraction

techniques. Pattern recognition, 15(7), 43-90.

Mohandes, M., Aliyu, S., & Deriche, M. (2014). Arabic sign language recognition

using the leap motion controller. Paper presented at the 2014 IEEE 23rd

International Symposium on Industrial Electronics (ISIE).

Mufarroha, F. A., & Utaminingrum, F. (2017). Hand gesture recognition using adaptive

network based fuzzy inference system and K-nearest neighbor. International

Journal of Technology, 8(3), 559-567.

Murthy, G., & Jadon, R. (2009). A review of vision based hand gestures recognition.

International Journal of Information Technology and Knowledge Management,

2(2), 405-410.

Murthy, G., & Jadon, R. (2010). Hand gesture recognition using neural networks. Paper

presented at the 2010 IEEE 2nd International Advance Computing Conference

(IACC).

Naidu, M., Kumar, P. R., & Chiranjeevi, K. (2018). Shannon and fuzzy entropy based

evolutionary image thresholding for image segmentation. Alexandria

engineering journal, 57(3), 1643-1655.

 83

Nikam, A. S., & Ambekar, A. G. (2016). Sign language recognition using image based

hand gesture recognition techniques. Paper presented at the 2016 Online

International Conference on Green Engineering and Technologies (IC-GET).

Nimbarte, N. M., & Mushrif, M. M. (2010). Multi-level thresholding algorithm for

color image segmentation. Paper presented at the 2010 Second International

Conference on Computer Engineering and Applications.

Ojha, V. K., Abraham, A., & Snášel, V. (2017). Metaheuristic design of feedforward

neural networks: A review of two decades of research. Engineering

Applications of Artificial Intelligence, 60, 97-116.

Palvanov, A., & Im Cho, Y. (2018). Comparisons of deep learning algorithms for

MNIST in real-time environment. International Journal of Fuzzy Logic and

Intelligent Systems, 18(2), 126-134.

Panwar, M. (2012). Hand gesture recognition based on shape parameters. Paper

presented at the 2012 International Conference on Computing, Communication

and Applications.

Patle, A., & Chouhan, D. S. (2013). SVM kernel functions for classification. Paper

presented at the 2013 International Conference on Advances in Technology and

Engineering (ICATE).

Priyal, S. P., & Bora, P. K. (2013). A robust static hand gesture recognition system

using geometry based normalizations and Krawtchouk moments. Pattern

Recognition, 46(8), 2202-2219.

Rahaman, M. A., Jasim, M., Ali, M. H., & Hasanuzzaman, M. (2014). Real-time

computer vision-based Bengali sign language recognition. Paper presented at

the 2014 17th International Conference on Computer and Information

Technology (ICCIT).

Raheja, J., Mishra, A., & Chaudhary, A. (2016). Indian sign language recognition using

SVM. Pattern Recognition and Image Analysis, 26(2), 434-441.

Rastgoo, R., Kiani, K., & Escalera, S. (2020). Hand sign language recognition using

multi-view hand skeleton. Expert Systems with Applications, 113336.

Rawat, W., & Wang, Z. (2017). Deep convolutional neural networks for image

classification: A comprehensive review. Neural computation, 29(9), 2352-

2449.

 84

Rinzin, Y. C. (2019a, 9/24/2019). Learning sign language is important to listen to deaf

people. Keunsel. Retrieved from https://theworldnews.net/bt-news/learning-

sign-language-is-important-to-listen-to-deaf-people

Rinzin, Y. C. (2019b, 9/27/2019). Research team developing Bhutanese sign language.

Kuensel. Retrieved from https://annx.asianews.network/content/research-team-

developing-bhutanese-sign-language-105080

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by

back-propagating errors. nature, 323(6088), 533-536.

Saleem, T., & Chishti, M. (2020). Assessing the Efficacy of Logistic Regression,

Multilayer Perceptron, and Convolutional Neural Network for Handwritten

Digit Recognition. International Journal of Computing and Digital Systems,

9(2), 299-308.

Sathya, R., & Abraham, A. (2013). Comparison of supervised and unsupervised

learning algorithms for pattern classification. International Journal of

Advanced Research in Artificial Intelligence, 2(2), 34-38.

Schmitt, D., & McCoy, N. (2011). Object classification and localization using SURF

descriptors. CS, 229, 1-5.

Sezgin, M., & Sankur, B. (2004). Survey over image thresholding techniques and

quantitative performance evaluation. Journal of Electronic imaging, 13(1), 146-

166.

Sharma, S. (2017). Activation functions in neural networks. Towards Data Science, 6.

Shih, F. Y., & Cheng, S. (2005). Automatic seeded region growing for color image

segmentation. Image and vision computing, 23(10), 877-886.

Shin, S., & Sung, W. (2016). Dynamic hand gesture recognition for wearable devices

with low complexity recurrent neural networks. Paper presented at the 2016

IEEE International Symposium on Circuits and Systems (ISCAS).

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-

scale image recognition. arXiv preprint arXiv:1409.1556.

Sinith, M., Kamal, S. G., Nisha, B., Nayana, S., Surendran, K., & Jith, P. (2012). Sign

gesture recongnition using support vector machine. Paper presented at the 2012

International Conference on Advances in Computing and Communications.

https://theworldnews.net/bt-news/learning-sign-language-is-important-to-listen-to-deaf-people
https://theworldnews.net/bt-news/learning-sign-language-is-important-to-listen-to-deaf-people
https://annx.asianews.network/content/research-team-developing-bhutanese-sign-language-105080
https://annx.asianews.network/content/research-team-developing-bhutanese-sign-language-105080

 85

Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics

and computing, 14(3), 199-222.

Sprenger, M. E., & Gwin, P. J. (2018). Radar-based gesture recognition: Google

Patents.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).

Dropout: a simple way to prevent neural networks from overfitting. The journal

of machine learning research, 15(1), 1929-1958.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., . . . Rabinovich, A.

(2015). Going deeper with convolutions. Paper presented at the Proceedings of

the IEEE conference on computer vision and pattern recognition.

Tripathy, B., & Anuradha, J. (2017). Internet of Things (IoT): Technologies,

Applications, Challenges and Solutions: CRC Press.

Tuba, E., Tuba, M., & Simian, D. (2016). Handwritten digit recognition by support

vector machine optimized by bat algorithm.

Veit, A., Wilber, M. J., & Belongie, S. (2016). Residual networks behave like

ensembles of relatively shallow networks. Advances in neural information

processing systems, 29, 550-558.

Verma, V. K., Srivastava, S., & Kumar, N. (2015). A comprehensive review on

automation of Indian sign language. Paper presented at the 2015 International

Conference on Advances in Computer Engineering and Applications.

Walcott, S. (2009). Geographical field notes urbanization in Bhutan. Geographical

Review, 99(1), 81-93.

Wangchuk, K., Riyamongkol, P., & Waranusast, R. (2020). Real-time Bhutanese Sign

Language digits recognition system using Convolutional Neural Network. ICT

Express.

Wangmo, T., & Choden, K. (2010). 25 The Education System in Bhutan from 747 AD

to the First Decade of the Twenty-First Century. Handbook of Asian education:

A cultural perspective, 442.

Xie, R., & Cao, J. (2016). Accelerometer-based hand gesture recognition by neural

network and similarity matching. IEEE Sensors Journal, 16(11), 4537-4545.

 86

Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual

transformations for deep neural networks. Paper presented at the Proceedings

of the IEEE conference on computer vision and pattern recognition.

Xu, D. (2006). A neural network approach for hand gesture recognition in virtual

reality driving training system of SPG. Paper presented at the 18th International

Conference on Pattern Recognition (ICPR'06).

Yan, S., Xia, Y., Smith, J. S., Lu, W., & Zhang, B. (2017). Multiscale convolutional

neural networks for hand detection. Applied Computational Intelligence and

Soft Computing, 2017.

Yang, H.-D. (2015). Sign language recognition with the kinect sensor based on

conditional random fields. Sensors, 15(1), 135-147.

Yu, D., Wang, H., Chen, P., & Wei, Z. (2014). Mixed pooling for convolutional neural

networks. Paper presented at the International conference on rough sets and

knowledge technology.

Yun, L., Lifeng, Z., & Shujun, Z. (2012). A hand gesture recognition method based on

multi-feature fusion and template matching. Procedia Engineering, 29, 1678-

1684.

Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional

networks. Paper presented at the European conference on computer vision.

Zhang, S., Li, X., Zong, M., Zhu, X., & Cheng, D. (2017). Learning k for knn

classification. ACM Transactions on Intelligent Systems and Technology

(TIST), 8(3), 1-19.

Zhu, C., & Sheng, W. (2011). Wearable sensor-based hand gesture and daily activity

recognition for robot-assisted living. IEEE Transactions on Systems, Man, and

Cybernetics-Part A: Systems and Humans, 41(3), 569-573.

	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	List of tables
	List of figures
	CHAPTER I BACKGROUND OF THE STUDY
	1.1 Introduction
	1.2 Purposes of the Study
	1.3 Statement of the Problems
	1.4 Scope of the Study

	CHAPTER II LITERATURE REVIEW
	2.1 Introduction
	2.2 Early Gesture Recognition Techniques
	2.2.1 Image Acquisition
	2.2.2 Image Segmentation
	2.2.3 Feature Extraction
	2.2.4 Gesture Recognition

	2.3 Sign Language Recognition Algorithms
	2.3.1 Supervised Classification Algorithms
	2.3.2 Unsupervised Clustering Algorithms
	2.3.3 Convolutional Neural Networks

	2.4 Recent Trends in Sign Language Recognition

	CHAPTER III RESEARCH METHODOLOGY
	3.1 Introduction
	3.2 System requirements
	3.3 System overview
	3.3.1 Data acquisition
	3.3.2 Data Preprocessing
	3.3.3 Features Extraction and Classification
	3.3.3.1 Introduction
	3.3.3.2 Convolutional Neural Network
	3.3.3.2.1 Feedforward Neural Network
	3.3.3.2.2 Back Propagation Algorithm
	3.3.3.2.3 Loss Functions
	3.3.3.2.4 Optimizers

	3.3.3.3 Components of CNN
	3.3.3.3.1 Convolution Layer
	3.3.3.3.2 Activation Functions
	3.3.3.3.3 Pooling Layer
	3.3.3.3.4 Batch Normalization
	3.3.3.3.5 Dropout
	3.3.3.3.6 Fully Connected

	3.3.3.4 Visual Geometry Group
	3.3.3.5 Residual Network (ResNet)
	3.3.3.6 LeNet
	3.3.3.7 Support Vector Machine
	3.3.3.8 K-Nearest Neighbours
	3.3.3.9 Logistic Regression

	CHAPTER IV RESULT AND DISCUSSION
	4.1 Introduction
	4.2 BSL Digits Detection and Recognition
	4.3 BSL Alphabets Detection and Recognition
	4.4 Alphanumeric Detection and Recognition
	4.5 Real-time Detection and Recognition Using Webcam

	CHAPTER V CONCLUSION
	5.1 Introduction
	5.2 Summary
	5.3 Limitation of the study
	5.4 Future Work

	REFERENCES

