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ABSTRACT 

  

Landslide is one of the most frequent disasters at the Ossey watershed area 

in Bhutan causing inconvenience to the local people, financial losses, and claiming the 

lives of the people every year. This study aim to developing Landslide Susceptibility 

Mapping (LSM) at the Ossey watershed area in Bhutan and find the magnitude of 

impact of factors on the landslide by the factors. This study compares the accuracy of 

the different bivariate statistical models and the different spatial resolution on the 

accuracy of the LSM using various statistical methods. 

The landslide inventory was done using the sentinel-2 imagery data, google 

earth image and field investigation. A total of 164 landslide locations were identified 

during landslide inventory  of which 70% (115 landslide) were used for training 

datasets and the remaining 30% (49 locations) for the validation dataset. The LSM was 

developed using the fifteen factors which are derived from DEMs (ALOS PALSAR 

and SRTM), geological map of Bhutan, sentinel 2 data, digital topographic map of 

Bhutan, and rainfall data from Bhutan. All the influencing factors were resampled into 

three spatial resolutions namely to 12.5m, 30m, and 90m.   
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Three primary models were used to develop LSM which includes 1) 

Frequency Ratio (FR), 2) Index of Entropy (IOE), and 3) Weight of Evidence (WOE). 

The primary models were combined to form hybrid models which includes Frequency 

Ratio-Index of Entropy (FR-IOE), Index of Entropy, and Weight of Evidence (IOE-

WOE), and Weight of Evidence and Frequency Ratio (WOE-FR).  The LSM was 

developed using three different spatial resolutions for individual primary and hybrid 

models. All the LSM developed using various models were classified into five classes 

using the natural break classification to check area variation in different landslide zone. 

The LSMs was validated using sensitivity, specificity, accuracy, Kappa 

index, Area Under the Curve (AUC), Root Mean Square Error (RMSE). The sensitivity 

shows degree of correctly classified landslide pixel, specificity shows degree of 

correctly classified non-landslide pixel, accuracy shows the proportion of correctly 

classified landslide and non-landslide pixel, kappa index shows the reliability of the 

models, AUC shows prediction rate and RMSE shows the relative error between the 

models. The WOE and its hybrid models shows better accuracy in all the validation 

parameters. The highest sensitivity (0.8095) corresponds to WOE, IOE-WOE and 

WOE-FR, highest accuracy for WOE-FR(0.7925), highest Kappa index for WOE-

FR(0.5850), highest AUC for 0.8817(WOE and IOE-WOE), and the lowest RMSE for 

WOE(0.3722). This clearly shows that WOE is best model due to its superior accuracy. 

Moreover, when WOE is combined with other inferior models, it increases the 

accuracy. 

Regarding the deviation of accuracy using different accuracy parameters, it 

was observed that finer spatial resolution is much better than the coarse spatial 

resolution with higher sensitivity, specificity, accuracy, kappa index, AUC and lower 

RMSE. 

The results are expected to help researchers to understand how the accuracy 

deviates with the change in spatial resolution and to choose the best bivariate statistical 

analysis. The resultant maps are expected to provide a technical guide for the planners, 

decision-makers, and engineers for future developmental activities at the Ossey 

watershed area. 
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CHAPTER I  

INTRODUCTION 

 

1.1 Background 

Landslide is defined as the downward and outward movement of the slope-

forming materials composed of natural rocks, soils, artificial fills, or a combination of 

these materials (Varnes, 1958). Landslide is the most complex natural geo-hazard 

which causes devastation, incurred millions of financial losses, and affects 

developmental activities especially in the steep and rugged terrain (Khan et al., 2019). 

The landslide causes fatalities, tremendous property destruction, economic losses, and 

inconveniences (Wang, Sawada, and Moriguchi, 2011). The landslides are mainly due 

to the results of the interplay of the number of natural and man-made factors (Achour 

et al., 2017).  

It is important to understand the characteristics and mechanisms of individual 

landslides (He, Hu, Sun, Zhu, and Liu, 2019). The accurate representation of the 

landslide susceptible area which is prepared systemically will assist in reducing 

professional intervention for the decision-makers (Barella, Sobreira, and Zêzere, 2019). 

The Landslide Susceptibility Mapping (LSM) at the regional scale is of great 

importance to identify the risk, mitigation, land management, and planning in rugged 

terrain (Sun et al., 2018). The effective landslide risk map enables decision-makers for 

the fund allocation for risk management (Akgun, Kıncal, and Pradhan, 2012). However, 

it is still challenging work to create reliable spatial prediction and assessment of 

landslide due to the complex nature of influencing factors and human activities (Zhao, 

Wang, Jiang, Liu, and Wei, 2019).  

The LSM is one of the preliminary steps to avoid losses. The LSM requires 

different datasets. Among the various data Digital Elevation Model (DEM) is one of 

the most important and widely used datasets for the landslide study. Most of the DEMs 

are freely available while few are commercial DEM. Some the DEMs has very high 

spatial resolution while many are of moderate resolution. Spatial resolution is very 

important for determining the fundamental characteristics of ground from the remote 

sensing data. The spatial resolution defines the smallest scale at which the actual surface 
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of the earth is being extracted, identified, and mapped from the remote sensing platform 

(Mora, Lenzano, Toth, and Grejner, 2014). The spatial resolution determines the depth 

of information on the real ground surface. Most of the landslide study utilized the 

various DEMs for deriving the primary and secondary influencing factors. However, 

there is minimal research on the impact of DEMs on the accuracy of the landslide 

studies (Mahalingam and Olsen, 2016).  

 

1.2 Problem Statement 

The topography of Bhutan is characterized by a moderate to the steep slope with 

high mountains and narrow rivers. Bhutan is characterized by extreme tectonic activity 

due to the collision of the Indian and Eurasian continental plates which results in the 

uplift of the Himalayas (National Adaptation Programme of Actions [NAPA], 2014). 

The mountains are predominantly made up of uplifted sedimentary and metamorphic 

rocks, which are very fragile and sensitive to erosion during the monsoon season. Its 

fragile geology makes Bhutan highly vulnerable to landslides National  (NAPA, 2014). 

Similarly, the subtropical or alpine weathering action on unstable rocks is common in 

the region. This weathering action makes the region fragile and creates tension due to 

tectonic movement. This has resulted in weak and highly fractured rock and highly 

prone to landslides (Dawson, Neves, Sarkar, and Dijkstra, 2018). The steep and rugged 

terrain fails to hold the weak slope. The fast flowing rivers undercutting of the riverbank 

increasing the risk of landslides (Keunza, Dorji, and Wangda, 2004). 

Bhutan is located at the foot of the giant Himalayan mountain. The giant 

Himalayan mountain blocks the wind which carries the clouds. This results in 

condensation of the cloud and falls back as very heavy precipitation during the monsoon 

season in Nepal, Bhutan, and India. The monsoon rainfall is one of the main triggering 

factors for the landslide. However, the intensity of the rainfall differs from place to 

place which causes differences in the event of the landslides. 

The growth of the population increased pressure on the natural resources and 

anthropogenic activities which intensified the risk of the landslides in Bhutan (Keunza 

et al., 2004). The developmental activities such as the construction of roads, building 

houses, irrigation channels, etc., are inevitable as the population size increases (Pasang 

and Kubíček, 2018). Similarly, there is increased pressure on natural resources such as 
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the extraction of stones quarry, minerals, timbers, etc. Such activities result in cutting 

off the toe of the slope, extensive deforestation for agriculture. Landslide of varying 

degrees occurs relatively more in the southern part of Bhutan. Among the many 

landslides risk area, the Ossey watershed area experiences one of the worst landslides 

in Bhutan which causes frequent blockage of the national highway every year(Thongley 

and Vansarochana, 2021b). Sometimes, the landslides even claim the precious life of 

the people and property destruction. However, there is no research carried on the 

landslide at the Ossey watershed area.  

Regarding the datasets used for assessing the landslides, none of the scholars 

checked how the spatial resolution deviates the accuracy of the landslides. Generally, 

it is believed that the higher resolution gives greater accuracy for the landslide mapping. 

This study will also focus on how spatial resolution will affect the accuracy of the LSM. 

 

1.3 Objectives of the study  

  The following are objectives framed for the research to mitigate the landslides 

problem 

1. To find the relation between the landslide occurrences and the influencing 

factors 

2. To develop a landslide susceptibility map using bivariate statistical models and 

categorize based on the severity of the landslides 

3. To compare accuracy on the Landslide Susceptibility Mapping (LSM) using 

different spatial resolution Digital Elevation Model (DEM) using an individual 

statistical model 

4. To assess the accuracy of the Landslide Susceptibility Mapping (LSM) using 

three statistical models for individual Digital Elevation Models (DEM). 

 

1.4 Research Questions 

The research question for the above objectives are as follow:  

1. Where is the very high, high, moderate, low, and very low landslide prone zone 

at Ossey watershed area? 

2. How does the individual influencing factors contribute to the landslides? 
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3. How does the spatial resolution of DEM affect the accuracy of landslide 

studies? 

4. Which model is the most suitable for the LSM? 

 

1.5 Purpose of the study 

Bhutan is a mountainous country in the Himalayan region characterized by lots 

of steep and rugged slopes. The orographic effect of the great Himalayan mountain 

results in very heavy rainfall in Bhutan. The average annual rainfall ranges from about 

500mm/year in northern and as high as 5000 mm/year in the southern part of Bhutan. 

Due to the convergence of the Euro-Asian plates, the Himalayan is a relatively new 

mountain with loose sedimentary rocks. The combination of loose rocks, heavy rainfall, 

and the steep slopes result in the chronic landslides during the monsoon season.  

Although Bhutan is one of the top landslide prone areas in the South Asian 

country, Bhutan doesn’t have a landslide susceptibility map which will assist in the 

planning and development of the infrastructure. Moreover, even though some parts of 

Bhutan is one of the most landslide prone area, nobody has researched the landslides or 

none of the agency has published the landslide map. The Bhutanese government and 

private individuals keep on constructing buildings, roads, schools, etc without checking 

the stabilities of the area which results in loss of million worth properties and causes 

fatalities.  

The study takes account of the many influencing factors. The broad factors are 

geomorphological factors, hydrological factors, environmental factors, and human 

factors. The degree of impact from individual influencing factors differs from one 

another. Even the different classes of individual influencing factors contribute 

differently. This research gives information on how the individual factors contribute to 

the landslide, how each class within the factors contributes to the landslide, and how 

the overall combination of the factors shows the landslides susceptibility. There are 

many methods to evaluate LSM. The degree of accuracy differs from one another in all 

the methods. This study uses three bivariate statistical models which include Frequency 

Ratio (FR), Index of Entropy(IOE), and Weight of Evidence (WOE), and three hybrid 

models derived from the three primary statistical models. The hybrid models are FR-
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IOE, IOE-WOE, and WOE-FR. The study compares accuracy among the different 

models and hybrid models. 

The different DEMs are used to derive the geomorphological factors for the 

landslides. The DEMs used for the study are STRM 90m, SRTM 30m, and ALOS 

PALSAR 12.5m. The study focus on comparing the accuracy of the LSM using the 

different accuracy parameters. The validation and comparison of the accuracy of the 

different statistical models and DEMs are done using the confusion matrix, Receiver 

Operating Characteristics (ROC) curve, cohen’s kappa index, and Root Mean Square 

Error (RMSE). This study compares accuracy among the DEMs and the different 

statistical models for the landslide mapping.   

 

1.6 Significance of the study 

The landslide susceptibility map will guide the government organizations and 

private individuals for developmental activities. Although most of the area is a landslide 

prone area, we cannot keep the land under-utilized. The map will depict the severity of 

the landslides such as very low, low, moderate, high, and very high landslide 

susceptible areas for the large scale area. This map will help in locating the safest zone 

for future planning of infrastructure development.  

It is not possible to conduct a practical test for the large area and rugged terrain 

to show landslide susceptible zone. Moreover, it will be very expensive and time-

consuming. The Geographic Information System (GIS) technology help in processing 

the remote sensing data and other ancillary data from the relevant organization. The 

result from this study shows the landslide susceptibility zone with minimum cost in less 

time and more efficient. 

Since this study compares the accuracy of statistical models namely frequency 

ratio,  index of entropy, the weight of evidence, and combination of these statistical 

models it will assist future researchers in choosing the appropriate model for the 

landslides studies. Similarly, researchers can understand how the changes in spatial 

resolution deviate accuracy of the LSM. 
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CHAPTER II  

LITERATURE REVIEW 

 

2.1 Landslides 

The landslide comprises of mass movement of all varieties of materials on the 

slope in the form of topples, debris flow, rockfall, etc. except the avalanche of snow 

and ice (Varnes, 1984). The principle types of movement are falling, sliding, flowing, 

or their combinations (Varnes, 1978). The landslides are classified based on types of 

material types, movement, causes, and factors.  The classification of the types of slope 

failure is important because the engineers can design an appropriate remedial safety 

measure (Varnes, 1978). Similarly, the researchers, geologists and geographers can 

interpret past landslide events and predict future landslide trends. The landslides are 

caused by both natural factors and human activities. The natural factor includes the 

nature of the terrain, precipitation, geological factors, etc. and the human factor includes 

the improper planned developmental activities. The slope imbalance caused by human 

activities includes road construction, timber extraction, mining, etc in absence of a 

systematic approach for the identification of unstable areas (Jaafari, Najafi, 

Pourghasemi, Rezaeian, and Sattarian, 2014). 

Every year the landslide claims thousands of lives and responsible for causing 

damage to million worth properties around the world (Aleotti and Chowdhury, 1999). 

Although most landslides are more prevalent in the mountainous region, the landslides 

can occur anywhere in the world with enough local relief to generate gravitational 

stresses exceeding its bearing capacity (Varnes and Eckel, 1958).  

As per the international disaster database EM-DAT, the total death caused by 

the landslides between 1910-2020 was 67052, the total injured was 12060 and the total 

affected was 14,679,178 globally (EM-DAT, 2020). The detail of the total death, 

injured, and affected by the landslide in various continents between 1910-2020 is shown 

in Table 1 and it is maintained by international disaster database EM-DAT. From Table 

1, it is noticed that Asia is the most risky continent compared to different continents 

due to its higher number of death, injured and affected people. 
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Table 1 The total number of deaths, injured and affected by the landslide from 

1910-2020 

  Total Death No injured Total Affected 

Asia 25604 5564 8,821,136 

Africa 3171 442 221907 

America 20869 5484 5574270 

Europe 16830 518 40450 

Oceania 578 52 21415 

Global data 67052 12060 14,679,178 

Source: EM-DAT, 2020 

In recent years, researchers around the world are giving more attention to 

landslides due to a high impact on the socio-economic as well as pressure on the 

developmental activities on the mountainous region (Aleotti and Chowdhury, 1999). 

There is a great improvement in the new technology and the computational power in 

understanding the causes, triggering factors, and mechanics of the landslides, with the 

advancement in engineering and the physical science research, (Clague and Stead, 

2012). The exact mechanism of landslide initiation is very complicated to understand 

due to a large number of the variability of factors (Li and Wang, 2019). However, with 

the use of field surveys, statistical analysis, and digital image processing approach 

combine with several influencing factors are found to be significant to determine the 

stable slope mapping (Foumelis, Lekkas, and Parcharidis, 2004). The first step used by 

researchers for landslide prevention and mitigation is LSM (Li and Wang, 2019). 

 

2.2 Landslides studies in Bhutan 

Bhutan is a tiny landlocked country in the Himalayan region sandwiched 

between two giant countries namely India and China. Bhutan is characterized by steep 

and rugged terrain which is heavily affected by the landslides during monsoon season 

due to heavy precipitation. Although the country is one of the most landslide-prone 

areas, there isn’t much research done on landslides in Bhutan. The past studies on 

landslides in Bhutan cover only a certain portion of the area, that doesn’t cover the most 

crucial and the most landslide-prone area. The study carried out on landslide in Bhutan 

includes LSM using information value at Phuntsholing by (Pasang and Kubíček, 2018), 

landslide prone zonation using information at Tashigang-Samdrup Jongkhar highway 

value by Thongley and Vansarochana (2020), landslides in Bhutan by Keunza et al. 
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(2004), determination of probabilities of landslide event-a case study of Bhutan by 

Sarkar and Dorji (2019), application of soil nailing for the landslide mitigation in 

Bhutan: A case study at Sorchen Bypass by Sarkar et al. (2017),  Bhutanese road and 

bridge resilience to floods and landslide-First suggestions for assessment and response 

by Dawson et al. (2018), method for landslide risk evaluation and road operation 

management: A case study of Bhutan by Cheki and Shibayama (2008). 

Bhutan is located in one of the most severe seismic regions with seismic zone-

V as per the Bureau of Indian Standard which is has a similar tectonic setting as 

Northern India and Nepal (Pasang and Kubíček, 2018).  The active tectonic activities 

in the Himalayan region, Bhutan has been recognized a prone natural disaster that 

includes landslides (Keunza et al., 2004). Due to its location in the Himalayan foothill 

of the great Himalayan Mountain, it is heavily affected by the orographic effect of the 

Himalayan mountain. The orographic effect results in a heavy downpour in monsoon 

season which causes several landslides now and then in different parts of the country. 

The road network in Bhutan encounters challenging topography, heavy rainfall, and 

earthquake with a wide risk of floods and landslides (Dawson et al., 2018). The focus 

on the landslide is heightened by the development activities in the fragile geologic 

Himalayan region (Keunza et al., 2004). 

 

2.3 Types of Landslides based on the movement. 

Although the term landslides is the most common and generic term, all the 

landslide has its distinct characteristic. It is essential to identify the types of slope 

movement for the remedial measures as a precautionary measure in the future. Figure 

1 shows the detail elaboration on types of landslide and Table 2 is the classification of 

landslide based on Varnes (1978). 

A fall (Figure 1(a)) is a mass (soil or rock) detached from its original position 

from a steep slope or cliff with little or no shear displacement (Varnes, 1978). A topples 

(Figure 1(b))  is a forward and rotation movement of the mass of soil or rock about its 

axis below the center of gravity of the displaced mass (Cruden and Varnes, 1996).  

A slide (Figure 1(c))  is a downward displacement of the slope materials on the 

rupturing surface or thin zones of the intense shear strain (Highland and Bobrowsky, 

2008). Initially, the slope failure occurs at the local area which later expands from its 
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original area (Varnes, 1978). The slides are categorized into rotational slides, 

translational slides, and block slides. 

Table 2 Types of landslides based on movement. 

TYPES OF MOVEMENT 

TYPES OF MATERIAL 

BED 

ROCKS 

ENGINEERING SOILS 

Predominantly coarse Predominantly fine 

FALLS Rock fall Debris fall Earth fall 

TOPPLES Rock Topple Debris topple Earth topple 

SLIDES 
ROTATIONAL 

Rockslide Debris slide Earth slide 
TRANSLATIONAL 

LATERAL SPREADS Rock Spread Debris spread Earth spread 

FLOWS 

Rock Flow 

(Deep Creep) Debris flow (Soil Creep) Earth flow 

COMPLEX Combination of two or more principle type of movement 

Source: USGS, 2004 

A spread (Figure 1(d))  is a distinctive lateral extension of soil and rock mass 

combined accompanied by a subsidence of the fractured mass of cohesive materials 

into underlying materials (Cruden and Varnes, 1996). The spread may be due to the 

liquefaction or flow of the softer underlying materials and it is common on the gentle 

slope or flat terrain (Varnes, 1978). This slope failure is also caused by the rapid ground 

motion such as Earthquake or artificially induced motion (Highland and Bobrowsky, 

2008). 

 

Figure  1 The most common types of landslides  

Source: Cruden and VanDine, 2013 
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A flow (Figure 1(e)) is a rapid mass movement of the combination of loose soil, 

rock, organic matter, air, and water mobilize as a slurry that flows downslope. The 

common causes of flow are intense surface-water flow, heavy precipitation, or rapid 

snowmelt, that erodes and mobilizes loose soil or rock on steep slopes. The flow is 

categorized into debris flow, debris avalanche, earthflow, mudflow, and creep. 

2.4 Causes of Landslides  

The slope failures are strongly influenced by gravity, mechanical weathering, 

and the presence of interstitial water (Highland and Bobrowsky, 2008). The frequency 

and extent of the landslides depend on the variety of factors such as soil type, geology, 

morphology, steepness of the slope, precipitation, and built-up structure (Highland and 

Bobrowsky, 2008). The causes of the landslides are broadly classified into natural 

causes and human causes (Varnes, 1958).  

In the natural causes, there is three major landslide triggering mechanism which 

acts independently or in combination which includes water, seismic activity, and 

volcanic activity(Highland and Bobrowsky, 2008). Some examples of the natural 

landslide causes are cutting off the slope by the rivers, discontinuities such as fractures, 

joints, and bedding planes, heavy precipitation, etc (Varnes, 1958).  

The main human causes of landslides are due to population growth and the 

expansion of anthropogenic activities (Pasang and Kubíček, 2018). As the population 

increases, the demand for land and natural resources increases (Pasang and Kubíček, 

2018). Similarly, the anthropogenic activities also increase with modernization which 

ultimately destabilizes the slope. The human activities undercut at the bottom of the 

slope and loading on the top of the slope results in exceeding the bearing strength of 

the soil which ultimately causes landslides. Some of the common examples of human-

induced landslides are unplanned road construction, new house construction, building 

irrigation channel, and exploiting natural resources (Varnes, 1978). 

The United States Geological Survey (USGS) has classified the landslides 

causes into geological causes, morphological causes, and human causes, and it is 

elaborated in Table 3 
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Table 3 Causes of landslides 

Geological causes Morphological causes Human causes 

• Weak or sensitive 

materials  

• Sheared, jointed, or 

fissured materials  

• Adversely oriented 

discontinuity 

(bedding, fault, 

contact)  

• Contrast in 

permeability or 

stiffness of 

materials 

• Tectonic or volcanic uplift  

• Glacial rebound  

• Fluvial, wave, or glacial 

erosion of slope toe or 

lateral margins  

• Freeze-and-thaw 

weathering 

• Deposition loading slope 

• Vegetation removal (by 

fire, drought)  

• Shrink-and-swell 

weathering 

• Excavation of 

slope or its toe  

• Loading of 

slope or its 

crest  

• Drawdown (or 

reservoirs)  

• Deforestation  

• Irrigation  

• Mining  

• Artificial 

vibration  

Source: USGS, 2004 

2.5 Application of remote sensing and GIS in landslides 

Remote sensing data are used for landslides identification, landslides 

monitoring, landslides spatial analysis, and hazard prediction (Guzzetti, Carrara, 

Cardinali, and Reichenbach, 1999). In recent decades, the landslide detection, mapping, 

monitoring, and hazard analysis becomes efficient due to rapid advancement in Earth 

observation through remote sensing (Tofani, Segoni, Agostini, Catani, and Casagli, 

2013). Remote sensing can be considered a powerful and well-established platform for 

landslide mapping, monitoring, and hazard analysis (Tofani et al., 2013). The 

integration of remote sensing data with other ancillary data such as geological maps, 

lithological, rainfall, and landslide inventory maps are the sources of information for 

the landslide assessment and GIS is a useful tool for the data analysis for the geospatial 

landslide risk prediction and map visualization (Metternicht, Hurni, and Gogu, 2005).  

The various GIS software is an important tool for the data analysis and 

preparation of the LSM. It can handle large complex datasets, storage, retrieve, 

transformation, the efficient calculation using appropriate mathematical and statistical 

methods, and concise displaying of the results (Kelarestaghi and Ahmadi, 2009).  

The GIS is used extensively for the preparation of a database of landslide 

inventory, factors, data analysis using some mathematical modeling and display the 

outcome. Gupta, Ghose, and Sharma (2009) stated that the combination of 
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mathematical modeling, remote sensing data, and GIS are presented in many research 

articles to evaluate the landslide hazard mapping. GIS enables analysis of landslide 

hazards, effective spatial management of the data, and manipulation for the analysis 

(Kelarestaghi and Ahmadi, 2009). The results are very easy to interpret showing a 

simple map that can be easily interpreted by ordinary people who don’t have GIS 

knowledge. The advantage of the use of remote sensing data and GIS technology is that 

it is cost-effective and analyse difficult terrain which is not accessible (Carrara, 

Guzzetti, Cardinali, and Reichenbach, 1999).   

Remote sensing as a data and geographic information system as a tool should 

go hand in hand and have a close relationship. GIS can store, manage, analyze, and 

display a large amount of complex data in a very short time (Kelarestaghi and Ahmadi, 

2009). There are several remote sensing data with varying resolutions and numerous 

GIS software with the rapid advancement in science and technology  (Tofani et al., 

2013). Some of the GIS software is open source while others are commercial software. 

Similarly, some of the remote sensing data are freely available online. 

 

2.6 Landslide Inventory Mapping 

A landslide inventory map is defined as the exact location of the existing 

landslides, its type, size and time of occurrence, rate of movement, and it is considered 

to be a fundamental part of the landslide studies (Devkota et al., 2013). A landslide 

inventory map is an important and effective way to collect basic information of the 

landslides (Liu and Duan, 2018). The accuracy LSM depends on the reliability and 

accuracy of the landslide inventory data (Aleotti and Chowdhury, 1999). However, it 

is a challenging job due to the unavailability of the high resolution satellite images, 

real-time landslide data, lack of information on the frequency and the extent of the 

landslides. Some of the researchers directly download landslide information from the 

database of the relevant organization  (Wang et., 2011). The inventory map can be even 

constructed from the visual interpretation of the colored ariel ortho-photograph (Bai et 

al., 2010) while geological report which shows landslide location and sizes are also 

used (Zhao et al., 2019). The image interpretation techniques such as color, tone, 

texture, etc  were also used in the remote sensing data followed verification by the 

google earth image, and extensive field survey (Sun et al., 2018).  Few scholars also 
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used historical data of the landslides before the image interpretation and field inspection 

(Jaafari et al., 2014). 

 

2.7 Landslide and its influencing factors  

It is important to choose effective landslide influencing factors. The inclusion of 

many redundant factors reduces accuracy of the landslide map (Thongley and 

Vansarochana, 2021a). There are as such no universal guidelines to choose the 

influencing factors on landslide occurrence. A total of fifteen factors were used for this 

study which includes elevation, slope, aspect, slope curvature, topographic wetness 

index, stream power index, drainage density, Normalized Difference Vegetation Index, 

Normalized Difference Soil Index, distance from the river, distance from the fault, 

average annual rainfall, lithology, land use land cover, and distance from the road.  

The elevation is used to evaluate the changes in landform between the different 

geomorphologic and geologic setting (Liu and Duan, 2018). The different elevation 

also experiences a different amount of precipitation causing variation in landslide 

potentials (Zhang et al., 2019). The slope gradient is shows the steepness of the slope. 

The various slope gradient shows the interaction of the slope gradient with the slope 

material’s properties (Youssef, Al-Kathery, and Pradhan, 2015). The shear stress 

increase with the increase in the slope angle due to gravity which increases the 

probability of the slope failure (Mondal and Mandal, 2019). The increase in slope also 

increases the velocity and volume of the surface runoff. The different slope aspect 

receives different light intensity, which influences the water content of the soil, 

vegetation cover, soil strength, and ultimately landslide probability (Achour et al., 

2017).  South-facing slopes are more venerable in Himalaya due to the orographic effect 

and more prone to a landslide (Chand, 2008). It makes the moisture and vegetation 

unevenly distributed and uneven evapotranspiration (Wang et al., 2011). As a result, 

the slope aspect has a different influence on slope stability (Sun et al., 2018). The slope 

curvature influence the landslide probability (Zhang et al., 2019). The slope curvature 

is in the form of an upwardly convex surface, flat surface, and upwardly concave area. 

The degree of concavity increases with the increase in negative value while the degree 

of convexity is higher in the greater positive value of slope curvature. The slope 

curvature is said to be flat when its value lies between -0.05 to 0.05 (Nohani et al., 
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2019).  The chance of slope failure is debatable for convex and concave curvature in 

many papers.  

The Topographic Wetness Index (TWI) shows the flow accumulation at a point 

in a catchment area and the capability of water to flow downstream (Cao et al., 2016). 

The TWI gives the information on the relationship between the local upslope 

contributing area and the entire slope and it affects the distribution of soil moisture and 

the groundwater flow (Devkota et al., 2013). The Stream Power Index (SPI) measures 

the erosive power of water flow and contributes towards the stability of the area (Regmi 

et al., 2014). The viscosity of the slope and the steepness of the terrain are the two 

important factors that govern the SPI (Saadatkhah, Kassim, and Lee, 2014). The 

drainage density plays an important factor in terms of stability as the saturation degrees 

of the materials directly affect slope stability. During the rainfall, the drainage is filled 

with the running water and erodes the sides which cause landslides (Kumar and 

Anbalagan, 2015). The saturation of the toe constituent materials of the slopes reduces 

the shear strength which results in the eroding action of the toe (Achour et al., 2017).   

The Normalized Difference Vegetation Index (NDVI) is a measure of surface 

reflectance which gives information on the conditions of the vegetation coverage and 

biomass in the study area (Jaafari et al., 2014).  The NDVI value ranges from -1 to 1. 

If the NDVI is less than zero, the ground is barren and less stable. On the other hand, if 

the normalized vegetation index is greater than zero, it indicates that the vegetation 

coverage is healthy. The forest tree roots act as a reinforcement and reduce the rate of 

landslide occurrence (Jaafari et al., 2014). The Normalized Difference Soil Index NDSI 

is used to give information about the distinction about the soil with other land cover 

types to a certain degree. The higher value indicates the bares soil area and the lower 

value indicates different categories of vegetated areas (Mind'je et al., 2019).  

The distance from river plays significant roles in modifying the landscape by 

carving different rocks and soil ue to its scoring actions (Zhao et al., 2019). Both sides 

of the rivers are usually eroded by the running river. It is observed that the slope which 

is closer to the river erodes more resulting in higher chances of occurrence of landslides 

(Sun et al., 2018). Similarly, the rocks near the contact and faults are weaker due to 

intense shearing forces between rocks (Achour et al., 2017). The probability of 

landslides increases we go closer to the fault. In addition, the distance from the road 
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also affects stability of the road.The road construction on the slope causes loss of 

support at its base. The loss of support at the base increases the stress of the slope and 

develop the cracks. This increases the frequency of the landslides near the road 

(Devkota et al., 2013). In most of the studies, the landslides densities are higher near 

the road compared to other factors.  

The lithology also play pivotal role in landslide due its difference in hardness, 

arrangement of structure, moisture retention capacity, etc. The lithology have a great 

influence on the physical and mechanical properties, weathering, deformation, and 

modes of failure of the slopes (Sun et al., 2018).  Many researchers accept that lithology 

influences the occurrence of landslides, due to its lithological variation in its characters 

which causes the difference in the strength and permeability of rocks and soils (Li and 

Wang, 2019).  

Rainfall is considered as an important triggering factor for the landslide 

susceptibility research and it induces the erosion on the slopy area. The water from the 

rainfall infiltrates and increases the gravity of the soil and rock which reduces the shear 

strength, thus inducing landslides (Sun et al., 2018).  

The different land use land cover also plays in contributing role in the stability of 

the slope. The amount of water infiltration and retention will vary in different features 

such as forest, cultivated land, built-up area, etc. The land covered by forest regulates 

continuous water flow and water infiltrates regularly, whereas the cultivated land 

affects the slope stability owing to the saturation of covered soil (Devkota et al., 2013).  

 

2.8 Landslide Susceptibility Mapping Assessment. 

The approaches for the landslide susceptibility assessment are broadly classified 

into qualitative and quantitative. The landslides probability is obtained by analyzing the 

relationship between the location of past landslide and a set of factors using qualitative 

or quantitative approaches(Van Westen, Van Asch, and Soeters, 2006). 

 

2.8.1 Qualitative Assessment of Landslides 

Qualitative approaches are subjective and heuristic in nature that works entirely 

based on the judgment of the person carrying out the landslide assessment (Aleotti and 

Chowdhury, 1999). In this method, the experts use his knowledge to assign the rank to 
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the classes of the factors based on the importance and calculate the weightage of the 

factor to produce the LSM. Some of the qualitative methods used for landslide 

assessment are the analytic hierarchy process (Achour et al., 2017) and weighted linear 

combination (Ayalew, Yamagishi, and Ugawa, 2004).  

 

2.8.2 Quantitative Assessment of Landslides 

The quantitative method uses a numerical calculation to find the relationship 

between influencing factors and landslide inventory to estimate the probabilities of the 

future landslide occurrence(Van Westen et al., 2006). The quantitative methods are 

categorized into deterministic and statistical approach(Aleotti and Chowdhury, 1999). 

Quantitative methods are widely used for landslide susceptibility studies due to higher 

accuracy in LSM compared to qualitative methods.  

The deterministic approach is a site-specific which require field-based 

geotechnical data (Mandal and Mandal, 2018) and calculate the factor of safety for the 

landslide assessment (Aleotti and Chowdhury, 1999). Although the deterministic 

approach is relatively more accurate, it is feasible for the smaller areas only (Zhu and 

Huang, 2006). The deterministic approach is applied for site feasibility studies, 

especially for engineering construction.  

The statistical methods are based on the correlations between the influencing 

factors and the distribution of past landslides (Saadatkhah et al., 2014). As per the 

recent trend, there is a decline in heuristic (knowledge-based) methods and an increase 

in the data-driven methods (statistical approach). The advantage of the statistical 

approach is that investigator can validate the importance of each factor and decide the 

input influencing factor based on the weightage of the influencing factor (Aleotti and 

Chowdhury, 1999). The statistical approach in conjunction with GIS techniques is easy 

to calculate and applicable for a large area (Aleotti and Chowdhury, 1999). The 

statistical methods for the LSM are grouped into bivariate and multivariate statistical 

analysis (Pardeshi, Autade, and Pardeshi, 2013). 

In the bivariate statistical method, the landslide inventory map is compared with 

the landslide influencing factors to get the weight of each class according to their impact 

of landslides (Kelarestaghi and Ahmadi, 2009). The weighted value of the classes is 

calculated based on landslide density in each class (Aleotti and Chowdhury, 1999). 
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Many investigators around the world used bivariate statistical methods such as 

frequency ratio (Khan et al., 2019; Moazzam, Vansarochana, Boonyanuphap, and 

Choosumrong, 2018; Samanta, Pal, and Palsamanta, 2018), information value (Pasang 

and Kubíček, 2018), index of entropy Thongley and Vansarochana (2021a), statistical 

index (Shafapour Tehrany, Kumar, Neamah Jebur, and Shabani, 2019), and weight of 

evidence (Thongley and C. Vansarochana, 2020). It is proved that the bivariate statistics 

is more simple and precise than that of the multivariates statistics (Shahabi, Ahmad, 

and Khezri, 2013). 

In the multivariates statistical approach, the weight of the individual influencing 

factors are calculated and the LSM is developed by multiplying the influencing factors 

with its weight. The logistic regression is widely used multivariate statistics for the 

LSM (Ayalew and Yamagishi, 2005). 

 

 2.9 Effect of spatial resolution of DEM on landslide susceptibility mapping 

The DEM plays an important role in depicting the nature of the topography and 

deriving the influencing factors for the landslide assessment. A DEM represents the 

surface elevation of the ground in the form of a series of cells which is stored in the 

raster grid (Mahalingam and Olsen, 2016). The cell’s pixel value of the DEM represents 

the elevation of the ground. The spatial resolution of remote sensing data is one of the 

most important characteristics for determining accuracy. The spatial resolution defines 

the smallest scale at which surface features may be extracted, identified, and mapped 

from remote sensing technology. Spatial resolution may refer to the ground sampling 

distance in an image or the grid size in a DEM (Mora et al., 2014). Based on the spatial 

resolution, the vertical accuracy of DEMs varies from one another. When the vertical 

accuracies differ, it will affect the accuracy of the LSM. 

2.10 Validation and Accuracy assessment 

The landslide study will have no practical significance without validation (Li and 

Wang, 2019). The validation compares different models with the actual-ground 

situation using landslide inventory data and assess the accuracy of different models. 

The accuracy assessment can also be used to compare the impact of spatial resolution 

on the LSM developed by various spatial resolution DEMs. The most popular validation 
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methods used are Receiver Operating Characteristics (ROC) Curve, kappa index, and 

Root Mean Square Error (RMSE)  

The ROC curve and the kappa index uses the same parameters for the accuracy 

assessment. The parameters used for the ROC curve and Kappa index are True Positive 

(TP), False Positive (FP), True Negative (TN), and False Negative (FN). These 

parameters are also used for the calculation of sensitivity, specificity, and accuracy for 

the comparison of the models. These parameters were derived from the landslide 

inventory (Actual class or ground true pixel) and the predicted class (landslide 

susceptibility map) and it is elaborated the Table 4. 

Table 4 Confusion matrix for observed landslide against the predicted landslide 

  
Observed landslide 

Landslides (1) Non-landslides (0) 

Predicted 

landslide 

Landslides (1) TP FP 

Non-landslides (0) FN TN 

where, TP (true positive) and TN (true negative) are the numbers of correctly classified 

pixels for landslide and non-landslide, respectively. On the other hand, FN (false 

negative) and FP (false positive) are the numbers of pixels erroneously classified for 

landslide and non-landslide, respectively. 

The sensitivity is the proportion of landslide pixels that are correctly classified as 

landslide occurrences while the specificity is the proportion of the non-landslide pixels 

that are correctly classified as non-landslide (Bui, Tuan, Klempe, Pradhan, and 

Revhaug, 2016). Accuracy is the proportion of landslide and non-landslide pixels that 

are correctly classified (Nguyen et al., 2019).  The AUC of the ROC curve is used to 

measure accuracy and it is constructed using the sensitivity and specificity. As per 

Shirani, Pasandi, and Arabameri (2018), the interpretation of AUC of the ROC is given 

in the Table 5 

Table 5 AUC interpretation scale 

AUC range Interpretation 

0.9–1 Excellent 

0.8-0.9 Very good 

0.7-0.8 Good 

0.6-0.7 Moderate 

0.5-0.6 Poor 

Source: Shirani et al., 2018 
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The Kappa index is used to check the reliability of the landslide model and the 

evaluation of the agreement between the value of the model and the ground reality (Bui 

et al., 2016).  When the Kappa value is -1, it indicates that the model is non-reliable 

while its value is equal to 1 shows that the model is perfectly reliable between model 

and the reality (Nguyen et al., 2019). In the worst case, the kappa value is negative 

which indicates that the agreement is worse than the chance (Tien Bui et al., 2018). As 

per Landis and Koch (1977), the scale of Cohen’s kappa agreement is given in Table 6. 

Table 6 Scale value of Cohen’s kappa agreement 

Value Agreement 

<0 Less than chance agreement 

0.01-0.20 Slight agreement 

0.21-0.40 Fair agreement 

0.41-0.60 Moderate agreement 

0.61-0.80 Substantial agreement 

0.81-0.99 Almost perfect agreement 

Source: Landis and Koch, 1977  

The Root Mean Square Error (RMSE) is defined as the differences between 

values predicted values for the landslides by the models and the observed values from 

the actual ground. When the RMSE value is 0, it is considered as no error which 

corresponds to correlation coefficient 1 and vice versa (Barnston, 1992).  
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CHAPTER III  

RESEARCH METHODOLOGY 

3.1 Study Area 

3.1.1 Geographical location  

The Ossey watershed area is situated in central Bhutan under the Sarpang district 

and located approximately in between 90°10’00”E and 90°50’00”E longitude and 

26°50’00”N to 27°15’00”N latitude (Figure 3). The area lies on the Indian border in the 

south and is one of the road entry points into Bhutan from India. The Ossey watershed 

area covers 820.722sq.km and it ranges from 168m to 4197m above mean sea level. 

Generally, the area has heavy vegetation and steep natural terrain. However, the foot 

slopes of an area are characterized by plain with green grasses. The Gelephu city which 

is one of the largest city in Bhutan and it is located at the foot of the Ossey watershed 

area. As per the 2017 national census, about 9858 people live in Gelephu city. The 

Ossey watershed area is one of the most landslide prone area in Bhutan and experiences 

landslide every year. 

 

Figure  2 The landslides event at Ossey watershed area in Bhutan 
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3.1.2 Climatic condition 

The climate in the area is very hot and humid in summer with as high as 30°C. 

According to the National Center for Hydrology and Meteorology (NCHM) of Bhutan, 

the average annual rainfall ranges from 1785mm/year to 5024mm/year in the study 

area. The heavy monsoon rainfall trigger flood and landslide especially from May to 

September every year.  

 

Figure  3 Ossey watershed area in Bhutan 
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3.1.3 Lithology 

The area experiences a variety of lithological features. The area is dominated by 

schist  and phyllite, medium to course pabble, metasedimentary rocks, conglomeratic 

sandstone, and massive foliated syn-Himalayan leucogranite plutons(Long et al., 2011). 

The detailed description of lithology is given Table 7. 

Table 7 Lithological Description of the study area 

Geological Age Code  Lithology 

Miocene-

Pliocene 

Tsm Tan to gray, medium- to coarse-grained sandstone and 

pebble- to cobble-conglomeratic sandstone 

Paleoproterozoic pCd Dominated by schist and phyllite. Quartzite is thin-to 

medium-bedded, and medium-gray limestone 

interbeds.  

Ordovician Pzc Tan to gray, thick-bedded, fine- to medium-grained, 

cliff-forming, micaceous quartzite, interbedded with 

biotite-muscovite-garnet schist. Interbedded with 

green to white, thin-bedded marble. Dominated by tan, 

cliff-forming marble, with lesser gray phyllite and 

dark-gray phyllitic quartzite. Dominantly upper 

greenschist facies 2.2-4.0 km-thick. 

Neoproterozoic-

Cambrian 

GHlml Dominantly amphibolite-facies, metasedimentary 

rocks, including quartzite, and biotite-muscovite-

garnet schist and paragneiss often exhibiting kyanite, 

sillimanite, or staurolite, and partial melt textures  

Cambrian-

Ordovician 

GHlo Cliff-forming, massive-weathering, granite-

composition orthogneiss; generally exhibits 

leucosomes and abundant feldspar. Paragneiss, schist, 

and quartzite intervals locally split out. Deformed 

Cambrian-Ordovician granite plutons that intruded 

Greater Himalayan sedimentary protoliths.  

Miocene Tgr Massive to foliated, syn-Himalayan leucogranite 

plutons. Leucogranite intrudes the structurally-higher 

and structurally-lower Greater Himalayan sections, as 

well as Tethyan Himalayan rocks. 

Source: Long et al., 2011   
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3.2 Data Collection    

The various types of dataset are required for the preparation of the landslide 

susceptibility map.  Table 8 shows the brief description of satellite data and ancillary 

datasets were collected from the various sources.  

Table 8 Details of data source 

Sl 

No 

Data Purpose Source 

1 STRM(30m) Preparation of Elevation, 

slope, aspect, sloep 

curvature, Topographic 

Wetness Index, Stream 

Power Index, drainage 

density 

National Aeronautics and 

Space Administration 

(NASA) and the National 

Geospatial-Intelligence 

Agency(NGA) 

2 SRTM(90m) 

 

3 ALOS 

PALSAR(12.5m) 

Japan Aerospace 

Exploration Agency 

(JAXA) 

4 Sentinel-2(10m) Preparation of landuse 

land cover map, 

Normalized Difference 

Vegetation Index, 

Normalized Difference 

Soil Index,  

European Space Agency 

(ESA) 

5 Geological map of 

Bhutan 

Lithological Map, Fault 

map 

Depart of Geology and 

Mine, Bhutan 

6 Rainfall data Rainfall Map National Center of 

Metereology and 

Hydrology, Bhutan 

7 Digital topographic 

map of Bhutan 

Extraction of river and 

road map 

National Land Commission 

of Bhutan 

8 Google Earth Identify landslide location Google Earth Pro 

 

3.2.1 Satellite data  

The detail of various satellite data  are explained in the following sections 

I. Shuttle Radar Topography Mission Digital Elevation Model (SRTM 

DEM)  

The Shuttle Radar Topography Mission(SRTM) is a Digital Elevation Model 

that covers 56°S to 60°N to generate a digital topographic database of earth. The SRTM-
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30m (SRTM V3.0, 1 arc sec) is a modified version of SRTM-90m(3arc second) 

resolution which was released in 2000(Santillan and Makinano-Santillan, 2016). The 

1arc second SRTM was released in September 2014. It consists of two antennas. The 

main antenna transmits and receives radar echoes while the supplementary antenna 

receives only radar echoes. The two different C-band and X-band interferometric radar 

images of the same area can be obtained from two antennas about 60m apart. The 

interferometric process the image and obtain interferogram which is then used to extract 

topographic elevation data (Yang, Meng, and Zhang, 2011). SRTM DEM data is 

downloaded from https://www.gislounge.com/. The tiles used for the study area are 

N26E90 and N27E90. The accuracy of SRTM varies with change in different 

geographical location (Rodriguez, Morris, and Belz, 2006). The detail of horizontal and 

vertical datums are shown in the Table 9. 

Table 9 Specification of SRTM 

Projection Geographic 

Horizontal Datum WGS84 

Vertical Datum EGM96(Earth Gravitational Model 1996) 

Vertical Units Meters 

Spatial Resolution 1 arc-second for global coverage(~30meters) 

3 arc-second for global coverage(~90meters) 

Source: USGS Science for a changing world 

The SRTM (30m and 90m spatial resolution) were used to derive slope angle 

map, terrain aspect map, topographic wetness index(TWI), stream power index(SPI), 

Slope Curvature, and drainage density for this study. 

II. ALOS PALSAR DEM  

The Advanced Land Observing Satellite (ALOS) Phased Array type L-band 

Synthetic Aperture Radar (PALSAR) Digital Elevation Model(DEM) is 12.5m spatial 

resolution which can be downloaded from Alaska Satellite Facility(ASF) Distributed 

Active Archive Center(DAAC). It is downloaded from https://www.asf.alaska.edu/. 

The ALOS PALSAR was projected using UTM, horzontal datum used was WGS84. 

The accuracy of the ALOS PALSAR difers from place to place. 

The scene used for the study are AP_05873_FBS_F0520_RT1 and 

AP_05873_FBS_F0530_RT1.  The ALOS PALSAR DEM is also used for the 

extraction of geomorphological and hydrological factors such as slope angle map, 

https://www.gislounge.com/
https://www.asf.alaska.edu/
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terrain aspect map, topographic wetness index (TWI), stream power index (SPI), Slope 

Curvature, and drainage.  

III. Sentinel 2 

  Sentinel-2 is a high resolution optical multispectral imaging satellite which 

consists of two polar satellites (Sentinel-2A and sentinel-2B) launched by the European 

Space Agency (ESA) Copernicus Programme. Sentinel-2A was launched on June 23rd 

2015, while Sentinel-2B on March 07th 2017. The full mission of the sentinel satellite 

flying in the same orbit but phased at 180° with one another and revisit at a frequency 

of 5 days at the equator. Sentinel data products are freely available to all users and are 

accessible  Copernicus Open Access Hub https://scihub.copernicus.eu. The sentinel-2 

is projected to UTM with horizontal datum WGS84 and its available in Geographic 

Markup Language JPEG2000 (GMLJP2) format. The detail of sentinel 2 bands are 

given in the Table 10. 

Table 10 Metadata of Sentinel-2 

 

 

 

 

 

 

 

 

 

 

 

Source: Sentinel 2-User handbook 

For this research, Sentinel 2 is used for identifying landslide through image 

interpretation technique during the landslide inventory, preparation of the Normalized 

Difference Vegetation Index (NDVI), Normalized Difference Soil Index (NDSI), and 

Land Use Land Cover (LULC) map. Three tiles are used for the study area since the 

area is quite large, one tile of the sentinel image didn’t fit the whole study area. All the 

Band  Central Wavelength (μm) Resolution(m) 

1(Coastal) 0.433 60 

2(Blue) 0.490 10 

3(Green) 0.560 10 

4(Red) 0.665 10 

5(Vegetation Red Edge) 0.705 20 

6(Vegetation Red Edge) 0.740 20 

7(Vegetation Red Edge) 0.783 20 

8(NIR) 0.842 10 

8A(Vegetation Red Edge) 0.865 20 

9(Water vapour) 0.945 60 

10(SWIR-Cirrus) 1.375 60 

11(SWIR) 1.610 20 

12(SWIR) 2.19 20 

https://scihub.copernicus.eu/
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three tiles are chosen from the same month to avoid error while preparing land use land 

cover map. The January month is chosen due to low cloud coverage. Table 11 shows 

the tiles chosen for the study area. 

Table 11 Tiles sentinels used for the study area 

Sensor Tiles Acquisition Date 

Sentinel-2 L1C_T46RBR_A018434_20190102T043514 02/01/2019 

L1C_T46RBQ_A009740_20190117T043639 17/01/2019 

L1C_T46RBQ_A009926_20190130T044444 30/01/2019 

 

3.2.2 Ancillary data collection 

The following section elaborate on the ancillary data which are being provided 

by various agencies 

I. Geological map 

The geological map of Bhutan(Figure 4) is prepared by Long, McQuarrie, 

Tobgay, Grujic, and Hollister (2011) and it is under the custody of the Department of 

Geology and Mine (DGM). The geological map is prepared at a scale of 1:50000 and it 

is available on request from the DGM. The geological map is used to prepare the 

lithological and fault map for the study.  

 

Figure  4 Geological map of Bhutan 

Source: Long et al., 2011 
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II. Rainfall data 

The rainfall data is being monitored by the National Center for Hydrology and 

Meteorology (NHCM) of Bhutan. The rainfall data is used to prepare a rainfall 

distribution map of Bhutan and it is available on request from NHCM. For this study, 

20 rainfall stations (Table 12) average annual rainfall observations from 1997-2017 are 

used to prepare a rainfall distribution map.  

Table 12 The average annual rainfall of Bhutan 

Station 

Coordinates Average 

Annual  

Rainfall(mm) 
Latitude Longitude Height(m) 

Deothang 26°51'20.88''N 91°28'0.48''  E 800 3758.809 

Kanglung 27°16’57.0”N 91°31'19.99''E 1930 1168.789 

Pemagatshel 27°1'30'.00”N 91°25'27.00”E 1648 1765.27 

Bhur 26°54'14.00''N 90°26'2.04''  E 375 5154.936 

Dagana 27°4’15.99” N 89°52'28.99''E 1460 1743.681 

Damphu 27° 0' 0.00''  N 90° 7' 18.00''E 1520 1694.826 

Phuntsholing 26°51'34.99''N 89°22'28.99''E 220 3599.738 

Trongsa 27°30'6.99''  N 90°30'18.00''E 2120 1200.204 

Wangdue Phodrang 27°29'12.00''N 89°54'2.99''  E 1180 669.8546 

Zhemgang 27°18'29.88''N 90°39'19.01''E 1905 1387.104 

Chamkhar 27°32’25.01”N 90°45'18.00''E 2470 757.9264 

Gasa 27°53'60.00''N 89°42'59.00''E 2760 1299.3345 

Haa 27°23'17.16''N 89°16'54.12''E 2720 877.3564 

Mongar 27°16'41.99''N 91°14'17.99''E 1600 955.2427 

Paro 27°25'36.00''N 89°25'23.00''E 2406 630.46 

Punakha 27°34'54.00''N 89°51'59.00''E 1236 715.8209 

Sibsoo 27° 1' 0.00''  N 88°51'59.00''E 550 5393.2909 

Simtokha 27°26'17.99''N 89°40'31.00''E 2310 607.96909 

Tamangchu 27°35’42.00”N 91°11'48.00''E 1750 812.79864 

Trashi Yangtse 27°36’0.00”  N 91°30’0.00” E 1830 1167.3645 

Source: National Center for Hydrology and Meteorology, Bhutan 
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Figure  5 Average monthly rainfall data of 20 stations from 1996-2017 

 

Figure 5 shows the average monthly rainfall for 20 stations in Bhutan which 

ranges from 1996 to 2017. It is observed from Figure 5 that Bhur, Deothang, 

Phuntsholing and Sibsoo rainfall stations experienced the highest rainfall over the past 

21 years. 

 

3.3 Research conceptual framework 

To achieve the overall research objectives of the landslides susceptibility 

mapping, it is divided into three broad steps. 

i) Data Preparation  

ii) Data Analysis 

iii) Validation and Accuracy Assessment 

The overall conceptual framework of the work is shown in Figure 6. Firstly, the 

data preparation consist of landslide inventory and influencing factor preparation. 

Second step is the data analysis consist of LSM using the Frequency Ratio (FR), Index 

of Entropy (IOE), and Weight of Evidence (WOE). Then, LSM by combing FR-IOE, 

IOE-WOE, and WOE-FR. Finally, the validation of LSM using the confusion matrix, 

cohen’s kappa index, ROC curve, and RMSE. 
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Figure  6 Overall methodological framework 

 
  

3.3.1 Data Preparation 

The data preparation constitute two steps. The first step consist of landslide 

inventory. The landslide inventory is the collection information of past and existing 

landslide. The second step is the influencing factor preparation which is prepared using 

appropriate methods from the various data as shown in Figure 7. 
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I. Landslide Inventory Mapping 

The first step for the landslide assessment involvement landslide inventory 

mapping. The statistical approach for the LSM work on the principle past and present 

is key to the spatial prediction in the future under a similar condition whereby the past 

landslides were identified through landslide inventory (Devkota et al., 2013). The 

accuracy of the landslide susceptibility mapping is directly dependent on the accuracy 

of the landslide inventory (Shirani et al., 2018). Among the many techniques for the 

landslide inventory, this study uses sentinel-2 image interpretation, digitization of 

google earth, and extensive field survey.  

 

1) Sentinel 2 image interpretation 

Based on the recommendation of Karagianni, Lazos, and Chatzipetros (2018), 

the most effective band combination used for this study are Natural Color Composite 

(Red-Green-Blue) where the ground feature appears similar to the human eye visual 

system. Similarly, the color composite (SWIR1-Green-Blue) is also used to detect 

landslide whereby the landslide area is detected and highlighted with discerning 

differences in bare earth, indicating wet and dry areas in a scene.  

 

2) Digitization of Google Earth 

Google earth is high-resolution three-dimensional satellite imagery used for 

multiple purposes. The google earth is the super-imposition of the satellite images, ariel 

photographs, and GIS data onto a three-dimensional globe. Multiple researchers used 

google earth images to prepare a landslide inventory map. The google earth image is a 

high-resolution image and makes it easy to interpret the real ground.  For this study, the 

google earth image from QGIS is used to locate the past landslides and then digitized 

with point features. The google earth locates landslides that are not identified by 

sentinel-2 interpretation. 

 

3) Extensive Field Survey 

Although remote sensing data and aerial photos are a powerful tool, their 

interpretation should be confirmed on the ground because many important features of 

the slope failure may be partially or completely obscured in dense forest (Varnes, 1984). 
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Similarly, the landslides identified through sentinel-2 and google earth images need 

field verification. Since the google earth images are made up of multiple images that 

are mosaic with one another, some of the images are may not be updated for a long 

time. When there are no updated images, there will be a missing landslide record in the 

digitized image or sometimes there will be excess landslides in the digitized landslides. 

Similarly, the composite band of the sentinel-2 image may misinterpret the landslides. 

The objects in the sentinel image having similar reflectance characteristics may 

misinterpret as landslides. 

  Therefore, validation of the digitized landslide inventory data is very important.  

The validation is normally carried by an extensive field survey using a handheld GPS. 

For this study, the landslide location is validated using the handheld GPS to verify the 

types of landslides and to validate the land use land cover simultaneously. 

 

II. Training dataset and validation dataset from landslide inventory 

The landslide inventory is prepared using the information from google earth, 

sentinel-2 image interpretation, and extensive field survey. It is digitized in point 

features GIS software. Although there are no fixed rules to divide the ratio of the 

landslides for training dataset and validation, most of the researchers used 70% of the 

total landslides for the training dataset and the remaining 30% for the validation (Jaafari 

et al., 2014). The training dataset is used to train the influencing factors and derive the 

correlation while the validation dataset is used for checking the accuracy and validation 

of the prepared LSM developed by the statistical models (Pourghasemi, Mohammady, 

and Pradhan, 2012). The selection of the training dataset and the validation dataset is 

based on the random selection.  

 

III. Preparation of the influencing factors 

Figure 7 shows the flowchart of preparation of the influencing factors. A total of 

fifteen factors were used for this study. They are elevation, slope, aspect, slope 

curvature, topographic wetness index, stream power index, drainage density, 

Normalized Difference Vegetation Index (NDVI), Normalized Difference Soil Index 

(NDSI), proximity to the river, proximity to the fault, average annual rainfall, lithology, 

land use land cover (LULC), and proximity to the road. The ALOS PALSAR (12.5m), 



 32 

SRTM(30m), and SRTM(90m) are used to derive elevation, slope, aspect, slope 

curvature, topographic wetness index, stream power index, drainage density. Similarly, 

sentinel-2 is used to prepare NDVI, NDSI, and LULC. The Geological map of Bhutan 

is used to extract lithology and fault map. The digital topographic map of Bhutan is 

used to extract the map of the road and river. The 21 years (1996-2017) average annual 

rainfall of Bhutan is used to derive a rainfall map. The factors are classified broadly 

into Geomorphological factors, Hydrological Factor, Environmental Factor, and 

Human Factors. The Geomorphological factors provide information about the earth's 

surface. As the geomorphological factor gives information about the earth’s surface 

topography (Ayalew and Yamagishi, 2005). the elevation, slope, aspect, and slope 

curvature falls under geomorphologic factors. The topographic wetness index (TWI), 

stream power index (SPI), and drainage density falls under hydrologic factors. The 

NDVI, NDSI, proximity to the river, proximity to the fault, average annual rainfall, and 

lithology are categorized as environmental factors. The land use land cover and 

proximity to road fall under human factors. The overview of the data preparation is 

shown in the following diagram. 

 

Figure  7 Flowchart of influencing factors Preparation 
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The elevation is classified into five classes as shown in Figure 8.1 for 12.5m 

spatial resolution, Figure 9.1 for 30m spatial resolution, and Figure 10.1 for 90m spatial 

resolution. 

The slopes angle is classified into five classes as shown in Figure 8.2 for 12.5m 

spatial resolution, Figure 9.2 for 30m spatial resolution, and Figure 10.2 for 90m spatial 

resolution. 

The aspect is reclassified into nine classes in the cardinal directions N(337.5-360 

and 0-22.5), NE(22.5-67.5), E(67.5-112.5), SE(112.5-157.5), S(157.5-202.5), 

SW(202.5-247.5), W(247.5-292.5), NW(292.5-337.5) and flat land(-1) as shown in 

Figure 8.3 (12.5m spatial resolution), Figure 9.3 (30m spatial resolution), and Figure 

10.3 (90m spatial resolution). 

The slope curvature is classified in concave, flat, and convex as shown in Figure 

8.4 for 12.5m spatial resolution, Figure 9.4 for 30m spatial resolution and Figure 10.4 

for 90m spatial resolution. 

The classified TWI is shown in Figure 8.5 for 12.5m spatial resolution, Figure 

9.5 for 30m spatial resolution, and Figure 10.5 for 90m spatial resolution, and it is 

calculated using the equation given by Moore, Grayson, and Ladson (1991). 

 𝑇𝑊𝐼 = 𝑙𝑛⁡(
𝛼

𝑡𝑎𝑛𝛽
) Equation 1 

Where, a is the cumulative upslope area draining through a point (per unit contour 

length) and tan β is the slope angle at the point. 

The classified SPI is shown in Figure 8.6 for 12.5m spatial resolution, Figure 

9.6 for 30m spatial resolution, and Figure 10.6 for 90m spatial resolution, and it's 

calculated based on an equation given by Moore et al. (1991) 

 𝑆𝑃𝐼⁡ = 𝐴𝑠𝑡𝑎𝑛⁡𝛽 Equation 2 

Where, As is the specific catchment area and β is the slope gradient in degrees. 

  The classified into drainage density is shown in Figure 8.7 for 12.5m spatial 

resolution, Figure 9.7 for 30m spatial resolution, and Figure 10.7 for 90m spatial 

resolution. 
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The NDVI is calculated using the Equation 3 as follow: 

 
NDVI =

NIR − R

NIR + R
 

Equation 3 

where, NIR and R are the near-infrared portions and the red portion of the electro-

magnetic spectrum respectively. The NDVI is classified into five classes as shown in 

Figure 8.8 for 12.5m spatial resolution, Figure 9.8 for 30m spatial resolution, and Figure 

10.8 for 90m spatial resolution. 

The Normalized Difference Soil Index is calculated using the Equation 4. 

 
NDSI =

SWIR2 − G

SWIR2 + G
 

Equation 4 

where, SWIR and G are the near short wave infrared portion and the green portion 

of the electromagnetic spectrum respectively. The NDSI is classified into five classes 

as shown in Figure 8.9 for 12.5m spatial resolution, Figure 9.9 for 30m spatial 

resolution, and Figure 10.9 for 90m spatial resolution. 

The GIS euclidean distance package is used for finding the distance form the river. 

The distance is classified into five classes as shown in Figure 8.10 for 12.5m spatial 

resolution, Figure 9.10 for 30m spatial resolution, and Figure 10.10 for 90m spatial 

resolution. 

The distance from the fault is prepared using euclidean distance and classified into 

six zones as shown in Figure 8.11 for 12.5m spatial resolution, Figure 9.11 for 30m 

spatial resolution, and Figure 10.11 for 90m spatial resolution. 

The Euclidean distance package from the GIS software is used for the preparation 

of the distance form the road. It is classified into five classes as shown in Figure 8.12 

for 12.5m spatial resolution, Figure 9.12 for 30m spatial resolution, and Figure 10.12 

for 90m spatial resolution. 

The detail of lithology of the study area is given in the Table 7 and the Figures are 

shown in Figure 8.13 for 12.5m spatial resolution, Figure 9.13 for 30m spatial 

resolution, and Figure 10.13 for 90m spatial resolution. 

To calculate the precipitation map of the study area, Inverse Distance Weighting 

(IDW) interpolation method was performed using rainfall data (Table 12). The IDW 

interpolation estimates the unknown rainfall amount is calculated by the linear weighted 

average of the known values from the known point that are adjacent to the unknown 

area (Chen and Liu, 2012).   The influence on the unknown area decreases as the 
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distance increases from the known point. The rainfall map is classified into five classes 

as shown in Figure 8.14 for 12.5m spatial resolution, Figure 9.14 for 30m spatial 

resolution, and Figure 10.14 for 90m spatial resolution. 

The land use map is prepared using sentinel-2 data using a unsupervised 

classification. It is classified into a agricultural land, built-up area, forest, shrubs, and 

water bodies. The forest covers 91.58%, agricultural land covers 3.28%, shrubs covers 

2.49%, water bodies cover 1.56% and build-up area covers 1.09%. The accuracy of the 

land use and land cover is done using the error matrix (Table 13). For the error matrix, 

200 random points were created and cross validated the LULC with the google earth. 

The overall accuracy of land use land cover is 79.5%  as per the error matrix.  

Table 13 Accuracy assessment of the land use land cover 

  Unsupervised classification 

G
o

o
g

le
 E

a
rt

h
 

 Agriculture Built-up area Forest Shrubs Water Bodies  

Agriculture 19 2 6 4 0 31 

Built-Up Area  2 4 1 0 0 7 

Forest 2 0 120 8 1 131 

Shrubs 2 0 10 8 1 21 

Water Bodies 0 0 1 1 8 10 

    25 6 138 21 10 159 

Overall accuracy=159/200x100=79.5% 
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Figure  8 Factors using spatial resolution 12.5m (8.1) Elevation, (8.2) Slope,  (8.3) 

Slope Aspect, (8.4) Curvature, (8.5) TWI, (8.6) SPI, (8.7) Drainage density, (8.8) 

NDVI, (8.9) NDSI, (8.10) Dist. from river, (8.11)Dist. from fault, (8.12)Dist. From 

road, (8.13) Lithology, (8.14) Rainfall map, (8.15) LULC 
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Figure 8 Factors using spatial resolution 12.5m (8.1) Elevation, (8.2) Slope,  (8.3) 

Slope Aspect, (8.4) Curvature, (8.5) TWI, (8.6) SPI, (8.7) Drainage density, (8.8) 

NDVI, (8.9) NDSI, (8.10) Dist. from river, (8.11)Dist. from fault, (8.12)Dist. From 

road, (8.13) Lithology, (8.14) Rainfall map, (8.15) LULC 
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Figure 8 Factors using spatial resolution 12.5m (8.1) Elevation, (8.2) Slope,  (8.3) 

Slope Aspect, (8.4) Curvature, (8.5) TWI, (8.6) SPI, (8.7) Drainage density, (8.8) 

NDVI, (8.9) NDSI, (8.10) Dist. from river, (8.11)Dist. from fault, (8.12)Dist. From 

road, (8.13) Lithology, (8.14) Rainfall map, (8.15) LULC 
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Figure 8 Factors using spatial resolution 12.5m (8.1) Elevation, (8.2) Slope,  (8.3) 

Slope Aspect, (8.4) Curvature, (8.5) TWI, (8.6) SPI, (8.7) Drainage density, (8.8) 

NDVI, (8.9) NDSI, (8.10) Dist. from river, (8.11)Dist. from fault, (8.12)Dist. From 

road, (8.13) Lithology, (8.14) Rainfall map, (8.15) LULC 
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Figure  9 Factors using spatial resolution 30m (9.1) Elevation, (9.2) Slope, (9.3) 

Slope Aspect, (9.4) Curvature, (9.5) TWI, (9.6) SPI, (9.7) Drainage density, (9.8) 

NDVI, (9.9) NDSI, (9.10) Dist. from river, (9.11)Dist. from fault, (9.12)Dist. From 

road, (9.13) Lithology, (9.14) Rainfall map, (9.15) LULC 
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Figure 9 Factors using spatial resolution 30m (9.1) Elevation, (9.2) Slope, (9.3) 

Slope Aspect, (9.4) Curvature, (9.5) TWI, (9.6) SPI, (9.7) Drainage density, (9.8) 

NDVI, (9.9) NDSI, (9.10) Dist. from river, (9.11) Dist. from fault, (9.12)Dist. From 

road, (9.13) Lithology, (9.14) Rainfall map, (9.15) LULC 
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Figure 9 Factors using spatial resolution 30m (9.1) Elevation, (9.2) Slope, (9.3) 

Slope Aspect, (9.4) Curvature, (9.5) TWI, (9.6) SPI, (9.7) Drainage density, (9.8) 

NDVI, (9.9) NDSI, (9.10) Dist. from river, (9.11) Dist. from fault, (9.12)Dist. From 

road, (9.13) Lithology, (9.14) Rainfall map, (9.15) LULC 
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Figure 9 Factors using spatial resolution 30m (9.1) Elevation, (9.2) Slope, (9.3) 

Slope Aspect, (9.4) Curvature, (9.5) TWI, (9.6) SPI, (9.7) Drainage density, (9.8) 

NDVI, (9.9) NDSI, (9.10) Dist. from river, (9.11) Dist. from fault, (9.12)Dist. From 

road, (9.13) Lithology, (9.14) Rainfall map, (9.15) LULC 
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Figure  10 Factors using spatial resolution 90m (10.1) Elevation, (10.2) Slope, 

(10.3)Slope Aspect, (10.4)Curvature, (10.5)TWI, (10.6)SPI, (10.7)Drainage 

density, (10.8)NDVI, (10.9)NDSI, (10.10)Dist. from river, (10.11)Dist. from fault, 

(10.12)Dist. From road, (10.13) Lithology, (10.14) Rainfall map, (10.15) LULC 
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Figure 10 Factors using spatial resolution 90m (10.1) Elevation, (10.2) Slope, 

(10.3)Slope Aspect, (10.4)Curvature, (10.5)TWI, (10.6)SPI, (10.7)Drainage 

density, (10.8)NDVI, (10.9)NDSI, (10.10)Dist. from river, (10.11)Dist. from fault, 

(10.12)Dist. From road, (10.13) Lithology, (10.14) Rainfall map, (10.15) LULC 
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Figure 10 Factors using spatial resolution 90m (10.1) Elevation, (10.2) Slope, 

(10.3)Slope Aspect, (10.4)Curvature, (10.5)TWI, (10.6)SPI, (10.7)Drainage 

density, (10.8)NDVI, (10.9)NDSI, (10.10)Dist. from river, (10.11)Dist. from fault, 

(10.12)Dist. From road, (10.13) Lithology, (10.14) Rainfall map, (10.15) LULC 
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Figure 10 Factors using spatial resolution 90m (10.1) Elevation, (10.2) Slope, 

(10.3) Slope Aspect, (10.4) Curvature, (10.5)TWI, (10.6)SPI, (10.7)Drainage 

density, (10.8)NDVI, (10.9)NDSI, (10.10)Dist. from river, (10.11)Dist. from fault, 

(10.12)Dist. From road, (10.13) Lithology, (10.14) Rainfall map, (10.15) LULC 
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3.3.2 Landslides Susceptibility Assessment  

There are several models for the assessment of the landslide susceptibility 

mapping. There is no specific rule for choosing the landslide mapping models. The 

models are chosen based on the individual experience, terrain nature, availability of 

triggering parameters, and landslide types. This study uses quantitative statistical 

approaches for the landslide assessment. These approaches are the frequency ratio (FR), 

index of entropy (IOE), and weight of evidence (WOE). Three different spatial (12.5m, 

30m and 90m) were used to form in all the three different models. The LSM developed 

using FR, IOE, and WOE are combined to form new hybrid model. The combinations 

were FR and IOE to form FR-IOE,  IOE and WOE to form IOE-WOE, and finally, 

WOE and FR combined to form WOE-FR. The statistical approaches work on the 

principle past and present to the future landslides prediction under a similar condition 

to that of the past landslides (Aleotti and Chowdhury, 1999).  

I. Frequency Ratio (FR) 

The frequency ratio (FR) technique is proved to be effective and widely used 

for LSM. When the frequency ratio value is large, the relationship between the landslide 

and the influencing factor is stronger (Jaafari et al., 2014). In frequency ratio, it is 

assumed that all the factors carry equal weight. However, the factor’s classes have 

different frequency ratio value. According to Khan et al. (2019), FR is calculated using 

the Equation 5 

 

FR =

Npix(i)
Npix(ii)

Npix(iii)
Npix(iv)

 

 

Equation 5 

Where, Npix(i) = The number of pixels containing landslide in a class 

Npix(ii) = Total number of landslide pixels of in the factor 

Npix(iii) = Total number of pixel in the class  

Npix(iv) = Total number of pixels in the study area 

Once the FR is calculated, the FR value is used for the reclassification of the 

factors. All the reclassified map of the factors are added (Equation 6) to form the 

Landslide Susceptibility Mapping (Khan et al., 2019). 
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LSMFR =∑ FR

n

i=1
 

Equation 6 

Where, FR is the frequency ratio, i is the influencing factor and n is the number of 

influencing factors. 

 

II. Index of entropy (IOE) 

The entropy signifies the extent of the imbalance, disorder, and instability of the 

system (Liu and Duan, 2018).  Concerning the landslides, entropy refers to the impact 

of the factors on the landslides occurrence (Pourghasemi et al., 2012). The entropy 

calculates the weight of the factors (Tien Bui et al., 2018). The advantage of the index 

of entropy over frequency ratio is that it calculates the influencing weight of the factors 

on the landslide susceptibility (Aleotti and Chowdhury, 1999). The Equation 7 to 

Equation 12 is used to calculate the weight of the influencing factors. 

 
Pij =

b

a
 

 

Equation 7 

 
(Pij) =

Pij

∑ Pij
sj
i=1

 
Equation 8 

 Hj = −∑ (Pij)
sj
i=1 log2(Pij),        j=1, 2,.…, n Equation 9 

 

 Hjmax = 𝑙𝑜𝑔2Sj Equation 10 

 Ij =
Hjmax−⁡Hj

Hjmax
 ‘         I=(0, 1),     j=1, 2,.., n Equation 11 

 Wj = IjPij Equation 12 

where, b is the percentage of landslide occurrence pixels in a class to the total landslide 

occurrence pixels, a is the percentage of pixels in a class to the total pixels, (Pij) is the 

probability density, Hj and Hjmax is the entropy values, Sj is the number of classes, Ij is 

the information coefficient value, and Wj is the factor weight value as a whole. 

For the LSM, the factors are reclassified using the value of probability density 

(Pij). Then the reclassified factors were multiplied with the weight (Wj) of the individual 

factors and finaly add (Equation 13) all the weighted secondarily reclassified factors 

produces LSM (Constantin, Bednarik, Jurchescu, and Vlaicu, 2011). 
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 𝐿𝑆𝑀𝐼𝑂𝐸 =∑𝐶 𝑥⁡𝑊𝑗 
Equation 13 

where,  LSMIOE is the landslide susceptibility mapping, C is the value of the class after 

secondary reclassification based on the probability density (Pij), and Wj is the resultant 

weight of a causal factor (Constantin et al., 2011). 

 

III Weight of Evidence (WOE) 

The Weight of Evidence (WOE) is a data-driven quantitative statistical method 

based on Bayesian statistics(Bonham-Carter, Agterberg, and Wright, 1988). Initially, 

the weight of evidence is developed for the mineral potential study. However, several 

authors have applied for prediction of landslides, flood, groundwater potential, and 

other prediction model using GIS (Dahal, Hasegawa, Nonomura, Yamanaka, Dhakal, 

et al., 2008). For landslide susceptibility assessment, the landslide probability is 

determined using the weight of the factors (evidence). In this method, a series of 

mathematical calculations are required and the detail of mathematical procedures are 

explained by Van Westen (2002). Two types of data required for the WoE were 

landslide inventory and landslide factors(Roy, Saha, Arabameri, Blaschke, and Bui, 

2019). The weight describes the probability of landslide occurrence in the case of the 

presence as well as the absence of the evidence (Kayastha, Dhital, and Smedt, 2012). 

In this method, the positive and negative weight (W+ and W-) are assigned to each pixel 

of the factor classes and calculated using Equation 14 and Equation 15. W+ expresses 

the chances of occurrence of a landslide in the case of the evidence being present and 

its magnitude indicate of the positive association between landslide event and the factor 

class (Neuhäuser, Damm, and Terhorst, 2012). On the other hand, W- describes the 

chances of landslide in case of absence of the evidence and its magnitude indicates a 

negative association between the landslide event and the factor class (Neuhäuser et al., 

2012) 

 
𝑊+ = 𝑙𝑜𝑔𝑒 ⁡

𝑃{𝐵|𝑆}

𝑃{𝐵|𝑆̅}
 

Equation 14 

 
𝑊− = 𝑙𝑜𝑔𝑒 ⁡

𝑃{𝐵̅|𝑆}

𝑃{𝐵̅|𝑆̅}
 

Equation 15 
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Where, P is the probability, B is the presence of potential landslide factor, while 𝐵̅ is 

the absence of a potential landslide factor. S is the presence of landslide and 𝑆̅ is the 

absence of landslide.  

The difference between W+ and W− is known as weight contrast C, which 

indicates the spatial association between classes of the factor and landslides 

events(Dahal, Hasegawa, Nonomura, Yamanaka, Masuda, et al., 2008).  The C>0, if 

the spatial association is positive while C<0, if the spatial association is negative and C 

= 0 if the spatial association is lacking (Carranza, 2004).  

 𝐶 = 𝑊+ −𝑊− Equation 16 

Where, C is the weight contrast of W+ and W−. 

The standard deviation S(C) of the contrast C is calculated suing Equation 17. 

 𝑆(𝐶) = √𝑆2(𝑊+) + 𝑆2(𝑊−) Equation 17 

Where, S2(W+) and S2(W−) are the variances of positive weight W+ and negative 

weight W- respectively. The variance of the weight is calculated using Equation 18 and 

Equation 19. 

 
𝑆2(𝑊+) =

1

𝑁(𝐵 ∩ 𝑆)
+

1

𝑁(𝐵 ∩ 𝑆̅)
 

Equation 18 

 
𝑆2(𝑊−) =

1

𝑁(𝐵̅ ∩ 𝑆)
+

1

𝑁(𝐵̅ ∩ 𝑆̅)
 

Equation 19 

Where, B is the presence of potential landslide factor, 𝐵̅ is the absence of potential 

landslide factor, S is the presence of landslide and 𝑆̅ is the absence of landslide.  

When there is a small number of training points in the small area, the degree of 

uncertainty of the weight could be high which reduces the degree of certainty of the 

contrast C (Neuhäuser et al., 2012). In this case, the studentized contrast (Cs) is used to 

measure the confidence of the factors in contributing to the landslides (Kayastha, 

Dhital, and De Smedt, 2012). It is defined as the ratio of the contrast C to the standard 

deviation and its calculated using the Equation 20 (Pradhan, Oh, and Buchroithner, 

2010). 
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𝐶𝑠 =⁡

𝐶

𝑆(𝐶)
 

Equation 20 

Where, the C is the contrast, and S(C) is the standard deviation. 

To develop LSM, all the classes of the factors are reclassified using the 

contrast value (C). Then, add all the reclassified factors. Equation 21 is used for the 

development of the LSM. 

 
𝐿𝑆𝑀𝑊𝑂𝐸 =∑𝐶𝑖𝑗

𝑛

𝑖=1

 
Equation 21 

where LSM is a landslide susceptibility map, and Cij is the contrast for class i of 

conditioning factor j, n is the number of factors.  

It is assumed that the contrast is normally distributed. If the studentized contrast 

(Cs) is more than 1.96, it is 95% confident that there is a positive overall association 

between the landslide event and the evidence. On the other hand, if the studentized 

contrast is less than -1.96, the confidence level is 95% disfavoring the landslides 

occurrence. When the studentized contrast lies in between -1.96 and 1.96, there is no 

significant relationship between the evidence and the landslides(Kayastha, Dhital, and 

De Smedt, 2012). 

 

IV Hybrid landslide susceptibility mapping 

The hybrid landslide susceptibility mapping consist of preparation of LSM by 

combination of Frequency Ratio-Index of Entropy (FR-IOE), Index of Entropy-Weight 

of Evidence (IOE-WOE), and Weight of Evidence-Frequency Ratio (WOE-FR). 

3.3.3 Accuracy Assessment 

For the validation, 30% of the landslide inventory is used for the validation of the 

landslide susceptibility map.   The validation dataset which is observed from the ground 

is made in the binary number. The landslide is assigned with 1 and an equal number of 

non-landslide with 0. Then the binary data set has to convert into a raster file which is 

of equal cell size with that of factors.  
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I. Confusion Matrix 

The confusion matrix is used for the calculation of the statical indices for the 

landslides. The confusion matrix uses the observed landslides with the predicted 

landslides which will help in the calculation of True Positive (TP), False Negative (FN), 

False Positive (FP), and True Negative (TN). The TP, FP, FN, and TN are used to 

calculate true positive rate (Equation 22), false positive rate (Equation 23), and 

accuracy (Equation 24). 

 
TPR⁡or⁡Sensitivity =

TP

TP + FN
 

 

Equation 22 

 
FPR⁡or⁡(1 − Specificity) = ⁡

FP

FP + TN
 

Equation 23 

 
Accuracy =

TP + TN

TP + FN + FP + FN
 

Equation 24 

 

II. Cohen’s Kappa Index 

The kappa index is calculated based on the Equation 25 to Equation 27 

 
Kappa =

Pobs − Pexp

1 − Pexp
 

Equation 25 

 
𝑃𝑜𝑏𝑠 =⁡

TP + TN

n
 

Equation 26 

 
𝑃𝑒𝑥𝑝 ⁡=

(TP + FN)(TP + FP) + (FP + TN)(FN + TN)

n2
 

Equation 27 

Where,  n represent the total pixel of the training dataset, TP represent True Positive, 

FN represent False Negative, FP represent False Positive and TN represent True 

Negative are calculated in from the confusion matrix, Pobs is the observed agreements; 

Pexp is the expected agreements. 

 

III. The Receiver Operating Characteristic (ROC) curve 

The ROC curve is constructed using sensitivity and specificity. The x-axis and 

y-axis of the ROC curve are 1-specificity and sensitivity, respectively(Zhang et al., 

2019). The Area Under Curve(AUC) is calculated using the Equation 28. The AUC 

value ranges from 0.5 (inaccurate model) to 1 for the ideal model with higher 

performance (Tien Bui et al., 2018). 
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AUC =

∑TP +⁡∑TN

P + N
 

 

Equation 28 

where TP is the number of landslides that are correctly classified, TN is the number of 

incorrectly classified landslides, P is the total number of landslides and N is the total 

number of non-landslides. 

 

IV. Root Mean Square Error (RMSE) 

The Root Mean Square Error (RMSE) is used to calculate relative error between 

the models (Nguyen et al., 2019). When the RMSE value is 0, it is considered as no 

error which corresponds to correlation coefficient 1 and vice versa (Barnston, 1992). 

The RMSE is calculated using the Equation 29.  

 

RMSE = √
1

n
∑ (Xpred − Xobs)2

n

i=1
 

Equation 29 

where n is the total number of samples in the validation dataset; Xpred is the predicted 

values from the LSM and Xobs is the observed data from the real ground. 
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CHAPTER IV  

RESULT AND DISCUSSION 

4.1 Landslide Inventory 

The landslides inventory was done using the interpretation of the sentinel-2 

image, google earth image, and verified through field investigation using handheld 

GPS. Although the landslide inventory comprises of data collection of date of landslide 

event and it’s frequency of occurrence, it is not mandatory to have these data since the 

spatial location of the past landslides is enough to analyze the LSM (Nohani et al., 

2019). Similarly, due to the unavailability of the exact date of landslide event and 

frequency of the landslides at Ossey watershed area, this study could not collect the 

date and frequency of the landslides. 

 A total of 164 landslides locations were identified at the Ossey watershed area 

during the landslide inventory (Appendix A). The research uses Varnes (1978) 

landslide classification method to classify the landslide present at the study site. The 

types of landslides present at the study area include 116 (70.73%) translational slides, 

38 (23.17%) debris flow, 6 (3.66%) debris avalanche, 2 (1.22%) earth flow, 1 (0.61%) 

rockfall, and 1 (0.61%) creep. The detail of the individual landslides was given in 

Appendix A. The most prominent landslide present at the study site was the 

translational slide and the debris flow.  

A total of 115 (70%) of the landslides were used for training the data which will 

be used in FR, IOE, and WOE. The remaining 49 (30%) landslide locations were used 

for validation of the model. The selection of the training and validation dataset was 

based on random selection. The training datasets were digitized into point features that 

are converted into a raster format of 12.5m, 30m, and 90m spatial resolution to make 

compatible with the influencing factors. Similarly, the validation dataset was also made 

into a raster format of 12.5m, 30m, and 90m spatial resolution to validate the LSM 

which is 12.5m, 30m, and 90m spatial resolution. 

 

4.2 Evaluation of landslide influencing factors using bivariate statistical models 

The spatial resolution used for this study is 12.5m, 30m, and 90m which is the 

same as the source resolution of the source DEM. The Frequency Ratio (FR), Index of 
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Entropy (IOE), and Weight of Evidence (WOE) analysis were used for all three spatial 

resolution. The study area consists of 5,252,600 pixels for the 12.5m spatial resolution, 

911,947 pixels for the 30m spatial resolution, and 101,183 pixels for the 90m spatial 

resolution. 

4.2.1 Relationship in the Frequency Ratio 

The FR value shows the weight of the individual factor classes. The higher FR 

value indicates a stronger correlation between the factor’s class and landslides (Nohani 

et al., 2019). Table 14 shows the average FR value of three different spatial resolutions 

(12.5m, 30m, and 90m) of the individual classes of the fifteen factors calculated using 

Equation 5. The detail of FR calculations was given in the Appendix B for spatial 

resolution 12.5m, 30m and 90m.  It was observed that all the different spatial resolutions 

acted in a similar trend using the FR. The average FR calculation for the three different 

spatial resolution factors (12.5m, 30m, and 90m) were shown in Table 14. The higher 

value of frequency shows a higher probability of landslides.  

From Table 14, it is noticed that the frequency ratio (FR) value generally 

decreases with an increase in elevation for all three spatial resolutions. This shows that 

the probability of the landslides decreases as the elevation increases. This may be due 

to weak lithology and high precipitation in the lower elevation and vice versa. During 

the field visit, it is confirmed that the lower elevation area corresponds to the steeper 

slopes. This similar pattern of the result was observed by (Jaafari et al., 2014). While 

comparing with the spatial resolution with the FR value, it was observed that the FR 

value is slightly higher in all the classes for the finer spatial resolution.  

Regarding the slope gradient, the FR value increases with an increase slope 

gradient. This reveals that the landslide probability increases as the slope becomes 

steeper. The result follows a similar trend with the number of other literatures that 

shows a similar result and the field investigation also witnesses that the steeper slopes 

experience more landslides. Regarding the variation of FR value with changes in spatial 

resolution, it is noticed that FR value increases systematically. However, it is observed 

that as the spatial resolution becomes courser, the FR value increases with a big jump 

compared to the finer spatial resolution. 
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Table 14 Relationship between the landslide and influencing factors using 

frequency ratio model 

Factor Class 
% of pixel  

in class 

% of landslide 

 in class 
Frequency Ratio 

Elevation 

(m) 

< 854.00 12.83 34.49 2.69 

854.00 - 1455 23.42 30.43 1.30 

1455.01 - 1949 32.15 18.55 0.58 

1949.01 - 2619 25.91 12.17 0.47 

2619 < 5.69 4.35 0.77 

Slope 

(Degree) 

0 - 13.00 10.39 7.54 0.72 

13.01 - 23.00 22.69 17.97 0.77 

23.01 - 32.00 31.76 27.25 0.86 

32.01 - 42.00 26.97 27.83 1.04 

42 < 8.20 19.42 2.60 

Aspect 

Flat 0.32 0.00 0.00 

North 12.23 4.93 0.40 

NorthEast 10.88 6.67 0.61 

East 12.13 13.04 1.07 

SouthEast 14.37 27.54 1.92 

South 13.09 17.68 1.35 

SouthWest 14.14 13.33 0.94 

West 12.08 7.25 0.60 

NorthWest 10.78 9.57 0.89 

Curvature 

Concave 46.43 55.07 1.18 

Flat 6.85 5.80 0.54 

Convex 46.72 39.13 0.85 

TWI 

< 0.999 23.29 24.64 1.06 

0.999 - 3.219 21.29 22.32 1.02 

3.220 - 6.688 4.88 3.77 0.79 

6.688 < 50.54 49.28 0.97 

SPI 

< -4.052 24.80 17.97 0.74 

-4.052 - 0.886 36.90 34.78 0.94 

0.887 - 3.529 31.71 39.13 1.28 

3.529 < 6.58 8.12 1.22 

Drainage Density 

 < 0.545 18.33 5.51 0.30 

0.545 - 0.854 25.33 31.88 1.26 

0.855 - 1.153 24.19 37.97 1.57 

1.154 - 1.462 21.17 18.55 0.87 

1.462 < 10.99 6.09 0.55 

NDVI 

<223 4.20 20.58 4.90 

0.223 - 0.407 10.93 19.71 1.80 

0.408 - 0.562 16.64 15.94 0.96 

0.563 - 0.688 28.52 22.32 0.79 

0.688 < 39.71 21.45 0.54 

NDSI 

< -0.516 9.24 7.25 0.78 

-0.516 - -0.273 18.04 9.28 0.51 

-0.274 - -0.097 28.03 14.78 0.53 

-0.098 - 0.078 31.45 35.94 1.14 

0.078 < 13.24 32.75 2.47 

Distance from river 

(m) 

0-100 3.71 6.09 1.64 

100-200 2.85 1.16 0.40 
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200-300 3.23 3.48 1.08 

300-400 2.85 3.48 1.22 

400< 87.36 85.80 0.98 

Distance from fault 

(m) 

0-100 4.67 1.74 0.35 

100-200 3.64 4.06 1.12 

200-300 3.99 5.22 1.31 

300-400 3.20 4.06 1.28 

400< 84.49 84.93 1.01 

Distance from Road 

(m) 

0-100 3.48 4.35 1.26 

100-200 2.36 2.03 0.87 

200-300 2.56 5.51 2.15 

300-400 2.17 1.45 0.67 

400< 89.44 86.67 0.97 

Lithology 

Tsm 10.58 27.23 2.57 

Pzc 6.67 7.25 0.92 

pCd 3.79 10.43 2.75 

GHlml 2.52 4.35 1.73 

GHlo 33.27 25.51 0.94 

Tgr 43.17 24.64 0.66 

Rainfall 

(mm) 

1786.79 - 2434.61 25.57 16.52 0.65 

2434.62 - 2930.01 28.56 12.46 0.44 

2930.02 - 3539.74 20.30 14.20 0.70 

3539.75 - 4225.67 13.53 34.20 2.53 

4225.68 - 5025.93 12.02 22.61 1.88 

LULC  

Agricultural Land 3.26 1.74 0.53 

Built Up Area 0.09 0.00 0.00 

Forest 92.61 94.78 1.02 

Shrub 2.47 3.19 1.29 

Water Bodies 1.57 0.29 0.18 

In the case of slope aspect, it is noticed that the south (1.35), south-east (1.92), 

and east (1.07) facing slopes corresponds to a higher value of FR in all the three 

resolution.  This shows that the south, south-east, and east-facing slopes experience 

more landslides. The result is perfectly matching with the landslide frequency that 

Bhutan encounters. The south and east-facing slopes experience relatively more 

precipitation and experience relatively a greater number of landslides. This may be due 

to the orographic effect of the giant Himalayan mountain. The winds that come from 

the Indian Ocean are blocked by the Himalayan mountain, condense it, and finally 

precipitate on the south and east-facing slopes. This ultimately causes a greater number 

of landslides. In the slope aspect, all three resolutions follow a similar trend with the 

FR value. 

Regarding the slope curvature, the FR of the concave slope (1.18) is more than 

1 indicating higher chances of the landslide, followed by convex (0.85) and flat area 
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(0.54). The previous study by Jaafari et al. (2014) also shows similar results. These 

concave curvature terrains retain more moisture and reduce the stability causing more 

landslides. However, the landslide probability is still debatable for the curvature in most 

of the literature. 

The topographic wetness index (TWI) indicates the amount of water 

accumulation at any point in an area (Sun et al., 2018). It was observed that the lowest 

TWI class (<0.999) corresponds to the highest FR value in all three spatial resolutions. 

The FR decreases with an increase in TWI and the finding is agreed with the result of 

Regmi et al. (2014). 

The Stream power index (SPI) measures the erosive capacity of the flowing 

water in the study area (Sun et al., 2018). The FR generally increases with an increase 

in the SPI value for all three different spatial resolutions. This shows that the erosive 

power of the flowing water augments the landslide probability. A similar result was 

obtained by Jaafari et al. (2014). 

The relationship between the drainage density and the frequency ratio doesn’t 

follow the regular trend for this study. This may be due to fragile and rugged terrain in 

certain drainage density in a specific area. The highest FR value corresponds to the 

drainage density class 0.546-0.854 and 0.855 - 1.153. Regarding the behavior of the 

different spatial resolution, all the three spatial resolution behave similar characteristic 

concerning frequency ratio.  

The NDVI value -1 to 0 represents water, 0 to 0.2 represent barren land, rock, 

and built-up area,  and 0.2 to 1 represents the vegetated area (Alex, Ramesh, and 

Sridevi, 2017). As the NDVI value increases, the strength of vegetation also increases.  

In this study, the FR value decreases with an increase in the NDVI in all three different 

spatial resolutions, and a similar result was obtained by (Nohani et al., 2019). The 

greater NDVI value reveals healthy vegetation coverage which reinforces and stabilize 

the soil. This result reveals that the landslides are more common in the less vegetated 

area. 

Normalized Difference Soil Index is used to give information about the 

distinction between the soil with other land cover types to a certain degree. The higher 

value indicates the bares soil area and the lower value indicates different categories of 

vegetated area (Mind'je et al., 2019). From the result, it is indicated that the higher FR 
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increases with an increase in NDVI. This shows the bare soil is exposed to direct surface 

water and rainfall. This exposed surface is relatively more prone to landslides. 

From the result, the landslide was more common within a distance of 400m from 

the river with a higher value of FR in all three spatial resolutions. The field investigation 

also confirmed that the landslides are common within a certain distance. In the research 

of Nohani et al. (2019), a total of 45% of the total landslides were encountered within 

400m of the river. All three spatial resolution behaved similar characters in this study 

concerning distance to the river. 

Faults are the discontinuities of the geological setting that usually decrease the 

rock strength (Devkota et al., 2013). For this study, the FR value is higher within 400m, 

and it decreases while the distance goes beyond the 400m. This indicates the landslides 

are more common within 400m of the fault line. A similar trend was also reported by 

Jaafari et al. (2014). All three different spatial resolution act in a similar pattern. 

It is observed that the FR decreases with an increase in the distance from the 

road. The distance within 300m from the road is more prone to the landslides because 

the FR value is more within 300m. This is due to the anthropogenic activities of the 

road construction which destabilizes the area.  

Regarding the Lithology, the detail description of the lithology is given in Table 

7. From Table 14, it was noticed that the order of highest FR to lowest FR are pCd, 

Tsm, GHlml, GHlo, Pzc, and Tgr. This shows that the most landslide-prone area 

corresponds to pCd, followed by Tsm, GHlml, GHlo, Pzc, and Tgr. All the different 

spatial resolutions acted in a similar pattern. 

The FR increases with an increase in rainfall intensity in all three different 

spatial resolutions. This shows that the landslide probability increases with an increase 

in the rainfall intensity and agree with the fact that the landslides are also triggered by 

rainfall (Jaafari et al., 2014). 

In the case of the land use land cover, the FR of shrub and Forest corresponds 

to the highest FR value. This may be due to unsuitable lands for human habitation which 

is very steep, rugged, and fragile landslides in the shrubs and forest. The built-up area 

has zero FR value. This is due to the number of landslide preventive measures in the 

costly built-up area. 
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4.2.2 Relationship in the Index of Entropy 

The entropy shows the degree of imbalance, disorder, unstable behavior, and 

uncertainty in the system (Shirani et al., 2018). With regards to the landslides, entropy 

refers to the degree of influence or instability caused by the influencing factors on the 

landslides occurrence (Pourghasemi et al., 2012). The entropy value is used to calculate 

the weight of the individual influencing factors (Tien Bui et al., 2018). The Equation 7 

to Equation 12 is used for the calculation of the weight of the landslides influencing 

factors. 

The spatial relationship between the landslide event and the three different 

resolution (12.5m, 30m, and 90m) factors using the Index of Entropy was shown in the 

Appendix C. It was noticed that all three spatial resolutions show a similar trend of 

pattern in all the influencing factors for the Index of Entropy. The entropy value is used 

to calculate the weight (Wij) of the individual factors (Tien Bui et al., 2018). The Wij of  

Table 14 shows the average weight of the influencing factor of three spatial resolution 

(12,5m, 30m, and 90m) for the Index of Entropy. The higher value of Wij indicates the 

higher magnitude of influence of the influencing factors on the landslide occurrences 

(Mondal and Mandal, 2019). Among the fifteen factors, the most dominant five factors 

were NDVI (0.394), followed by the land use land cover (0.176), rainfall (0.163), 

Normalized Difference Soil Index (0.134), elevation (0.158), and lithology (0.125). 

Every class of the individual factors contributes differently to the landslides 

event. The probability density (Pij) is calculated using the Equation 8 and it is used to 

compare how the individual classes of each landslide influencing factors contribute to 

the landslide events.  

From the result of (Pij) of Table 15, it is noticed that the lowest elevation is 

highly susceptible to the landslides with the highest probability density of 0.47. As the 

elevation increases, the (Pij) decreases. This indicates that the landslide probability 

decreases with an increase in altitude. This may be due to the coincidence of the lowest 

elevation with the heavy rainfall and steep rugged terrain. A similar result was also 

obtained by Mondal and Mandal (2019) whose study area is also located in the part of 

the Himalayan region with similar geotechnical setting and meteorological 

characteristics. 
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Table 15 Relationship between the factor’s class and landslide event using the 

Index of Entropy 

Factor Class 

% of 

pixel 

class 

% of 

landslide 
Pij (Pij) Hj Hjmax Ij Wij 

Elevation 

(m) 

< 854.00 12.83 34.49 2.69 0.47 

2.006 2.322 0.136 0.158 

854.00 - 1455 23.42 30.43 1.30 0.22 

1455.01 - 1949 32.15 18.55 0.58 0.10 

1949.01 - 2619 25.91 12.17 0.47 0.08 

2619 < 5.69 4.35 0.77 0.13 

Slope 

(Degree) 

0 - 13.00 10.39 7.54 0.72 0.12 

2.106 2.322 0.093 0.114 

13.01 - 23.00 22.69 17.97 0.77 0.13 

23.01 - 32.00 31.76 27.25 0.86 0.15 

32.01 - 42.00 26.97 27.83 1.04 0.17 

42 < 8.20 19.42 2.60 0.43 

Aspect 

Flat 0.32 0.00 0.00 0.00 

2.840 3.170 0.104 0.090 

North 12.23 4.93 0.40 0.05 

NorthEast 10.88 6.67 0.61 0.08 

East 12.13 13.04 1.07 0.14 

SouthEast 14.37 27.54 1.92 0.24 

South 13.09 17.68 1.35 0.17 

SouthWest 14.14 13.33 0.94 0.12 

West 12.08 7.25 0.60 0.08 

NorthWest 10.78 9.57 0.89 0.12 

Curvature 

Concave 46.43 55.07 1.18 0.48 

1.351 1.585 0.148 0.103 Flat 6.85 5.80 0.54 0.19 

Convex 46.72 39.13 0.85 0.33 

TWI 

< 0.999 23.29 24.64 1.06 0.28 

1.983 2.000 0.009 0.008 
0.999 - 3.219 21.29 22.32 1.02 0.26 

3.220 - 6.688 4.88 3.77 0.79 0.20 

6.688 < 50.54 49.28 0.97 0.26 

SPI 

< -4.052 24.80 17.97 0.74 0.18 

1.940 2.000 0.030 0.032 
-4.052 - 0.886 36.90 34.78 0.94 0.23 

0.887 - 3.529 31.71 39.13 1.28 0.31 

3.529 < 6.58 8.12 1.22 0.29 

Drainage Density 

 <  0.545 18.33 5.51 0.30 0.06 

2.127 2.322 0.084 0.076 

0.545 - 0.854 25.33 31.88 1.26 0.28 

0.855 - 1.153 24.19 37.97 1.57 0.35 

1.154 - 1.462 21.17 18.55 0.87 0.19 

1.462 < 10.99 6.09 0.55 0.12 

NDVI 

<223 4.20 20.58 4.90 0.54 

1.835 2.322 0.210 0.394 

0.223 - 0.407 10.93 19.71 1.80 0.21 

0.408 - 0.562 16.64 15.94 0.96 0.11 

0.563 - 0.688 28.52 22.32 0.79 0.09 

0.688 < 39.71 21.45 0.54 0.06 

NDSI 

< -0.516 9.24 7.25 0.78 0.15 

2.036 2.322 0.123 0.134 

-0.516 - -0.273 18.04 9.28 0.51 0.10 

-0.274 - -0.097 28.03 14.78 0.53 0.10 

-0.098 - 0.078 31.45 35.94 1.14 0.21 

0.078 < 13.24 32.75 2.47 0.46 

Distance from river 

(m) 

0-100 3.71 6.09 1.64 0.31 

2.203 2.322 0.051 0.055 

100-200 2.85 1.16 0.40 0.07 

200-300 3.23 3.48 1.08 0.20 

300-400 2.85 3.48 1.22 0.23 

400< 87.36 85.80 0.98 0.18 

 

Distance from fault 

0-100 4.67 1.74 0.35 0.07 
2.181 2.322 0.061 0.060 

100-200 3.64 4.06 1.12 0.22 
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(m) 200-300 3.99 5.22 1.31 0.26 

300-400 3.20 4.06 1.28 0.25 

400< 84.49 84.93 1.01 0.20 

Distance from road 

(m) 

0-100 3.48 4.35 1.26 0.21 

2.182 2.322 0.060 0.071 

100-200 2.36 2.03 0.87 0.15 

200-300 2.56 5.51 2.15 0.36 

300-400 2.17 1.45 0.67 0.11 

400< 89.44 86.67 0.97 0.16 

Lithology 

Tsm 10.58 27.23 2.57 0.27 

2.383 2.585 0.079 0.125 

Pzc 6.67 7.25 0.93 0.10 

pCd 3.79 10.43 2.75 0.29 

GHlml 2.52 4.35 1.73 0.18 

GHlo 33.27 25.51 0.94 0.10 

Tgr 43.17 24.64 0.66 0.07 

Rainfall 

(mm) 

1786.79 - 2434.61 25.57 16.52 0.65 0.10 

2.015 2.322 0.132 0.163 

2434.62 - 2930.01 28.56 12.46 0.44 0.07 

2930.02 - 3539.74 20.30 14.20 0.70 0.11 

3539.75 - 4225.67 13.53 34.20 2.53 0.41 

4225.68 - 5025.93 12.02 22.61 1.88 0.30 

LULC 

Agricultural Land 3.26 1.74 0.53 0.18 

1.622 2.322 0.301 0.176 

Built Up Area 0.09 0.00 0.00 0.00 

Forest 92.61 94.78 1.02 0.35 

Shrub 2.47 3.19 1.29 0.42 

Water Bodies 1.57 0.29 0.18 0.05 

Regarding the slope gradient, it is noticed that the (Pij) value increases with 

increases in the slope gradient. The field verification also confirmed that the steeper 

slopes exhibit more landslides. The result is agreed with the results of Devkota et al. 

(2013).  

In the case of aspect, the slope facing south,  southeast, and southwest 

experiences more landslide with higher (Pij). The rest of the slope directions are less 

susceptible to the landslides. Devkota et al. (2013) studied landslide in Nepal which is 

also a part of the Himalayan region and he observed a similar result. This may be due 

blockage of wind that comes from the south (Indian Ocean) by the giant Himalayan 

mountain. The condense wind finally drops as precipitation which triggers relatively 

more landslides on the south-facing slope.  

Regarding the slope curvature, the (Pij) is debatable with respect to the different 

spatial resolution. In this study, the concave slope curvature (0.48) corresponds with 

higher (Pij) indicating more susceptible to landslide, followed by convex slope 

curvature (0.33) and flat area (0.19). This result is evident that concave terrain holds 

more water which decreases the soil strength and augments soil erosion. This result is 

agreed with the result of Devkota et al. (2013).  
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In the case of Topographic Wetness Index (TWI), the landslide pattern of (Pij)  

doesn’t follow a systematic trend concerning TWI value. However, it is noticed that the 

behavior of the different spatial resolutions acted similar to one another. 

The landslide is also influenced significantly by the stream power index. It was 

noticed that the (Pij) increases with the increases in SPI value for all three different 

spatial resolutions. This indicates that the erosive power of the stream increases the 

landslide event. A similar result was observed by  (Wang, Li, Chen, and Bai, 2015). 

Although the drainage density doesn’t follow the regular increment trend with 

(Pij), it is noticed that there is a slight increase of (Pij) with drainage density. This 

indicates the chances of the landslide are slightly higher with an increase in the drainage 

density. 

For this study, the Normalized Difference Vegetation Index (NDVI) is the top 

influential factor. The (Pij) decreases with an increase in NDVI value for all different 

spatial resolutions. This indicates that the landslide occurrence decreases with the 

increase in vegetation strength and vice versa. The vegetation roots reinforce the slope 

surface and minimize the landslides. The result is agreed with the theoretical concept 

of reinforcement of soil by the vegetation roots and a similar result was obtained by 

Mondal and Mandal (2019). 

Normalized Difference Soil Index indicate the distinction between the soil with 

other land cover types using its value. The higher value indicates the bares soil area and 

the lower value indicates different categories of vegetated area (Mind'je et al., 2019). 

From Table 15, it noticed that the barren area is more susceptible to the landslides. 

Regarding the distance from the river, it was noticed that the landslides are more 

prominent within a distance of 400m from the river with a higher value of (Pij) for all 

the three different spatial resolutions. The field verification also confirmed that the 

landslides are more common within 400m from the river. 

For the susceptibility of the landslide with respect to the distance from the fault, 

it is noticed that the (Pij) is higher in between the distance of 100m to 400. This shows 

that the landslide is less common beyond 400m from the fault.  All three different spatial 

resolutions acted in a similar manner for the distance from the fault. 
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In the case of a road, the distance from the road doesn’t follow the systematic 

trend with the value of (Pij) value. However, it was noticed that the landslides are more 

common within 300 m from the road.  

Pertaining to the lithology, the landslide is more common for the class pCd 

(0.29), followed by Tsm (27), and GHlml (0.18) with decreasing order of (Pij). The least 

landslide-prone lithology are  GHlo (0.10), Pzc (0.10), and Tgr (0.07). 

Regarding the rainfall, the (Pij) also increases with the increase in rainfall 

amount. This shows that the more landslides events take place in the area having a high 

amount of rainfall. A similar result was obtained by Jaafari et al. (2014).  

In the case of land use land cover, the landslide probability is still debatable for 

different classes. For this study, the most landslide-prone class is a shrub (0.42) and 

forest (0.35), followed by agricultural land (0.18). As per this study, the build-up area 

and the water bodies corresponds to negligible landslides. Technically, the water bodies 

don’t have the soil attached to it and there will be no landslides. Similarly, the build-up 

area consists of costly infrastructure which is protected by the landslide protection walls 

such as retaining walls resulting is no landslides. 

 

4.2.3 Relationship in the Weight of Evidence 

The detail calculation of weight W+ and W-, contrast C, variance S2(W+) and 

S2(W-), standard deviation S(C), and studentized contrast Cs for the conditioning 

factors using the spatial resolution 12.5m, 30m and 90m are given in the Appendix D.  

The Equation 14 to Equation 20 are used to calculate the weight, contrast, 

variance, standard deviation, and studentized contrast. The average parameters of the 

Weight of Evidence are given in Table 16. 

It is observed that the studentized contrast decreases with an increase in 

elevation. The highest studentized contrast (6.489) corresponds to the lowest class 

(144.00 - 854.01) of the elevation for all the different spatial resolutions. The most 

significant elevation is lower than 854m above the mean sea level with studentized 

contrast more than 1.96 indicating a confidence level of 95% in favor of positive 

association between the landslide and the class of the elevation for all the classes of the 

different spatial resolution. A similar result was observed by Wang et al. (2016).  



 66 

Table 16 Relation between the landslide event and the factor’s class using the 

Weight of Evidence 

Factor Class 
% of 

class 

% of 

Landslide 
W+ W- C S2(W+) S2(W-) S(C ) Cs 

Elevation 

(m) 

< 854.00 12.83 34.49 0.987 -0.287 1.274 0.025 0.013 0.197 6.489 

854.00 - 1455 23.42 30.43 0.260 -0.096 0.357 0.029 0.013 0.203 1.769 

1455.01 - 1949 32.15 18.55 -0.550 0.183 -0.733 0.047 0.011 0.240 -3.053 

1949.01 - 2619 25.91 12.17 -0.756 0.170 -0.926 0.072 0.010 0.285 -3.245 

2619 < 5.69 4.35 -0.268 0.014 -0.282 0.200 0.009 0.457 -0.617 

Slope 

(Degree) 

0 - 13.00 10.39 7.54 -0.349 0.031 -0.380 0.123 0.009 0.361 -0.992 

13.01 - 23.00 22.69 17.97 -0.276 0.058 -0.334 0.054 0.011 0.252 -1.233 

23.01 - 32.00 31.76 27.25 -0.153 0.064 -0.218 0.032 0.012 0.210 -1.031 

32.01 - 42.00 26.97 27.83 0.035 -0.011 0.046 0.031 0.012 0.208 0.220 

42 < 8.20 19.42 0.933 -0.133 1.066 0.054 0.011 0.251 4.312 

Aspect 

Flat 0.32 0.00 0.000 0.003 0.000 0.000 0.009 0.062 -0.001 

North 12.23 4.93 -0.912 0.080 -0.992 0.178 0.009 0.432 -2.291 

NorthEast 10.88 6.67 -0.525 0.046 -0.571 0.141 0.009 0.384 -1.422 

East 12.13 13.04 0.072 -0.011 0.083 0.067 0.010 0.277 0.302 

SouthEast 14.37 27.54 0.649 -0.167 0.816 0.031 0.012 0.209 3.914 

South 13.09 17.68 0.293 -0.055 0.347 0.050 0.010 0.246 1.447 

SouthWest 14.14 13.33 -0.067 0.009 -0.076 0.067 0.010 0.276 -0.244 

West 12.08 7.25 -0.521 0.054 -0.575 0.123 0.009 0.363 -1.566 

NorthWest 10.78 9.57 -0.122 0.013 -0.135 0.091 0.010 0.318 -0.416 

Curvature 

Concave 46.43 55.07 0.155 -0.198 0.352 0.016 0.020 0.192 1.830 

Flat 6.85 5.80 -0.153 0.011 -0.164 0.131 0.009 0.314 -0.347 

Convex 46.72 39.13 -0.180 0.133 -0.312 0.023 0.015 0.192 -1.609 

TWI 

< 0.999 23.29 24.64 0.053 -0.020 0.072 0.047 0.012 0.238 0.335 

0.999 - 3.219 21.29 22.32 0.010 -0.015 0.025 0.051 0.012 0.243 0.208 

3.220 - 6.688 4.88 3.77 -0.261 0.012 -0.273 0.448 0.009 0.617 -0.480 

6.688 < 50.54 49.28 -0.027 0.023 -0.051 0.018 0.017 0.187 -0.271 

SPI 

< -4.052 24.80 17.97 -0.312 0.090 -0.402 0.052 0.010 0.248 -1.650 

-4.052 - 0.886 36.90 34.78 -0.066 0.032 -0.098 0.026 0.013 0.198 -0.480 

0.887 - 3.529 31.71 39.13 0.237 -0.115 0.352 0.023 0.015 0.195 1.799 

3.529 < 6.58 8.12 0.144 -0.017 0.161 0.127 0.009 0.363 0.637 

Drainage Density 

 <  0.545 18.33 5.51 -1.205 0.146 -1.351 0.159 0.009 0.409 -3.296 

0.545 - 0.854 25.33 31.88 0.230 -0.092 0.322 0.027 0.013 0.200 1.610 

0.855 - 1.153 24.19 37.97 0.451 -0.201 0.652 0.023 0.014 0.192 3.391 

1.154 - 1.462 21.17 18.55 -0.132 0.033 -0.165 0.047 0.011 0.240 -0.686 

1.462 < 10.99 6.09 -0.591 0.054 -0.644 0.143 0.009 0.390 -1.652 

NDVI 

<223 4.20 20.58 1.555 -0.190 1.745 0.045 0.011 0.236 7.599 

0.223 - 0.407 10.93 19.71 0.575 -0.105 0.680 0.046 0.011 0.236 2.939 

0.408 - 0.562 16.64 15.94 -0.045 0.008 -0.053 0.055 0.010 0.255 -0.201 

0.563 - 0.688 28.52 22.32 -0.245 0.083 -0.328 0.039 0.011 0.224 -1.466 

0.688 < 39.71 21.45 -0.644 0.262 -0.906 0.043 0.011 0.231 -3.831 

NDSI 

< -0.516 9.24 7.25 -0.244 0.022 -0.266 0.120 0.009 0.360 -0.735 

-0.516 - -0.273 18.04 9.28 -0.669 0.102 -0.771 0.094 0.010 0.322 -2.383 

-0.274 - -0.097 28.03 14.78 -0.664 0.168 -0.832 0.062 0.010 0.267 -3.054 

-0.098 - 0.078 31.45 35.94 0.132 -0.068 0.200 0.024 0.014 0.195 1.034 

0.078 < 13.24 32.75 0.905 -0.255 1.160 0.027 0.013 0.199 5.839 

Distance from river 

(m) 

0-100 3.71 6.09 0.493 -0.025 0.519 0.145 0.009 0.392 1.331 

100-200 2.85 1.16 -0.950 0.017 -0.967 0.833 0.009 0.907 -1.043 

200-300 3.23 3.48 0.075 -0.003 0.078 0.250 0.009 0.509 0.154 

300-400 2.85 3.48 0.199 -0.006 0.206 0.250 0.009 0.509 0.404 

400< 87.36 85.80 -0.018 0.116 -0.134 0.010 0.062 0.267 -0.504 

Distance from fault 

(m) 

0-100 4.67 1.74 -1.212 0.030 -1.242 0.750 0.009 0.839 -1.390 

100-200 3.64 4.06 0.107 -0.004 0.111 0.217 0.009 0.474 0.240 

200-300 3.99 5.22 0.259 -0.013 0.272 0.170 0.009 0.422 0.668 

300-400 3.20 4.06 0.197 -0.009 0.206 0.233 0.009 0.487 0.521 

400< 84.49 84.93 0.005 -0.030 0.036 0.010 0.058 0.261 0.129 

Distance from road 

(m) 

0-100 3.48 4.35 0.227 -0.009 0.236 0.200 0.009 0.457 0.517 

100-200 2.36 2.03 -0.161 0.004 -0.164 0.444 0.009 0.670 -0.225 

200-300 2.56 5.51 0.765 -0.031 0.796 0.159 0.009 0.409 1.949 

300-400 2.17 1.45 -0.449 0.007 -0.457 0.667 0.009 0.810 -0.516 

400< 89.44 86.67 -0.031 0.233 -0.264 0.010 0.066 0.274 -0.964 

Lithology 

Tsm 10.58 27.23 0.945 -0.206 1.151 0.031 0.012 0.208 5.530 

Pzc 6.67 7.25 -0.091 -0.007 -0.084 0.681 0.010 0.747 0.067 

pCd 3.79 10.43 1.012 -0.072 1.083 0.083 0.010 0.305 3.551 

GHlml 2.52 4.35 0.546 -0.019 0.565 0.200 0.009 0.457 1.236 

GHlo 33.27 25.51 -0.111 0.173 -0.284 0.037 0.012 0.220 -1.548 

Tgr 43.17 24.64 -0.430 0.383 -0.814 0.349 0.012 0.464 -3.974 

Rainfall 1786.79 - 2434.61 25.57 16.52 -0.437 0.115 -0.552 0.053 0.010 0.251 -2.197 
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(mm) 2434.62 - 2930.01 28.56 12.46 -0.830 0.203 -1.033 0.070 0.010 0.282 -3.657 

2930.02 - 3539.74 20.30 14.20 -0.358 0.074 -0.431 0.062 0.010 0.267 -1.614 

3539.75 - 4225.67 13.53 34.20 0.927 -0.273 1.200 0.026 0.013 0.197 6.106 

4225.68 - 5025.93 12.02 22.61 0.632 -0.128 0.760 0.038 0.011 0.223 3.408 

LULC 

Agricultural Land 3.26 1.74 -0.628 0.016 -0.644 0.500 0.009 0.713 -0.902 

Built Up Area 0.09 0.00 0.000 0.001 -0.001 0.000 0.009 0.093 -0.010 

Forest 92.61 94.78 0.023 -0.374 0.397 0.009 0.175 0.427 0.878 

Shrub 2.47 3.19 0.225 -0.007 0.233 0.289 0.009 0.542 0.493 

Water Bodies 1.57 0.29 -0.198 0.013 -0.211 0.333 0.009 0.397 -0.312 

The studentized contrast increases with the increase in slope gradient indicating 

the landslides are more prominent in the steep slope. A similar result was observed  by 

Wang et al. (2016) and Roy et al. (2019). The most significant slope angle is more than 

42° with studentized contrast more than 1.96 indicating a confidence level of 95% in 

favor of a positive association between the landslide and the class of the slope gradient.  

In the case of the slope aspect, the contrast value is higher for south (1.447), 

southeast (3.914), and east (1.447) facing slopes. This may be due to the effect of the 

giant Himalayan mountain. Since the Ossay watershed is situated in the Himalayan 

region, the prevailing monsoon wind direction from the south is blocked by the giant 

Himalayan mountains. This wind finally gets condense which results in heavy 

precipitation on the south-facing slopes. The most landslide-prone area is south-east 

(Cs>1.96) with a 95% confidence level. Kayastha, Dhital, and De Smedt (2012) and 

Roy et al. (2019) also found that the south-facing slope is more susceptible to 

landslides. 

In the case of the slope curvature, the studentized contrast is highest for concave 

curvature (1.830). The concave curvature holds the water and the adjoining soil 

becomes loose which ultimately destabilizes an area resulting in relatively higher 

landslides than convex and flat area. 

In the Topographic Wetness Index (TWI), it is observed that there is no regular 

trend flow in between the TWI and the studentized contrast. However, it is noticed that 

there is a slight decrease in studentized contrast with the increase in the TWI.  

Regarding the stream power index (SPI), the studentized contrast increases with 

an increase in SPI value. This signifies that the landslides are more prominent in the 

higher SPI value. A similar result was obtained by Roy et al. (2019) and Wang et 

al.(2016). 

There is a slight increase of studentized contrast with an increase in the drainage 

density. The lowest studentized contrast corresponds to the lowest drainage density and 
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all the three different spatial resolution acted with similar behavior on the drainage 

density. 

The two lowest NDVI classes (<0.223) and (0.223 - 0.407) correspond to the 

highest studentized contrast with more than 1.96 indicating a higher correlation with a 

confidence level of 95%. On the other hand, the highest NDVI class (0.689 - 0.902) 

corresponds to the lowest studentized contrast with less than -1.96 disfavoring the 

landslides by a 95% confidence level. It was noticed that when the NDVI is more, 

studentized contrast is less and vice versa. This result is agreed with the result of Roy 

et al. (2019). This means that the probability of landslide occurrence is less in a healthy 

vegetated area or an area having a high NDVI value. 

Normalized Difference Soil Index (NDSI) indicate the distinction between the 

soil with other land cover types using its value. The higher value indicates the bares 

soil area and the lower value indicates different categories of vegetated area (Mind'je 

et al., 2019). From Table 16, it is observed that the highest NDSI class (0.078 - 0.745) 

corresponds to the highest studentized contrast (5.839). This reveals that the bare soils 

are exposed to the direct runoff resulting in more prone to the landslides during the 

monsoon season.  

Regarding the distance from the river, it is observed that the studentized contrast 

within the 100m is maximum. As the distance goes away from the river, the studentized 

contrast decreases. This shows that the landslide probability decreases as we go away 

from the river.  

In the case of the distance from the fault, the relationship between the 

studentized contrast and the distance from the fault does not have a systematic trend. 

However, it is noticed that the studentized contrast is more in between the distance of 

100m to 400m from the fault. This shows that the landslide is more common between 

distance of 100-400m from the fault. The different spatial resolution has behaved in a 

similar characteristic in this factor. 

The landslide is more common within the distance of 300m from the road. 

However, the impact of the road is quite insignificant on the landslide. As the distance 

increase from 300m, the studentized contrast is decreasing for all three different spatial 

resolutions. 
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The lithological class Tsm (siwalik group) and pCd (daling shumar group) have 

more studentized contrast (Cs>1.96). This shows Tsm and pCd contributes significantly 

to the landslide with the confidence level of 95%. The remaining lithology does not 

have a great impact on the landslides. 

Rainfall is considered as one of the main triggering factors for the landslides. 

The result shows that the landslide increases with an increase in rainfall amount. The 

studentized contrast is more than 1.96 for the rainfall intensity of more than 3539.74mm 

indicating a confidence level of 95% positive association. This clearly indicates 

landslides are highly correlated to the higher rainfall intensity.  

In the case of land use, all the classes are having studentized contrast in between 

-1.96 to 1.96 indicating there is less significance on the landslide by the different land 

use classes at Ossay watershed area. 

  

4.3 Landslide Susceptibility mapping using statistical models 

The LSM was prepared using the FR, IOE, and WOE for individual 12.5m, 

30m, and 90m spatial resolution. Then, the hybrid LSM was also prepared by 

combining these using these models for 12.5m, 30m, and 90m spatial resolution. These 

hybrid LSM were FR-IOE, IOE-WOE, and WOE-FR. The LSM generated using 

different models need a classification for better visual interpretation (Jaafari et al., 

2014). There are several classification packages in GIS software. The appropriate 

classification method is chosen based on the distribution of the landslide susceptibility 

value (Ayalew and Yamagishi, 2005). The selection of classification methods depends 

on the data value distribution of LSM (Jaafari et al., 2014). The natural break 

classification identifies distinct breakpoints of the distribution of the pattern and divides 

into classes whose boundaries are of relatively big jumps in the values (Osaragi, 2002). 

Therefore, considering the data value distribution and visualization, natural break 

classification was used for this study for all the LSM. All the final LSM is classified 

into five classes using the natural break classification for the comparison purpose. The 

classes of LSM were very low, low, moderate, high and very high susceptibility zone. 

Regarding the LSM using FR, the factors were reclassified using the FR value 

from Appendix B for 12.5m, 30m, and 90m resolution. All the reclassified factors were 
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summed up using the Equation 6 to form LSM for 12.5m (Figure 11(a)), 30m (Figure 

11 (b)), and 90m (Figure 11(c)). From the Table 17, it is noticed that the area coverage 

is smallest (2.54%, 20.86sq.km) for the finest spatial resolution (12.5m) and the area 

coverage is largest (6.17%, 50.59 sq.km) for the coarse spatial resolution (90m) for the 

very high landslide susceptibility zone. On the other hand, it is noticed that the area 

coverage is large (35.03%, 287.50 sq.km)  for the finest spatial resolution (12.5m) and 

the area coverage is smaller (30.23%, 247.80 sq.km) for the coarse spatial resolution 

(90m) for the very low landslide susceptibility zone. It is observed that the area 

increases as we go from a very high susceptibility zone to a very low susceptibility zone 

for all three different spatial resolutions. However, for 30m and 90m spatial resolution, 

the area decreases slightly in very low susceptibility zone while comparing the low 

susceptibility zone. 

Table 17 Area coverage in different LSM zone using different models 

Models LSM zone 
12.5m spatial resolution 30m spatial resolution 90m spatial resolution 

Area(km2) Percentage Area(km2) Percentage Area(km2) Percentage 

F
re

q
u

en
cy

 

R
a

ti
o
 

Very Low 287.5 35.03 252.04 30.75 247.8 30.23 

Low 268.29 32.69 253.18 30.88 269.8 32.92 

Moderate 130.3 15.88 155.94 19.02 148.55 18.12 

High 113.77 13.86 108.61 13.25 102.85 12.55 

Very High 20.86 2.54 49.99 6.09 50.59 6.17 

  

In
d

ex
 o

f 

E
n

tr
o

p
y
 

Very Low 457.4 55.73 274.43 33.44 264.45 32.27 

Low 216.86 26.42 220.51 26.87 229.07 27.95 

Moderate 112.07 13.66 178.47 21.74 168.99 20.62 

High 17.63 2.15 110.29 13.44 96.44 11.77 

Very High 16.75 2.04 37.06 4.51 60.64 7.4 

  

W
ei

g
h

t 
o

f 

E
v

id
en

ce
 Very Low 171.44 20.89 164.52 20.04 163.05 19.87 

Low 279.67 34.08 253.82 30.93 262.62 32 

Moderate 185.62 22.62 201.98 24.61 195.87 23.87 

High 109.95 13.4 120.43 14.67 113.46 13.83 

Very High 74.04 9.02 80.00 9.75 85.58 10.43 

In the case of IOE, all the factors were secondarily reclassified using the value 

of landslide probability density (Pij) from the Appendix C for the spatial resolution 

12.5m, 30m, and 90m. The LSM is developed by adding all the weighted secondarily 

reclassified influencing factors using the Equation 13. The LSM developed using the 

12.5m, 30m, and 90 were shown in Figure 12(a), Figure 12(b) and Figure 12(c), 

respectively. From the Table 17, it is noticed that the area coverage is smallest (16.75 

sq.km) for the finest spatial resolution (12.5m) and largest (60.64sq.km) for the coarse 

spatial resolution (90m) for the very high landslide susceptibility zone. On the other 
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hand, it is noticed that the area coverage is large (457.40 sq.km)  for the finest spatial 

resolution (12.5m) and smallest (264.45 sq.km) for the coarse spatial resolution (90m) 

for the very low landslide susceptibility zone. Unlike LSM using the FR, the area 

increases as we go from a very high susceptibility zone to a very low susceptibility zone 

for all three different spatial resolution. 

For WOE, all the classes of the factors are reclassified using the contrast value 

(C) from Appendix D for spatial resolution 12.5m, 30m, and 90m. Then, add all the 

reclassified factors using Equation 21 to form the LSM. The LSM developed using 

WOE for 12.5m (Figure 13(a)), 30m (Figure 13(b)), and 90m (Figure 13(c). Similar to 

Frequency Ratio and Index of Entropy, it is noticed that the area coverage is smallest 

(9.02%, 74.04 sq.km) for the finest spatial resolution (12.5m) and largest (10.43%, 

85.58sq.km) for the coarse spatial resolution (90m) for the very high landslide 

susceptibility zone (Table 17). On the other hand, it is noticed that the area coverage is 

large (20.87%, 171.44sq.km)  for the finest spatial resolution (12.5m) and smallest 

(19.87%, 163.05sq.km) for the coarse spatial resolution (90m) for the very low 

landslide susceptibility zone. The area increases as the landslide susceptibility zone go 

from a very high susceptibility zone to a low susceptibility zone. However, unlike FR 

and IOE, the WOE area decreased when it reaches a very low susceptibility zone for all 

spatial resolutions. 
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Figure  11 Landslide susceptibility mapping using Frequency Ratio (a) 12.5m 

spatial resolution, (b) 30m spatial resolution, (c) 90m spatial resolution 
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Figure  12 Landslide susceptibility mapping using Index of Entropy (a) 12.5m 

spatial resolution, (b) 30m spatial resolution, (c) 90m spatial resolution 

 

 
 

 



 74 

 

Figure  13 Landslide susceptibility mapping using Weight of Evidence (a) 12.5m 

spatial resolution, (b) 30m spatial resolution, (c) 90m spatial resolution 
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4.4 Hybrid landslide susceptibility mapping 

 A total of three hybrid landslide susceptibility mapping were developed for 

12.5m, 30m, and 90m spatial resolution. The hybrid LSM was formed by combining 

Frequency Ratio and Index of Entropy (FR-IOE LSM), Index of Entropy and Weight 

of Evidence (IOE-WOE LSM), and Weight of Evidence and Frequency Ratio (WOE-

FR LSM). All the hybrid LSM were classified into five classes using the natural break 

for uniformity and comparison purposes with primary models and other hybrid models. 

The classes of hybrid LSM were very low, low, moderate, high, and very high 

susceptibility zone. 

The classified hybrid LSM developed using 12.5m spatial resolution was shown 

in Figure 14(a) (FR-IOE LSM), Figure 14(b)(IOE-WOE LSM), and Figure 14(c) 

(WOE-FR LSM). The classified hybrid LSM developed using 30m spatial resolution 

was shown in Figure 15(a) (FR-IOE LSM), Figure 15(b)(IOE-WOE LSM), and Figure 

15(c) (WOE-FR LSM). The classified hybrid LSM developed using 90m spatial 

resolution were shown in Figure 16(a) (FR-IOE LSM), Figure 16(b)(IOE-WOE LSM), 

and Figure 16(c) (WOE-FR LSM). 

Table 18 Area coverage in different spatial resolution LSM using hybrid models 
Spatial  

Resolution 

 

Zones 

FR-IOE IOE-WoE WOE-FR 

Percentage Area(km2) Percentage Area(km2) Percentage Area(km2) 

1
2

.5
m

 

Very Low 33.74 276.91 21.04 172.68 21.93 179.98 

Low 34.28 281.31 35.07 287.79 34.52 283.28 

Moderate 15.86 130.14 22.23 182.42 21.71 178.16 

High 13.66 112.15 13.32 109.36 13.42 110.13 

Very High 2.46 20.21 8.34 68.47 8.43 69.18 

  

3
0

m
 

Very Low 29.69 243.69 18.09 148.49 18.52 151.97 

Low 31.94 262.12 31.06 254.93 31.03 254.67 

Moderate 19.88 163.16 26.21 215.09 25.57 209.85 

High 12.94 106.19 15.46 126.88 15.33 125.8 

Very High 5.55 45.59 9.18 75.36 9.56 78.46 

  

9
0

m
 

Very Low 29.53 242.05 20.66 169.3 20.86 170.93 

Low 34.78 285.07 32.86 269.28 32.27 264.47 

Moderate 17.8 145.92 23.59 193.35 23.53 192.87 

High 12.33 101.09 13.55 111.04 13.82 113.25 

Very High 5.55 45.45 9.35 76.62 9.53 78.07 

From the Table 18, it is noticed that the IOE-WOE and WOE-FR have identical 

characteristics during the classification using the natural break classification for all 

three spatial resolution. However, FR-IOE behaves slightly different from the IOE-

WOE and WOE-FR. The area coverage is smallest for the FR-IOE and largest for the 
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other two hybrid LSM in a very high landslide susceptibility zone for all three spatial 

resolution. On contrary, it is noticed that the area coverage is largest for the FR-IOE 

and smaller for the other two models in the very low landslide susceptibility zone for 

all three spatial resolution. It is observed that the area increases until the high landslide 

susceptibility zone and then decreases after crossing the high landslide susceptibility 

zone for all three hybrid LSM. 
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Figure  14 Hybrid landslide susceptibility using 12.5m spatial resolution (a) FR-

IOE, (b) IOE-WOE, (c) WOE-FR 
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Figure  15 Hybrid landslide susceptibility using 30m spatial resolution (a) FR-IOE, 

(b) IOE-WOE, (c) WOE-FR 
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Figure  16 Hybrid landslide susceptibility using 90m spatial resolution (a) FR-IOE, 

(b) IOE-WOE, (c) WOE-FR 

 
 

4.5 Validation of Landslide Susceptibility Mapping using statistical methods. 

It is important to evaluate the efficiency of the model and the accuracy of the 

LSM (Kaur et al., 2019).  The commonly used method for validation is comparing the 
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observed data (landslide inventory data) with the predicted data (Shirani et al., 2018). 

For this study, 30% (49 landslide points) of the landslide data from the inventory were 

used for the validation dataset. The equal number of non-landslide points is also 

identified for the validation datasets. Assign the value 1 for landslide points and 0 for 

non-landslide points for validation datasets.  

This study uses a confusion matrix which calculates Sensitivity (Equation 22), 

1-Specificity (Equation 23), Accuracy (Equation 24), kappa index (Equation 25), and 

area under the curve (Equation 28), and Root Mean Square Error (Equation 29) for the 

validation of landslide susceptibility map.  

4.5.1 Validation of LSM produced by 12.5m spatial resolution. 

I. Confusion Matrix 

The confusion matrix compares the landslide status of the real ground with the 

predicted landslide status from the models. The confusion matrix decides statistical 

parameters such as true positive (TP), true negative (TN), false positive (FP), false 

negative (FN) and the concept of confusion matrix is shown in the Table 4. These 

parameters are used for calculating the sensitivity, specificity, accuracy, kappa index, 

and AUC. The summary of the statistical indices are given in Table 19. 

Table 19 Validation for 12.5m spatial resolution LSM 
 FR IOE WOE FR-IOE IOE-WOE WOE-FR 

TP 39 34 38 39 38 39 

TN 38 40 38 38 38 39 

FP 11 9 11 11 11 10 

FN 10 15 11 10 11 10 

Sensitivity 0.7959 0.6939 0.7755 0.7959 0.7755 0.7959 

Specificity 0.7755 0.8163 0.7755 0.7755 0.7755 0.7959 

Accuracy  0.7857 0.7551 0.7755 0.7857 0.7755 0.7959 

Kappa Index 0.5714 0.5102 0.551 0.5714 0.551 0.5918 

AUC 0.8848 0.8751 0.9017 0.8834 0.9017 0.9038 

RMSE 0.3721 0.3919 0.3593 0.3724 0.3601 0.3593 

 

TP and TN are the numbers of correctly classified pixels for landslide and non-

landslide, respectively(Bui et al., 2016). The FR, FR-IOE, and WOE-FR correspond to 

the highest correctly classified landslide pixel (39 landslide points) while IOE 

corresponds to the highest correctly classified non-landslide pixel (40 non-landslide 

points). On the other hand, FN and FP are the numbers of pixels erroneously classified 
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for landslide and non-landslide, respectively (Tien Bui et al., 2018). The highest 

misclassification for the landslide pixel corresponds to IOE with FN of 15 landslide 

points while the maximum non-landslide misclassification corresponds to FR, WOE, 

FR-IOE, and IOE-WOE with FP of 11 non-landslide points. 

Sensitivity is the proportion of landslide pixels that are correctly classified as 

landslide occurrences (Bui et al., 2016). The highest correctly classified landslide pixel 

corresponds to LSM developed using FR and hybrid FR LSM namely FR, FR-IOE, and 

WOE-FR with a sensitivity of 0.7959. The least correctly classified landslide pixel 

corresponds to LSM developed by IOE (0.6939). 

Specificity is the proportion of the non-landslide pixels that are correctly 

classified as non-landslide (Tien Bui et al., 2018). Since the validation is carried out by 

49 landslide pixels (30%) and an equal number of non- landslide pixels, the specificity 

shows the capability of non-landslide pixels classification. The highest correctly 

classified non-landslide pixel corresponds to LSM developed by IOE with a specificity 

of 0.8163 followed by WOE-FR with a specificity of 0.7959. Rest all the models has 

an equal specificity of 0.7755. 

Accuracy is the proportion of landslide and non-landslide pixels that are 

correctly classified for both landslide and non-slide pixels (Bui et al., 2016). The 

highest accuracy corresponds to WOE-FR (0.7959), followed by FR and FR-IOE 

(0.7857). The least accuracy corresponds to LSM developed using the IOE with an 

accuracy of 0.7551. 

II. Kappa Index 

The Kappa index shows the reliability of the model and its value varies from −1 

(non-reliable) to 1 (reliable)  (Tien Bui et al., 2018). As per Landis and Koch (1977), 

all the models fall under the moderate agreement (0.41-0.6) between the ground-

truthing and predicted value. However, while comparing with the moderate agreement, 

WOE-FR has the highest kappa value (0.5918) while IOE has the least Kappa value 

(0.5102). 
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III. Receiver Operating Characteristic (ROC) curve 

The AUC from the ROC curve gives the predictive capability of the LSM. The 

ROC curve is plotted using the False Positive Rate (1-specificity) on X-axis and True 

Positive Rate (sensitivity) on Y-axis (Shirzadi et al., 2017). The prediction rate is used 

to evaluate the future predictive power of the LSM (Wang et al., 2015) and it was 

calculated using the validation dataset. The ROC curve for 12.5m spatial resolution is 

shown in Figure 17. The highest predictive capability corresponds to WOE-FR 

(0.9038), followed by WOE and IOE-WOE (0.9017), FR (0.8848), FR-IOE (0.8834), 

and (0.8751). As per the Shirani et al. (2018), the WOE, WOE-FR, and IOE-WOE fall 

under the excellent category (0.9-1.0), and the remaining LSM falls under the very good 

category (0.8-0.9) for 12.5m spatial resolution. 

 

Figure  17 ROC curve of different models using 12.5m spatial resolution 
 

IV. Root Means Square Error (RMSE) 

The Root Mean Square Error (RMSE) is defined as the differences between 

values predicted values for the landslides by the models and the observed values from 

the actual ground. When the RMSE value is 0, it is considered as no error which 

corresponds to correlation coefficient 1 and vice versa (Barnston, 1992).  The highest 
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RMSE corresponds to LSM developed using IOE (0.3919), followed by FR-IOE 

(0.3724), FR (0.3721), IOE-WOE (0.3601), and the least RMSE corresponds to WOE 

and WOE-FR (0.3593). 

4.5.2 Validation of LSM produced by 30m spatial resolution 

I. Confusion Matrix 

The confusion matrix calculates TP, TN, FP, and FN which will be ultimately 

used for calculation of sensitivity, specificity, accuracy, kappa index, and AUC. The 

summary of the statistical indices is given in Table 20. 

Table 20 Validation for 30m spatial resolution LSM 
 FR IOE WOE FR-IOE IOE-WOE WOE-FR 

TP 37 33 42 37 42 41 

TN 39 40 38 39 38 38 

FP 10 9 11 10 11 11 

FN 12 16 7 12 7 8 

Sensitivity 0.7551 0.6735 0.8571 0.7551 0.8571 0.8367 

Specificity 0.7959 0.8163 0.7755 0.7959 0.7755 0.7755 

Accuracy  0.7755 0.7449 0.8163 0.7755 0.8163 0.8061 

Kappa Index 0.551 0.4898 0.6327 0.551 0.6327 0.6122 

AUC 0.8844 0.8825 0.8905 0.8846 0.8905 0.8905 

RMSE 0.3744 0.3831 0.3628 0.3742 0.3628 0.3628 

The WOE and IOE-WOE correspond to the highest correctly classified 

landslide pixel with a TP of 42 while IOE corresponds to the highest correctly classified 

non-landslide pixel with a TN of 40. On the other hand, the highest misclassification 

for the landslide pixel corresponds to IOE with FN of 16 landslide points while the 

maximum misclassified non-landslide pixel corresponds to WOE, IOE-WOE, and 

WOE-FR with FP of 11 non-landslide points. 

The correctly highest classified landslide pixel corresponds to LSM developed 

using WOE and IOE-WOE with a sensitivity of 0.8571. The least correctly classified 

landslide pixel corresponds to LSM developed by IOE with a sensitivity of 0.6735. 

The IOE classified maximum correct classification with non-landslide pixels 

with a specificity of 0.8163 followed by FR and FR-IOE (0.7959), and WOE, IOE-

WOE, and WOE-FR (0.7755). 
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The highest accuracy corresponds to WOE-FR and WOE (0.8163), followed by 

WOE-FR (0.8061), FR, and FR-IOE (0.7755). The least accuracy corresponds to LSM 

developed using the IOE with an accuracy of 0.7449. 

II. Kappa Index 

As per Landis and Koch (1977), FR (0.551), IOE(0.4898), FR-IOE(0.551) falls 

under the moderate agreement (0.41-0.6), while WOE(0.6327), IOE-WOE(0.6327), 

WOE-FR(0.6122) falls under Substantial agreement (0.61-0.80) between the ground-

truthing and predicted value. While comparing with within the models, all the models 

related to WOE are more reliable compared to other models with minimum kappa value 

ranging from 0.6122 to 0.6327. On the other hand, the least reliable mode corresponds 

to IOE with Kapp value of 0.4898. 

III. Receiver Operating Characteristic (ROC) curve 

The ROC curve for the 30m spatial resolution LSM is shown in Figure 18. The 

highest predictive capability corresponds to WOE, WOE-FR and IOE-WOE (0.8905), 

followed by FR-IOE (0.8846), FR (0.8844) and IOE (0.8825). As per the Shirani et al. 

(2018), all the LSM falls under the Very good category (0.8-0.9) for the 30m spatial 

resolution. 

 

Figure  18 ROC curve of different models using 30m spatial resolution 
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IV. Root Means Square Error (RMSE) 

The Root Mean Square Error (RMSE) is defined as the differences between 

values predicted values for the landslides by the models and the observed values from 

the actual ground. The highest RMSE corresponds to LSM developed using IOE 

(0.3831), followed by FR (0.3744), FR-IOE (0.3742) and the least error corresponds to 

three LSM namely, WOE, IOE-WOR, and FR-WOE with RMSE of 0.3628. 

 

4.5.3 Validation of LSM produced by 90m spatial resolution 

I. Confusion Matrix 

The result of the confusion matrix showing TP, TN, FP, and FN are shown in 

Table 21. The TP, TN, FP, and FN are used for calculation of sensitivity, specificity, 

accuracy, kappa index, and AUC. The summary of the statistical indices is given in 

Table 21. 

Table 21 Validation for 90m spatial resolution LSM 
 FR IOE WOE FR-IOE IOE-WOE WOE-FR 

TP 36 38 39 36 39 39 

TN 36 37 37 36 37 37 

FP 13 12 12 13 12 12 

FN 13 11 10 13 10 10 

Sensitivity 0.7347 0.7755 0.7959 0.7347 0.7959 0.7959 

Specificity 0.7347 0.7551 0.7551 0.7347 0.7551 0.7551 

Accuracy  0.7347 0.7653 0.7755 0.7347 0.7755 0.7755 

Kappa Index 0.4694 0.5306 0.551 0.4694 0.551 0.551 

AUC 0.8324 0.8259 0.853 0.833 0.853 0.8505 

RMSE 0.4094 0.4097 0.3946 0.409 0.3946 0.3956 

The WOE, IOE-WOE, and IOE-WOE correspond to the highest correctly 

classified landslide pixel with a TP of 39. On the other hand, the highest 

misclassification for the landslide pixel corresponds to FR, and FR-IOE with FN of 13 

The highest correctly classified landslide pixel corresponds to LSM developed 

using WOE, IOE-WOE, and WOE-FR with a sensitivity of 0.7959. The least correctly 

classified landslide pixel corresponds to LSM developed by FR and FR-IOE with a 

sensitivity of 0.7347. 

The highest correctly classified non-landslide pixel are links to LSM developed 

by four models which include IOE, WOE, IOE-WOE, and WOE-FR with a specificity 
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of 0.7551. The FR and FR-IOE had the least specificity of 0.7347 indicating the lowest 

classified non-landslide point. 

The LSM related to WOE has the highest accuracy (0.7755) which includes in 

WOE, IOE-WOE, and WOE-FR. On the other hand, the FR and FR-IOE correspond to 

the lowest accuracy (0.7347) for the 90m spatial resolution. 

II. Kappa Index 

The Kappa index for WOE, IOE-WOE, and WOE-FR are 0.5510, IOE is 0.5306, 

and FR and FR-IOE are 0.4694. As per Landis and Koch (1977), all the models fall 

under the moderate agreement (0.41-0.6) between the ground-truthing and predicted 

value. 

III. Receiver Operating Characteristic (ROC) curve 

The ROC curve for the 30m spatial resolution LSM is shown in Figure 19. The 

best predictive LSM is developed using the WOE and IOE-WOE with AUC of 0.8530 

and the least prediction rate is developed using the IOE with AUC of 0.8259. THE AUC 

for the FR is 0.8324, FR-IOE is 0.8330 and WOE-FR is 0.8505. As per the Shirani et 

al. (2018), all the LSM falls under the Very good category (0.8-0.9) for the 90m spatial 

resolution.  

 

Figure  19 ROC curves of different models using 90m spatial resolution. 
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IV. Root Means Square Error (RMSE) 

The accuracy is said to be lower when the RMSE is higher. The lowest accuracy 

with RMSE of 0.4097 corresponds to IOE, followed by FR (0.4094), FR-IOE (0.4090), 

WOE-FR (0.3956). The highest accuracy with the least RMSE corresponds to WOE 

and IOE-WOE (0.3946).  

 

4.5.4 Relationship between the spatial resolution and the different 

validation parameters 

The Figure 20 shows the relationship between the spatial resolution with the 

statistical parameters such as sensitivity, specificity, accuracy, Cohen’s kappa index, 

prediction rate, and the root mean square error (RMSE). The value of the statistical 

parameters was calculated from the average of the FR, IOE, WOE, FR-IOE, IOE-WOE, 

and WOE-FR for individual spatial resolutions (12.5m, 30m, and 90m). Generally, it is 

observed that the correlation between the spatial resolution and the statistical 

parameters is negative except the RMSE. The negative correlation indicates that the 

sensitivity, specificity, accuracy, Cohen’s kappa index, and prediction rate decreases 

with an increase in the grid size from 12.5m to 90m. However, the RMSE increases 

with an increase in grid size indicating the smaller grid size are better for the LSM. 

Regarding the relationship between the spatial resolution and the sensitivity 

(Figure 20(a)), it is noticed that the sensitivity decreases as the spatial resolution 

becomes courser (increasing grid size). This shows that the capability of correctly 

classified landslide pixels is decreasing as the spatial resolution becomes courser.  

Similarly, the relationship between the specificity and the grid size also shows a 

negative correlation (Figure 20(b)) indicating the potential of classifying the non-

landslides is decreasing as the cell size increases. 

The accuracy shows the proportion of correctly landslide and non-landslide. From 

Figure 20(c), it is noticed that the accuracy decreases as the grid size increases. This 

clearly indicate the coarse spatial resolution has less strength of classifying the landslide 

and the non-landslide pixel.  

The kappa index (Figure 20(d)) indicates the reliability of the models and the 

LSM. The kappa index also follows a similar pattern as that of the sensitivity, 
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specificity, and accuracy. The reliability of classification decreases as the spatial 

resolution becomes courser.  

 

Figure  20 Relationship between the different validation parameters and spatial 

resolutions 

The prediction capability also decreases as the spatial resolution becomes courser. 

From (Figure 20(e)) it clearly shows that the higher spatial resolution is relatively better 

for the prediction of the LSM.  

On contrary to all other statistical parameters, the value of RMSE increases as the 

spatial resolution becomes courser (Figure 20(f)). The RMSE is the difference between 

values predicted values for the landslides by the models and the observed values from 
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the actual ground. When the RMSE value is 0, it is considered as no error. This study 

clearly indicates the RMSE value increases with an increase in spatial resolution value 

(course spatial resolution).  

From all the statistical parameters, it indicates that it is not advisable to use the course 

resolution as it compromises the classification of the landslide pixel (sensitivity), 

classification of the non-landslide pixel (specificity), classification of both landslide 

and non-landslide pixel (accuracy), reliability of the LSM (Kappa index), deceases 

prediction capability (prediction rate) and the increases the RMSE value. 

 

4.5.5 Comparison of bivariate models for the validation parameters 

The Figure 21 shows the average of the statistical parameters of the three different 

spatial resolutions (12.5m, 30m, and 90m). It is observed that the WOE and its hybrid 

models (IOE-WOE and WOE-FR) have the highest sensitivity (0.8095) while LSM 

developed by IOE has the lowest sensitivity (0.7143). This shows that the WOE and its 

hybrid models have the best capacity to classify the landslide pixels. 

Regarding the specificity, the IOE classified relatively better non-slide pixels 

for this study with a specificity of 0.7959, followed by WOE-FR with specificity of 

0.7755. The remaining four models classified the least non-slide pixel with a specificity 

of 0.7687 for this study. 

The accuracy is the capability classification of landslides and non-landslides by 

the different models. The highest accuracy corresponds to WOE-FR (0.7925), followed 

by WOE and IOE-WOE (0.7891). The accuracy of FR and FR-IOE  is 0.7653 and the 

least accurate of all the models corresponds to IOE (0.7551). 

The reliability of the different model is decided by Cohen’s kappa index. The 

WOE-FR is considered to be the highest reliable model with the highest kappa index of 

0.5850, followed by WOE and IOE-WOE with a kappa index of 0.5782. The kappa 

index of FR and FR-IOE is 0.5306 and the least reliable model is IOE with a kappa 

index of 0.5102. 
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Figure  21 Comparison between the validation parameters and the different 

models 

The value of AUC of the ROC is used as a prediction rate which shows the 

strength of LSM to predict the future LSM. The WOE and IOE-WOE have the highest 

prediction rate (0.8817), followed by WOE-FR (0.8816), FR(0.8672), FR-IOE 

(0.8670), and IOE (0.8612). 

The RMSE shows the degree of error and the highest error in classification 

corresponds to IOE with RMSE of 0.3949, followed by FR (0.3853), FR-IOE (0.3852), 

WOE-FR (0.3726), and IOE-WOE (0.3725). The WOE (0.3722) has the least RMSE. 
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CHAPTER V  

CONCLUSION 

5.1 Argument 

The LSM was developed using the three primary models and three hybrid 

models. The hybrids models are derived from the primary models for three different 

spatial resolutions (12m, 30m, and 90m). The most accurate model for developing the 

LSM among the three models is WOE, followed by the FR and IOE. The accuracy of 

WOE is 0.7891, followed by FR with an accuracy of 0.7653 and IOE with an accuracy 

of 0.7551.  The combination of the models to form new hybrid models. The accuracy 

of the hybrid model has better or equivalent to the highest primary model. For example, 

the accuracy of the hybrid model WOE-FR has an accuracy of 0.7925 while its primary 

model WOE has an accuracy of just 0.7891, and the accuracy of FR is just 0.7653. 

Similarly, IOE-WOE has an accuracy of 0.7891 which is higher than its primary model 

IOE (0.7551) or equal to WOE (0.7891). The hybrid model FR-IOE has an accuracy of 

7653 which is higher than its primary model IOE (0.7551) and equivalent to FR 

(0.7653). 

Among the primary models, the WOE has the highest reliability of the model 

with a kappa index of 0.5782, followed by FR with a kappa index of 0.5306 and IOE 

with a kappa index of 0.5102. It is noticed that the hybrid models improve the reliability 

because it increases the kappa index or the hybrid model has the reliability of the highest 

primary model. The hybrid model WOE-FR has a kappa index of 0.5850 while its 

primary model FR has a kappa index of 0.55306 and WOE has a kappa index of 0.5782. 

Similarly, the kappa index of hybrid model FR-IOE is 0.5306 which is better than its 

primary model IOE(0.5102) and equal to FR (0.5302). The hybrid model IOE-WOE 

has a kappa index of 0.5782 which is higher than IOE (0.5102) and equal to 

WOE(0.5782).  

While comparing the future predictive power among the primary models, the 

WOE has the highest predictive power of the LSM with an AUC of 0.8817, followed 

by FR (0.8672) and IOE (0.8612). There is a slight improvement in the predictive power 

in the hybrid models for all three hybrid models with higher AUC.  
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The lowest RMSE among the primary models corresponds to WOE(0.3722), 

followed by FR(0.3853) and IOE(0.3949). It was noticed that the hybrid models 

decrease the RMSE. For instance, the FR-IOE has a RMSE of 0.3852 while its primary 

model FR has RMSE of 0.3853, and IOE has a RMSE of 0.3949. 

In general, the WOE is much better than FR and IOE for developing the LSM 

in terms of accuracy, reliability, and predictive power. Furthermore, the hybrid models 

which are formed by combining the primary models improve the accuracy, reliability, 

predictive power, and minimizes the RMSE. Although the comparison between the 

accuracy between the bivariate statistical methods are debatable, most of the studies 

shows that weight of evidence methods is better than the index of model (Li and Wang, 

2019; Liu and Duan, 2018). Youssef et al. (2015) has found that the frequency ratio is 

better than Index of entropy. Overall, the performance of the model follow the order of 

Weight of Evidence, Frequency ratio and Index of entropy which is similarly to the 

result of Nohani et al. (2019). 

In terms of spatial resolutions, the finer resolution produces higher accuracy 

LSM compared to the courser resolution in terms of accuracy, reliability, predictive 

power, and RMSE. The result is agreed with the analysis of (Lee, Choi, and Woo, 2004) 

 

5.2 Conclusion 

A total of fifteen landslide influencing factors were used for this study which 

includes elevation, slope, aspect, slope curvature, topographic wetness index, stream 

power index, drainage density, Normalized Difference Vegetation Index, Normalized 

Difference Soil Index, proximity to the river, proximity to the fault, average annual 

rainfall, and lithology, land use land cover, and proximity to the road. The elevation, 

slope, aspect, slope curvature, topographic wetness index, stream power index, and 

drainage density were derived from ALOS PALSAR DEM (12.5m) and SRTM DEM 

(30m and 90m). The Normalized Difference Vegetation Index, Normalized Difference 

Soil Index, and land use land cover were derived from sentinel-2. The Geological map 

of Bhutan is used to derive the lithological map and proximity to the fault map. The 

rainfall map of 21 years (1996-2017) from 20 rainfall stations across Bhutan were used 

to derive a rainfall map which was developed using the IDW interpolation. The Digital 

Topographic Map of Bhutan was used to derive the map of road and river. 
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The landslide inventory was done using the interpretation of sentinel image, 

google earth, and field investigation. A total of 164 landslide locations were identified 

of which 70% (115) were used for the training dataset while the remaining 30% (49) 

were used for the validation dataset. All the factors were classified into classes and then 

trained using the existing landslide locations from the training dataset which will 

ultimately be used in the analysis of FR, IOE, and WOE. 

The average magnitude of contribution from the individual classes of the factors 

of three spatial resolution was calculated using the frequency ratio, landslide density of 

the Index of Entropy, Contrast of the Weight of Evidence. The Index of Entropy model 

also calculates the amount of contribution from the individual influencing factors. The 

Wj of Table 15 indicates the magnitude of influence of the influencing factors on the 

landslide occurrences (Mondal and Mandal, 2019). Among the fifteen factors, the most 

dominant five factors were the Normalized Difference Vegetation Index (0.394), 

followed by the land use land cover (0.176), rainfall (0.163), elevation (0.158), 

Normalized Difference Soil Index (0.134), and lithology (0.125). The least significant 

factor was the Topographic Wetness Index with a weight of 0.008.  

All the developed LSM were classified into five zones using the natural break 

classification for all the three different models and three different spatial for the 

individual models. As per the natural break classification, it was noticed that the size of 

an area increases as the landslide zone moves from a very high susceptibility zone to a 

low susceptibility zone and then decreases as it reached a very low susceptibility zone 

for most of the models.  

The validation of the LSM was conducted using 30% of the total landslide 

which was collected during the landslide inventory.  The sensitivity, specificity, 

accuracy, kappa index, the area under the curve (AUC) and root mean square error 

(RMSE) was used for the validation of the LSM. The best classified landslide pixel 

corresponds to WOE and its hybrid models (IOE-WOE and WOE-FR) with a sensitivity 

of 0.8095 each while the IOE model classifies the best non-landslide pixel with a 

specificity of 0.7959. The highest accuracy model is linked to WOE-FR with an 

accuracy of 0.7925 and the most reliable for the landslide study was performed by 

WOE-FR with a kappa index of 0.5850. As per Landis and Koch (1977), all the models 

fall under the moderate agreement the predicted and observed landslide due to its kappa 
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values falling in between the 0.41-0.60. The highest prediction rate of LSM corresponds 

to WOE and IOE-WOE with an AUC of 0.8817. The predictive power of all the LSM 

developed by different models falls under a very good category (0.8-0.9) (Shirani et al., 

2018). The least RMSE corresponds to IOE-WOE and is considered to be the least error 

among the various models.  

It is noted that all finer resolution gives better accuracy for developing landslide 

susceptibility studies. The relationship between the different validation parameters and 

spatial resolution (12.5m) corresponds to higher sensitivity, specificity, accuracy, 

kappa index, and the prediction rate compared to coarser spatial resolution (90m). At 

the same time, the error least error also corresponds to finer resolution with lesser 

RMSE value. 

 

5.3 Limitations and suggestions 

The following are the limitations and suggestions for the future studies. 

1. Since the initial landslide inventory mapping was done using the sentinel-2, and 

google earth image, it is recommended to use a higher resolution satellite 

image/aerial photograph to gain more accurate landslide susceptibility mapping. 

2. Since this study uses only geostatistical analysis, it is recommended to use machine 

learning techniques and compare how the accuracy is deviating compared to 

machine learning techniques. 

3. Most of the studies used IDW interpolation for landslide susceptibility mapping. 

Similarly, this study also used IDW interpolation to develop a rainfall map. It is 

recommended to use different interpolation techniques for the landslide studies and 

compare the accuracy assessment. 

4. This study used geospatial techniques for the landslide studies which were 

developed using the training dataset of the landslide inventory. It is recommended 

to use geotechnical field tests in selected sites to confirm and validate the landslide 

susceptibility map which was developed using geospatial techniques. 

5. Only three spatial resolutions were used for deriving relation between the different 

validation parameters which is not very accurate graph. It is recommended to use 
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more number of spatial resolution to derive the more accurate relationship between 

spatial resolution and validation parameters. 

6. It is noticed that the high and very high landslide prone area are located the physical 

geography such as which is made up of combination of steep terrain, lower 

elevation, closer to the river, weak lithology (Tsm and pCd) and heavy precipitated 

area. Therefore, Bhutanese government, engineers and decision makers are 

suggested to minimize future planning in such area which is considered as the high 

and very landslide prone area. The high and very high landslide prone area are 

indicated by orange and red color, respectively. 
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APPENDIX 

Appendix A: Detail of landslide types at Ossey Watershed Area 

The explanation of the types of landslides are were explained in Table 2 and Figure 1. 

The following are the landslide types in various locations which was noted during the 

landslide inventory. 

Landslide Id   

Location 

Types of Landslide Remark Latitude Longitude Elevation 

1 90.48 27.02 911 Debris flow   

2 90.53 27.01 851 Earth flow   

3 90.52 27.02 1003 Earth flow   

4 90.48 27.03 1123 Debris flow   

5 90.63 27.03 1709 Debris flow   

6 90.57 27.03 1015 Earth flow   

7 90.54 26.97 1035 Debris flow   

8 90.46 26.98 955 Earth flow   

9 90.51 27.00 1029 Debris flow   

10 90.50 27.00 718 Earth flow   

11 90.52 26.99 851 Debris flow   

12 90.39 27.01 1877 Earth flow   

13 90.41 27.01 1000 Earth flow   

14 90.42 27.01 923 Earth flow   

15 90.52 27.01 998 Debris flow   

16 90.50 26.95 762 Earth flow   

17 90.57 26.95 874 Earth flow   

18 90.56 26.94 698 Earth flow   

19 90.57 26.94 851 Earth flow   

20 90.57 26.93 773 Earth flow   

21 90.55 26.94 551 Earth flow   

22 90.56 26.95 789 Earth flow   

23 90.55 26.94 574 Earth flow   

24 90.49 26.95 996 Debris flow   

25 90.54 26.95 480 Earth flow   

26 90.54 26.96 527 Debris flow   

27 90.54 26.95 589 Earth flow   

28 90.55 26.96 709 Earth flow   

29 90.55 26.96 688 Translational Slide   

30 90.55 26.96 786 Earth flow   

31 90.49 26.97 551 Earth flow   

32 90.47 26.97 730 Debris flow   

33 90.48 26.92 551 Earth flow   

34 90.48 26.92 399 Earth flow   

35 90.49 26.92 348 Debris flow   

36 90.56 26.94 578 Earth flow   
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37 90.53 27.06 1851 Earth flow   

38 90.57 27.05 1254 Translational Slide   

39 90.45 27.05 1257 Earth flow   

40 90.48 26.93 671 Earth flow   

41 90.47 26.93 936 Rock fall   

42 90.48 26.95 860 Debris Avalanche   

43 90.45 26.98 1045 Earth flow   

44 90.46 26.98 836 Earth flow   

45 90.46 26.98 659 Earth flow   

46 90.52 26.98 477 Debris flow   

47 90.53 26.96 598 Earth flow   

48 90.53 26.95 667 Earth flow   

49 90.55 26.97 1287 Earth flow   

50 90.53 26.95 720 Debris flow   

51 90.48 26.97 522 Earth flow   

52 90.48 27.03 1032 Earth flow   

53 90.64 27.08 2092 Earth flow   

54 90.64 27.07 1982 Earth flow   

55 90.68 27.03 2222 Debris flow   

56 90.68 27.00 2134 Earth flow   

57 90.63 27.01 1452 Debris flow   

58 90.61 27.00 1402 Earth flow   

59 90.58 27.06 1730 Earth flow   

60 90.56 27.07 1611 Earth flow   

61 90.28 27.07 2078 Earth flow   

62 90.30 27.08 1850 Earth flow   

63 90.31 27.09 1643 Debris flow   

64 90.33 27.11 1671 Earth flow   

65 90.33 27.14 2899 Earth flow   

66 90.34 27.18 3339 Earth flow   

67 90.36 27.21 3327 Debris flow   

68 90.38 27.20 2738 Debris Avalanche   

69 90.39 27.19 2314 Earth flow   

70 90.41 27.18 1934 Earth flow   

71 90.43 27.17 2280 Earth flow   

72 90.44 27.15 2429 Earth flow   

73 90.45 27.09 1464 Debris flow   

74 90.50 27.14 2431 Earth flow   

75 90.50 27.13 2113 Earth flow   

76 90.53 27.09 1929 Earth flow   

77 90.64 27.00 2045 Earth flow   

78 90.37 27.14 2169 Earth flow   

79 90.33 27.20 3685 Earth flow   

80 90.65 27.01 1820 Debris flow   

81 90.66 27.06 1989 Earth flow   
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82 90.55 27.08 1821 Earth flow   

83 90.40 27.01 1554 Earth flow   

84 90.46 26.96 801 Earth flow   

85 90.45 26.96 1182 Earth flow   

86 90.51 26.94 252 Earth flow   

87 90.51 26.94 409 Earth flow   

88 90.51 26.95 406 Earth flow   

89 90.53 26.97 531 Creep   

90 90.54 26.97 768 Earth flow   

91 90.55 26.95 997 Earth flow   

92 90.54 26.93 432 Earth flow   

93 90.51 27.00 889 Earth flow   

94 90.50 27.01 683 Debris flow   

95 90.48 27.03 1365 Earth flow   

96 90.45 27.04 1148 Earth flow   

97 90.45 27.04 1058 Earth flow   

98 90.44 27.04 1149 Earth flow   

99 90.59 26.98 1602 Debris Avalanche   

100 90.59 26.98 1636 Earth flow   

101 90.45 26.98 903 Earth flow   

102 90.36 27.01 1729 Earth flow   

103 90.37 27.03 1549 Debris Avalanche   

104 90.37 27.03 1421 Earth flow   

105 90.46 27.01 1003 Earth flow   

106 90.64 27.04 1745 Earth flow   

107 90.54 27.06 1559 Earth flow   

108 90.62 27.02 1885 Debris flow   

109 90.56 26.95 635 Debris flow   

110 90.45 27.02 1153 Earth flow   

111 90.52 26.93 366 Earth flow   

112 90.56 26.94 798 Debris flow   

113 90.44 27.02 858 Earth flow   

114 90.37 27.01 1731 Earth flow   

115 90.52 26.94 540 Debris flow   

116 90.40 27.19 2269 Earth flow   

117 90.35 27.17 3199 Earth flow   

118 90.40 27.03 1069 Debris flow   

119 90.57 27.05 1120 Debris flow   

120 90.53 27.06 1578 Earth flow   

121 90.52 27.02 967 Debris flow   

122 90.52 27.01 910 Earth flow   

123 90.51 27.00 911 Earth flow   

124 90.55 27.00 1194 Debris flow   

125 90.56 26.98 1398 Earth flow   

126 90.53 26.98 489 Earth flow   
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127 90.51 26.98 746 Debris flow   

128 90.40 27.01 1315 Debris flow   

129 90.41 27.01 894 Earth flow   

130 90.44 26.97 1251 Earth flow   

131 90.46 26.98 739 Earth flow   

132 90.55 26.98 1154 Earth flow   

133 90.54 26.96 643 Debris flow   

134 90.54 26.95 494 Earth flow   

135 90.53 26.96 511 Earth flow   

136 90.51 26.95 406 Earth flow   

137 90.50 26.95 611 Earth flow   

138 90.51 26.94 357 Debris flow   

139 90.53 26.93 490 Earth flow   

140 90.56 26.93 710 Earth flow   

141 90.55 26.94 683 Earth flow   

142 90.48 26.93 818 Debris flow   

143 90.48 26.92 597 Earth flow   

144 90.48 26.92 506 Earth flow   

145 90.49 26.92 412 Debris Avalanche   

146 90.54 26.93 421 Earth flow   

147 90.56 26.95 931 Earth flow   

148 90.56 26.93 636 Earth flow   

149 90.49 26.95 788 Debris flow   

150 90.50 26.97 521 Debris flow   

151 90.49 26.97 778 Debris flow   

152 90.48 26.95 851 Earth flow   

153 90.46 26.96 1128 Earth flow   

154 90.47 26.94 1151 Earth flow   

155 90.57 26.94 1069 Debris Avalanche   

156 90.45 27.04 940 Earth flow   

157 90.44 27.02 845 Earth flow   

158 90.48 27.03 1201 Earth flow   

159 90.45 27.04 1132 Earth flow   

160 90.36 27.01 1784 Debris flow   

161 90.47 27.01 1003 Debris flow   

162 90.59 26.98 1629 Earth flow   

163 90.51 27.02 1112 Earth flow   

664 90.63 26.93 1523 Earth flow   
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Appendix B: Detail of Frequency Ratio calculation using three different spatial 

resolution 

The following Table shows the detail calculation of individual spatial resolution (12.5m, 30m 

and 90m) using the Frequency Ratio. 

Spatial 

Resolution 
Class 

No of pixel 

in class 

% of landslide 

pixel in class 

No of 

landslide in 

class 

% of 

landslide in 

class 

Frequency 

Ratio 

Elevation(m) 

12.5m 

< 854.00 711123 13.54 44 38.26 2.83 

854.00 - 1455 1278941 24.35 32 27.83 1.14 

1455.01 - 1949 1697050 32.31 21 18.26 0.57 

1949.01 - 2619 1285804 24.48 13 11.3 0.46 

2619 < 279682 5.32 5 4.35 0.82 

30m 

< 854.00 113694 12.47 37 32.17 2.58 

854.00 - 1455 209113 22.93 37 32.17 1.4 

1455.01 - 1949 292274 32.05 21 18.26 0.57 

1949.01 - 2619 243245 26.67 15 13.04 0.49 

2619 < 53621 5.88 5 4.35 0.74 

90m 

< 854.00 12614 12.47 38 33.04 2.65 

854.00 - 1455 23263 22.99 36 31.3 1.36 

1455.01 - 1949 32472 32.09 22 19.13 0.6 

1949.01 - 2619 26898 26.58 14 12.17 0.46 

2619 < 5936 5.87 5 4.35 0.74 

Slope (Degree) 

12.5m 

0 - 13.00 503807 9.59 9 7.83 0.82 

13.01 - 23.00 1027159 19.56 13 11.3 0.58 

23.01 - 32.00 1575077 29.99 33 28.7 0.96 

32.01 - 42.00 1537245 29.27 34 29.57 1.01 

42 < 609312 11.6 26 22.61 1.95 

30m 

0 - 13.00 93299 10.23 6 5.22 0.51 

13.01 - 23.00 195676 21.46 20 17.39 0.81 

23.01 - 32.00 275372 30.2 28 24.35 0.81 

32.01 - 42.00 255827 28.05 31 26.96 0.96 

42 < 91773 10.06 30 26.09 2.59 

90m 

0 - 13.00 11472 11.34 11 9.57 0.84 

13.01 - 23.00 27384 27.06 29 25.22 0.93 

23.01 - 32.00 35491 35.08 33 28.7 0.82 

32.01 - 42.00 23855 23.58 31 26.96 1.14 

42 < 2981 2.95 11 9.57 3.25 

Aspect 

12.5m 

Flat 47614 0.91 0 0 0 

North 636941 12.13 5 4.35 0.36 

NorthEast 589967 11.23 9 7.83 0.7 

East 599110 11.41 15 13.04 1.14 

SouthEast 758507 14.44 33 28.7 1.99 

South 681513 12.97 19 16.52 1.27 

SouthWest 749811 14.28 15 13.04 0.91 

West 604243 11.5 8 6.96 0.6 

NorthWest 584894 11.14 11 9.57 0.86 

30m 

Flat 285 0.03 0 0 0 

North 118174 12.96 6 5.22 0.4 

NorthEast 97997 10.75 9 7.83 0.73 

East 110602 12.13 14 12.17 1 

SouthEast 129200 14.17 33 28.7 2.03 

South 120454 13.21 18 15.65 1.19 

SouthWest 126820 13.91 18 15.65 1.13 

West 111498 12.23 7 6.09 0.5 

NorthWest 96917 10.63 10 8.7 0.82 

90m 

Flat 6 0.01 0 0 0 

North 11739 11.6 6 5.22 0.45 

NorthEast 10792 10.67 5 4.35 0.41 
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East 13004 12.85 16 13.91 1.08 

SouthEast 14659 14.49 29 25.22 1.74 

South 13247 13.09 24 20.87 1.59 

SouthWest 14400 14.23 13 11.3 0.79 

West 12655 12.51 10 8.7 0.7 

NorthWest 10681 10.56 12 10.43 0.99 

Curvature 

12.5m 

Concave 2214763 42.17 47 40.87 0.97 

Flat 802326 15.27 17 14.78 0.97 

Convex 2235511 42.56 51 44.35 1.04 

30m 

Concave 434525 47.65 70 60.87 1.28 

Flat 36424 3.99 3 2.61 0.65 

Convex 440998 48.36 42 36.52 0.76 

90m 

Concave 50045 49.46 73 63.48 1.28 

Flat 1309 1.29 0 0 0 

Convex 49829 49.25 42 36.52 0.74 

Topographic wetness index 

12.5m 

< 0.999 529278 10.08 12 10.43 1.04 

0.999 - 3.219 1520949 28.96 35 30.43 1.05 

3.220 - 6.688 486118 9.25 7 6.09 0.66 

6.688 < 2716255 51.71 61 53.04 1.03 

30m 

< 0.999 200164 21.95 27 23.48 1.07 

0.999 - 3.219 217946 23.9 31 26.96 1.13 

3.220 - 6.688 37006 4.06 5 4.35 1.07 

6.688 < 456831 50.09 52 45.22 0.9 

90m 

< 0.999 38278 37.83 46 40 1.06 

0.999 - 3.219 11135 11 11 9.57 0.87 

3.220 - 6.688 1358 1.34 1 0.87 0.65 

6.688 < 50412 49.82 57 49.57 0.99 

Stream Power Index 

12.5m 

< -4.052 850701 16.2 16 13.91 0.86 

-4.052 - 0.886 1638515 31.19 31 26.96 0.86 

0.887 - 3.529 2336225 44.48 59 51.3 1.15 

3.529 < 427159 8.13 9 7.83 0.96 

30m 

< -4.052 233485 25.6 18 15.65 0.61 

-4.052 - 0.886 344021 37.72 44 38.26 1.01 

0.887 - 3.529 274078 30.05 39 33.91 1.13 

3.529 < 60363 6.62 14 12.17 1.84 

90m 

< -4.052 32999 32.61 28 24.35 0.75 

-4.052 - 0.886 42295 41.8 45 39.13 0.94 

0.887 - 3.529 20832 20.59 37 32.17 1.56 

3.529 < 5057 5 5 4.35 0.87 

Drainage Density 

12.5m 

 <  0.545 964147 18.36 6 5.22 0.28 

0.545 - 0.854 1329522 25.31 37 32.17 1.27 

0.855 - 1.153 1269392 24.17 44 38.26 1.58 

1.154 - 1.462 1111965 21.17 21 18.26 0.86 

1.462 < 577574 11 7 6.09 0.55 

30m 

 <  0.545 167456 18.36 6 5.22 0.28 

0.545 - 0.854 230872 25.32 37 32.17 1.27 

0.855 - 1.153 220395 24.17 44 38.26 1.58 

1.154 - 1.462 192998 21.16 21 18.26 0.86 

1.462 < 100226 10.99 7 6.09 0.55 

90m 

 <  0.545 18485 18.27 7 6.09 0.33 

0.545 - 0.854 25650 25.35 36 31.3 1.23 

0.855 - 1.153 24516 24.23 43 37.39 1.54 

1.154 - 1.462 21420 21.17 22 19.13 0.9 

1.462 < 11112 10.98 7 6.09 0.55 

Normalized Difference Vegetation Index 

12.5m 

<  0.223 219873 4.19 32 27.83 6.65 

0.223 - 0.407 574346 10.93 19 16.52 1.51 

0.408 - 0.562 877493 16.71 20 17.39 1.04 

0.563 - 0.688 1492466 28.41 25 21.74 0.77 

0.688 < 2088422 39.76 19 16.52 0.42 
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30m 

<  0.223 38264 4.2 22 19.13 4.56 

0.223 - 0.407 99842 10.95 28 24.35 2.22 

0.408 - 0.562 152092 16.68 17 14.78 0.89 

0.563 - 0.688 259052 28.41 26 22.61 0.8 

0.688 < 362697 39.77 22 19.13 0.48 

90m 

<  0.223 4269 4.22 17 14.78 3.5 

0.223 - 0.407 11050 10.92 21 18.26 1.67 

0.408 - 0.562 16732 16.54 18 15.65 0.95 

0.563 - 0.688 29073 28.73 26 22.61 0.79 

0.688 < 40059 39.59 33 28.7 0.72 

Normalized Difference Soil Index 

12.5m 

< -0.516 484543 9.22 8 6.96 0.75 

-0.516 - -0.273 946456 18.02 10 8.7 0.48 

-0.274 - -0.097 1471428 28.01 16 13.91 0.5 

-0.098 - 0.078 1655777 31.52 43 37.39 1.19 

0.078 < 694396 13.22 38 33.04 2.5 

30m 

< -0.516 84053 9.22 8 6.96 0.755 

-0.516 - -0.273 164589 18.05 12 10.43 0.578 

-0.274 - -0.097 255238 27.99 13 11.3 0.404 

-0.098 - 0.078 287262 31.5 43 37.39 1.187 

0.078 < 120805 13.25 39 33.91 2.56 

90m 

< -0.516 9379 9.27 9 7.83 0.84 

-0.516 - -0.273 18265 18.05 10 8.7 0.48 

-0.274 - -0.097 28423 28.09 22 19.13 0.68 

-0.098 - 0.078 31704 31.33 38 33.04 1.05 

0.078 < 13412 13.26 36 31.3 2.36 

Distance from the river (m) 

12.5m 

0-100 176948 3.37 6 5.22 1.55 

100-200 162601 3.1 2 1.74 0.56 

200-300 158292 3.01 4 3.48 1.15 

300-400 157852 3.01 4 3.48 1.16 

400< 4596907 87.52 99 86.09 0.98 

30m 

0-100 31639 3.47 7 6.09 1.75 

100-200 27341 3 1 0.87 0.29 

200-300 29785 3.27 4 3.48 1.06 

300-400 25379 2.78 4 3.48 1.25 

400< 797803 87.48 99 86.09 0.98 

90m 

0-100 4349 4.3 8 6.96 1.62 

100-200 2476 2.45 1 0.87 0.36 

200-300 3448 3.41 4 3.48 1.02 

300-400 2799 2.77 4 3.48 1.26 

400< 88111 87.08 98 85.22 0.98 

Distance from the Fault(m) 

12.5m 

0-100 219126 4.17 1 0.87 0.21 

100-200 206180 3.93 5 4.35 1.11 

200-300 198818 3.79 6 5.22 1.38 

300-400 180361 3.43 5 4.35 1.27 

400< 4448115 84.68 98 85.22 1.01 

30m 

0-100 39885 4.37 1 0.87 0.2 

100-200 33632 3.69 5 4.35 1.18 

200-300 37929 4.16 7 6.09 1.46 

300-400 29107 3.19 3 2.61 0.82 

400< 771394 84.59 99 86.09 1.02 

 90m 

0-100 5536 5.47 4 3.48 0.64 

100-200 3333 3.29 4 3.48 1.06 

200-300 4076 4.03 5 4.35 1.08 

300-400 3028 2.99 6 5.22 1.74 

400< 85210 84.21 96 83.48 0.99 

Distance from the road(m) 

12.5m 

0-100 166121 3.16 5 4.35 1.37 

100-200 136503 2.6 2 1.74 0.67 

200-300 126201 2.4 6 5.22 2.17 

300-400 120319 2.29 2 1.74 0.76 

400< 4703456 89.55 100 86.96 0.97 
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 30m 

0-100 30136 3.3 5 4.35 1.32 

100-200 22593 2.48 3 2.61 1.05 

200-300 23374 2.56 6 5.22 2.04 

300-400 19606 2.15 1 0.87 0.4 

400< 816238 89.5 100 86.96 0.97 

90m 

0-100 4024 3.977 5 4.35 1.09 

100-200 2011 1.987 2 1.74 0.88 

200-300 2740 2.708 7 6.09 2.25 

300-400 2082 2.058 2 1.74 0.85 

400< 90326 89.27 99 86.09 0.96 

Lithology 

12.5m 

Tsm 555267 10.57 32 27.83 2.63 

Pzc 55299 1.05 1 0.87 0.83 

pCd 199124 3.79 12 10.43 2.75 

GHlml 132280 2.52 5 4.35 1.73 

GHlo 936177 17.82 23 20 1.12 

Tgr 3374453 64.24 42 36.52 0.57 

30m 

Tsm 96424 10.57 32 26.02 2.46 

Pzc 9617 1.05 1 0.87 0.82 

pCd 34574 3.79 12 10.43 2.75 

GHlml 22953 2.52 5 4.35 1.73 

GHlo 162532 17.82 23 20 1.12 

Tgr 585847 64.24 42 36.52 0.57 

90m 

Tsm 10716 10.59 32 27.83 2.63 

Pzc 18107 17.9 23 20 1.12 

pCd 3846 3.8 12 10.43 2.75 

GHlml 2549 2.52 5 4.35 1.73 

GHlo 64931 64.17 42 36.52 0.57 

Tgr 1034 1.02 1 0.87 0.85 

Rainfall (mm) 

12.5m 

1786.79 - 2434.61 1345852 25.62 19 16.52 0.64 

2434.62 - 2930.01 1499293 28.54 15 13.04 0.46 

2930.02 - 3539.74 1065871 20.29 16 13.91 0.69 

3539.75 - 4225.67 710092 13.52 39 33.91 2.51 

4225.68 - 5025.93 631492 12.02 26 22.61 1.88 

30m 

1786.79 - 2434.61 233498 25.6 19 16.52 0.65 

2434.62 - 2930.01 260364 28.55 14 12.17 0.43 

2930.02 - 3539.74 185119 20.3 17 14.78 0.73 

3539.75 - 4225.67 123357 13.53 39 33.91 2.51 

4225.68 - 5025.93 109609 12.02 26 22.61 1.88 

90m 

1786.79 - 2434.61 25797 25.5 19 16.52 0.65 

2434.62 - 2930.01 28937 28.6 14 12.17 0.43 

2930.02 - 3539.74 20564 20.32 16 13.91 0.68 

3539.75 - 4225.67 13715 13.55 40 34.78 2.57 

4225.68 - 5025.93 12170 12.03 26 22.61 1.88 

Land Use Land Cover 

12.5m 

Agricultural Land 172063 3.28 2 1.74 0.53 

Built Up Area 4943 0.09 0 0 0 

Forest 4863000 92.58 110 95.65 1.03 

Shrub 130659 2.49 3 2.61 1.05 

Water Bodies 81935 1.56 0 0 0 

 30m 

Agricultural Land 29903 3.28 2 1.74 0.53 

Built Up Area 851 0.09 0 0 0 

Forest 844305 92.58 110 95.65 1.03 

Shrub 22629 2.48 3 2.61 1.05 

Water Bodies 14259 1.56 0 0 0 

90m 

Agricultural Land 3261 3.22 2 1.74 0.54 

Built Up Area 96 0.09 0 0 0 

Forest 93764 92.67 107 93.04 1 

Shrub 2467 2.44 5 4.35 1.78 

Water Bodies 1595 1.58 1 0.87 0.55 
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Appendix C: Detail of Index of Entropy calculation using three different spatial 

resolution 

The following Table shows the detail calculation of individual spatial resolution  (12.5m, 30m 

and 90m) using the Index of Entropy 

Spatial 

Resolution 
Class 

No of 

pixel in 

class 

% of 

landslide 

pixel in class 

No of 

landslide in 

class 

% of 

landslide in 

class 

Pij (Pij) Hj Hjmax Ij Pj Wij 

Elevation(m) 

12.5m 

< 854.00 711123 13.54 44 38.26 2.83 0.49 

1.982 2.322 0.146 1.162 0.17 

854.00 - 1455 1278941 24.35 32 27.83 1.14 0.20 

1455.01 - 1949 1697050 32.31 21 18.26 0.57 0.10 

1949.01 - 2619 1285804 24.48 13 11.30 0.46 0.08 

2619 < 279682 5.32 5 4.35 0.82 0.14 

30m 

< 854.00 113694 12.47 37 32.17 2.58 0.45 

2.025 2.322 0.128 1.156 0.148 

854.00 - 1455 209113 22.93 37 32.17 1.40 0.24 

1455.01 - 1949 292274 32.05 21 18.26 0.57 0.10 

1949.01 - 2619 243245 26.67 15 13.04 0.49 0.08 

2619 < 53621 5.88 5 4.35 0.74 0.13 

90m 

< 854.00 12614 12.47 38 33.04 2.65 0.46 

2.012 2.322 0.133 1.161 0.155 

854.00 - 1455 23263 22.99 36 31.30 1.36 0.23 

1455.01 - 1949 32472 32.09 22 19.13 0.60 0.10 

1949.01 - 2619 26898 26.58 14 12.17 0.46 0.08 

2619 < 5936 5.87 5 4.35 0.74 0.13 

Slope (Degree) 

12.5m 

0 - 13.00 503807 9.59 9 7.83 0.82 0.15 

2.195 2.322 0.055 1.062 0.058 

13.01 - 23.00 1027159 19.56 13 11.30 0.58 0.11 

23.01 - 32.00 1575077 29.99 33 28.70 0.96 0.18 

32.01 - 42.00 1537245 29.27 34 29.57 1.01 0.19 

42 < 609312 11.60 26 22.61 1.95 0.37 

30m 

0 - 13.00 93299 10.23 6 5.22 0.51 0.09 

2.063 2.322 0.112 1.136 0.127 

13.01 - 23.00 195676 21.46 20 17.39 0.81 0.14 

23.01 - 32.00 275372 30.20 28 24.35 0.81 0.14 

32.01 - 42.00 255827 28.05 31 26.96 0.96 0.17 

42 < 91773 10.06 30 26.09 2.59 0.46 

90m 

0 - 13.00 11472 11.34 11 9.57 0.84 0.12 

2.06 2.322 0.113 1.397 0.158 

13.01 - 23.00 27384 27.06 29 25.22 0.93 0.13 

23.01 - 32.00 35491 35.08 33 28.70 0.82 0.12 

32.01 - 42.00 23855 23.58 31 26.96 1.14 0.16 

42 < 2981 2.95 11 9.57 3.25 0.46 

Aspect 

12.5m 

Flat 47614 0.91 0 0.00 0.00 0.00 

2.843 3.17 0.103 0.871 0.09 

North 636941 12.13 5 4.35 0.36 0.05 

NorthEast 589967 11.23 9 7.83 0.70 0.09 

East 599110 11.41 15 13.04 1.14 0.15 

SouthEast 758507 14.44 33 28.70 1.99 0.25 

South 681513 12.97 19 16.52 1.27 0.16 

SouthWest 749811 14.28 15 13.04 0.91 0.12 

West 604243 11.50 8 6.96 0.60 0.08 

NorthWest 584894 11.14 11 9.57 0.86 0.11 

30m 

Flat 285 0.03 0 0.00 0.00 0.00 

2.839 3.17 0.104 0.865 0.09 

North 118174 12.96 6 5.22 0.40 0.05 

NorthEast 97997 10.75 9 7.83 0.73 0.09 

East 110602 12.13 14 12.17 1.00 0.13 

SouthEast 129200 14.17 33 28.70 2.03 0.26 

South 120454 13.21 18 15.65 1.19 0.15 

SouthWest 126820 13.91 18 15.65 1.13 0.14 

West 111498 12.23 7 6.09 0.50 0.06 

NorthWest 96917 10.63 10 8.70 0.82 0.11 

90m 

Flat 6 0.01 0 0.00 0.00 0.00 

2.839 3.17 0.104 0.861 0.09 

North 11739 11.60 6 5.22 0.45 0.06 

NorthEast 10792 10.67 5 4.35 0.41 0.05 

East 13004 12.85 16 13.91 1.08 0.14 

SouthEast 14659 14.49 29 25.22 1.74 0.22 

South 13247 13.09 24 20.87 1.59 0.21 

SouthWest 14400 14.23 13 11.30 0.79 0.10 

West 12655 12.51 10 8.70 0.70 0.09 

NorthWest 10681 10.56 12 10.43 0.99 0.13 

Curvature 

12.5m 

Concave 2214763 42.17 47 40.87 0.97 0.33 

1.584 1.585 0.001 0.993 0.001 Flat 802326 15.27 17 14.78 0.97 0.32 

Convex 2235511 42.56 51 44.35 1.04 0.35 

30m 

Concave 434525 47.65 70 60.87 1.28 0.48 

1.521 1.585 0.04 0.895 0.036 Flat 36424 3.99 3 2.61 0.65 0.24 

Convex 440998 48.36 42 36.52 0.76 0.28 

90m 

Concave 50045 49.46 73 63.48 1.28 0.63 

0.948 1.585 0.402 0.675 0.271 Flat 1309 1.29 0 0.00 0.00 0.00 

Convex 49829 49.25 42 36.52 0.74 0.37 

Topographic Wetness Index 

12.5m < 0.999 529278 10.08 12 10.43 1.04 0.27 1.976 2 0.012 0.943 0.011 
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0.999 - 3.219 1520949 28.96 35 30.43 1.05 0.28 

3.220 - 6.688 486118 9.25 7 6.09 0.66 0.17 

6.688 < 2716255 51.71 61 53.04 1.03 0.27 

30m 

< 0.999 200164 21.95 27 23.48 1.07 0.26 

1.995 2 0.002 1.043 0.003 
0.999 - 3.219 217946 23.90 31 26.96 1.13 0.27 

3.220 - 6.688 37006 4.06 5 4.35 1.07 0.26 

6.688 < 456831 50.09 52 45.22 0.90 0.22 

90m 

< 0.999 38278 37.83 46 40.00 1.06 0.30 

1.977 2 0.012 0.892 0.01 
0.999 - 3.219 11135 11.00 11 9.57 0.87 0.24 

3.220 - 6.688 1358 1.34 1 0.87 0.65 0.18 

6.688 < 50412 49.82 57 49.57 0.99 0.28 

Stream Power Index 

12.5m 

< -4.052 850701 16.20 16 13.91 0.86 0.22 

1.989 2 0.005 0.96 0.005 
-4.052 - 0.886 1638515 31.19 31 26.96 0.86 0.23 

0.887 - 3.529 2336225 44.48 59 51.30 1.15 0.30 

3.529 < 427159 8.13 9 7.83 0.96 0.25 

30m 

< -4.052 233485 25.60 18 15.65 0.61 0.13 

1.895 2 0.053 1.148 0.06 
-4.052 - 0.886 344021 37.72 44 38.26 1.01 0.22 

0.887 - 3.529 274078 30.05 39 33.91 1.13 0.25 

3.529 < 60363 6.62 14 12.17 1.84 0.40 

90m 

< -4.052 32999 32.61 28 24.35 0.75 0.18 

1.937 2 0.032 1.029 0.032 
-4.052 - 0.886 42295 41.80 45 39.13 0.94 0.23 

0.887 - 3.529 20832 20.59 37 32.17 1.56 0.38 

3.529 < 5057 5.00 5 4.35 0.87 0.21 

Drainage Density 

12.5m 

 <  0.545 964147 18.36 6 5.22 0.28 0.06 

2.118 2.322 0.088 0.911 0.08 

0.545 - 0.854 1329522 25.31 37 32.17 1.27 0.28 

0.855 - 1.153 1269392 24.17 44 38.26 1.58 0.35 

1.154 - 1.462 1111965 21.17 21 18.26 0.86 0.19 

1.462 < 577574 11.00 7 6.09 0.55 0.12 

30m 

 <  0.545 167456 18.36 6 5.22 0.28 0.06 

2.118 2.322 0.088 0.911 0.08 

0.545 - 0.854 230872 25.32 37 32.17 1.27 0.28 

0.855 - 1.153 220395 24.17 44 38.26 1.58 0.35 

1.154 - 1.462 192998 21.16 21 18.26 0.86 0.19 

1.462 < 100226 10.99 7 6.09 0.55 0.12 

90m 

 <  0.545 18485 18.27 7 6.09 0.33 0.07 

2.146 2.322 0.076 0.914 0.069 

0.545 - 0.854 25650 25.35 36 31.30 1.23 0.27 

0.855 - 1.153 24516 24.23 43 37.39 1.54 0.34 

1.154 - 1.462 21420 21.17 22 19.13 0.90 0.20 

1.462 < 11112 10.98 7 6.09 0.55 0.12 

Normalized Difference Vegetation Index 

12.5m 

<223 219873 4.19 32 27.83 6.65 0.64 

1.612 2.322 0.306 2.076 0.635 

0.223 - 0.407 574346 10.93 19 16.52 1.51 0.15 

0.408 - 0.562 877493 16.71 20 17.39 1.04 0.10 

0.563 - 0.688 1492466 28.41 25 21.74 0.77 0.07 

0.688 < 2088422 39.76 19 16.52 0.42 0.04 

30m 

<223 38264 4.20 22 19.13 4.56 0.51 

1.863 2.322 0.198 1.789 0.354 

0.223 - 0.407 99842 10.95 28 24.35 2.22 0.25 

0.408 - 0.562 152092 16.68 17 14.78 0.89 0.10 

0.563 - 0.688 259052 28.41 26 22.61 0.80 0.09 

0.688 < 362697 39.77 22 19.13 0.48 0.05 

90m 

<223 4269 4.22 17 14.78 3.50 0.46 

2.029 2.322 0.126 1.527 0.193 

0.223 - 0.407 11050 10.92 21 18.26 1.67 0.22 

0.408 - 0.562 16732 16.54 18 15.65 0.95 0.12 

0.563 - 0.688 29073 28.73 26 22.61 0.79 0.10 

0.688 < 40059 39.59 33 28.70 0.72 0.09 

Normalized Difference Soil Index 

12.5m 

< -0.516 484543 9.22 8 6.96 0.75 0.14 

2.017 2.322 0.131 1.084 0.142 

-0.516 - -0.273 946456 18.02 10 8.70 0.48 0.09 

-0.274 - -0.097 1471428 28.01 16 13.91 0.50 0.09 

-0.098 - 0.078 1655777 31.52 43 37.39 1.19 0.22 

0.078 < 694396 13.22 38 33.04 2.50 0.46 

30m 

< -0.516 84053 9.22 8 6.96 0.76 0.14 

2.004 2.322 0.137 1.097 0.15 

-0.516 - -0.273 164589 18.05 12 10.43 0.58 0.11 

-0.274 - -0.097 255238 27.99 13 11.30 0.40 0.07 

-0.098 - 0.078 287262 31.50 43 37.39 1.19 0.22 

0.078 < 120805 13.25 39 33.91 2.56 0.47 

90m 

< -0.516 9379 9.27 9 7.83 0.84 0.16 

2.086 2.322 0.102 1.085 0.11 

-0.516 - -0.273 18265 18.05 10 8.70 0.48 0.09 

-0.274 - -0.097 28423 28.09 22 19.13 0.68 0.13 

-0.098 - 0.078 31704 31.33 38 33.04 1.05 0.19 

0.078 < 13412 13.26 36 31.30 2.36 0.44 

Distance from the river(m) 

12.5m 

0-100 176948 3.37 6 5.22 1.55 0.29 

2.255 2.322 0.029 1.081 0.031 

100-200 162601 3.10 2 1.74 0.56 0.10 

200-300 158292 3.01 4 3.48 1.15 0.21 

300-400 157852 3.01 4 3.48 1.16 0.21 

400< 4596907 87.52 99 86.09 0.98 0.18 

30m 

0-100 31639 3.47 7 6.09 1.75 0.33 

2.159 2.322 0.07 1.069 0.075 

100-200 27341 3.00 1 0.87 0.29 0.05 

200-300 29785 3.27 4 3.48 1.07 0.20 

300-400 25379 2.78 4 3.48 1.25 0.23 

400< 797803 87.48 99 86.09 0.98 0.18 

90m 0-100 4349 4.30 8 6.96 1.62 0.31 2.194 2.322 0.055 1.046 0.058 
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100-200 2476 2.45 1 0.87 0.36 0.07 

200-300 3448 3.41 4 3.48 1.02 0.20 

300-400 2799 2.77 4 3.48 1.26 0.24 

400< 88111 87.08 98 85.22 0.98 0.19 

Distance from the fault(m) 

12.5m 

0-100 219126 4.17 1 0.87 0.21 0.04 

2.157 2.322 0.071 0.993 0.071 

100-200 206180 3.93 5 4.35 1.11 0.22 

200-300 198818 3.79 6 5.22 1.38 0.28 

300-400 180361 3.43 5 4.35 1.27 0.25 

400< 4448115 84.68 98 85.22 1.01 0.20 

30m 

0-100 39885 4.37 1 0.87 0.20 0.04 

2.138 2.322 0.079 0.935 0.074 

100-200 33632 3.69 5 4.35 1.18 0.25 

200-300 37929 4.16 7 6.09 1.46 0.31 

300-400 29107 3.19 3 2.61 0.82 0.17 

400< 771394 84.59 99 86.09 1.02 0.22 

90m 

0-100 5536 5.47 4 3.48 0.64 0.12 

2.248 2.322 0.032 1.101 0.035 

100-200 3333 3.29 4 3.48 1.06 0.19 

200-300 4076 4.03 5 4.35 1.08 0.20 

300-400 3028 2.99 6 5.22 1.74 0.32 

400< 85210 84.21 96 83.48 0.99 0.18 

Distance from the road(m) 

12.5m 

0-100 166121 3.16 5 4.35 1.37 0.23 

2.18 2.322 0.061 1.189 0.073 

100-200 136503 2.60 2 1.74 0.67 0.11 

200-300 126201 2.40 6 5.22 2.17 0.37 

300-400 120319 2.29 2 1.74 0.76 0.13 

400< 4703456 89.55 100 86.96 0.97 0.16 

30m 

0-100 30136 3.30 5 4.35 1.32 0.23 

2.165 2.322 0.068 1.156 0.078 

100-200 22593 2.48 3 2.61 1.05 0.18 

200-300 23374 2.56 6 5.22 2.04 0.35 

300-400 19606 2.15 1 0.87 0.40 0.07 

400< 816238 89.50 100 86.96 0.97 0.17 

90m 

0-100 4024 3.98 5 4.35 1.09 0.18 

2.202 2.322 0.052 1.205 0.062 

100-200 2011 1.99 2 1.74 0.88 0.15 

200-300 2740 2.71 7 6.09 2.25 0.37 

300-400 2082 2.06 2 1.74 0.85 0.14 

400< 90326 89.27 99 86.09 0.96 0.16 

Lithology 

12.5m 

Tsm 555267 10.57 32 27.83 2.63 0.27 

2.379 2.585 0.08 1.605 0.128 

Pzc 55299 1.05 1 0.87 0.83 0.09 

pCd 199124 3.79 12 10.43 2.75 0.29 

GHlml 132280 2.52 5 4.35 1.73 0.18 

GHlo 936177 17.82 23 20.00 1.12 0.12 

Tgr 3374453 64.24 42 36.52 0.57 0.06 

30m 

Tsm 96424 10.57 32 26.02 2.46 0.26 

2.387 2.585 0.077 1.576 0.121 

Pzc 9617 1.05 1 0.87 0.83 0.09 

pCd 34574 3.79 12 10.43 2.75 0.29 

GHlml 22953 2.52 5 4.35 1.73 0.18 

GHlo 162532 17.82 23 20.00 1.12 0.12 

Tgr 585847 64.24 42 36.52 0.57 0.06 

90m 

Tsm 10716 10.59 32 27.83 2.63 0.27 

2.382 2.585 0.079 1.606 0.126 

Pzc 18107 17.90 23 20.00 1.12 0.12 

pCd 3846 3.80 12 10.43 2.75 0.28 

GHlml 2549 2.52 5 4.35 1.73 0.18 

GHlo 64931 64.17 42 36.52 0.57 0.06 

Tgr 1034 1.02 1 0.87 0.85 0.09 

Rainfall(mm) 

12.5m 

1786.79 - 2434.61 1345852 25.62 19 16.52 0.64 0.10 

2.021 2.322 0.13 1.235 0.16 

2434.62 - 2930.01 1499293 28.54 15 13.04 0.46 0.07 

2930.02 - 3539.74 1065871 20.29 16 13.91 0.69 0.11 

3539.75 - 4225.67 710092 13.52 39 33.91 2.51 0.41 

4225.68 - 5025.93 631492 12.02 26 22.61 1.88 0.30 

30m 

1786.79 - 2434.61 233498 25.60 19 16.52 0.65 0.10 

2.02 2.322 0.13 1.238 0.161 

2434.62 - 2930.01 260364 28.55 14 12.17 0.43 0.07 

2930.02 - 3539.74 185119 20.30 17 14.78 0.73 0.12 

3539.75 - 4225.67 123357 13.53 39 33.91 2.51 0.41 

4225.68 - 5025.93 109609 12.02 26 22.61 1.88 0.30 

90m 

1786.79 - 2434.61 25797 25.50 19 16.52 0.65 0.10 

2.005 2.322 0.137 1.241 0.169 

2434.62 - 2930.01 28937 28.60 14 12.17 0.43 0.07 

2930.02 - 3539.74 20564 20.32 16 13.91 0.68 0.11 

3539.75 - 4225.67 13715 13.55 40 34.78 2.57 0.41 

4225.68 - 5025.93 12170 12.03 26 22.61 1.88 0.30 

Land use land cover 

12.5m 

Agricultural Land 172063 3.28 2 1.74 0.53 0.20 

1.525 2.322 0.343 0.523 0.179 

Built Up Area 4943 0.09 0 0.00 0.00 0.00 

Forest 4863000 92.58 110 95.65 1.03 0.40 

Shrub 130659 2.49 3 2.61 1.05 0.40 

Water Bodies 81935 1.56 0 0.00 0.00 0.00 

30m 

Agricultural Land 29903 3.28 2 1.74 0.53 0.20 

1.525 2.322 0.343 0.523 0.179 

Built Up Area 851 0.09 0 0.00 0.00 0.00 

Forest 844305 92.58 110 95.65 1.03 0.40 

Shrub 22629 2.48 3 2.61 1.05 0.40 

Water Bodies 14259 1.56 0 0.00 0.00 0.00 

90m 
Agricultural Land 3261 3.22 2 1.74 0.54 0.14 

1.816 2.322 0.218 0.776 0.169 
Built Up Area 96 0.09 0 0.00 0.00 0.00 
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Forest 93764 92.67 107 93.04 1.00 0.26 

Shrub 2467 2.44 5 4.35 1.78 0.46 

Water Bodies 1595 1.58 1 0.87 0.55 0.14 
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Appendix D: Detail of Weight of Evidence calculation using three different spatial 

resolution 

The following Table shows the detail calculation of individual spatial resolution (12.5m, 30m 

and 90m) using the Weight of Evidence 

Spatial 

Resolution 
Class 

No of 

pixel in 

class 

% of 

landslide 

pixel in 

class 

No of 

landslide 

in class 

% of 

landslide 

in class W+ W- C S2(W+) S2(W-) S(C ) Cs 

Elevation(m) 

12.5m 

< 854.00 711123 13.54 44 38.26 1.039 -0.337 1.376 0.023 0.014 0.192 7.170 

854.00 - 1455 1278941 24.35 32 27.83 0.133 -0.047 0.181 0.031 0.012 0.208 0.868 

1455.01 - 1949 1697050 32.31 21 18.26 -0.571 0.189 -0.759 0.048 0.011 0.241 -3.145 

1949.01 - 2619 1285804 24.48 13 11.30 -0.773 0.161 -0.933 0.077 0.010 0.294 -3.170 

2619 < 279682 5.32 5 4.35 -0.203 0.010 -0.213 0.200 0.009 0.457 -0.466 

30m 

< 854.00 113694 12.47 37 32.17 0.948 -0.255 1.203 0.027 0.013 0.200 6.027 

854.00 - 1455 209113 22.93 37 32.17 0.339 -0.128 0.466 0.027 0.013 0.200 2.337 

1455.01 - 1949 292274 32.05 21 18.26 -0.563 0.185 -0.747 0.048 0.011 0.241 -3.096 

1949.01 - 2619 243245 26.67 15 13.04 -0.715 0.170 -0.886 0.067 0.010 0.277 -3.199 

2619 < 53621 5.88 5 4.35 -0.302 0.016 -0.318 0.200 0.009 0.457 -0.695 

90m 

< 854.00 12614 12.47 38 33.04 0.975 -0.268 1.243 0.026 0.013 0.198 6.269 

854.00 - 1455 23263 22.99 36 31.30 0.309 -0.114 0.423 0.028 0.013 0.201 2.103 

1455.01 - 1949 32472 32.09 22 19.13 -0.517 0.175 -0.692 0.045 0.011 0.237 -2.919 

1949.01 - 2619 26898 26.58 14 12.17 -0.781 0.179 -0.960 0.071 0.010 0.285 -3.367 

2619 < 5936 5.87 5 4.35 -0.300 0.016 -0.316 0.200 0.009 0.457 -0.690 

Slope(Degree) 

12.5m 

0 - 13.00 503807 9.59 9 7.83 -0.203 0.019 -0.223 0.111 0.009 0.347 -0.642 

13.01 - 23.00 1027159 19.56 13 11.30 -0.548 0.098 -0.646 0.077 0.010 0.294 -2.193 

23.01 - 32.00 1575077 29.99 33 28.70 -0.044 0.018 -0.062 0.030 0.012 0.206 -0.302 

32.01 - 42.00 1537245 29.27 34 29.57 0.010 -0.004 0.014 0.029 0.012 0.204 0.070 

42 < 609312 11.60 26 22.61 0.667 -0.133 0.800 0.038 0.011 0.223 3.590 

30m 

0 - 13.00 93299 10.23 6 5.22 -0.673 0.054 -0.728 0.167 0.009 0.419 -1.735 

13.01 - 23.00 195676 21.46 20 17.39 -0.210 0.050 -0.261 0.050 0.011 0.246 -1.059 

23.01 - 32.00 275372 30.20 28 24.35 -0.215 0.080 -0.296 0.036 0.011 0.217 -1.361 

32.01 - 42.00 255827 28.05 31 26.96 -0.040 0.015 -0.055 0.032 0.012 0.210 -0.262 

42 < 91773 10.06 30 26.09 0.953 -0.196 1.149 0.033 0.012 0.212 5.409 

90m 

0 - 13.00 11472 11.34 11 9.57 -0.170 0.020 -0.190 0.091 0.010 0.317 -0.599 

13.01 - 23.00 27384 27.06 29 25.22 -0.071 0.025 -0.096 0.034 0.012 0.215 -0.446 

23.01 - 32.00 35491 35.08 33 28.70 -0.201 0.094 -0.295 0.030 0.012 0.206 -1.429 

32.01 - 42.00 23855 23.58 31 26.96 0.134 -0.045 0.179 0.032 0.012 0.210 0.853 

42 < 2981 2.95 11 9.57 1.178 -0.071 1.248 0.091 0.010 0.317 3.937 

Aspect 

12.5m 

Flat 47614 0.91 0 0.00 0.000 0.009 -0.009 0.000 0.009 0.000 0.000 

North 636941 12.13 5 4.35 -1.026 0.085 -1.111 0.200 0.009 0.457 -2.429 

NorthEast 589967 11.23 9 7.83 -0.361 0.038 -0.399 0.111 0.009 0.347 -1.149 

East 599110 11.41 15 13.04 0.134 -0.019 0.153 0.067 0.010 0.277 0.552 

SouthEast 758507 14.44 33 28.70 0.687 -0.182 0.869 0.030 0.012 0.206 4.215 

South 681513 12.97 19 16.52 0.242 -0.042 0.283 0.053 0.010 0.251 1.128 

SouthWest 749811 14.28 15 13.04 -0.090 0.014 -0.104 0.067 0.010 0.277 -0.377 

West 604243 11.50 8 6.96 -0.503 0.050 -0.553 0.125 0.009 0.367 -1.509 

NorthWest 584894 11.14 11 9.57 -0.152 0.018 -0.170 0.091 0.010 0.317 -0.535 

30m 

Flat 285 0.03 0 0.00 0.000 0.000 0.000 0.000 0.009 0.093 -0.003 

North 118174 12.96 6 5.22 -0.910 0.085 -0.995 0.167 0.009 0.419 -2.373 

NorthEast 97997 10.75 9 7.83 -0.317 0.032 -0.349 0.111 0.009 0.347 -1.006 

East 110602 12.13 14 12.17 0.004 -0.001 0.004 0.071 0.010 0.285 0.015 

SouthEast 129200 14.17 33 28.70 0.706 -0.185 0.891 0.030 0.012 0.206 4.323 

South 120454 13.21 18 15.65 0.170 -0.029 0.198 0.056 0.010 0.257 0.773 

SouthWest 126820 13.91 18 15.65 0.118 -0.020 0.139 0.056 0.010 0.257 0.541 

West 111498 12.23 7 6.09 -0.697 0.068 -0.765 0.143 0.009 0.390 -1.962 

NorthWest 96917 10.63 10 8.70 -0.201 0.021 -0.222 0.100 0.010 0.331 -0.671 

90m 

Flat 6 0.01 0 0.00 0.000 0.000 0.000 0.000 0.009 0.093 -0.001 

North 11739 11.60 6 5.22 -0.799 0.070 -0.869 0.167 0.009 0.419 -2.072 

NorthEast 10792 10.67 5 4.35 -0.897 0.068 -0.966 0.200 0.009 0.457 -2.112 

East 13004 12.85 16 13.91 0.079 -0.012 0.092 0.063 0.010 0.269 0.340 

SouthEast 14659 14.49 29 25.22 0.554 -0.134 0.688 0.034 0.012 0.215 3.205 

South 13247 13.09 24 20.87 0.466 -0.094 0.560 0.042 0.011 0.229 2.441 

SouthWest 14400 14.23 13 11.30 -0.230 0.034 -0.264 0.077 0.010 0.294 -0.896 

West 12655 12.51 10 8.70 -0.363 0.043 -0.406 0.100 0.010 0.331 -1.227 

NorthWest 10681 10.56 12 10.43 -0.012 0.001 -0.013 0.083 0.010 0.305 -0.042 

Curvature 

12.5m 

Concave 2214763 42.17 47 40.87 -0.031 0.022 -0.053 0.021 0.015 0.190 -0.281 

Flat 802326 15.27 17 14.78 -0.033 0.006 -0.039 0.059 0.010 0.263 -0.147 

Convex 2235511 42.56 51 44.35 0.041 -0.032 0.073 0.020 0.016 0.188 0.388 

30m 

Concave 434525 47.65 70 60.87 0.245 -0.291 0.536 0.014 0.022 0.191 2.805 

Flat 36424 3.99 3 2.61 -0.426 0.014 -0.440 0.333 0.009 0.585 -0.753 

Convex 440998 48.36 42 36.52 -0.281 0.206 -0.487 0.024 0.014 0.194 -2.515 

90m 

Concave 50045 49.46 73 63.48 0.250 -0.325 0.574 0.014 0.024 0.194 2.966 

Flat 1309 1.29 0 0.00 0.000 0.013 -0.013 0.000 0.009 0.093 -0.140 

Convex 49829 49.25 42 36.52 -0.299 0.224 -0.523 0.024 0.014 0.194 -2.699 

Toppographic Wetness Index 

12.5m 

< 0.999 529278 10.08 12 10.43 0.035 -0.004 0.039 0.083 0.010 0.305 0.128 

0.999 - 3.219 1520949 28.96 35 30.43 0.050 -0.021 0.071 0.029 0.013 0.203 0.350 

3.220 - 6.688 486118 9.25 7 6.09 -0.419 0.034 -0.453 0.143 0.009 0.390 -1.162 

6.688 < 2716255 51.71 61 53.04 0.025 -0.028 0.053 0.016 0.019 0.187 0.286 

30m 

< 0.999 200164 21.95 27 23.48 0.067 -0.020 0.087 0.037 0.011 0.220 0.396 

0.999 - 3.219 217946 23.90 31 26.96 0.120 -0.041 0.161 0.032 0.012 0.210 0.768 

3.220 - 6.688 37006 4.06 5 4.35 0.069 -0.003 0.072 0.200 0.009 0.457 0.158 

6.688 < 456831 50.09 52 45.22 -0.102 0.093 -0.196 0.019 0.016 0.187 -1.044 

90m 

< 0.999 38278 37.83 46 40.00 0.056 -0.036 0.091 0.022 0.014 0.190 0.480 

0.999 - 3.219 11135 11.00 11 9.57 -0.140 0.016 -0.156 0.091 0.010 0.317 -0.493 

3.220 - 6.688 1358 1.34 1 0.87 -0.434 0.005 -0.439 1.000 0.009 1.004 -0.437 
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6.688 < 50412 49.82 57 49.57 -0.005 0.005 -0.010 0.018 0.017 0.187 -0.055 

Stream Power Index 

12.5m 

< -4.052 850701 16.20 16 13.91 -0.152 0.027 -0.179 0.063 0.010 0.269 -0.664 

-4.052 - 0.886 1638515 31.19 31 26.96 -0.146 0.060 -0.206 0.032 0.012 0.210 -0.979 

0.887 - 3.529 2336225 44.48 59 51.30 0.143 -0.131 0.274 0.017 0.018 0.187 1.469 

3.529 < 427159 8.13 9 7.83 -0.038 0.003 -0.042 0.111 0.009 0.347 -0.120 

30m 

< -4.052 233485 25.60 18 15.65 -0.492 0.126 -0.618 0.056 0.010 0.257 -2.407 

-4.052 - 0.886 344021 37.72 44 38.26 0.014 -0.009 0.023 0.023 0.014 0.192 0.119 

0.887 - 3.529 274078 30.05 39 33.91 0.121 -0.057 0.178 0.026 0.013 0.197 0.901 

3.529 < 60363 6.62 14 12.17 0.609 -0.061 0.671 0.071 0.010 0.285 2.352 

90m 

< -4.052 32999 32.61 28 24.35 -0.292 0.116 -0.408 0.036 0.011 0.217 -1.878 

-4.052 - 0.886 42295 41.80 45 39.13 -0.066 0.045 -0.111 0.022 0.014 0.191 -0.580 

0.887 - 3.529 20832 20.59 37 32.17 0.446 -0.158 0.604 0.027 0.013 0.200 3.026 

3.529 < 5057 5.00 5 4.35 -0.139 0.007 -0.146 0.200 0.009 0.457 -0.320 

Drainage Density 

12.5m 

 <  0.545 964147 18.36 6 5.22 -1.258 0.149 -1.407 0.167 0.009 0.419 -3.356 

0.545 - 0.854 1329522 25.31 37 32.17 0.240 -0.096 0.336 0.027 0.013 0.200 1.685 

0.855 - 1.153 1269392 24.17 44 38.26 0.459 -0.206 0.665 0.023 0.014 0.192 3.466 

1.154 - 1.462 1111965 21.17 21 18.26 -0.148 0.036 -0.184 0.048 0.011 0.241 -0.763 

1.462 < 577574 11.00 7 6.09 -0.591 0.054 -0.645 0.143 0.009 0.390 -1.654 

30m 

 <  0.545 167456 18.36 6 5.22 -1.258 0.149 -1.408 0.167 0.009 0.419 -3.357 

0.545 - 0.854 230872 25.32 37 32.17 0.240 -0.096 0.336 0.027 0.013 0.200 1.683 

0.855 - 1.153 220395 24.17 44 38.26 0.459 -0.206 0.665 0.023 0.014 0.192 3.466 

1.154 - 1.462 192998 21.16 21 18.26 -0.148 0.036 -0.184 0.048 0.011 0.241 -0.761 

1.462 < 100226 10.99 7 6.09 -0.591 0.054 -0.644 0.143 0.009 0.390 -1.652 

90m 

 <  0.545 18485 18.27 7 6.09 -1.099 0.139 -1.238 0.143 0.009 0.390 -3.174 

0.545 - 0.854 25650 25.35 36 31.3 0.211 -0.083 0.294 0.028 0.013 0.201 1.463 

0.855 - 1.153 24516 24.23 43 37.39 0.434 -0.191 0.625 0.023 0.014 0.193 3.241 

1.154 - 1.462 21420 21.17 22 19.13 -0.101 0.026 -0.127 0.045 0.011 0.237 -0.535 

1.462 < 11112 10.98 7 6.09 -0.590 0.054 -0.644 0.143 0.009 0.390 -1.650 

Normalized Difference Vegetation Index 

12.5m 

<223 219873 4.19 32 27.83 1.894 -0.283 2.178 0.031 0.012 0.208 10.465 

0.223 - 0.407 574346 10.93 19 16.52 0.413 -0.065 0.478 0.053 0.010 0.251 1.902 

0.408 - 0.562 877493 16.71 20 17.39 0.040 -0.008 0.048 0.050 0.011 0.246 0.197 

0.563 - 0.688 1492466 28.41 25 21.74 -0.268 0.089 -0.357 0.040 0.011 0.226 -1.579 

0.688 < 2088422 39.76 19 16.52 -0.878 0.326 -1.204 0.053 0.010 0.251 -4.797 

30m 

<223 38264 4.20 22 19.13 1.517 -0.169 1.687 0.045 0.011 0.237 7.114 

0.223 - 0.407 99842 10.95 28 24.35 0.799 -0.163 0.962 0.036 0.011 0.217 4.429 

0.408 - 0.562 152092 16.68 17 14.78 -0.121 0.022 -0.143 0.059 0.010 0.263 -0.545 

0.563 - 0.688 259052 28.41 26 22.61 -0.228 0.078 -0.306 0.038 0.011 0.223 -1.373 

0.688 < 362697 39.77 22 19.13 -0.732 0.295 -1.027 0.045 0.011 0.237 -4.330 

90m 

<223 4269 4.22 17 14.78 1.254 -0.117 1.371 0.059 0.010 0.263 5.217 

0.223 - 0.407 11050 10.92 21 18.26 0.514 -0.086 0.600 0.048 0.011 0.241 2.486 

0.408 - 0.562 16732 16.54 18 15.65 -0.055 0.011 -0.065 0.056 0.010 0.257 -0.255 

0.563 - 0.688 29073 28.73 26 22.61 -0.240 0.082 -0.322 0.038 0.011 0.223 -1.445 

0.688 < 40059 39.59 33 28.70 -0.322 0.166 -0.488 0.030 0.012 0.206 -2.366 

Normalized Difference Soil Index 

12.5m 

< -0.516 484543 9.22 8 6.96 -0.282 0.025 -0.307 0.125 0.009 0.367 -0.837 

-0.516 - -0.273 946456 18.02 10 8.70 -0.729 0.108 -0.836 0.100 0.010 0.331 -2.527 

-0.274 - -0.097 1471428 28.01 16 13.91 -0.700 0.179 -0.879 0.063 0.010 0.269 -3.261 

-0.098 - 0.078 1655777 31.52 43 37.39 0.171 -0.090 0.260 0.023 0.014 0.193 1.351 

0.078 < 694396 13.22 38 33.04 0.916 -0.259 1.175 0.026 0.013 0.198 5.929 

30m 

< -0.516 84053 9.22 8 6.96 -0.281 0.025 -0.306 0.125 0.009 0.367 -0.835 

-0.516 - -0.273 164589 18.05 12 10.43 -0.548 0.089 -0.637 0.083 0.010 0.305 -2.087 

-0.274 - -0.097 255238 27.99 13 11.30 -0.907 0.208 -1.115 0.077 0.010 0.294 -3.786 

-0.098 - 0.078 287262 31.5 43 37.39 0.171 -0.090 0.261 0.023 0.014 0.193 1.356 

0.078 < 120805 13.25 39 33.91 0.940 -0.272 1.212 0.026 0.013 0.197 6.154 

90m 

< -0.516 9379 9.27 9 7.83 -0.169 0.016 -0.185 0.111 0.009 0.347 -0.533 

-0.516 - -0.273 18265 18.05 10 8.70 -0.730 0.108 -0.839 0.100 0.010 0.331 -2.534 

-0.274 - -0.097 28423 28.09 22 19.13 -0.384 0.117 -0.502 0.045 0.011 0.237 -2.116 

-0.098 - 0.078 31704 31.33 38 33.04 0.053 -0.025 0.078 0.026 0.013 0.198 0.395 

0.078 < 13412 13.26 36 31.30 0.859 -0.233 1.093 0.028 0.013 0.201 5.434 

Distance from the river(m) 

12.5m 

0-100 176948 3.37 6 5.22 0.437 -0.019 0.457 0.167 0.009 0.419 1.089 

100-200 162601 3.10 2 1.74 -0.577 0.014 -0.591 0.500 0.009 0.713 -0.828 

200-300 158292 3.01 4 3.48 0.143 -0.005 0.148 0.250 0.009 0.509 0.291 

300-400 157852 3.01 4 3.48 0.146 -0.005 0.151 0.250 0.009 0.509 0.297 

400< 4596907 87.52 99 86.09 -0.016 0.108 -0.125 0.010 0.063 0.269 -0.464 

30m 

0-100 31639 3.47 7 6.09 0.562 -0.027 0.590 0.143 0.009 0.390 1.512 

100-200 27341 3.00 1 0.87 -1.238 0.022 -1.259 1.000 0.009 1.004 -1.254 

200-300 29785 3.27 4 3.48 0.063 -0.002 0.065 0.250 0.009 0.509 0.128 

300-400 25379 2.78 4 3.48 0.223 -0.007 0.230 0.250 0.009 0.509 0.452 

400< 797803 87.48 99 86.09 -0.016 0.106 -0.122 0.010 0.063 0.269 -0.452 

90m 

0-100 4349 4.30 8 6.96 0.481 -0.028 0.510 0.125 0.009 0.367 1.391 

100-200 2476 2.45 1 0.87 -1.035 0.016 -1.051 1.000 0.009 1.004 -1.046 

200-300 3448 3.41 4 3.48 0.020 -0.001 0.021 0.250 0.009 0.509 0.042 

300-400 2799 2.77 4 3.48 0.229 -0.007 0.236 0.250 0.009 0.509 0.464 

400< 88111 87.08 98 85.22 -0.022 0.135 -0.156 0.010 0.059 0.263 -0.595 

Distance from the fault(m) 

12.5m 

0-100 219126 4.17 1 0.87 -1.568 0.034 -1.602 1.000 0.009 1.004 -1.595 

100-200 206180 3.93 5 4.35 0.102 -0.004 0.107 0.200 0.009 0.457 0.233 

200-300 198818 3.79 6 5.22 0.321 -0.015 0.336 0.167 0.009 0.419 0.801 

300-400 180361 3.43 5 4.35 0.236 -0.010 0.246 0.200 0.009 0.457 0.537 

400< 4448115 84.68 98 85.22 0.006 -0.035 0.042 0.010 0.059 0.263 0.159 

30m 

0-100 39885 4.37 1 0.87 -1.615 0.036 -1.651 1.000 0.009 1.004 -1.644 

100-200 33632 3.69 5 4.35 0.165 -0.007 0.171 0.200 0.009 0.457 0.375 

200-300 37929 4.16 7 6.09 0.381 -0.020 0.401 0.143 0.009 0.390 1.029 

300-400 29107 3.19 3 2.61 -0.202 0.006 -0.208 0.333 0.009 0.585 -0.355 

400< 771394 84.59 99 86.09 0.018 -0.102 0.120 0.010 0.063 0.269 0.445 

90m 

0-100 5536 5.47 4 3.48 -0.453 0.021 -0.474 0.250 0.009 0.509 -0.931 

100-200 3333 3.29 4 3.48 0.054 -0.002 0.056 0.250 0.009 0.509 0.111 

200-300 4076 4.03 5 4.35 0.076 -0.003 0.080 0.200 0.009 0.457 0.174 

300-400 3028 2.99 6 5.22 0.556 -0.023 0.579 0.167 0.009 0.419 1.381 

400< 85210 84.21 96 83.48 -0.009 0.046 -0.054 0.010 0.053 0.251 -0.216 

Distance from the road(m) 

12.5m 0-100 166121 3.16 5 4.35 0.318 -0.012 0.331 0.200 0.009 0.457 0.723 
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100-200 136503 2.60 2 1.74 -0.402 0.009 -0.410 0.500 0.009 0.713 -0.575 

200-300 126201 2.40 6 5.22 0.775 -0.029 0.805 0.167 0.009 0.419 1.919 

300-400 120319 2.29 2 1.74 -0.275 0.006 -0.281 0.500 0.009 0.713 -0.394 

400< 4703456 89.55 100 86.96 -0.029 0.221 -0.251 0.010 0.067 0.277 -0.905 

30m 

0-100 30136 3.30 5 4.35 0.274 -0.011 0.285 0.200 0.009 0.457 0.624 

100-200 22593 2.48 3 2.61 0.052 -0.001 0.053 0.333 0.009 0.585 0.091 

200-300 23374 2.56 6 5.22 0.711 -0.028 0.738 0.167 0.009 0.419 1.761 

300-400 19606 2.15 1 0.87 -0.905 0.013 -0.918 1.000 0.009 1.004 -0.914 

400< 816238 89.50 100 86.96 -0.029 0.217 -0.246 0.010 0.067 0.277 -0.889 

90m 

0-100 4024 3.98 5 4.35 0.089 -0.004 0.093 0.200 0.009 0.457 0.203 

100-200 2011 1.99 2 1.74 -0.133 0.003 -0.136 0.500 0.009 0.713 -0.191 

200-300 2740 2.71 7 6.09 0.810 -0.035 0.845 0.143 0.009 0.390 2.167 

300-400 2082 2.06 2 1.74 -0.168 0.003 -0.171 0.500 0.009 0.713 -0.240 

400< 90326 89.27 99 86.09 -0.036 0.260 -0.296 0.010 0.063 0.269 -1.099 

Lithology 

12.5m 

Tsm 555267 10.57 32 27.83 0.968 -0.214 1.182 0.031 0.012 0.208 5.681 

Pzc 55299 1.05 1 0.87 -0.191 0.002 -0.193 1.000 0.009 1.004 -0.192 

pCd 199124 3.79 12 10.43 1.013 -0.072 1.084 0.083 0.010 0.305 3.554 

GHlml 132280 2.52 5 4.35 0.546 -0.019 0.565 0.200 0.009 0.457 1.236 

GHlo 936177 17.82 23 20.00 0.115 -0.027 0.142 0.043 0.011 0.233 0.609 

Tgr 3374453 64.24 42 36.52 -0.565 0.574 -1.139 0.024 0.014 0.194 -5.880 

30m 

Tsm 96424 10.57 32 26.02 0.900 -0.190 1.090 0.031 0.012 0.208 5.238 

Pzc 9617 1.05 1 0.87 -0.193 0.002 -0.195 1.000 0.009 1.004 -0.194 

pCd 34574 3.79 12 10.43 1.012 -0.072 1.084 0.083 0.010 0.305 3.554 

GHlml 22953 2.52 5 4.35 0.547 -0.019 0.566 0.200 0.009 0.457 1.237 

GHlo 162532 17.82 23 20.00 0.115 -0.027 0.142 0.043 0.011 0.233 0.610 

Tgr 585847 64.24 42 36.52 -0.565 0.574 -1.139 0.024 0.014 0.194 -5.879 

90m 

Tsm 10716 10.59 32 27.83 0.966 -0.214 1.180 0.031 0.012 0.208 5.672 

Pzc 18107 17.90 23 20.00 0.111 -0.026 0.137 0.043 0.011 0.233 0.588 

pCd 3846 3.80 12 10.43 1.010 -0.071 1.081 0.083 0.010 0.305 3.545 

GHlml 2549 2.52 5 4.35 0.546 -0.019 0.565 0.200 0.009 0.457 1.235 

GHlo 64931 64.17 42 36.52 -0.564 0.572 -1.136 0.024 0.014 0.194 -5.864 

Tgr 1034 1.02 1 0.87 -0.161 0.002 -0.163 1.000 0.009 1.004 -0.162 

Rainfall(mm) 

12.5m 

1786.79 - 2434.61 1345852 25.62 19 16.52 -0.439 0.115 -0.554 0.053 0.010 0.251 -2.207 

2434.62 - 2930.01 1499293 28.54 15 13.04 -0.783 0.196 -0.979 0.067 0.010 0.277 -3.537 

2930.02 - 3539.74 1065871 20.29 16 13.91 -0.377 0.077 -0.454 0.063 0.010 0.269 -1.686 

3539.75 - 4225.67 710092 13.52 39 33.91 0.920 -0.269 1.189 0.026 0.013 0.197 6.035 

4225.68 - 5025.93 631492 12.02 26 22.61 0.632 -0.128 0.760 0.038 0.011 0.223 3.408 

30m 

1786.79 - 2434.61 233498 25.60 19 16.52 -0.438 0.115 -0.553 0.053 0.010 0.251 -2.203 

2434.62 - 2930.01 260364 28.55 14 12.17 -0.852 0.206 -1.059 0.071 0.010 0.285 -3.712 

2930.02 - 3539.74 185119 20.30 17 14.78 -0.317 0.067 -0.384 0.059 0.010 0.263 -1.462 

3539.75 - 4225.67 123357 13.53 39 33.91 0.919 -0.269 1.188 0.026 0.013 0.197 6.031 

4225.68 - 5025.93 109609 12.02 26 22.61 0.632 -0.128 0.760 0.038 0.011 0.223 3.409 

90m 

1786.79 - 2434.61 25797 25.50 19 16.52 -0.434 0.114 -0.548 0.053 0.010 0.251 -2.181 

2434.62 - 2930.01 28937 28.60 14 12.17 -0.854 0.207 -1.061 0.071 0.010 0.285 -3.721 

2930.02 - 3539.74 20564 20.32 16 13.91 -0.379 0.077 -0.456 0.063 0.010 0.269 -1.694 

3539.75 - 4225.67 13715 13.55 40 34.78 0.942 -0.282 1.224 0.025 0.013 0.196 6.253 

4225.68 - 5025.93 12170 12.03 26 22.61 0.631 -0.128 0.759 0.038 0.011 0.223 3.406 

Land use land cover 

12.5m 

Agricultural Land 172063 3.28 2 1.74 -0.633 0.016 -0.649 0.500 0.009 0.713 -0.910 

Built Up Area 4943 0.09 0 0.00 0.000 0.001 -0.001 0.000 0.009 0.093 -0.010 

Forest 4863000 92.58 110 95.65 0.033 -0.534 0.567 0.009 0.200 0.457 1.239 

Shrub 130659 2.49 3 2.61 0.048 -0.001 0.049 0.333 0.009 0.585 0.083 

Water Bodies 81935 1.56 0 0.00 0.000 0.016 -0.016 0.000 0.009 0.093 -0.169 

30m 

Agricultural Land 29903 3.28 2 1.74 -0.634 0.016 -0.650 0.500 0.009 0.713 -0.911 

Built Up Area 851 0.09 0 0.00 0.000 0.001 -0.001 0.000 0.009 0.093 -0.010 

Forest 844305 92.58 110 95.65 0.033 -0.534 0.567 0.009 0.200 0.457 1.239 

Shrub 22629 2.48 3 2.61 0.050 -0.001 0.051 0.333 0.009 0.585 0.088 

Water Bodies 14259 1.56 0 0.00 0.000 0.016 -0.016 0.000 0.009 0.093 -0.169 

90m 

Agricultural Land 3261 3.22 2 1.74 -0.617 0.015 -0.632 0.500 0.009 0.713 -0.886 

Built Up Area 96 0.09 0 0.00 0.000 0.001 -0.001 0.000 0.009 0.093 -0.010 

Forest 93764 92.67 107 93.04 0.004 -0.053 0.057 0.009 0.125 0.367 0.155 

Shrub 2467 2.44 5 4.35 0.578 -0.020 0.598 0.200 0.009 0.457 1.308 

Water Bodies 1595 1.58 1 0.87 -0.595 0.007 -0.602 1.000 0.009 1.004 -0.599 
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