
  

  

TRAVERSABLE WORMHOLES IN MASSIVE GRAVITY THEORY 
 

NOPADHOL  KAMMA 
 

A Thesis Submitted to the Graduate School of Naresuan University 

in Partial Fulfillment of the Requirements 

for the Master of Science in (Theoretical Physics) 

2019 

Copyright by Naresuan University 
 

 

 



  

TRAVERSABLE WORMHOLES IN MASSIVE GRAVITY THEORY 
 

NOPADHOL  KAMMA 
 

A Thesis Submitted to the Graduate School of Naresuan University 

in Partial Fulfillment of the Requirements 

for the Master of Science in (Theoretical Physics) 

2019 

Copyright by Naresuan University 
 

 

 



 

Thesis entitled "Traversable Wormholes in Massive Gravity Theory" 

By NOPADHOL  KAMMA 

has been approved by the Graduate School as partial fulfillment of the requirements 

for the Master of Science in Theoretical Physics of Naresuan University 

  

Oral Defense Committee 

  
 

Chair 

(Assistant Professor Seckson Sukhasena, Ph.D.) 
 

  
 

Advisor 

(Associate Professor Burin Gumjudpai, Ph.D.) 
 

  
 

Co Advisor 

(Associate Professor Khamphee Karwan, Ph.D.) 
 

  
 

Internal Examiner 

(Assistant Professor Pitayuth Wongjun, Ph.D.) 
 

  
 

External Examiner 

(Associate Professor Petarpa Boonserm, Ph.D.) 
 

  

  

  Approved 

    

(Professor Paisarn Muneesawang, Ph.D.) 
 

  

 for Dean of the Graduate School 

 

  



 C 

ABST RACT  

Title TRAVERSABLE WORMHOLES IN MASSIVE 

GRAVITY THEORY 

Author NOPADHOL KAMMA 

Advisor Associate Professor Burin Gumjudpai, Ph.D. 

Co-Advisor Associate Professor Khamphee Karwan, Ph.D.  

Academic Paper Thesis M.S. in Theoretical Physics, Naresuan University, 

2019 

Keywords Traversable wormhole, Exotic matter, Tension, Null energy 

condition 

  

ABSTRACT 

  

Morris-Thorne wormhole or traversable wormhole (TWH) is wormhole 

which we are physically allowed to travel through. The main problem of this 

wormhole is that the exotic matter is needed as a constituent of the wormhole. The 

exotic matter is unknown for us with strong negative radial pressure, known here as 

wormhole tension. In general relativity (GR), negative pressure plays a role of 

wormhole tension, forbidding travelling through such a wormhole. The same problem 

is also found in a wormhole solution for GR with a cosmological constant. Here we 

consider it in the context of a modified gravitational theory so called massive gravity. 

Although, the massive gravity is constructed aiming in explaining the cosmic 

acceleration, the wormhole solution exists in this theory. Moreover, there are many 

free parameters in wormhole solution for the de Rham-Gabadadze-Tolley (dRGT) 

massive gravity. The necessity of the exotic matter can be alleviated. As a result, the 

wormhole with lower size of throat, tension as well as volume of exotic matter can be 

obtained in this work. 
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CHAPTER I 

 

INTRODUCTION 

 

Background and Motivation 

In general relativity, wormhole is a region which connects between two sheets 

of spacetime.  In Schwarzschild solution (Hobson, Efstathiou, & Lasenby, 2006), a 

wormhole solution exists but a traveling through this wormhole violates causality. 
Moreover, there is a horizon as a region with infinite redshift surface so that the 

wormhole doesn’t appear.  Thus, an existence of wormholes corresponds to a 

condition as a redshift function must be finite. In addition, there is the other problem 

in which human cannot travel through the wormhole. Therefore, Mike Morris and Kip 

Thorne (Morris & Thorne, 1988), they found conditions to solve this problem by 

specifying conditions for construction of traversable wormholes, called traversability 

conditions as follows weak tidal force, weak gravity, and shot traveling time. 
However, a construction of wormholes must be used a matter to generate 

curved spacetime for the wormhole.  Exotic property of the matter is identified by 

defining a parameter associated with the violation of null energy condition (NEC). For 

the existence of the throat of the wormhole, it must be used exotic matter in which 

radial pressure is negative. 

In physical system, there exists phenomenon of the violations (Visser, 1 9 9 5 ) 

i.e. Casimir effect, cosmological inflation, etc., but they would be difficult to be found 

and to construct the wormhole. Thus, the good choice is the wormhole without exotic 

matter. However, existence of the throat of the wormhole imposes that the matter near 

the throat must be exotic.  For another choice, it is minimized to use of the exotic 

matter as well as it should be a weak violation for some class of solution.  One of 

mitigations for a minimization of the exotic matter is using a thin shell formalism 

which is a formalism to construct a surface layer between regions of spacetime, 

proposed by Matt Visser (Visser, 1 9 8 9 a, 1 9 8 9 b).  Moreover, by using the thin shell 

formalism, one can produce the redshift function in exterior solution to be a constant 

which corresponds to the existence of wormholes. 
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One of the interesting properties is the accelerating expansion of the universe 

because it corresponds to the negative pressure. Consequently, we can expect to solve 

the problem for the wormhole by including cosmological model. 
At the same time, a theory of gravitation is modified because general relativity 

cannot explain the accelerating expansion of the universe. In simple modified gravity, 

the wormholes are investigated by Francisco S. N. Lobo (Lobo, 2007). In this model, 

the negative pressure can be reduced. Moreover, there is a solution of the traversable 

wormhole without thin shell ( junction conditions of boundary surface between the 

matter and empty space) .  For some class of de Sitter solution corresponding to the 

accelerating expansion of the universe, it can minimize the use of exotic matter 
(Lemos, Lobo, & de Oliveira, 2003). As a result, the study of traversable wormholes in 

modified gravity theory is an important option which is possible to discover the 

wormholes in cosmology. 
One of interesting modified gravity theories is massive gravity theory, a theory 

in which a graviton acquires non-zero mass. The recent viable model of the theory is 

massive gravity with nonlinear interaction terms, known as dRGT ( de Rham-

Gabadadze-Tolley)  massive gravity ( De Rham & Gabadadze, 2 0 1 0 ; De Rham, 

Gabadadze, & Tolley, 2 0 1 1 ) .  The interesting result of this theory is that the 

accelerating expansion can be obtained. Moreover, there are several parameters which 

provide a description different from the cosmological constant.  Therefore, the 

wormhole solution in dRGT massive gravity is more general than de Sitter and Anti 

de Sitter solution, while the dRGT massive gravity solution can be reduced to de 

Sitter and Anti de Sitter solution to be some range of the model parameters. 

 



CHAPTER II 

 

LITERATURE REVIEW 

 

Wormholes 

In 1916, motivated by General relativity, Flamm (Flamm, 1 9 1 6 )  proposed a 

geometry that some curve might connect two regions of spacetime but it was only a 

concept of model in physics. Later, Hermann Weyl proposed a theory about a matter 

in which a space is connected by mass and analysis of electromagnetic field energy in 

1921 (Weyl, 1921) and explained it by philosophy of mathematics and natural science 
(Weyl, 2009) in 1928. It is therefore anticipated that the matter can take an object from 

one place to another. 
In General relativity, there is a problem from Schwarzschild solution which a 

particle cannot escape from black hole.  Thus, Einstein and Rosen built a geometrical 

model to solve this problem and found a bridge across a double-sheet of spacetime in 

1935 (Einstein & Rosen, 1935). However, this model is just theoretical. The time-like 

particle cannot pass through the bridge, due to the violation of causality. 

Because of topological structure with connected spacetime, “ Wormhole”  is 

named by Wheeler in 1957 (Misner & Wheeler, 1 9 5 7 ; J. Wheeler, 1 9 6 2 ) . Wheeler 

envisage wormhole as the fabric of the universe, a chaotic sub-atomic realm of 

quantum fluctuations, which he called “Quantum foam” (J. A. Wheeler, 1955). 
In 1988, Morris and Thorne defined a redshift function and a shape function to 

analyze a horizon and a throat of the wormhole. They proposed a wormhole solution 

which is possible for a human’s traveling, called “Traversable wormhole” (Morris & 

Thorne, 1 9 8 8 ) .  However, it is unusable because a matter, used to construct the 

wormhole, is exotic. 
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Schwarzschild solution 

In 1915, Albert Einstein proposed general relativity (Hobson et al., 2006) that 

is a gravitational theory explaining the geometry of spacetime by the Einstein field 

equation. The Einstein field equation is an equation to represent a relation between a 

curvature of spacetime and a matter. The Einstein field equation can be written as 

𝐺𝜇𝜈 = 𝑅𝜇𝜈 − 1

2
𝑔𝜇𝜈𝑅 = 𝜅𝑇𝜇𝜈,    (1) 

where 𝑔𝜇𝜈 is a metric tensor, 𝑅𝜇𝜈 is Ricci tensor, 𝑅 is Ricci scalar, and 𝜅 is a constant 

of Newtonian limit. In the equation (1), Einstein tensor, 𝐺𝜇𝜈, contains second 

derivatives of the metric and the energy-momentum tensor, 𝑇𝜇𝜈, corresponds to the 

matter in the spacetime. 

The Einstein field equation is a complicated nonlinear differential equation. It 

is not easy to analytically solve without imposing any assumptions. In 1916, assuming 

spherical symmetry, the Einstein field equation in vacuum was solved by Karl 

Schwarzschild (Hobson et al., 2006). Schwarzschild solution can be expressed as 

𝑑𝑠
2

= −𝑐2 (1 − 2𝐺𝑀
𝑐2𝑟

) 𝑑𝑡
2

+ (1 − 2𝐺𝑀
𝑐2𝑟

)
−1

𝑑𝑟
2

+ 𝑟2 (𝑑𝜃
2

+ 𝑠𝑖𝑛2𝜃𝑑𝜙
2

).(2) 

Where 𝑐 is a speed of light, 𝐺 is Newton’s constant, and 𝑀 is mass. From the 

Schwarzschild metric in the equation (2), the event horizon is defined by 𝑟𝑠 =
2𝐺𝑀

𝑐2 = 2𝜇, which is also called “ Schwarzschild radius” . This radius at a surface in 

which light cannot escape.  This property is known as a property of black holes 

(Schwarzschild radius is now the black hole horizon).  

The spacetime curvature is described by a contraction of curvature tensor 𝑅𝜇𝜈𝜌𝜎. 

Let us consider a curvature scalar 𝑅𝜇𝜈𝜌𝜎𝑅
𝜇𝜈𝜌𝜎 (Hobson et al., 2006). This scalar at 

any point for the Schwarzschild metric can be computed as 

𝑅𝜇𝜈𝜌𝜎𝑅
𝜇𝜈𝜌𝜎

= 48𝜇2

𝑟
.    (3) 

It is seen that the above curvature scalar diverges at 𝑟 = 0 but it is still finite at 𝑟 =

2𝜇.  Consequently, the singularity at 𝑟 = 2𝜇 is actually the coordinate singularity 

arisen from using improper coordinates.  The way to eliminate this singularity was 

proposed by Martin Kruskal and George Szekeres in 1960 ( Carroll, 2 0 0 4 ) .  They 

transformed the coordinates to the new ones without the coordinate singularity, 𝑟 =
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2𝜇. By fixing angular coordinates (𝜃 =
𝜋

2
) , the metric in Kruskal coordinates can be 

obtained as 

𝑑𝑠
2

= −
32𝜇3

𝑟
𝑒− 𝑟

2𝜇 (𝑑𝑉
2

− 𝑑𝑈
2

).   (4) 

The spacetime diagram in Kruskal coordinates can be divided in four regions as 

shown in figure 1. 
 

 

 

Figure  1   spacetime diagram in Kruskal coordinates. 

 

From the diagram in figure 1, the region I and III are asymptotically flat region, 

the region II is black hole, and the region IV is inverse of region II known as white 

hole. So, it is found that there is a connected region between the regions I and III. This 

is motivated to solve the particle problem in General relativity ( Einstein & Rosen, 

1 9 3 5 )  by Rosen and Einstein in 1935.  They built a geometrical model of a physical 

elementary particle in which everywhere is finite and singularity free.  The 

Schwarzschild solution was embedded to the axisymmetric coordinate system in 

three-dimensional Euclidean space as embedding diagram shown in figure 2. They 

also found that there exists a connected region between two sheets of spacetime, 

called “ Einstein-Rosen bridge”. Unfortunately, it is impossible to travel because the 

bridge is pinched off before the particle passes through it. 
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Figure  2  Einstein-Rosen bridge with embedding diagram. 

 

Later, Roger Penrose proposed compact conformal diagram (Hawking & Ellis, 

1 9 7 3 )  which is included all regions of spacetime and supposed to preserve the light 

cone angle so that this is a good diagram to explain the connected region.  For 

Schwarzschild solution, there exist the regions I and III which are asymptotically flat 

spacetime as shown in figure 3. In addition, regions II and IV are a black hole and a 

white hole, respectively. 
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Figure  3 Conformal diagram of Schwarzschild wormhole or Einstein-Rosen 

bridge 
 

For regions I and III, there exists a region which connects between two 

asymptotically flat spacetimes, called Schwarzschild wormhole. In the diagram, there 

are triangles of light cones with slope ±1. A trajectory of a time-like particle must be 

inside these triangles (the slope of trajectory must be greater than one of light cone) so 

that the particle cannot travel from regions I to region III and vice versa. This is called 

the causality problem. 
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Traversable wormholes 

Morris and Thorne proposed a “Traversable wormhole” (Morris & Thorne, 1988) 
to solve a traveling problem of wormhole so that traversable wormhole is a wormhole 

in which human can travel through.  The Schwarzschild wormhole cannot be a 

traversable wormhole because a traveling through the wormhole violates causality. It 

is notice that the Schwarzschild solution is vacuum solution. It is possible to construct 

the traversable wormhole if we consider the solution with a matter. Traversable 

wormhole is assumed to be spherically symmetric and static, similar to the 

Schwarzschild wormhole. Morris and Thorne investigated a suitable form of the 

matter in order to construct the wormhole. The traversable wormhole solution is 

solved by specifying conditions to eliminate the traveling problem.  
General static wormhole metric 

From the Schwarzschild solution, Morris and Thorne analyzed and defined new 

functions by considering properties of the metric for the spherical symmetric 

wormholes. The metric can be expressed as 

𝑑𝑠2 = −𝑒2Φ(𝑟)𝑑𝑡2 + (1 −
𝑏(𝑟)

𝑟
)

−1

𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2 𝜃 𝑑𝜙2), (5) 

where Ф =  Ф(𝑟) and 𝑏 = 𝑏(𝑟) are two arbitrary functions, to be constrained by 

the following properties.  From the Schwarzschild metric, the component of metric 

𝑔
00

 relates to gravitational redshift (Hobson et al., 2006) as 

𝜈𝑅
𝜈𝐸

= (
𝑔

00
(𝑟𝐸)

𝑔
00

(𝑟𝑅)
)

1

2

,    (6) 

where parameters 𝜈𝑅 and 𝜈𝐸 are frequency of wave as observed by receiver and 

emitter respectively at their radius 𝑟𝑅 and 𝑟𝐸. So, the function that Ф(𝑟) determines 

the gravitational potential, called the redshift function. Moreover, the shape of throat 

of wormholes depends on the function 𝑏(𝑟) in the metric component 𝑔
11

.  For the 

Schwarzschild solution in embedding form, a relation of the coordinates 𝑧 and 𝑟 
(Hobson et al., 2006) can be written as 

𝑑𝑧
𝑑𝑟

= ± (
𝑟

2𝜇
− 1)

−1

2
,    (7) 

where 𝑏(𝑟) = 2𝜇 in the Schwarzschild case. Hence, the function 𝑏(𝑟) determines 

the spatial shape of the wormhole, called the shape function. 
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Throat of wormholes 

In the wormhole solution, there must exists a throat for connecting double-sheet of 

spacetime.  Substituting the shape function, 𝑏(𝑟) = 2𝜇 into the equation (7), one 

obtains 

𝑑𝑧
𝑑𝑟

= ± (
𝑟

𝑏(𝑟)
− 1)

−1

2.   (8) 

The throat (Morris & Thorne, 1 9 8 8 )  is equivalent to a minimum radius defined by 

shape function that 𝑏(𝑟𝑜) = 𝑟𝑜 = 𝑏𝑜 where a constant 𝑏𝑜 is the throat 

interpreted as the minimum radius 𝑟𝑜. 
The throat of wormhole is defined as the shape function at minimum radius 

(Morris & Thorne, 1988). 𝑏(𝑟𝑜) = 𝑟𝑜 = 𝑏𝑜 , where 𝑏𝑜 is a constant interpreted as 

the throat of wormhole. 

 

 

 

Figure  4 embedding diagram of wormholes near throat. 

 

Integrating the equation (8), the embedding diagram near throat can be shown in 

figure 4. This result shows that a shape in the diagram of wormholes near throat must 

be approximated to only this form. 
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Horizon of wormholes 

Although the wormhole solution exists, it cannot be observed because of existence 

of horizon.  Anything falls into the horizon cannot be sent back.  Matt Visser defined 

the horizon as a one-way membrane which permits the passage of light and matter in 

only one direction and time slows to a stop at the horizon (Visser, 1995). On the other 

hand, Morris and Thorne defined the horizon as the infinite redshift surface (Morris & 

Thorne, 1988). A traveler inside the horizon cannot send any information to outside. If 

the wormhole has the horizon, it does not appear.  The horizon in this case can be 

defined from a metric component as 

𝑔
00

= −𝑒2Φ → 0.     (9) 

From equation (9), if the horizon does not appear, the function Φ must be 

(negative) infinite. As a result, the existence of wormholes is defined that the redshift 

function must be finite throughout the journey through wormholes. 
An event horizon is defined as a boundary of region from which casual curve can 

reach asymptotic null infinity (Visser, 1995). Thus, the event horizon can be obtained 

by  

𝑔11(𝑟𝐸𝐻) = 0, 

where 𝑟𝐸𝐻 is a radius at the event horizon. However, this horizon is the same as event 

horizon in only static solution since a time-like particle can escape from this horizon 

in rotating solution. 
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Exotic parameter 

The most important issue of traversable wormholes is finding suitable form of a 

matter in order to construct the wormholes.  In general relativity, the spacetime is 

curved when there exists mass so that the matter must be used to construction a 

wormhole. 

The energy momentum tensor of the matter satisfying spherical symmetry (Morris 

& Thorne, 1988) is defined by 

𝑇𝜇𝜈 = diag(𝜌, −𝜏, 𝑝, 𝑝).    (10) 

where 𝜏 is tension, negative radial pressure.  This definition corresponds to a perfect 

fluid which is a simple matter in nature. 

One of the important energy conditions is the null energy condition (NEC) (Visser, 

1995). The definition of NEC for any null vector is 

𝑇𝜇𝜈𝑘
𝜇
𝑘

𝜈
> 0.    (11) 

In terms of the principal pressures, 

∀𝑖, 𝜌 + 𝑝𝑖 ≥ 0.    (12) 

The exotic matter violates of NEC.  Therefore, a parameter to characterize the 

violation is defined as (Morris & Thorne, 1988) 

𝜉 =
𝜏−𝜌𝑐2

|𝜌𝑐2|
,     (13) 

which is dimensionless and must be less than zero for ordinary matter. The important 

part of wormholes is the throat so that we consider the parameter from definition of 

throat. Considering the (0,0)- and (1,1)-components of the Einstein field equation, the 

parameter in equation (13) can be rewritten as follows 

𝜉 =
2𝑏2

𝑟|𝜌𝑐2|
(

𝑑2𝑟

𝑑𝑧2
) − 2𝑟 (1 −

𝑏

𝑟
)

Φ′

|𝜌𝑐2|
.   (14) 

From the existence of the throat, one obtains (
𝑑

2
𝑟

𝑑𝑧2) > 0.  In addition, the last term 

converges to zero because 𝑟 = 𝑏 at the throat so that one obtains 

𝜉 > 0.     (15) 

From equation (15), the matter near throat must be exotic.  In physical system, there 

are violations of energy condition so that it is acceptable by acquiring low negative 

pressure close to zero. 
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Traversability conditions 

The traversibility conditions [6 (Lobo, 2007)] are based on physical limit of human 

to travel through the wormhole as follows. The first condition is a weak tidal force. 
The gravitational force in traversable wormhole must be the same order of magnitude 

for the gravitational force on the earth.  The components of Riemann tensors, 

corresponding to longitude and transverse tidal forces, can be written respectively as  

𝑅010
1

= 𝑒Ф (1 − 𝑏
𝑟

) (Ф" − 1

2

(𝑟𝑏
′
−𝑏)

𝑟2(1−𝑏
𝑟)

Ф′ + (Ф′)
2
) ≲ 𝑔

⨁
/(𝑐2hh𝑢𝑚𝑎𝑛),(16) 

and 

𝑅020
2

= 𝛾2

2𝑟2 ((
𝑣
𝑐

)
2

(𝑏
′
− 𝑏

𝑟
) + 2(𝑟 − 𝑏)Ф′) ≲ 𝑔

⨁
/(𝑐2hh𝑢𝑚𝑎𝑛). (17) 

The second condition corresponds to the first condition which is weak gravity 

condition, 

|𝛷′𝑐2| ≲ 𝑔
⨁

.    (18) 

The third condition is short travelling time condition.  The traversable wormholes 

are modified from the Schwarzschild wormhole by promoting a constant  𝑏 = 2𝜇 to 

be 𝑏 = 𝑏(𝑟). The constant in the Schwarzschild wormhole is a value of minimum 

radius at the wormhole throat. As a result, the throat is pinched off before any particle 

can cross.  For the wormhole metric, the shape function 𝑏(𝑟) corresponds to the 

properties of the throat as well as the travelling time of the traveler.   

For the wormholes in general case, the radial coordinate is ill-behaved near the throat. 
Thus, a proper radial distance measured by the traveler, is obtained by 

𝑙(𝑟) = ± ∫
𝑑𝑟

(1−
𝑏(𝑟)

𝑟
)

1

2

𝑟

𝑟𝑚𝑖𝑛
.   (19) 

The proper radial distance relates to travelling time of the traveler.  Hence, the 

travelling time is required to be less than order of one year as 

∆𝜏 = ∫
𝑑𝑙
𝑣𝛾

𝑙2

−𝑙1
≲ 1𝑦𝑟, ∆𝑡 = ∫

𝑑𝑙

𝑣𝑒𝛷
𝑙2

−𝑙1
≲ 1𝑦𝑟,  (20) 

where 𝜏 is time of traveler, 𝑡 is time of observer at rest, 𝑣 is a velocity of a spaceship, 
and 𝛾 is Lorentz factor. These conditions would be used to investigate the possibility 

to travel through the wormholes.  
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Thin shell formalism 

In 1989, Matt Visser proposed an improvement of wormhole structure by using 

“ Thin shell formalism” (Poisson & Visser, 1995; Visser, 1995).  The thin shell 

formalism is a formalism which constructs a connected membrane between regions. 
This is a technique of general relativity for analyzing gravitational field of the matter 

in a layer.  Therefore, the thin shell determines a shell between the matter and empty 

spacetime.  From the Einstein field equation, the shell can be considered as a delta-
function. An infinitesimal integral of the field equation through spherical thin shell 
can be written as (Lobo, 2007) 

∫ 𝐺𝜇𝜈
+
− 𝑑𝑟 = 𝜅 ∫ 𝑡𝜇𝜈𝛿(𝑟 − 𝑎)

+
− 𝑑𝑟,   (21) 

where 𝑡𝜇𝜈 is the energy momentum tensor of thin shell around a surface radius 𝑎. 

Note that the integral in equation (21) is preformed from inside surface – to outside 

surface +. Then, using a property of 𝛿-function, one obtains 

𝑡𝜇𝜈 = 1

𝜅 ∫ 𝐺𝜇𝜈
+
− 𝑑𝑟.    (22) 

The components of energy momentum tensor contain surface energy Σ and a surface 

tangential pressure 𝒫.  For this formalism, a radius of the thin shell surface can be 

specified. In addition, it is possible to minimize the use of exotic matter. 
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Morris-Thorne wormholes with a cosmological constant 

In 2010, traversable wormholes for General relativity with a cosmological 

constant are studied by José P. S. Lemos, Fransico S. N. Lobo, and Sérgio Quinet de 

Oliveira ( Lobo, 2 0 0 7 ) .  Including the cosmological constant term to Einstein field 

equation, the equation can be rewritten as  
𝐺𝜇𝜈 − 𝑔𝜇𝜈Λ = 𝜅𝑇𝜇𝜈    (23) 

where Λ is the cosmological constant.  General relativity with the cosmological 

constant is a modified gravity theory which can provide the accelerating expansion of 

the universe. Therefore, it is interesting to analyze the wormholes in this theory. 

The exotic matter is considered by using the parameter defined in the equation (13). 
However, by analyzing the field equation, the cosmological constant does not affect 

the parameter. So, the matter near a throat in this theory is still exotic. 
The wormhole solution can be divided into three parts as follows; interior solution, 

exterior solution, and junction between interior and exterior parts.  The interior 

solution satisfies a constant redshift function.  As a result, by using (0,0)-component 

of the field equation, the tension at the throat can be written as  

𝜏(𝑟𝑜) =
1

𝜅
(

1

𝑟𝑜
2

+ Λ).    (24) 

For de Sitter case Λ < 0, the tension can be positive, zero, and negative but for 

another case, Λ ≥ 0, the tension is only positive.  Therefore, for de Sitter case, the 

exotic matter can be minimized. However, the tension is still positive by considering 

the parameter at the throat. 
The exterior solution is a solution in empty spacetime so that this solution 

corresponds to black hole solution. Solving the field equation in empty spacetime, one 

obtains a vacuum solution with a cosmological constant so that the event horizon can 

be obtained by solving an equation   

𝑔11 = (1 − 2𝜇
𝑟

+ Λ

3
𝑟2) = 0.   (25) 

By solving this equation, there are two event horizons for de Sitter case and one event 

horizon for the case of Λ ≥ 0. For de Sitter case, the interior event horizon is event 

horizon of black hole and exterior event horizon is cosmological event horizon. So if 

we live between two horizons, we can see the accelerating expansion at large scale. 
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For appearance of wormholes, a surface radius 𝑎 of the shell must be larger than the 

inner horizon of wormhole. 
The junction is a thin shell for matching the metric between interior solution and 

exterior solution as well as it can minimize the use of exotic matter.  For this 

wormhole, one obtains an energy density of thin shell as 

Σ = 0      (26) 

and a tangential pressure of thin shell as 

𝒫 =
1

𝜅

(
𝜇

𝑎
+

Λ

3
𝑎2)

√1−
2𝜇

𝑎
+

Λ

3
𝑎2

.    (27) 

The pressure in de Sitter case can be positive, zero, and negative depending on the 

surface and the cosmological constant, shown in figure 5, but in another case Λ ≥ 0, 

the pressure is only positive. 

 

 

Figure  5 Tangential pressure of thin shell in de Sitter case plot between −𝟗𝜦𝝁𝟐 

and 𝟐𝝁/𝒂. 

 

Then, matching (0,0)-component of the field equation between interior and 

exterior parts, one can obtain a radial pressure in terms of the tangential pressure as 

𝜏(𝑎) =
2

𝑎
𝒫𝑒Φ(𝑎).    (28) 

Assuming zero pressure, we found that a surface radius is larger than the horizon. As 

a result, the solution in de Sitter case corresponds to the wormhole without thin shell. 
Moreover, from the equation (24), the use of exotic matter can be minimized. 
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Massive gravity 

One of interesting modified gravity theories is a massive gravity theory in which, 

graviton acquires non-zero mass.  The massive gravity theory started from study of 

linearized general relativity with interaction terms. In general relativity, the graviton is 

considered to be a massless particle.  Fierz and Pauli ( Fierz & Pauli, 1 9 3 9 )  tried to 

propose a theoretical model in 1939 that the graviton is a massive particle.  They 

introduced interaction terms to linearized General relativity.  Then, it was found by 

van Dam, Veltman, and Zakharov that approaching the limit of the graviton mass to 

zero, the theory is not continuously reduced to general relativity, called “ vDVZ 

discontinuity” (Veltman & Dam, 1970; Zakharov, 1970). 
In 1972, Vainshtein showed that the linearized massive gravity cannot be trusted 

within some radius, known as “ Vainshtein radius” (Vainshtein, 1972). He suggested 

that nonlinear terms must be added to the theory.  At the same time, Boulware and 

Deser found that large class of nonlinear massive gravity theory contains a ghost 

instability, called BD (Boulware-Deser) ghost (Boulware & Deser, 1972). 
In 2010, de Rham, Gabadadze, and Tolley introduced nonlinear interaction form 

which is free from the BD ghost, known as “dRGT massive gravity” (De Rham et al., 

2011). The action of dRGT massive gravity can be written as  

𝑆 = ∫ 𝑑4𝑥√−𝑔
1

2𝜅2
(𝑅 + 𝑚𝑔

2𝑈(𝑔, 𝜙𝛼)),  (29) 

where 𝑅 is Ricci scalar and 𝑈 is a potential, 𝑚𝑔 interpreted as graviton mass and 𝜅 

is constant related to Newtonian gravitational constant.  The potential in four 
dimensions is defined by 

𝑈 = 𝑈2 + 𝛼3𝑈3 + 𝛼4𝑈4   (30) 

where 

𝑈2 = [𝐾]
2

− [𝐾
2

], 

𝑈3 = [𝐾]
3

− 3[𝐾] [𝐾
2

] + 2 [𝐾
3

], 

𝑈4 = [𝐾]
4

− 6[𝐾]
2

[𝐾
2

] + 8[𝐾] [𝐾
3

] + 3 [𝐾
2

]
2

− 6[𝐾
4
]. 

𝛼3 and 𝛼4 are free parameters.  The square bracket denotes the traces of the matrix 

[𝐾] = 𝐾𝜇
𝜇

 and [𝐾𝑛 ] = (𝐾𝑛 )𝜇
𝜇

, 𝑛 is an integer, where [𝐾2 ] = 𝐾𝜈
𝜇

 𝐾𝜇
𝜈, [𝐾3 ] =

𝐾𝜈
𝜇

 𝐾𝜌
𝜈 𝐾𝜇

𝜌
, and [𝐾4 ] = 𝐾𝜈

𝜇
 𝐾𝜌

𝜈 𝐾𝜎
𝜌

 𝐾𝜇
𝜎. The matrix 𝐾𝜇𝜈 is defined as 
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𝐾𝜈
𝜇

= 𝛿𝜈
𝜇

− √𝑔𝜇𝜎𝑓𝑎𝑏𝜕𝜎𝜙
𝑎
𝜕𝜈𝜙

𝑏
  (31) 

where 𝑓𝑎𝑏 is a fiducial metric and 𝜙
𝑎

 is Stuckelberg scalar field.  

Varying the action in equation (29) with respect to the metric tensor 𝑔𝜇𝜈, the 

field equation can be obtained as (Ghosh, Tannukij, & Wongjun, 2016) 

𝐺𝜇𝜈 + 𝑚𝑔
2𝑋𝜇𝜈 = 0,   (32) 

where 𝐺𝜇𝜈 is Einstein tensor and 𝑋𝜇𝜈 is effective energy-momentum tensor.  The 

Einstein tensor and the effective energy-momentum tensor can be written as 

𝐺𝜇𝜈 = 𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅, 

where 𝑅𝜇𝜈 is Ricci tensor and  

𝑋𝜇𝜈 = 𝐾𝜇𝜈 − 𝐾𝑔𝜇𝜈 − 𝛼 (𝐾𝜇𝜈
2

− 𝐾𝐾𝜇𝜈 −
1

2
𝑈2𝑔𝜇𝜈)

+ 3𝛽 (𝐾𝜇𝜈
3

− 𝐾𝐾𝜇𝜈
2

+
1

2
𝐾𝜇𝜈𝑈2 −

1

6
𝑈3𝑔𝜇𝜈). 

The parameters are redefined as 𝛼3 = 𝛼−1

3
 and 𝛼4 = 𝛽

4
+ 1−𝛼

12
. 

The fiducial metric which can be chosen in order to find the exact solution is given by 

𝑓𝜇𝜈 = 𝑑𝑖𝑎𝑔(0,0, 𝑐2, 𝑐2 sin2 𝜃)   (33) 

where 𝑐 is a constant. This fiducial metric is used to find a static black hole solution 

(Ghosh et al., 2016) so that it appropriates to find a static wormhole solution by using 

this form of the fiducial metric. 
 



CHAPTER III 

 

TRAVERSABLE WORMHOLES IN DRGT MASSIVE GRAVITY 

 

The wormhole structure consists of three main regions which are the exterior, 

interior regions and thin shell. The exterior region is just the empty spacetime around 

the wormhole. The interior region is the region where the matter field exists. These 

exterior and interior regions can be separated by a surface boundary (filled with some 

matter) called the thin shell. This shell can be though as a container which contains 

the matter inside the wormhole. In addition, there is another important part of the 

interior region which is called the throat of the wormhole. The existence of the throat 

is one of the conditions for traversability. 

 

 

 

Figure  6 Structure of traversable wormhole 
 

In this section, we will find the wormhole solution in the dRGT massive gravity 

theory, i.e., the exterior, interior solutions and the junction conditions for matching 

both solutions. Let us start by considering the static and spherically symmetric metric 

in the form of suitable functions can be expressed as follows 

𝑑𝑠2 = −𝑒2Φ(r)𝑑𝑡2 + (1 −
𝑏(𝑟)

𝑟
)

−1

𝑑𝑟2 + 𝑟2𝑑Ω2  (34) 

where Φ is a redshift function related to a gravitational potential and 𝑏 is a shape 

function described shape of wormholes. 
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The exterior solution 

For the exterior solution, we solve the field equation in empty spacetime 

𝑇𝜇𝜈 = 0. The (0,0)-, (1,1)- and (2,2)-components of the field equation can be 

expressed, respectively, as 

0 =
𝑏′

𝑟2
+ Λ +

2𝛾

𝑟
+

𝜁

𝑟2
, 

0 =
𝑏

𝑟3
− 2 (1 −

𝑏

𝑟
)

Φ′

𝑟
+ Λ +

2𝛾

𝑟
+

𝜁

𝑟2
, 

0 = (1 −
𝑏

𝑟
) (Φ′′ + (Φ′)2 −

𝑏′𝑟 − 𝑏

2𝑟2 (1 −
𝑏
𝑟)

Φ′ −
𝑏′𝑟 − 𝑏

2𝑟3 (1 −
𝑏
𝑟)

+
Φ′

𝑟
 ) + Λ +

2𝛾

𝑟
+

𝜁

𝑟2
, 

where Λ, 𝛾, and 𝜁 are free parameters which can be written as 𝛼 and 𝛽. Λ < 0 and 

Λ > 0 correspond to de Sitter and anti-de Sitter respectively. The prime denotes 

derivative respect to 𝑟. Moreover, it is noted that the (3,3)-component of the field 

equation can be reduced to the (2,2)-component. Integrating the equation, one obtains 

𝑏′(𝑟) = −(Λ𝑟2 + 2𝛾𝑟 + 𝜁), 

𝑏(𝑟) = − (
Λ

3
𝑟3 + 𝛾𝑟2 + 𝜁𝑟) + 𝐶𝑜𝑛𝑠𝑡. 

Then, we take the limit in which the function 𝑏(𝑟) reduces to the Schwarzschild 

solution. So, the constant of integration reads 

𝑏(𝑟) = 2𝜇 − (
Λ

3
𝑟2 + 𝛾𝑟 + 𝜁) 𝑟,   (35) 

where 𝜇 is the Schwarzschild mass function. As seen in the Schwarzschild solution, 

𝑔00 and 𝑔11 are inverse to each other. There exists another relation between two 

components of metric 𝑔00 and 𝑔11, 

𝑔00 =
1

𝑔11
 

𝑒2Φ = (1 −
𝑏

𝑟
) 

Φ =
1

2
ln (1 −

𝑏

𝑟
) 

Substituting 𝑏 into the equation, one obtains 

Φ(𝑟) =
1

2
ln (1 −

2𝜇

𝑟
− (

𝛬

3
𝑟2 + 𝛾𝑟 + 𝜁)).   (36) 

The functions 𝑏(𝑟) and Φ(𝑟) are very important because they can characterize the 

structure of the wormhole. The shape function describes how many event horizons 

exists while the derivative of the red shift function describes the strength of 

gravitational force. 
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Figure  7 Shape function diagram in de Sitter-like massive gravity (𝜦 < 𝟎). 
 

 

 

Figure  8 Shape function diagram in Anti-de Sitter-like massive gravity (𝜦 > 𝟎). 

  



 21 

The interior solution 

In this case, we consider the energy momentum tensor of exotic matter which 

takes almost the same from as one for the perfect fluid except that radial pressure 

becomes negative. This negative pressure is also called tension. This energy-

momentum tensor can be expressed as 

𝑇𝜇𝜈 = diag(𝜌, −𝜏, 𝑝, 𝑝)    (37) 
where 𝜌, 𝑝, and 𝜏 are the energy or mass, pressure, and tension (negative radial 

pressure) respectively. For the existence of the matter, the field equation becomes  

𝐺𝜇𝜈 + 𝑚𝑔
2𝑋𝜇𝜈 = 𝜅 𝑇𝜇𝜈 .    (38) 

Let us recall one of the conditions for traversable wormhole which is that the redshift 

function Φ(𝑟) must be finite. For convenience and simple, let Φ be a constant (Φ′ =

0). This means the zero gravity of matter which implies that the wormhole has weak 

gravity and weak tidal force. By this setting, the (0,0)-, (1,1)- and (2,2)-components of 

the field equation become (set 𝜅 = 1), respectively, as 

𝜌(𝑟) =
𝑏′

𝑟2 + Λ +
2𝛾

𝑟
+

𝜁

𝑟2,    (39) 

𝜏(𝑟) =
𝑏

𝑟3 + Λ +
2𝛾

𝑟
+

𝜁

𝑟2,    (40) 

𝑝(𝑟) = (1 −
𝑏

𝑟
) (

𝑏′𝑟−𝑏

2𝑟3(1−
𝑏

𝑟
)
 ) − (Λ +

2𝛾

𝑟
+

𝜁

𝑟2). (41) 

At the throat of the wormhole (𝑟 = 𝑟𝑜), the shape function must be satisfied 𝑏(𝑟𝑜) =

𝑟𝑜. The tension at the throat in the equation becomes 

𝜏(𝑟𝑜) =
1

𝑟𝑜
2 + Λ +

2𝛾

𝑟𝑜
+

𝜁

𝑟𝑜
2    (42) 

It is seen that there are 3 parameters. In the next section, we will find the values of 

each parameters which give the appropriate tension and property of throat of 

wormhole. 

  

The junction conditions 

We now want to match the interior and exterior solutions at the thin shell with 

suitable junction conditions. There are two conditions for matching the solutions 

which are to match the metric and to match the equations. The later matching 

condition requires the existence of the surface boundary (thin shell) which separates 

matter field region and empty spacetime. 

For the first matching condition, the metric 𝑔𝜇𝜈 for the interior solution and 

the exterior solution are specified at the surface boundary to be continuous. From the 

structure of the wormhole, the matter distributes from 𝑟 = 𝑟𝑜 to 𝑟 = 𝑎, where 𝑎 is a 

radius of mouth of the wormhole. The mouth is connected to the thin shell. Therefore, 

the metric matching conditions at the mouth 𝑎 can be obtained as 𝑔𝑡𝑡(𝑒𝑥𝑡)  = 𝑔𝑡𝑡(𝑖𝑛𝑡)  

and 𝑔𝑟𝑟(𝑒𝑥𝑡)  = 𝑔𝑟𝑟(𝑖𝑛𝑡). This leads to match functions Φ𝑒𝑥𝑡(𝑎) = Φ𝑖𝑛𝑡(𝑎) and 

𝑏𝑒𝑥𝑡(𝑎) = 𝑏𝑖𝑛𝑡(𝑎). As a result, the solutions of the redshift and shape functions at the 

thin shell can be expressed, respectively, as 
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Φ(𝑎) =
1

2
ln (1 −

2𝜇

𝑎
− (

𝛬

3
𝑎2 + 𝛾𝑎 + 𝜁)),   (43) 

𝑏(𝑎) = 2𝜇 − (
Λ

3
𝑎2 + 𝛾𝑎 + 𝜁) 𝑎.   (44) 

For the second condition, the equation matching refers to connect the field equations 

between the interior and the exterior solutions. However, a fringe of the matter remain 

exists. So, the thin shell formalism must be used in order to eliminate the fringe. In 

this formalism, the energy momentum tensor of the thin shell is  
𝑡𝜇𝜈 = ∫ 𝐺𝜇𝜈𝑑�̂�

+

−
     (45) 

where �̂� is a unit vector of radial direction in the thin shell. The limits of integration − 

and + are the value of �̂� at the middle between interior region-thin shell and thin 

shell-exterior region, respectively. The functions Φ(𝑟) and 𝑏(𝑟) must be continuous 

and smooth in the thin shell. The solutions obtained from integration of Φ′ and 𝑏′ 

then vanish. As a result, the right hand side of (0,0)-component of the equation is 

zero. So, 𝑡00 = 0, which means that the thin shell has no mass or energy. Similarly, 

𝑡11 also equals zero. However, in (2,2)-component of the equation, there is a term Φ′′ 

that 𝑡22 does not vanish. This component can be solved as  

𝑡22 = 𝑃 = √1 −
𝑏(𝑎)

𝑎
Φ′(𝑎)|−

+,   (46) 

where 𝑃 is a tangential or surface pressure. As mentioned previously, one has Φ′−
=

0 for interior solution. In the exterior solution, differentiating the first expression of 

the equation,  

Φ′+
= (1 −

𝑏(𝑎)

𝑎
)

−1

(
𝜇

𝑎2 +
Λ

3
𝑎 +

𝛾

2
).   (47) 

Eventually, the tangential pressure of TWH in dRGT model is 

𝒫 =
(

𝜇

𝑎
+

Λ

3
𝑎2+

𝛾

2
𝑎)

√1−
2𝜇

𝑎
+

Λ

3
𝑎2+𝛾𝑎+𝜁

.    (48) 

From the above expression, one can plot for the values of surface pressure with 

various values of 𝛾 and 𝜁. In the following plots, the negative and positive values and 

are shown as the grey and violet regions respectively. The line separated the grey and 

violet regions is the zero values. The white region is the region for absence of 

wormhole. The vertical and horizontal axes of the plots are the radius of mouth of 

wormhole, 𝑎, and Λ respectively. 
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Figure  9 Surface pressure diagram with 𝜸 = 𝟎 and 𝜻 = 𝟎.  
 

 

 

Figure  10 Surface pressure diagram with 𝜸 = 𝟎. 𝟓 and 𝜻 = 𝟎. 
 

 

Figure  11 Surface pressure diagram with 𝜸 = 𝟎 and 𝜻 = 𝟏. 
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It is seen that there are many parameters in this solution. Hence, it is possible 

to find the values of parameters which correspond to the larger regions for existence 

of the wormhole as well as smaller wormhole. One can see the difference between 

wormhole solutions in dRGT massive gravity and one in GR with cosmological 

constant (the case for 𝛾 = 0 and 𝜁 = 0).  

The signs of tangential pressure depend on the types of matter inside the thin 

shell. From the above expression, one can see that there exists a finite value of 𝑎 for 

𝑃 = 0. This means that it is not necessary to use the thin shell of other matter for 

TWH in dRGT model. It is one of the advantages of this model compared to GR. 



CHAPTER IV 

 

RESULT AND DISCUSSION 

 

Even though, TWH in dRGT massive gravity can be constructed for both 

asymptotically dS (Λ < 0) and AdS (Λ > 0) spacetimes. In this work, we are 

interested only in the asymptotically dS case because it is consistent with observations 

in cosmology. Moreover, the asymptotically dS case is more convenient to compare 

the results with the case of GR with a cosmological constant because TWH in that 

case exists only for dS spacetime. The tensions near the throat of TWH in dRGT 

massive gravity described by the equation (42) can be plotted comparing to pure GR 

and GR with a cosmological constant as figure. 

 

 

 

Figure  12 Plots of tensions at the throat versus the throat distance for TWH in 

GR (blue), GR with cosmological constant (red) (𝜦 = −𝟎. 𝟏) and dRGT model 

(yellow) (𝜦 = −𝟎. 𝟏, 𝜸 = −𝟏, 𝜻 = 𝟏). 
 

The size of the throat should be small because if it is very large, it should be 

observed at the present. Fron the figure, we can see that TWH with small tension for 

GR case is vary large (𝑟𝑜 → ∞ as 𝜏(𝑟𝑜) → 0). However, the tensions at the throat 

approach to zero for finite 𝑟𝑜 in both GR with a comological constant and dRGT 

cases. 

As discussed in previously, the existence of the throat requires the function 

𝑏(𝑟) satisfied the condition 𝑏(𝑟𝑜) = 𝑟𝑜. The form of this function is not unique. The 

chosen form denoted as 𝑏𝑖𝑛𝑡(𝑟) must be consistent with the equations 𝜌 − 𝑝. By 

matching the interior and exterior shape functions such as 𝑏𝑖𝑛𝑡(𝑎) = 𝑏𝑒𝑥𝑡(𝑎), the 

throat 𝑟𝑜 can be found in term of 𝑎. The mouth, 𝑎, is computed from the equation of 

tangential pressure with the simple condition: the tangential pressure is zero, 𝑃 = 0 
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that means form of the matter of TWH without the thin shell. Therefore, a volume of 

the of the exotic matter in wormhole can be computed by 𝑉𝑚𝑖𝑛 =
4

3
𝜋(𝑎3 − 𝑟𝑜

3). We 

compute the volume of exotic matter for two different forms of shape functions as 

follows 

 

First shape function 

𝑏(𝑟) = (𝑟𝑜𝑟)1/2 

Let 𝑃 = 0 (maximum surface radius), surface radius of wormholes with a 

cosmological constant can be obtained 

𝑎𝐶 = (−
3𝜇

Λ
)

1/3

 

The throat of wormholes with a cosmological constant can be obtained 

𝑟𝑜𝐶 = (−3𝜇)5/3Λ1/3 

For existence of wormholes (𝑎𝐶 ≥ 𝑟𝑜𝐶) 

 

 

 

Figure  13 Existence diagram in wormholes with a cosmological constant by 𝜦 

and 𝝁. 

 

We choose Λ = −0.1 and 𝜇 = 0.5 

Volume of exotic matter is 59.651 

In the same method (𝑃 = 0, Λ = −0.1 and 𝜇 = 0.5), existence of wormhole in 

massive gravity show in diagram. 
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Figure  14 Existence diagram in wormholes in massive gravity by 𝜻 and 𝜸. 
 

We can choose 𝜁 = 1 and 𝛾 = −1 

Volume of exotic matter is 3.79193 

 

Second shape function 

𝑏(𝑟) = 𝑟𝑜
2/𝑟 

Let 𝑃 = 0 (maximum surface radius), surface radius of wormholes with a 

cosmological constant can be obtained 

𝑎𝐶 = (−
3𝜇

Λ
)

1/3

 

The throat of wormholes with a cosmological constant can be obtained 

𝑟𝑜𝐶 = (−
(−3𝜇)

4
3

Λ
1
3

)

1
2

 

For existence of wormholes (𝑎𝐶 ≥ 𝑟𝑜𝐶) 
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Figure  15 Existence diagram in wormholes with a cosmological constant by 𝜦 

and 𝝁. 

 

We choose Λ = −0.1 and 𝜇 = 0.5 

Volume of exotic matter is 33.0281 

In the same method (𝑃 = 0, Λ = −0.1 and 𝜇 = 0.5), existence of wormhole in 

massive gravity show in diagram. 
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Figure  16 Existence diagram in wormholes in massive gravity by 𝜻 and 𝜸. 
 

We can choose 𝜁 = 1 and 𝛾 = −1 

Volume of exotic matter is 3.81331 

For 𝑏(𝑟) = (𝑟𝑜𝑟)1/2 , the volumes of exotic matter in GR with cosmological 

constant and dRGT model are 59.65 and 3.79 respectively. For 𝑏(𝑟) = 𝑟𝑜/𝑟, volumes 

in GR with cosmological constant and dRGT model are 33.03 and 3.81 respectively. 

These mean that, in order to construct TWH, the usage of exotic matter in dRGT 

model can be less than one in GR with cosmological constant. 



CHAPTER V 

 

CONCLUSION 

 

Even though TWH can solve the traversable wormhole’s problem, there is still 

an issue about the negative radial pressure of the exotic matter which is called tension. 

Because of this issue, the traversable wormhole’s problem is not completely solved 

yet. Hence, in our research, this problem is reduced by reducing the usage of the 

exotic matter. We expect that there might exist the NEC violation in our universe.  

Another required condition is that TWH should not be large because it have not been 

observed yet at the present.  

The properties of exotic matter in TWH in dRGT model are found in the 

section 3. Three main regions of spacetime are the exterior (vacuum), interior (filled 

by exotic matter with negative radial pressure) regions and thin shell. The redshift 

function in interior region is set as Φ′ = 0 (zero gravity), which implies the weakness 

of gravitation field and tidal force. It is found that the thin shell is not needed in order 

to construct TWH in dRGT model (differ to GR case). By the condition of absence of 

thin shell, one can find the suitable ranges of parameters. 

The results show that the comparisons for the volumes of exotic matter 

between TWH in GR with cosmological constant and dRGT model are checked. 

TWH in dRGT model can use less exotic matter than one in GR with cosmological 

constant. The figure showed that it is possible to construct a small-size TWH with 

tension approaching to zero. One can conclude that TWH in dRGT model is better 

with two mentioned reasons.  

This research shows that the Massive Gravity theory yields TWH with 

required properties, and, if this theory can explain some observed phenomena, TWH 

might be observed in our universe. 
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APPENDIX 

 

Existence of wormholes 

 

Set 𝑃 = 0 (without thin shell because we find the largest surface radius) and 

find 𝑎 > 𝑟𝑜 (surface radius must be larger than the throat) 

 

dS Existance 

We set 𝜇 = 1 and Λ = −0.1 and calculate to plot a region diagram. 

 

 

 

Figure  17 dS existence diagram by 𝜻 and 𝜸. 
 

AdS Existance 

We set 𝜇 = 1 and Λ = 0.1 and calculate to plot a region diagram. 
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Figure  18 AdS existence diagram by 𝜻 and 𝜸. 
 

Horizons 

 

From exterior solution (empty spacetime), horizons can be obtained by solving 

a equation 𝑔11 = 0. 

 

2 horizons 

We set 𝜇 = 1 and Λ = −0.1 (for dS) 
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Figure  19 A diagram show region which is the solution with 2 horizons by 𝜻 and 

𝜸. 
 

3 horizons 

We set 𝜇 = 1 and Λ = 0.1 (for AdS) 
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Figure  20 A diagram show region which is the solution with 3 horizons by 𝜻 and 

𝜸.
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