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ABSTRACT 

  

Dzongkha is the national language of Bhutan. The preservation and 

promotion of the national language are of the utmost importance because the language 

represents the identity of the country. Focusing and advancing in the field of Natural 

Language Processing (NLP) and its applications can be the technological movements 

toward the said goal. However, there is no advancement seen in the field of Dzongkha 

language processing and its research. Also, the development of NLP applications is 

challenging because the Dzongkha is written as a string of syllables without an explicit 

word delimiter. 

For such language, the word segmentation is the first and fundamental step 

towards building NLP applications. The word forms the basic constituent for the NLP 

task such as translator and the participation of the word in the given sentence or phrase 

determines the meaning. In this thesis, the Dzongkha word segmentation is formulated 

as the syllable tagging problem because the word is formed as a combination of one or 

more syllables. The tag of the syllable represents the position of the syllable in a word. 

There are many techniques for tagging ranging from dictionary-based to modern 

approaches. The deep learning algorithm, particularly Deep Neural Network (DNN) 

and Bi-directional Long Short-Term Memory (Bi-LSTM) were proposed. The usage of 

deep learning algorithms avoids the need for manual feature engineering. 
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In our experiments for the DNN model, the window approach was 

implemented to incorporate contextual information of the target syllable. The context 

size ranging from 0 to 3 were considered to determine the most suitable context size for 

the Dzongkha language. Two experimental sets were designed based on the usage of 

pretrained syllable embedding. Each set comprises of four models of various context 

sizes. Amongst the eight models, the model with context 2 using pretrained syllable 

embedding achieved the highest accuracy of 94.35% and F1-score of 94.40% with 

94.47% precision and 94.35% recall.  

There is no thumb rule to determine the optimal hyperparameters for the deep 

learning algorithms. We have designed 24 Bi-LSTM models with different 

configurations, which can be broadly classified into two experimental sets, based on 

the neuron size: 256 and 512. Amongst these models, the model with the configuration 

of 256 neuron size, embedding dimensions of 128, the learning rate of 0.01 and without 

dropout achieved the highest accuracy of 95.25%, which is 0.90% higher than the DNN 

based model. Further, the proposed deep learning models have been compared with 

traditional machine learning algorithms like CRF and SVM, which shows the proposed 

model outperformed the traditional machine learning approaches. 

Out-of-vocabulary (OOV) is are the most prominent issue to be considered 

for language processing. Both of the models were designed to handle the OOV 

syllables. My work is the first of its to apply Deep Learning algorithms in the field of 

Dzongkha language processing and I consider the performance achieved by both of the 

models as the significant one. 
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CHAPTER I 

 

INTRODUCTION 

 

Introduction 

 Natural Language Processing (NLP) is the subfield of Artificial Intelligent 

concerned with the cognitive development of the computer system to understand natural 

(human) language. NLP has witnessed its application in machine translation, spell and 

grammar checker, Text to speech system and many more. The word forms the 

fundamental constituent of processing natural language. However, identification of 

words in languages without explicit word boundaries, unlike in the English language is 

challenging. Word Segmentation is the process of breaking down the input text 

sequences into its constituent words. The segmentation task is considered as the 

fundamental steps for building the NLP applications, for the languages without explicit 

word boundaries. The words in the natural language share semantic and syntactic 

relationships, consequently, their participation determines the meaning of the phrase or 

text.  

 Dzongkha language, the national language of Bhutan, is one of the languages 

without explicit word delimiters. The scripts are written as a string of smallest token 

called syllable. This chapter introduces an overview of my thesis on “Dzongkha Word 

Segmentation using Deep Learning”. This chapter is organized into sections as 

Background and significance of the study, the purpose of the study, problem statement, 

scope of the study, basic assumption, hypothesis of the study, summary of the work and 

the contributions of the work. 

 

Background and Significance of the Study 

 Dzongkha is the national language of Bhutan since 1971 (DDC, 2019). The 

national language represents the identity and sovereignty of the country; thus, it is 

important to preserve and promote the language. The Royal Government of Bhutan 

(RGOB) under the royal command of His Majesties the third king, late Jigme Dorji 

Wangchuk and His Majesty the fourth king, Jigme Singye Wangchuk, has initiated 
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various steps for the preservation, development, and promotion of language thorough 

formation of the committee such as Dzongkha Development Division under Ministry 

of Education and Dzongkha Advisory Committee in 1986, and introducing Dzongkha 

as a subject in the schools (DDC, 2019). In 1989, Dzongkha Development Commission 

(DDC) was established that functions autonomously for the development and 

promotion of the language in the country with a vision “To make Dzongkha the main 

medium of communication for every Bhutanese in order to promote harmony, cohesion 

and stability in the country” (DDC, 2019).  

 Preservation and Promotion through the technology perspective are never 

witness for the Dzongkha language. Natural Language Processing (NLP) is a sub-field 

of Artificial Intelligence (AI) that deals with extending the capability of computers to 

understand the statement or words of the human language or cognitive development of 

the computer system to understand the natural language. The technological advances in 

computational power and machine learning algorithms, and the availability and 

accessibility to organized linguistic data has enabled NLP to gained much attention in 

the research and development  (Hirschberg & Manning, 2015; Young, Hazarika, Poria, 

& Cambria, 2018). In recent times, it has spread its applications in various fields such 

as machine translation, email spam detection, information extraction, summarization, 

medical, spell or grammar checker, Text to Speech (TTS), Speech to Text System, 

question answer system and many more.  

 The computerization of the Dzongkha language can be considered as the 

technological movement towards the preservation and promotion of the language, and 

further enabling the language as a medium of communication for the foreigners in the 

country and the Bhutanese. According to the Tourism Council of Bhutan  (2018) report, 

Bhutan has seen an increasing tourist arrival rate in the country with a total of 274,097 

visitor arrivals in 2018 which is 7.61% increase over the past years. The application of 

NLP such as machine translation and speech synthesis would benefit the tourist to 

interact with the Bhutanese people in the village and farm to get more insights into the 

culture and traditions. This would enable the tourist to feel homely in the alien country. 

 Further, NLP applications such as TTS and translator would enable easier 

access to a wide range of information irrespective of one’s qualification and capability. 

For example, daily news published in English can be read by those with no knowledge 
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of English by using the “translator” and a visually impaired person (without braille 

knowledge) can write his thoughts by using speech to text system.  

 However, advancement has not been witnessed in terms of Dzongkha language 

processing. It is due to the fact that Dzongkha is written as a string of syllables, without 

explicit word delimiter unlike in English. The word forms the basic constituent towards 

the task of NLP applications. The participation of the words in the given phrase, 

sentence or text plays an important role in representing the meaning of the text. The 

meaning of the phrase, sentence and paragraph is always dependent on the context. 

Thus, increasing the complexity of developing NLP applications. The computer does 

not have common sense knowledge and reasoning capability (Arun et al., 2016) as we 

do have. Therefore, the word segmentation system plays an important role in 

recognizing the words in the given input sentence and it would enable the development 

of other NLP toolkits and its application. 

 Word segmentation is the process of breaking the given phrase or sentence 

into its constituent words. For example, the sentence “ཁྱོད་ཀྱི་སྱོར་ལས་ག་ར་བསྟན་འཛནི་གྱིས་སླབ་དེས།” 

which means “Tenzin has shared everything about you.” can be segmented as “ཁྱོད་ | ཀྱི་ | 

སྱོར་ལས་ | ག་ར་ | བསྟན་འཛནི་ | གྱིས་ | སླབ་ | དེས | །”, where vertical stroke “|” delimits the segmented 

words of the given input sentence. Thus, a robust and intelligent word segmentation 

system using the most recent efficient algorithm is desired for the Dzongkha language. 

 This research aims to assist DDC in terms of Dzongkha language processing 

and young researchers who wish to research in the field of Dzongkha language 

processing, thereby promoting and preserving the language. Many researches and 

development have been done for other languages like Thai, Chinese and many other 

languages. However, there is not much research conducted in Dzongkha word 

segmentation other than work of (Norbu, Choejey, Dendup, Hussain, & Muaz, 2010). 

The research on Dzongkha word segmentation using deep learning can be the first of 

its kind. 

 

Purposes of the Study  
 The main goal of this research to build a robust and intelligent Dzongkha word 

segmentation system that can be used in future research for further development of 
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Dzongkha language toolkits such as POS tagging, information retrieval, Machine 

translation and many more, by fulfilling the following purpose: 

• Since Dzongkha language is written as a string of syllables, formulate the 

Dzongkha segmentation task as syllable tagging task 

• Develop deep learning model for Dzongkha word segmentation using Deep 

Neural Network (DNN) and Bi-directional Long Short-Term Memory (Bi-

LSTM), 

• The model is designed for the accurate identification of the position of a syllable 

in a word, 

• Compare the performance of Deep Learning model with the performance of 

traditional machine learning models such as Support Vector Machine (SVM) 

and Conditional Random Field (CRF), and 

• The model can handle the out-of-vocabulary word efficiently.  

 

Problem statement 

 Dzongkha Development Commission (DDC), the autonomous government 

organization that is considered as the premier institution responsible for developing and 

promoting Dzongkha in the country has realized the potential of NLP in promoting the 

language and enabling the language as one of the communication mediums in 

disseminating the information. The office explores various opportunities for 

collaboration with academic institutions like College of Science of Technology under 

the Royal University of Bhutan and other renowned institutions in India and abroad, to 

work on Dzongkha language Processing and come up with various NLP application for 

Dzongkha like Spell and Grammar Checker, Machine translation, Automatic Speech 

recognition, Speech Synthesis system, Optical Character Recognition and many more. 

However, despite their unwavering effort, nothing much has been observed advancing 

in the field of Dzongkha Language Processing. 

 As discussed in the background section, Dzongkha is written as a string of 

syllables without explicit word delimiters which makes the computerization of 

Dzongkha challenging. Dzongkha sentences or phrases are written in the form of 

continuous syllable separated by Tsheg without proper word boundary, unlike English. 

Word forms semantic and syntactic constituent for language processing and thus, it 
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plays an important role in the language processing task. Therefore, word segmentation 

is considered one of the fundamental steps towards effective Language Processing 

(Norbu et al., 2010; Theeramunkong & Usanavasin, 2001; C. Wang & Xu, 2017) for 

those languages without word delimiters. The intelligent and robust word segmentation 

system is desired for the advancement of Dzongkha in the field of NLP.  

 

Scope of the Study 

 The scope of the research is to develop the intelligent and robust Dzongkha 

word segmentation with the following milestones 

1. Conduct a literature review in the field of word segmentation,  

2. Explore deep learning algorithms, 

3. Apply deep learning algorithms in the field of NLP, particularly Dzongkha 

Word Segmentation, 

4. Provide performance comparison between some of the traditional machine 

learning approach and the proposed deep learning approach, and 

5. Optimize the deep learning models using batch normalization and learning rate 

scheduler. 

 

Basic Assumption 

 During the research following assumptions will be made: 

1. The model can intelligently identify and handle out-of-vocabulary (OOV) word, 

2. The Deep Neural Network model performs better with windows approach,  

3. The proposed deep learning model outperforms the traditional machine learning 

approach, and 

4. The tagging model is trained with enough datasets 

 

Hypothesis of the Study  
1. Does the proposed deep learning model perform segmentation with high 

accuracy? 

2. How does the context contribute to enhance the efficiency of the model? 

3. Does the proposed deep learning model outperform the traditional learning 

approaches such as SVM and CRF? and 
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4. Does the proposed model handle the OOV word efficiently? 

Summary of the work 

 The Dzongkha script is written as a string of syllables without explicit word 

boundaries. The Dzongkha word segmentation task was formulated as a syllable 

tagging task. The tag of the syllable represents the position of the syllable in a word. 

Three tags were used in this thesis such as: ‘beg’ tag represents the first syllable of a 

word or a syllable that forms the word by itself, ‘end’ tag represents the last syllable of 

a word while the ‘mid’ tag marks the syllable in between the syllables with ‘beg’ and 

‘end’ tags.  

 The traditional machine learning approaches heavily depend on manual feature 

engineering, which can be incomplete, time-consuming and requires linguistic 

knowledge. The performance of such models depends on the effectiveness of manual 

feature engineering. In this thesis, Deep learning algorithms, in particular, Deep Neural 

Network (DNN) and Bi-directional Long Short-Term Memory (Bi-LSTM) were 

proposed for the syllable tagging task. A word2vec model from the scikit-learn library 

was used to generate the syllable vectors or embedding.  

 Windows approach was incorporated for the DNN approach as the tag of the 

syllable depends on its surrounding syllable. Window or context sizes from 0 to 3 were 

used for the experiment. DNN experiments were conducted in two sets with four 

experiments in each set. The set is categorized by the usage of pretrained syllable 

embedding from the word2vec model. The DNN with context size 2 which is trained 

with pretrained syllable embedding achieved the highest accuracy of 94.35%.  

 The DNN approach considers each input as an independent entity, where in 

reality, each syllable in the input sentences shares the dependency. Thus, Recurrent 

Neural Network-based Bi-LSTM was proposed for the syllable tagging task. In this 

case, the previous information is used for tagging the current syllable. In this case, 24 

different experimental configurations were proposed, among which one of the 

configurations provided the highest accuracy of 95.25%, outperforming the DNN based 

approach by 0.90%.  

 In addition to our deep learning-based proposed models, experiments 

employing traditional machine learning algorithms such as Support Vector Machine 
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(SVM) and Conditional Random Field (CRF) were conducted. The features are 

manually derived, unlike in the Deep learning approach. The performance of CRF was 

observed higher than the SVM models by 12.70%. Further, the CRF performance was 

compared with the proposed deep learning models. DNN and Bi-LSTM based models 

achieved 2.55% and 1.65% higher than traditional CRF models, respectively. All these 

models were trained using the dataset provided by the Dzongkha Development 

Commission. Finally, the words are formed by combining the syllable based on their 

tag. 

  

The Contributions of the work 

 The experiments proposed for Dzongkha word segmentation in this thesis 

were successfully conducted and the main contributions of my work are as follows: 

1. The Deep Learning algorithms (DNN and Bi-LSTM) have been applied to the 

field of Dzongkha word segmentation. The models avoid the need for manual 

feature engineering, unlike in traditional machine learning approaches. 

Application of Deep Learning approaches to the Dzongkha language is the first 

of its kind. 

2. The windows approach was explored for deriving the contextual information of 

the target syllable for the tagging task using DNN. 

3. The exploration of Dzongkha word segmentation using traditional approaches 

are also the first of its kind in the field of Dzongkha word segmentation. The 

performance of traditional machine learning approaches was compared with the 

deep learning approaches, showing the superiority of Deep learning algorithms. 

4. Part of Speech tagging (NER) and Named Entity Recognition (NER) are also 

important aspects of Natural Language Processing. The proposed models can 

be applied for this task. 

5. The work presented in this thesis would assist the Dzongkha Development 

Commission (DDC) in making plans for the advancement of the Dzongkha 

language. Further, the results obtained in this research can be used as the basis 

for upcoming research. 

 



CHAPTER II  

 

RELATED WORKS AND STUDIES 

 

Introduction 

 This chapter provides an Overview of the Dzongkha language, Literature 

review on the Segmentation task and further, it discusses Deep Learning algorithms.  

 

Overview of the Dzongkha language  

  Bhutan is linguistically rich (Wangdi, 2015) country with 21 spoken languages 

(Driem, 1992) and geographically small landlocked country with a total population of 

735,553 as of May 30, 2017 (NSB, 2017) in the Asia continent, sharing its border with 

India in the south and China in the north. Dzongkha is adopted as the official and 

national language of Bhutan since His Majesty the third King of Bhutan, Jigme Dorji 

Wangchuk passed a royal decree in 1971 and according to Article 1(8) “the Constitution 

of Kingdom of Bhutan”. Further, the people of eight western dzongkhags or districts 

(Thimphu, Paro, Ha, Gasa, Chukha, Punakha, Wangduphodrang, and Dagana) use 

Dzongkha as their native language. According to Dorjee (2014), Dzongkha is the 

widely spoken language among other spoken languages in the country with an 

estimated native speaker of 160,000. It is adopted as the lingua franca where most of 

the Bhutanese use as a common language for communication with others using different 

native. 

 Dzongkha is defined as the language spoken in the fortresses (kha - language 

and Dzong - fortress). All spoken languages except Lhotsamkha or Nepali are Tibeto-

Burman Languages. The consonants, vowels, and digits of the Dzongkha language are 

shown in Figure 1.  
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Figure 1 Dzongkha character sets 

 

 A sample of Dzongkha sentence is shown below: 

རྱོང་ཁ་གྱོང་འཕེལ་ལྷན་ཚོགས་ཀྱིས་ ཡྱོངས་གྲགས་ཡྱོད་པའྱི་གྱོག་རྱིག་རྱིམ་ལུགས་ཚུ་ནང་ལུ་ གནས་ཚད་གཞྱིར་བཞག་གྱི་རྒྱབ་སྱོར་

མཐུན་རེན་ཚུ་བཟྱོ་ནྱི་ལུ་བརྱོན་ཤུགས་བསེད་དྱོ་ཡྱོདཔ་ཨྱིན།  

 which translates as “The Dzongkha Development Commission is dedicated to 

developing standard-based support and increased functionality on popular computing 

platforms.”. 

 The Dzongkha sentence or script is written in the form of continuous syllables 

as seen in the sample sentence. A syllable is the smallest token in the Dzongkha script 

formed by a single or collection of characters. The syllable “རྱོང་” is a collection of four 

characters excluding the special dot character while “ཁ་” is a syllable of a single 

character. Each of the syllables in the script is separated by a special dot character called 

Tsheg (་). A Dzongkha word can be represented either by a single syllable or a 

combination of syllables as shown in Table 1. The vertical stroke ( | ) in the table was 

used to separate the syllables. In most cases, a vertical stroke called Shad ( ། ), is used 

to terminate the sentence.  Figure 2 shows a Dzongkha word illustrating syllable, Tsheg, 

and Shad.   

 

 

 



 10 

Table 1 A sample Dzongkha words with its number of syllables 

 

Dzongkha words Number of the syllable 

(s)  

Translation  

ང་ 1 I 

རྒྱལ་ཁབ་ (རྒྱལ་ | ཁབ་) 2 Country 

སློབ་སྦྱོང་པ་ (སློབ་ | སྦྱོང་ | པ་) 3 Trainee 

ཡོངས་འབྲེལ་རིམ་ལུགས་ (ཡོངས་ | འབྲེལ་ | རིམ་ 

| ལུགས་) 
4 Internet 

 

 

 
 

Figure 2 A labeled Dzongkha Word 

 

Literature Review 

 The robustness and effectiveness of the Natural Language Processing (NLP) 

applications like a translator, Spell Checker, Question and answering system and many 

more depend on the perfectness of the segmentation system (Noyunsan, 

Haruechaiyasak, Poltree, & Saikaew, 2014). The segmentation system allows the 

system or computer to identify the word in the sequential data sentences or paragraphs. 

The word segmentation is considered as the initial step (Sproat, Gale, Shih, & Chang, 

1996) and the fundamental steps in the building the NLP applications (Chirawichitchai, 

2014; Tanaya & Adriani, 2016). 

 However, the segmentation is not a big deal for the language like English 

because one can easily consider whitespace as the word boundaries, to delimit the 
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words. But most of the Asian languages such as Chinese (Sproat et al., 1996), Thai and 

Japanese are written without in the continuous form without a proper word delimiter. 

The word segmentation for these languages is important but it is challenging (Peng, 

Feng, & McCallum, 2004).  

 Similarly, Dzongkha is written as a sequence of syllables without word explicit 

delimiters. However, the syllables are separated with a dot-like character called ‘Tsheg’ 

while vertical stroke called ‘Tshad’, which usually marks the end of the sentences. But 

in some cases, the Dzongkha sentences end without a vertical stroke, making it more 

complex.  

 Considering the importance of the word segmentation, many researches have 

been conducted on word segmentation for those languages (Thai, Chinese, Japanese) 

without explicit word delimiters adopting various algorithms or approaches starting 

from a dictionary-based approach to Deep Learning (DL) approach. In contrast, there 

is not much research carried out for Dzongkha word segmentation other than the work 

of Norbu et al. (2010). The complexity of the language and unavailability of the public 

corpus or dataset might have contributed to the researcher for not taking up the study 

on Dzongkha word segmentation.  

According to Xue (2003) and M. Wang, Li, Wei, Zhi, and Wang (2018), the 

approaches adopted for word segmentation can be categorized as follows: 

 

 Dictionary-based approach 

  The dictionary-based approach uses the predefined dictionary that contains 

a set of words in the language. It employs a greedy search routine called a maximum 

matching (MM) algorithm that scans through the syllables or characters in the given 

sentences. This algorithm always favors the longest string as a word.  For example, 

consider the word ‘སེམས་’ (heart) and ‘སེམས་རྱོགས་ཁ་’ (Semtokha- name of Place) in the 

dictionary. Given an input ‘སེམས་རྱོགས་ཁ་’ (Semtokha), the MM algorithm will output ‘སེམས་

རྱོགས་ཁ’ at first scan and later ‘སེམས་’. The MM algorithm can perfectly handle the words 

that are available in the dictionary (Theeramunkong & Usanavasin, 2001). However, in 

the above example, it fails to identify the most appropriate word when it has more than 
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one-word candidate, rather all the candidates are returned as the correct segmented 

word. Therefore, the MM approach cannot select a suitable word given in the context. 

 

 Statistical approach 

  The statistical approach relies on the probability of the adjacent characters 

to decide whether the combination of syllables forms a word. Given a sequence of 

syllables ‘S1, S2, ……, Sn’, the pair of adjacent characters with the largest mutual 

information greater than a predefined threshold are grouped as a word. This process is 

repeated until there are no more pairs of adjacent characters with the mutual information 

value greater than the threshold. The dictionary is not required in the statistical 

approach because the probabilities can be computed from the easily available 

unsegmented data, but this doesn’t give better accuracy (Xue, 2003).   

 

 Hybrid approach  

  The hybrid approach uses both MM and statistical approaches. When MM 

produces more than one possible word, the statistical approach can be applied to 

identify the correct word based on contextual probabilities. This approach outperforms 

the other two standalone approaches because the approach is guided by the dictionary 

along with mutual information. 

 

 The research carried out by Norbu et al. (2010) and (Dhungyel & 

Grundspeņķis, 2017) are the only work that is carried out in pursuit of Dzongkha word 

segmentation. In their work, they have proposed Dzongkha word segmentation based 

on Maximal Matching followed by bigram techniques and reported an overall accuracy 

of 91.5%.  Their model was built and tested using data from the various domain of 

information such as astrology, newsletter, notification, religion, song lyrics and many 

more.  

 It is understood that it is easier to implement to Segmentation based on the 

Maximal Matching technique followed by the bigram technique and provides higher 

accuracy when it deals with the words in the corpus (Chen, Zhao, & Yang, 2017). 

However, in a real-time scenario, it is expected to come across new words that are not 

available in the training corpus or dictionary. Such unknown words are known as out-
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of-vocabulary words. Therefore, in such a situation, it is reported by Theeramunkong 

and Usanavasin (2001)  that the accuracy decreases as the number of unknown words 

or out-of-vocabulary words increases.  

 The new words are still emerging in Dzongkha Language to sustain the 

language with the developing world and technology. The formation of new words in 

Dzongkha comes from the name (the name of the places, people and animals) which 

are formed by an unprecedented combination of the syllables. Secondly, the world is 

advancing with high technology which arises with new technological terms. The 

technological terms are transcribed that leads to the formation of new words, such as 

Artificial Intelligence (བཅྱོས་རྱིག) or Algorithm (རྱིས་ཐབས།) or computer (ཀམ་པྱིའུ་ཊ།). Thus, an 

efficient technique needs to be studied for Dzongkha word segmentation that can 

effectively handle words that is out of vocabulary.  

 The Dzongkha language is in the infant stage in terms of Language 

computerization compared to other languages. For instance, the Google Translate, the 

multilingual translation service provided by Google, supports more than 100 languages 

in the world like English, Thai, Arabic, Hindi, Chinese, Danish, Estonian, etc. However, 

the translation for Dzongkha is not supported in the application, which indicates 

research and development are required to be carried out in the field of Dzongkha 

language processing. 

 Most Asian languages (Thai, Japanese and Chinese) are written continuously 

without word separator (Cai & Zhao, 2016; Theeramunkong & Usanavasin, 2001), the 

technique proposed for those languages can be adopted for Dzongkha word 

segmentation. In  2003, Xue has proposed the Chinese word segmentation as a character 

tagging problem (Xue, 2003). The identification of character position in a word is 

considered to be the most crucial step for effective Chinese word segmentation since it 

is written in a sequence of strings without explicit delimiter like in English. In his work, 

four tags were used to mark the position of the Chinese character. The character that 

forms a word by itself is tagged as ‘LR’, ‘LL’ for those characters who appear to appear 

at the left side of a word while ‘RR’ represents the character in the right side of the 

word and the characters that appear in the middle of the word are tagged as ‘MM’. The 

characters are later concatenated based on their corresponding character-tag to form a 

valid word.  
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 Similarly, Dzongkha words are formed by the sequence of syllables. The 

syllables can be tagged in a similar fashion, as adopted by (Xue, 2003). For example, 

consider the word ‘སེམས་རྱོགས་ཁ’ which can be represented as {‘སེམས’, ‘རྱོགས’, and ‘ཁ’}. The 

labels can be assigned to these syllables according to their position of appearance in the 

word. Thus, the Dzongkha word segmentation problem can be formulated as a syllable 

tagging problem.  

 Many studies were done towards the effective word segmentation of Chinese 

and Thai Languages using decision tree technique (Theeramunkong & Usanavasin, 

2001), maximum entropy (Low, Ng, & Guo, 2005), Conditional Random Field (CRF) 

(Zhao, Huang, & Li, 2006). Further, a study on Tibetan word segmentation using CRF 

was conducted and reported F1-score of 95.12% on the 131,903 training sentences and 

1000 test sentences (Hu & Liu, 2017). The techniques discussed in this part heavily 

depend on the hand-crafted features and featuring engineering consumes lots of time 

(Cai & Zhao, 2016; C. Wang & Xu, 2017; Young et al., 2018; Zheng, Chen, & Xu, 

2013). Also, the task requires linguistic knowledge to identify features, which can be 

incomplete. The system performance is directly proportional to the effectiveness of 

feature engineering.    

 Therefore, a novel approach is desired for Dzongkha word segmentation where 

the need for feature engineering is avoided and the systems automatically extract 

features on its own. Neural Network approaches were proposed for Chinese word 

segmentation such as in (Cai & Zhao, 2016; C. Wang & Xu, 2017; Zheng et al., 2013) 

that learn features automatically from a large unlabeled training data.  

 

Deep learning in NLP 

 Deep learning (DL) is a subfield of machine learning (ML), depends on a set 

of algorithms to learn multiple levels of representation to find a model for high-level 

abstractions in data. DL tries to mimic the human brain, by constructing an architecture 

that consists of an input layer and an output layer with many hidden layers between 

them. These hidden layers are responsible for doing complex computations to extract 

features from the raw data to obtain a better representation. Deep learning architectures 

and algorithms have already made impressive advances in fields such as computer 
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vision and pattern recognition (Young et al., 2018). Following the trend, deep learning 

has been increasingly used and witness many breakthroughs in NLP.  

Many DL techniques are used for NLP, such as deep neural networks (DNN), 

Convolutional Neural Networks (CNN), and recurrent neural networks (RNN). The 

application of Deep Learning in NLP can be seen chatbot (Google Assistant), speech 

recognition, Document summarization, machine translation and Question and Answer 

system (QA).  

 Deep Neural Networks (DNN) 

  The first artificial neural network was invented in 1958 by psychologist 

Frank Rosenblatt. A neural network is a collection of layered neurons that are 

connected to compute and derive meaningful insights from the given inputs. The 

computation is carried out inside neurons. The typical neural network (NN) (Rauber, 

Fadel, Falcao, & Telea, 2016) is shown in Figure 3 which comprises three layers: input 

layer (Layer L1), hidden layer (Layer L2) and output layer (Layer L3).  

 

 
 

Figure 3 Typical Neural Network 

 

Source: http://deeplearning.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/ 

 

http://deeplearning.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/
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 As seen in figure 3, X1, X2 and X3 are the input that is fed to the hidden layer 

L2 with 3 neurons. The input can be represented as Xi and the number of neurons in 

each hidden layer is called the hidden size. Each neuron is associated with its weight w 

and bias b. The computation in each hidden layer can be seen as 𝑍𝑖  =  X𝑖  ∗  𝑤, so the 

output of the hidden layer with 3 neurons is represented as the weighted sum of all the 

output of each neuron Thus, each hidden unit outputs in lth layer output  𝑍𝑗
𝑙  =

∑ (𝑋𝑖  ∗  𝑤𝑗𝑖
𝑛
𝑖=1 ) + b, j is the jth unit in lth layer while 𝑤𝑗𝑖 is the weight associated with 

ith input and jth unit of the lth layer.  

The output value from the hidden neurons ranges from -α to +α. The neuron 

doesn’t know what value should be considered to be fired for the next layers. Thus, 

activation function is deployed to enable neurons to make an efficient decision 

(Nwankpa, Ijomah, Gachagan, & Marshall, 2018). The output of the hidden neurons is 

passed over the non-linear activation function f, in which the final output of the hidden 

can be represented as 𝑎𝑗
𝑙  =  f(𝑍𝑗

𝑙), which is taken as the input to the next layer. Some 

of the activation functions, particularly step function, tanh, sigmoid, and rectified linear 

unit (ReLU) are discussed in the last section of this subchapter. The summary of these 

activations is shown in figure 4.  

 

 

Figure 4  Activation functions 
 

Source: http://deeplearning.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/ 

http://deeplearning.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/
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 The same process is repeated until the output layer and such a step is called as 

forward propagation. The Weight W and bias b are the trainable parameters, which can 

be trained over backpropagation.  

 

 Convolutional Neural Networks (CNN) 

  A Convolutional Neural Network is also known as CNN or ConvNet, is a 

class of neural networks that specializes in processing data that has a grid-like topology. 

CNN is very similar to ordinary Neural Networks: they are made up of neurons that 

have learnable weights and biases. Each neuron receives some inputs, performs a dot 

product and optionally follows it with a non-linearity. A Convolutional neural network 

(CNN) is a neural network that has one or more convolutional layers and is used for 

extracting high-level features of the input.  

  The three layers of CNN architecture are Convolutional Layer, Pooling 

Layer, and Fully-Connected Layer (Gu et al., 2018). These layers to form a full CNN 

architecture. The CNN architecture in sentence classification is shown in figure 5. 

 

 

Figure 5 Convolutional Neural Network Architecture 

 

Source: Zhang & Wallace, 2015 
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  The convolution layer is the core building block of CNN. It carries the main 

portion of the network’s computational load. This layer performs a dot product between 

two matrices, where one matrix is the set of learnable parameters known as a kernel, 

and the other matrix is the restricted portion of the receptive field. During the forward 

pass, the kernel slides across the height and width of the input producing the high-level 

representation of that receptive region as shown in figure 6. This produces a two-

dimensional representation of the input known as a feature map. The sliding size of the 

kernel is called a stride. 

 

 

 

Figure 6 Convolutional operations 

 

Source:  Sumit Saha, 2018 

 

  The pooling layer replaces the output of the network at certain locations by 

deriving a summary statistic of the nearby outputs. This helps in reducing the spatial 

size of the representation, which decreases the required amount of computation and 

weights. The pooling operation is processed on every slice of the representation 

individually. 



 19 

  There are several pooling functions such as the average of the rectangular 

neighborhood, L2 norm of the rectangular neighborhood, and a weighted average based 

on the distance from the central pixel. The pooling operation is shown in figure 7. 

However, the most popular process is max pooling, which reports the maximum output 

from the neighborhood. 

 

 

Figure 7 Types of the pooling layer  

 

Source: Sumit Saha, 2018 

 

 The Fully Connected layer helps map the representation between the input 

and the output.  

 

 Recurrent Neural Networks (RNN) 

  RNN (Zaremba, Sutskever, & Vinyals, 2014) is a kind of neural network 

that uses the previous information (a< t-1 >) to do current computation. RNN is 

commonly applicable for sequential data like the NLP task, where sentences are 

inputted in the form of a continuous word or word sequence. The RNN can be visualized 

as multiple copies of the single network as shown in figure 8, which takes input xt  and 

a<t-1> to output y<t> and a<t> which are then fed to its successor network.  
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Figure 8 RNN architecture 
 

Source: Afshine Amidi and Shervine Amidi, Stanford 

 

For each timestamp t, the output y<t> and hidden state are expressed as  

a<t> = g
1
(Waaa<t-1> + Waxx<t> + ba)  and  𝑦<𝑡> = 𝑔2(𝑊𝑦𝑎𝑎

<𝑡> + 𝑏𝑦). 

Where Waa, Wax, 𝑊𝑦𝑎, ba and 𝑏𝑦 are shared temporally and g
1
, g

2
 are the activation 

functions. 

  The standard RNN encounters a long-term dependency problem where it 

cannot retrieve information from a long context due to phenomena of vanishing or 

exploding gradient(Pascanu, Mikolov, & Bengio, 2012; Sundermeyer, Schlüter, & Ney, 

2012). For example, consider a language model trying to predict the next word based 

on the previous ones. If we are trying to predict the last word in “the clouds are in the 

sky,” we don’t need any further context – it’s pretty obvious the next word is going to 

be the sky. In such cases, where the gap between the relevant information and the place 

that it’s needed is small, RNNs can learn to use past information.  

 But there are also cases where we need more context. Consider trying to 

predict the last word in the text “I grew up in France. I speak fluent _____.” Recent 

information suggests that the next word is probably the name of a language, but if we 

want to narrow down which language, we need the context of France, from further back. 

It’s entirely possible for the gap between the relevant information and the point where 

https://twitter.com/afshinea
https://twitter.com/shervinea
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it is needed to become very large. In such cases, RNNs become unable to learn to 

connect the information. 

 Long Short-term Memory units (LSTM) (Hochreiter & Schmidhuber, 

1997) and Gated Recurrent Unit (GRU) (Cho, Van Merriënboer, Bahdanau, & Bengio, 

2014) were introduced such problems with standard RNN by usage gates in RNN 

(Pascanu et al., 2012). In LSTM, cell state 𝐶𝑡 and gates such as input gates 𝑖𝑡 , forget 

gate 𝑓𝑡 and output gate 𝑂𝑡. The cell state can be thought as the memory of the network. 

It carries relative information all the way from the sequential processing. So even 

information from the earlier time steps can make its way to later time steps, reducing 

the effects of short-term memory. The information is accumulated as the cell state goes 

through the sequential processing. The gates decide the information to be allowed on 

the cell state, in other words, it decides what to keep and what to forget during the 

training phase of the network. The detailed LSTM architecture is shown in figure 9. 

 

 

Figure 9 Detailed LSTM architecture and its gates 
 

 The forget is the first gate in the LSTM block, which decides what 

information should be discarded or stored. The previous hidden state ℎ𝑡−1 and current 

input information 𝑋𝑡 is fed through a sigmoid function (), producing the output in the 

rage 0 and 1. The value close to 0 will be forgotten and vice versa. The forget gate 𝑓𝑡 is 

mathematically represented as shown in the following equation: 
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𝑓𝑡  =   (𝑊𝑓[ℎ𝑡−1, 𝑋𝑡]  +  𝑏𝑓) 

where 𝑊𝑓 denotes the weight and 𝑏𝑓is bias at the forget gate.  

 The second gate, the input gate updates the cell state by picking important 

information while discarding the useless information. This is achieved by passing 

previous hidden state ℎ𝑡−1 and current input information 𝑋𝑡 through sigmoid function 

(). The intermediate resulting closer to 1 will be considered as important and vice 

versa. In addition, previous hidden state ℎ𝑡−1 and current input information 𝑋𝑡 is passed 

through tanh function whose result will be in the range -1 to 1. The sigmoid output 𝑓𝑖 

and tanh output 𝐶′𝑡  are then multiplied, where sigmoid output decides the importance 

of the information. The computation in this gate is mathematically represented as 

follows: 

𝑖𝑡  =   (𝑊𝑖[ℎ𝑡−1, 𝑋𝑡]  +  𝑏𝑖) 

𝐶′𝑡  =  𝑡𝑎𝑛ℎ (𝑊𝑐[ℎ𝑡−1, 𝑋𝑡]  + 𝑏𝑐) 

where 𝑊𝑖 and 𝑊𝑐  represents weight associated with sigmoid and tanh operations, 

respectively,  𝑏𝑖 is the bias associated with sigmoid operation and 𝑏𝑐 is the bias of tanh 

operation. 

 Once, using the information from input and forget gate, the cell state 𝐶𝑡 is 

calculated as 𝐶𝑡 = (𝐶𝑡−1 ∗  𝑓𝑡  )  +  (𝑖𝑡  ∗  𝐶′𝑡), where * denotes the pointwise 

multiplication and + represents the pointwise addition operation. The cell state 

information may be dropped if 𝑓𝑡 = 0. The pointwise addition operation will result in 

a new cell state 𝐶𝑡 . The cell state 𝐶𝑡  passed to the next state at (t+1) timestamp. 

 The output gate is the last gate in LSTM architecture. It decides the 

information in the next hidden state. The hidden state is used for predictions in the next 

state, so the hidden state should contain the information from previous input. First, we 

pass the previous hidden state ℎ𝑡−1 and the current input 𝑋𝑡 into a sigmoid function 

which is mathematically represented as follows: 

𝑂𝑡  =    (𝑊𝑜[ℎ𝑡−1, 𝑋𝑡]  + 𝑏𝑜) 

where 𝑂𝑡 represents the sigmoid output, 𝑊𝑜 is the weight associated with output gate 

and 𝑏𝑜 is the bias related to the output gate. Then the newly formed cell state is passed 
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through tanh function. The tanh function output and sigmoid output 𝑂𝑡 are multiplied 

to produce a new hidden state that can be passed to the state of (t+1) timestamp. The 

hidden state ℎ𝑡   is calculated as follows: 

ℎ𝑡  =   𝑂𝑡  ∗  𝑡𝑎𝑛ℎ(𝐶𝑡) 

 

 Activation functions 

 All the deep learning algorithms discussed in previous sections use the 

activation function. Activation functions are mathematical equations that determine the 

output of a neural network, its accuracy, and the efficiency of the model. In addition, it 

also has a major effect on the convergence of the model. It is attached to each neuron 

in the network, and determines whether it should be activated (“fired”) or not, based on 

the relevancy of the neuron’s input for the predictions. Also, it normalizes the output of 

each neuron to a range between 1 and 0 or between -1 and 1. The activation function 

transforms the input into a non-linear form. The non-linear transformation helps in 

building a powerful system.  

 In general, there are three types of activation functions, namely: binary step 

function, linear activation, and non-linear activation function. Amongst which the non-

linear is used popularly in the deep learning algorithm. It is due to the following reasons: 

• Binary step function doesn’t support multi-value outputs, since it has only two 

options, i.e., ‘fired’ if the input is above the threshold value and vice versa, 

• Though multiple output value may be supported in linear activation function, it 

doesn’t support backpropagation and 

• Non-linear activations support complex mapping between input and output 

which is considered an important aspect in building a powerful automated 

system. 

Some of the commonly used non-linear activation functions in deep learning models 

are discussed in this section. 

Sigmoid activation function 

 The sigmoid function is also known as the Logistic activation function. 

It is especially used for models where we have to predict the probability as an output. 
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Since the probability of anything exists only between the range of 0 and 1, sigmoid is 

the right choice. It is computed as: 

𝑓(𝑥)  =  
1

1 + 𝑒−𝑥
 

which produces the output between 0 and 1. Figure 10 illustrates the sigmoid activation 

function. 

 

 

Figure 10 sigmoid activation function 

 

Source: Avinash Sharma V, 2017 

 

The Hyperbolic Tangent activation function 

 Hyperbolic Tangent activation function is also referred to as TanH 

activation function. It looks similar to sigmoid function but it has range of values from 

-1 to 1. It is computed as: 

𝑓(𝑥) = tanh(𝑥)  = 
2

1 + 𝑒−2𝑥
− 1 

Figure 11 illustrates the hyperbolic activation function. 
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Figure 11 TanH activation function 

 

Source: Anish Singh Walia, 2017 

 

Rectified Linear Unit 

Rectified Linear Unit abbreviated as ReLU, is commonly used in many 

of the deep learning models such as CNN (Gulcehre, Moczulski, Denil, & Bengio, 

2016). It is computed as follows: 

𝑓(𝑥) = {
0, 𝑥 < 0
𝑥, 𝑥 ≥ 0

 

It is illustrated in figure 12. 

 

 

Figure 12 ReLU activation function 
 

Source: Avinash Sharma V, 2017 
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Softmax activation function 

 It is considered as a more generalized logistic activation function 

(Basatini & Chinipardaz, 2014; Martins & Astudillo, 2016). It computes probability 

distribution over n number of possible target values, ranging the value between 0 and 

1. It is computed as: 

(𝑧)𝑗  =  
𝑒𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

 

 

 



 

CHAPTER III  

 

RESEARCH METHODOLOGY 

 

Introduction 

 The Dzongkha word segmentation was formulated as a syllable tagging 

problem. Since Dzongkha is written in the form of continuous syllable without the 

proper word delimiter, the identification of syllable position in the word is important in 

solving the segmentation problem of the Dzongkha language. The Dzongkha syllables 

were tagged as ‘beg’, ‘mid’ or ‘end’, depending on the position of occurrence of a 

syllable in a word. This section presents procedures to perform Dzongkha word 

segmentation. The Dzongkha word segmentation can be performed in four stages. 

These stages are discussed in the first section of this chapter, while the second section 

discusses data collection. 

 

System Overview    
In our work, four stages were adopted for Dzongkha word segmentation as 

shown in Figure 13. Each of these stages is considered crucial for the effectiveness of 

the system. The stages were building word embedding (Word2Vec) model, 

preprocessing, syllable tagger and Segmentation generator. Each of these stages is 

discussed in the following subsections.  

 

Figure 13 Segmentation system overview 
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 Word Embedding (word2vec) 

  Images are represented in their pixel form that can be easily fed to the neural 

network. However, in terms of language processing, the input is in the form of 

continuous characters in which the neural network does not have the capability to 

interpret it. The neural network takes input only in the form of digits or numbers. Thus, 

the text or words have to be converted to its vector form.  There are many ways to 

convert the text into its vector form as discusses in the following sections.  

 

Count-based approach 

    One Hot encoding is the simplest form of representing the categorical 

variables into its vector form which can be used by the neural network as an input and 

process to achieve the task of interest. In one hot encoding, the words are represented 

in the form of n-dimensional space.  

  To understand one-hot encoding, let us consider the following similar 

sentences.  

• Sentence 1: Have a good day. 

• Sentence 2: Have a great day. 

And the vocabulary V from the given sentences can be V= {Have, a, good, great, 

day}. 

    Now, let us create a one-hot encoded vector for each of these words in 

V. Since, the length of our vocabulary is 5, the length of our one-hot encoded vector is 

5. In this case, we would have a vector of zeros except for the element at the index 

representing the corresponding word in the vocabulary, in which that particular element 

would be one. The encodings in table 2 would explain this better. The encoding can be 

visualized in a 5-dimensional space, where each word occupies one of the dimensional 

spaces and has nothing to do with the rest (no projection along the other dimensions). 
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Table 2 One-hot encoding 

 

word Have a Good Great Day 

Have 1 0 0 0 0 

a 0 1 0 0 0 

good 0 0 1 0 0 

great 0 0 0 1 0 

day 0 0 0 0 1 

 

    One hot encoding can be of two variants: a bag of words (BOW) and 

term frequency-inverse document frequency (TF-IDF). In BOW representation, the 

vectors of that particular index (word) are represented as the count of occurrences of 

that particular word in the documents while TF-IDF is a statistical measure used to 

evaluate how important a word is to a document in a collection of documents or corpus. 

TF is a scoring of the frequency of the word in the current document. Since every 

document is different in length, it is possible that a term would appear more times in 

long documents than shorter ones. Therefore, the term frequency is divided by the 

document length to normalize. 

TF (w) = 
Count of Word (w) in a document

Total number of words in a document
                       (1) 

  Inverse Document Frequency (IDF): is a scoring of how rare the word is 

across documents. Rarer the term, more is the IDF score. 

IDF(w)= log
e
(

Total number of documents

number of word 'w'  in it
)                            (2) 

Thus TF-IDF score =TF * IDF.  

    In language, each of the words shares a semantic and syntactic 

relationship with other words. Even though the above approaches provide the vector 

representation for each word in the vocabulary that can be used for processing by the 

neural network, it does not consider the semantic and syntactic relationship of words. 

Further, the dimensions of the vectors grow with an increase in the size of the 

vocabulary which would lead to the curse of dimensionality.  
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    Thus, Continuous bags of word (CBOW) and skip-gram models were 

proposed by Mikolov, Chen, Corrado, and Dean (2013) to consider the syntactic and 

semantic relationship between words. These models are called predictive models while 

prior approaches are referred to as the count-based model.  

Predictive model  

    The predictive model is unsupervised neural models used to compute 

and generate high quality, distributed and continuous dense vector representation of the 

words from the massive unlabelled corpora. It is also used to create a vocabulary of all 

possible words. Usually, you can specify the size of the word embedding vectors and 

the total number of vectors is essentially the size of the vocabulary. This makes the 

dimensionality of this dense vector space much lower than the high-dimensional sparse 

vector space built using the count-based approach. This model can be of two variants:  

 

 Continuous bags of word (CBOW) 

    This method predicts the target word from the corresponding context 

words or surrounding words. For instance, consider the sentence ‘I am going to 

college’. To predict the target word ‘going’ with 2 as the context size (window size), it 

can be seen as a pair as ({am,to}, going) where  am  and to  are the left and right context 

of the target word ‘going’. The neural architecture of CBOW is shown in figure 14.  

 

 

Figure 14 CBOW model 

 

Source: Mikolov et al. 2003  
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   The above model takes C context words. The vectors of the target 

words can be calculated as an average over all these C context word inputs.  

 

 Skip-gram model 

     The skip-gram model predicts the context words of the corresponding 

target word. For instance, consider the sentence ‘I am going to college’. Given the target 

word ‘going’ with context size as 2, it tries to predict ‘am’ as its left context and ‘to’ as 

its right context.  The neural architecture of the Skip-gram model is shown in figure 15. 

 

 

Figure 15 Skip-gram model 

 

Source: Mikolov et al. 2003 

 

    In this thesis, the skip-gram model was adopted to generate the 

continuously distributed syllable vectors because Skip Gram works well with a small 

amount of data and it is found to represent rare words well (Mikolov et al., 2013). The 

unlabeled data (sentence) was fed into the embedding model (word2vec) to generate 

the syllable embedding matrix ℳ ∈ ℝ|𝑉| 𝑥 𝑑  , where |V| is the vocabulary size and d is 

the dimension of the embedding matrix. Further, the trained embedding matrix can be 
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used to generate the syllable vocabulary  V ∈ ℝ |V|  x 1  , where |V| is the size of the 

vocabulary.  

The following code snippet shows the implementation of syllable embedding: 

The corpus Sentences with 10,255 sentences were fed to the word2vec model. Every 

sentence was tokenized into its syllabic form as shown below: 

['མྱོང་', 'སྒར་', 'ཁྱོམ་', 'གྱི་', 'སྦུག་', 'ལུ་', 'ཡྱོད་', 'པའྱི་', 'དཔལ་', 'སྱོན་', 'ཆང་', 
'ཁང་, 'ནང་', 'ཐུགས་', 'རེ་', 'དབང་', 'ཕྱུག་', 'གྱིས་', 'ཆང་', 'གདྱོང་', 'ཁར་', 'བཀང་', 
'།'] 

The following shows the 300-dimensional syllable embedding for the syllable ‘གྱིས་’ 
which is retrieved from the syllable embedding matrix ℳ. 

[ 0.3210197  -0.15351024  0.95191234 -0.69813704 -0.07671746  0.07590735 

 -0.9091967   0.32311854  0.33156452 -0.32314035  0.2615459   0.14687999 

  0.5473725  -0.71909726  0.53287125  0.03456965  0.30288315 -0.04023279 

  0.19642457  0.13165298  0.04969903  0.00307721  0.30487853 -0.06859454 

 -0.3712254   0.5475902   0.34564188 -0.42273006 -0.01707851  0.04979415 

  0.09182609  0.46747556 -0.49909383 -0.13065352 -0.1027848   0.13512476 

  0.20513588  0.18210682 -0.27366987  0.18192793  0.07094382 -0.88443625 

 -0.19615975 -0.13093862  0.66337115 -0.6658243  -0.4254617   0.30282584 

  0.5080116  -0.10835751  0.0742984   0.33183134 -0.2949197   0.522677 

 -0.04473643  0.3196213  -0.07143073 -0.59285563  0.5399393  -0.1871956 

 -0.29831967 -0.17071249 -0.05257144  0.19703664 -1.0632615  -0.16080467 

 -0.18753618  0.5776778   0.5304845  -0.1659883  -0.1324222   0.43425635 

 -0.50684386  0.08895883 -0.3234413  -0.31502834  0.31158307  0.06663076 

 -0.44911718  0.4479407   0.3574822  -0.13294731  0.04071715 -0.35661343 

 -0.10559443 -0.21920484  0.38865426  0.61690795  0.14190854  0.92985463 

  0.38688555 -0.5396631  -0.27903783 -0.25335598 -0.05868918 -0.3991832 

 -0.51297975  0.11210173 -0.8140017  -0.18571657 -0.6295385  -0.3508472 

  0.19671534  0.48802882  0.41331294  0.46507463  0.55321956  0.26814324 

 -0.27244323 -0.75347644 -0.17870347 -0.34811586  0.6973272  -0.09584054 

  0.34359345 -0.16714601  0.2391204   0.603859   -0.26545346 -0.5815423 

  0.84040296  0.8684258  -0.48318216 -1.0251215   0.67045975 -0.28564698 

  1.3181759   0.238932   -0.31026012 -0.5631942   0.33890858 -0.81634647 

 -0.13116628 -0.5689911   0.21023095  0.13752754 -0.23049593 -0.396373 

 -0.17098397  0.52437806 -0.11991276 -0.17967495  0.35036764 -0.02136617 

 -0.3808628  -0.82136095 -0.5103798   0.19593334  0.0920986  -0.24427408 

  0.40123457 -0.2820268  -0.28051072 -0.5928526  -0.01019426 -0.87303203 

  0.1217309  -0.11852136 -0.26868933 -0.1444161  -0.7486063  -0.19866931 

 -0.37238127  0.06388521 -0.35379276 -0.13490604  0.08158439 -0.09031488 

 -0.16991304 -0.95759964 -0.16343851  0.09244142  0.55896074  0.11754514 

  0.8666826  -0.85200155 -0.5000392  -0.10773891 -0.96491873  0.2043062 

 -0.20884645 -0.53790313 -0.472793   -0.12941085  0.33376974 -0.18331663 

  0.14290327  0.2669529  -0.04817933  0.1961905   0.01975059 -0.34626755 

 -0.1688545  -0.62168086  0.19479963  0.5991113  -0.23918003  0.5081801 

 -0.14233941  0.12468854  0.82995105  0.02796978  0.4268009  -0.3133791 

 -0.7182112   0.04522754  0.13505438  0.17482986 -0.5277166   0.04686747 

 -0.5022211  -0.08384314 -0.06026209  0.534554    0.7027847   1.0531831 

 -0.06110565 -0.09441035 -0.29154858  0.04263121 -1.2222071   0.69154465 

  0.15146658  0.63643485 -0.15173855  0.31316218  0.05443235 -0.6697509 

 -0.83844763  0.12627576  0.3469649   0.7906073  -0.12472709 -0.13051951 

from gensim.models import Word2Vec 

EMB_DIM = 300  

w2v = Word2Vec(Sentences, size = EMB_DIM, window =5,min_count =1

, negative = 15, iter = 10, workers = 1) 
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 -0.37473735  0.05644423  0.11256064 -0.73327583  0.28946555 -0.60252875 

  0.07282681  0.38723153 -0.03525896 -0.18535335 -0.7231747   0.54515857 

  0.56857216 -0.03015586 -0.38713259 -0.15400992 -0.33501333  0.48441866 

 -0.14256254  0.48276302 -0.37047175  0.5438715  -0.70645    -0.21443231 

  0.35043532  0.2619092  -0.08084039  0.51055723 -0.0469946   0.49831977 

 -0.69439036  0.43322366 -0.0129585  -0.2776995  -0.01880828 -0.22086047 

 -0.23338751  0.39741778 -0.16438815 -0.08405622  0.06063091 -0.43516147 

  0.8238099  -0.5553637  -0.2939282   0.19725098 -0.15464969  0.77290225 

 -0.10740466 -0.9243945   0.07814645 -0.09383044  0.5910903   0.34824884 

  0.08855297  0.29560855  0.11905991 -0.0518215   0.11963987 -0.52313364 

  0.28260273  0.7639619  -0.64613444  0.47562882  0.17544304 -0.3824722] 

 

 

   One of the main goals of this research to handle OOV words effectively 

which may affect the performance of the model if it is not taken care of. A unique token 

‘UNK’ was added to the vocabulary V, with an index 0. The vectors for unknown or 

new word will be assigned as the average of all the vectors in the embedding matrix 

ℳ. Further, during the context generation or windows approach, the End of Sequence 

(EOS) token was added in the vocabulary with index 1. The vocabulary of 3676 unique 

syllables was generated. Part of the vocabulary is shown below. 

'འདྲུད': 2692, 'ཙགོ་': 2693, 'སེ་': 3576, 'གཏད': 3577, 'ཆགསན་': 3578, 'ཧུ་': 
2694, 'ཧུ': 2317, 'འྱོངསམ': 2695, 'ཤྱོབ': 2696, 'རྱོབ་': 3579, 'སྱིན་': 3580, 
'སྒྲུབས་': 3581, 'འགདེཔ': 3582, 'ཁྱོམས་': 3583'བསྱི་': 1675, 'གཏའམ་': 1794, 'རྱིཝ་
': 3584, 'ཤབ་': 2697, 'དཀྲུམ་': 3585, 'ངའེྱི': 3586, 'བྱོནམ': 3587, 'མནལྜ་': 
1096, 'བྱིངས་': 3588, 'ཁུ': 3589, 'རས': 3590, 'སླབནྱི་': 3591, 'བགའཝ་': 
3592, 'མནལྜ': 1589, 'ཚ': 3593, 'དྲགཔྱོ་': 3594, 'ཅྱོ': 3595, 'གསུངས': 3596, 
'བེལཀེ་': 3597, 'བཱལ་': 3598, 'པེཀ་': 3599, 'ཀཱ་': 3600, 'ཏྲཱར་': 3601, 'འདདེ་': 
1210, 'བདེ': 2698, 'ཆྱིད་': 2699, 'ཡར': 3602, 'སྱོདཔ་': 1915, 'བསྱིཝ་': 
3603, 'vt_ne': 2318, 'རྱིངམ': 3604, 'པུས་': 3605, 'བརྡུངསམ་': 3606, 'བཤགསཔ་
': 3607, 'ཙིག་': 3608, 'སེ': 2700, 'ལྟཝ': 3609, 'འགྱོནྱི་': 3610, 'དཔ': 
3611, 'ncc': 2701, 'གནྱི་': 3612, 'ངྱོམས་': 3613, 'ཆྱོཤྱོག་': 3614, '།?': 
3615, 'eep': 2319, 'ཟེརསུའྱི་': 3616, 'ཟེརསུའྱི': 3617, 'སྱོབུ་': 3618, 'པཔྱོ་': 
3619, 'ona': 2702, 'གགཅྱིག་': 3620, 'ij': 3621, 'ཨྱོངའུང་': 3622, 'ཏཇ་': 
2703, 'ཨྱོངཨུང་': 3623, 'ཆྱིེཔ་': 3624, 'གབཟུང་': 3625, 'མཡར་': 3626, 'སེས': 
3627, 'cag': 3628, 'འཛརིྫུན་': 2704, 'neg': 3629, 'ཞྱིནམམ་': 3630, 'གགཏང་
': 3631, 'དཔའྱོ': 3632, 'བརྒལཝ་': 3633, 'སེའབད་': 3634, 'དེམ': 3635, 'འསེྟདྱི་': 
3636, 'ཕྱིས་': 2705, 'phr': 3637, 'ཨྱོའྱོང་': 3638, 'mp': 2706, 'sm': 
3639, 'ཨའ་': 3640, 'འབྱིན་': 3641, 'ངལྔ་': 2707, 'pfv': 3642, 'ཏེའདྱི་': 
3643, 'cf': 3644, 'nm': 3645, 'avt': 3646, 'icq': 3647, 'སྟྱོབཏྱོན་': 
3648, 'Kiba': 3649, 'འདེྱི་': 2708, 'ཏེསེྟ་': 3650, '_cac': 3651, 'ཆྱོགཤྱོག': 
3652, 'འ': 3653, 'བསྟྱོཏྱོན་': 3654, 'བསེལ': 3655, 'ཤུདའྱི་': 3656, 'sb': 
3657, 'བགཏང་': 2709, 'གྱོསྒྱོ་': 2320, 'ང': 3658, 'eh': 3659, 'དའེདྱི་': 
3660, 'et': 3661, 'གབཏང་': 3662, 'or': 3663, 'vt': 2321, 'བསྱིས་': 
3664, 'དནེ': 3665, 'འདུགནྱི་': 3666, 'དྱོགཔ་': 3667, 'འཛལོཝ་': 3668, 'སྙུངམ་': 
3669, 'འབདནྱི་': 3670, 'ལཱར་': 3671, 'བསལ': 3672, 'སྱོདནྱི་': 3673, 'དབངམྱོ': 
3674, 'ཕངས': 3675, 'UNK': 0, 'EOS': 1 
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The integer values in the vocabulary represent the index of the corresponding syllables.  

    In addition, tag vocabulary was constructed. In this thesis, vocabulary 

T of size 3 is constructed from the dataset. The tags used in marking the position of the 

word are discussed in table 3 where the index represents the index of the tag in the tag 

vocabulary. 

 

Table 3 Tag Vocabulary and description 

 

Tag Description Index Example 

beg 

the single syllable word 

0 

‘ང་’ (I) is a single syllable word 

which will be tagged as ‘beg’ 

or first syllable of a word 

‘རྒྱལ་ཁབ་’ (country) is a two-syllable 

word where ‘རྒྱལ་’ will be tagged as 

‘beg’ as it is the first syllable of a 

word ‘རྒྱལ་ཁབ་’ 

end the last syllable of a word 1 

‘རྒྱལ་ཁབ་’ (country) is a two-syllable 

word where ‘ཁབ་’ will be tagged as 

‘end’ as it is the last syllable of the 

word ‘རྒྱལ་ཁབ་’. 

mid 

Syllables in between the 

beginning and the last 

syllable of a word 

2 

‘སླྱོབ་སྱོང་པ་’ (Trainee) is a three-

syllable word where the middle 

syllable ‘སྱོང་’ is tagged ‘mid’ 

 

 Pre-processing 

 Text pre-processing is one of the fundamental steps in machine learning to 

create a meaningful and quality data, on which the model can work. In this stage, pre-

processing was carried out in three stages: 1) Syllable segmentation, 2) Context 

Generation and 3) mapping syllables to its indices in Vocabulary. 
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 Syllable Segmentation  

  The first and foremost step is to split the sentences or documents to its 

syllabic form, the smallest token of Dzongkha word.  For example, the sentence ‘ང ་

གཡུས་ཁར་འགྱོ ་དྱོ ། ’ can be broken down as ‘ང་ ’, ‘གཡུས་ ’, ‘ཁར་ ’, ‘འགྱོ ་ ’, ‘དྱོ ’, and ‘།’.  The 

following code snippet was used to split a sentence into its syllabic form. 

The above code snippet produced the output as follows: 

 

 Context generation 

 A syllable is considered as the smallest token of a word in Dzongkha. A 

word can be either a syllable or a combination of syllables. The identification of syllable 

position in a word is considered as the most important in segmentation formulated as a 

import re 

# define the document 

# text = 'དེ་དང་གཅྱིག་ཁར་ རྱོང་ཁ་ལྷབ་སང་གྱི་དཔེ་དེབ་ཚུ་འབྱི་ནྱི་དང་པར་སྐྲུན་འབད་ནྱིའྱི་དྱོན་ལུ་ ཤེས་རྱིག་ལྷན་ཁག་འྱོག་ལུ་རྱོང་ཁ་གྱོང་འཕེལ་སེ་ཚན་ཅྱིག་

ཡང་གཞྱི་བཙུགས་གནང་སེྟ་ སླྱོབ་གྲྭ་ཁག་ལས་ཕར་རྱོང་ཁ་འདྱི་སད་ཡྱིག་དང་རྱོམ་རྱིག་གྱི་གྲས་ཁར་སླྱོབ་སྟྱོན་གྱི་ཆྱོས་ཚན་ཅྱིག་སེ་འགྱོ་བཙུགས་གནང་ནུག' 

# text = 'དཔལ་འབྱོར་རྱིག་པའྱི་ཆྱོས་ཚན་འདྱི་སླྱོབ་སྱོང་འབདཝ་ད་ལཱ་ཁག་ཡྱོད།' 

text ='ང་གཡུས་ཁར་འགྱོ་དྱོ' 

 

pre=text.find('།')!=-1 

cou=text.count('།') 

 

# tokenize the document 

text= re.sub('(།|[a-z0-9]|' ')','',text) 

  result = text.split('་') 

  for i in range(len(result)): 

    if(i<(len(result)-1)): 

      result[i]=result[i].strip() 

      result[i]=result[i]+'\u0f0c' 

  if pre: 

    for i in range(cou): 

      result.append('།') 

              

print(result) 
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syllable tagging problem. Thus, it is understandable that the tag of a syllable depends 

on its neighboring syllable (Zheng et al., 2013).  

 For this purpose, the right and left context for a target syllable were 

considered for a given sentence. The left context for the first syllable and right context 

for the last syllable of a given sentence is marked as ‘End of Sequence’ (EOS). The 

EOS token was added in the vocabulary with an index as 1 which would help us to 

identify the beginning and end of a sentence. Further, the addition of EOS token eased 

to generate the context by making the even length of a sentence. In our thesis, context 

size ‘N’, where N = 0, 1, 2 and 3 were considered to determine the effective context 

size in syllable tagging problem for word segmentation. A context size 0 can be 

understood as without considering the context, while the other means that N right and 

N left context would be considered for the target syllable.  

 For instance, consider a sentence ‘ང་གཡུས་ཁར་འགྱོ ་དྱོ །’ which can be broken 

down into its syllabic form as ‘ང་’, ‘གཡུས་’, ‘ཁར་’, ‘འགྱོ་’, ‘དྱོ’, and ‘།’ in the pre-processing 

stage and generate its context for every syllable with context size N = 1, 2, and 3. EOS 

token was padded in the beginning and end of the sentence, depending upon the context 

size. N EOS token was padded as a left context for the first syllable and right context 

for the last syllable of the sentence. The context for each of the target syllable in the 

given sentence using various context size is shown in table 4, 5 and 6. 

 

Table 4 Context of Each syllable with N=1  

 

L1 Target R1 

EOS ང་ གཡུས་ 

ང་ གཡུས་ ཁར་ 

གཡུས་ ཁར་ འགྱོ་ 

ཁར་ འགྱོ་ དྱོ 

འགྱོ་ དྱོ ། 

དྱོ’ ། EOS 
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Table 5 Context of each syllable with N = 2 

 

L2 L1 Target L1 L2 

EOS EOS ང་ གཡུས་ ཁར་ 

EOS ང་ གཡུས་ ཁར་ འགྱོ་ 

ང་ གཡུས་ ཁར་ འགྱོ་ དྱོ’ 

གཡུས་ ཁར་ འགྱོ་ དྱོ ། 

ཁར་ འགྱོ་ དྱོ ། EOS 

འགྱོ་ དྱོ’ ། EOS EOS 

 

Table 6 Context of each syllable with N = 3 

 

L3 L2 L1 Target R1 R2 R3 

EOS EOS EOS ང་ གཡུས་ ཁར་ འགྱོ་ 

EOS EOS ང་ གཡུས་ ཁར་ འགྱོ་ དྱོ’ 

EOS ང་ གཡུས་ ཁར་ འགྱོ་ དྱོ’ ། 

ང་ གཡུས་ ཁར་ འགྱོ་ དྱོ ། EOS 

གཡུས་ ཁར་ འགྱོ་ དྱོ ། EOS EOS 

ཁར་ འགྱོ་ དྱོ ། EOS EOS EOS 

 

 In the above tables, L1, L2, and L3 represent the syllables in the left which is 

an immediate neighbour of the target syllable in the given while R1, R2, and R3 are the 

right neighbours. Mathematically, consider ‘S’ as the list of syllables in a sentence, Li 

for left context and Ri for right context for the target syllable ‘Sj’ at jth index of the 

sentence, where i = 1, 2,..N, which is the context size to be considered. Thus, Li and Ri 

can be denoted as Li = S(j-i) and Ri = S(j + i) .  

 

Note: Context generation step is not applicable for syllable tagger using Recurrent 

Neural Network 
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 Mapping syllables to its indices in the vocabulary 

  The syllable is still in the text form. The syllables were converted to a 

number form. The vocabulary V constructed in the previous stage ‘word embedding’ 

was used to get integer equivalent of a syllable, which is the index of a syllable in the 

|V| sized Vocabulary V. Then the syllables are fed into the model as indices. In our 

vocabulary V, the syllables ‘ང་’, ‘གཡུས་’, ‘ཁར་’, ‘འགྱོ་’, ‘དྱོ’, and ‘།’ were stored as shown 

below. 

The context generated in the previous section was now mapped to its indices as shown 

in the following figures. The red boxes denote the target syllables. 

 

 

 

Figure 16 Input sentence mapped to its indices when N = 0 

 

 

 

Figure 17 Input sentence mapped to its indices when N = 1 

 

'ང་': 15, 'གཡུས་': 311, 'ཁར་': 49, 'འགྱོ་': 74, 'དྱོ': 920, '།': 2, 

'UNK': 0, 'EOS': 1 
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Figure 18 Input sentence mapped to its indices when N = 2 

 

 

 

 

Figure 19 Input sentence mapped to its indices when N = 3. 
 

 Syllable Tagger 

 The Dzongkha word segmentation was formulated as a syllable tagging 

problem where the labels were assigned for each of the syllables in a sentence. In my 

thesis, two deep learning algorithms were proposed. The first model is based on Deep 

Neural Network (DNN) and the later use Bidirectional Long Short-Term Memory 

Recurrent Neural Network ((Bi-LSTM RNN). The first model is discussed in the first 

section and the second section of this chapter discusses the later model. 

 

Deep Neural Network 

   The neural network architecture for syllable tagging is shown in figure 

20. The network is a variant of neural architecture which was proposed by Collobert et 

al. (2011)  for POS tagging, Named Entity Recognition (NER), chunking and semantic 

role labeling. The model learns feature on its own, without having to depend much on 

the hand-crafted features.   
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Figure 20 Neural Network Architecture 

 

 The syllables were fed into the network as indices as seen in mapping 

sections of this chapter. The first layer extracts the d dimensional features for each 

syllable. It is called a lookup operation where the indices of the syllables are mapped 

to its vector representation in the embedding matrix ℳ. The lookup layer would output 

n x d dimensional features, where n is the no of input. The second layer flattens the n x 

d dimensional feature to a 1-dimensional feature which was fed to the next linear layer. 

The linear layer extracts the features from the windows of syllables. And finally outputs 

the tag for each syllable in the given sentences. 
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 A neural network can be considered as a function 𝑓𝜃
𝑙(. ) with parameters θ. 

Any feed-forward neural with L-layers can be seen as a composition of functions 𝑓𝜃
𝑙(.) 

defined for each layer l: 

𝑓𝜃
𝑙(. )  = 𝑓𝜃

𝐿(𝑓𝜃
𝐿−1(. . . . . . 𝑓𝜃

1(. ). . . ))                    (3) 

 The output of the first layer is fed to two linear standard linear layers that 

successively perform affine transformation over 𝑓𝜃
1, interleaved with non-linearity 

function g(.). Given a set of tags T for the task of interest, the network outputs a vector 

size of |T| for each syllable at position i, interpreted as the score for each tag in T and 

each syllable Si in the sentence. 

𝑓𝜃
𝑙(𝑆𝑖) = 𝑓𝜃

3 (𝑔 (𝑓𝜃
2 (𝑓𝜃

1(𝑆𝑖))))                    

              =𝑊3𝑔(𝑊2𝑓𝜃
1(𝑆𝑖) + 𝑏2) + 𝑏3                             (4) 

where the matrices 𝑊2∈ ℝ H  x (nd) , 𝑏2∈ ℝ H , 𝑊3∈ ℝ H  x |T| , and 𝑏3∈ ℝ |T|  are the 

parameters to be trained where H is the hyperparameters, usually called the number of 

hidden layers.  

  Backpropagation will be used to train the network. During the 

backpropagation, the parameters of the layer change which leads to change the input of 

the next layer  (Ioffe & Szegedy, 2015), thus increasing the complexity of the training 

phase because the learning system has to be adapted with new inputs. This phenomenon 

is called as ‘Covariate shift’. Batch Normalization was added in the tagging neural 

architecture to accelerate speed the training of the model and as a regularizer. The batch 

normalization algorithm is shown in figure 21. 
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Figure 21 Batch Normalization algorithm 

 

Source: Ioffe and Szegedy, 2015  

 

  When we have unbalanced class distribution, the accuracy metric may not 

be the right metric to evaluate the performance of the model because there are chances 

that the accuracy may be dominated by the class that is higher in number. Therefore, 

the F1 score metric will be used along with the accuracy metric for evaluating the 

performance of the model. Consider the confusion matrix as given in table 7 to 

understand the Recall, Precision and F1 score. 

 

Table 7 Confusion Matrix 

 

  PREDICTED 

   Negative Positive 

ACTUAL 
Negative True Negative False Positive 

Positive False Negative True Positive 
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Recall: Ratio of correctly predicted positive observations to the total number of 

observations in the actual class as shown in equation 5.  

Recall = True Positive
True Positive + False Negative

                         (5) 

Precision: Ratio of correctly predicted positive observations to the total number of 

positive predicted observations as shown in equation 6. 

Precision = True Positive

True Positive + False Positive
                (6) 

Finally, the F1 score is computed as: 

F1 score = 2 x (Precision x Recall)
Precision + Recall

                     (7) 

 

   As discussed in this section, two sets of experiments were designed. In 

each set, four experiments were conducted with models of varied context sizes ranging 

from 0 to 3. The first experiment set uses pretrained syllable embedding, while the other 

learns embedding during the network training, which is a shut shell, it does not use 

pretrained syllable embedding. The main idea of this experimental design is to 

understand the impact of the pretrained embedding matrix. It was reported by C. Wang 

and Xu (2017) that pretrained embedding increases the performance of the model. The 

model summary for all the experimental sets is shown in the figures below.  

 

 

Figure 22 Model summary for N=3 without pretrained embedding 
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Figure 23 Model summary for N=2 without pretrained embedding 

 

 

 

Figure 24 Model summary for N=1 without pretrained embedding 
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Figure 25 Model summary for N=0 without pretrained embedding 

 

 
 

Figure 26 Model summary for N=3 with pretrained embedding 
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Figure 27 Model summary for N=2 with pretrained embedding 

 

 

 

Figure 28 Model summary for N=1 with pretrained embedding 
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Figure 29 Model summary for N=0 with pretrained embedding 

 

   The model hyperparameters are the most important properties the 

govern the behavior of the network. It is defined as properties that control the entire 

training process of the model. The choice of right hyperparameters contributes to the 

efficiency of the model (Domhan, Springenberg, & Hutter, 2015). The hyperparameters 

used in these experiments are presented in table 8. 

 

Table 8 Model Hyperparameters for DNN models 

 

Hyperparameters Value 

Hidden layer 256 

Dropout rate 0.1 

Initial Learning rate 0.002 

Maximum Learning rate 0.02 

Embedding dimension 300 

Embedding Window size 5 
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   Amongst the hyperparameters presented in table 8, the learning rate is 

the most important one to be critically considered to optimize the model. The usage of 

higher learning rate diverges from the objective function while the smaller learning rate 

slows the learning process of the model, thereby increasing the training time (Zeiler, 

2012). For this consideration, the choice of the right learning rate is important. 

However, it is challenging because there is no thumb rule for choosing the right learning 

rate. In our work, the cyclical learning rate (CLR) schedule (Smith, 2017), also known 

as the Triangular learning rate schedule was used along with the stochastic gradient 

descent (SGD) optimizer (Amari, 1993).  

In the CLR schedule, the minimum and maximum learning rates are set. The learning 

rate during the network training varies cyclically between these two bounds. In our 

experiment, the two bounds were set to 0.02 and 0.002 (presented table 8) with a step 

size of 250 epochs. The CLR schedule is illustrated in figure 30. 

 

 

 

Figure 30 CLR learning rate schedule 

 

Source: Smith, 2017 

 

Bi-LSTM RNN 

 The Bidirectional Long Short-Term Memory (Bi-LSTM RNN) 

architecture for tagging a syllable in a word is presented in figure 31. Given an input 

sequence S = (S1, S2, S3, S4, ……..., Sn), the network computes hidden state h = (h1, 

h2, h3, ……, hn) and outputs T = (T1, T2, T3, ……, Tn), where Ti represents the tag or 

position of an ith syllable Si in a word.  
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Figure 31 Bi-LSTM RNN model architecture for syllable tagging 

 

 The Bi-LSTM (Shabanian, Arpit, Trischler, & Bengio, 2017) network has two 

LSTM layer. The first LSTM layer computes forward hidden layer vector ℎ⃗  from i 

=1 until n, while the second layer computes backward hidden vector ℎ⃗⃖ from i = n to 

1. The iterative process of updating the output layer i can be expressed as follows: 

 ℎ⃗ 𝑖  =  H(𝑊 𝑠ℎ⃗⃗ ⃗⃗  𝑆𝑖  +  𝑊 ℎ⃗⃗   ℎ⃗⃗  ℎ ⃗⃗⃗  
𝑖−1  +  𝑏 ℎ⃗⃗ ), 

ℎ⃗⃖𝑖 =  𝐻(𝑊 𝑠ℎ⃖⃗ ⃗⃗⃗ 𝑆𝑛  +  𝑊 ℎ⃗⃗⃖  ℎ⃗⃗⃖ ℎ ⃖⃗⃗⃗
𝑖−1  +  𝑏 ℎ⃗⃗⃖), 

𝑇𝑖 = (𝑊ℎ⃗⃗  𝑦ℎ⃗
 
𝑖  +  𝑊ℎ⃗⃗⃖ 𝑦 ℎ⃗⃖𝑖  +  𝑏 𝑦). 

𝑊 represents weight matrices between layers, 𝑏 ℎ⃗⃗ , 𝑏 ℎ⃗⃗⃖ and by are respectively the 

bias vectors of the hidden of the forward LSTM, backward LSTM, and output 

layers, 𝐻 is the activation function of the output layer. 

 In our experiment, two experimental sets were designed based on the usage of 

dropouts. The first set uses a dropout rate of 0.2, while the other is without the usage 

of dropout. Further, each of these sets was divided into two subsets based on 

embedding dimensions. Embedding dimensions (Emb_Dim) of 128 and 256 were 

considered in our experiment. In each subset, three models with different learning 
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rates (LR) were developed. Each model in the subset was developed with two 

different hidden sizes (size) of 256 and 512 neurons. In total, 24 models were built 

considering the summary of configurations presented in table 9. This enables to 

find the most optimized model for the task of Dzongkha word segmentation. 

 

Table 9 Experimental configurations for Bi-LSTM architecture 

 

Size 
Dropout Yes No 

Emb_dim 128 256 128 256 

256 LR 

0.001 0.001 0.001 0.001 

0.010 0.010 0.010 0.010 

0.020 0.020 0.020 0.020 

512 LR 

0.001 0.0010 0.001 0.001 

0.010 0.010 0.010 0.010 

0.020 0.020 0.020 0.020 

 

The figures below illustrate the model summaries of the models build using the 

configurations presented in table 9.  

 

 
 

Figure 32 Model summary for 128 Emb_Dim and 256 Neurons without dropout 
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Figure 33 Model summary for 128 Emb_Dim and 256 Neurons with dropout 
 

 
 

Figure 34 Model summary for 300 Emb_Dim and 256 Neurons without dropout 

 

 
 

Figure 35 Model summary for 300 Emb_Dim and 256 Neurons with dropout 
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Figure 36 Model summary for 128 Emb_Dim and 512 Neurons without dropout 

 

 
 

Figure 37 Model summary for 128 Emb_Dim and 512 Neurons with dropout 

 

 
 

Figure 38 Model summary for 300 Emb_Dim and 512 Neurons without dropout 
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Figure 39 Model summary for 300 Emb_Dim and 512 Neurons with dropout 

 

 Segmentation Generator 

 The trained models produce the sequence of tags for the given sequence of 

syllables. Consider the sequence of syllables as ‘ང་’, ‘གཡུས་’, ‘ཁར་’, ‘འགྱོ་’, ‘དྱོ’, and ‘།’are 

fed to the trained model and Y as the predicted tag sequence for the given sequence of 

syllable, Y = {0, 0, 1, 0, 0, 0},  where 0 represents tag ‘beg’, 1 as tag ‘end’ and 2 as tag 

‘mid’. Then the given input sequence can be tagged as ‘ང་/beg’, ‘གཡུས་/beg’, ‘ཁར་/end’, 

‘འགྱོ་/beg’, ‘དྱོ/beg’, and ‘།/beg’. Using the tag information, the final segmentation result 

of the given sentences can be viewed as ‘‘ང་’, ‘གཡུས་ཁར་’, ‘འགྱོ་’, ‘དྱོ’, and ‘།’. The syllable 

‘གཡུས་’, and ‘ཁར་’are concatenated to get the word ‘གཡུས་ཁར་’ (village) since ‘གཡུས་’ has 

been tagged as the beginning syllable of the word and ‘ཁར་’ as the last syllable of a 

word. The complete flowchart for word formation using the predicted tags (Y) for the 

given input sequence is explained in figure 40 and the algorithm is illustrated below. 
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Figure 40 The flowchart of word formation using the predicted tag sequence of 

the model 

Input: Syllable sequence S = (S1, S2, S3, S4, .. , Sn ) and output sequence T = 

(T1, T2, T3, ………, Tn )  

word = [ ] 

for i ⟵ 1 to n: 

      if ti == ‘beg’ do 

word_candi = si 

for j ⟵ i+1 to n do 

     if ti == ‘beg’ do 

        break; 

     else: 

        word_candi = word_candi + si 

      word. append(word_candi) 
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Data Collection 

The standard dataset is not available for Dzongkha. However, I have contacted 

the officials working in the Dzongkha Development Commission (DDC), the 

autonomous government organization responsible for the promotion and preservation 

of the languages in Bhutan, to help me with the datasets for this research. The officials 

including the Secretary were kind enough to share the dataset for segmentation. The 

dataset contains more than 10,226 sentences in which each syllable in the sentence is 

tagged either ‘beg’ or ‘mid’ or ‘end’. The sample dataset is shown below in Table 10. 

 

Table 10 Dataset Sample 
 

           Sample 1             Sample 2 

ཕྱོ་  beg 

རྒནམ་ end 

གྱིས་  beg 

བརྒྱུད་ beg 

འཕྱིན་ end 

འཐུ་  beg 

སེྟ་  beg 

བྱོ་  beg 

ཨ་  beg 

ཙི་  mid 

ཅྱིག་  end 

སླབ་  beg 

ཞྱིནམ་ beg 

ལས་  end 

དཔལ་ beg 

བཟང་ end 

ཁྱོད་  beg 

ཀྱི་  beg 

ཨ་  beg 

རྱོགས་ mid 

དགའ་ mid 

རྱོགས་ end 

ཨྱིན་  beg 

པས  beg 

ཟེར་  beg 

བརྒྱུད་ beg 

འཕྱིན་ end 

ང་  beg 

ལུ་  beg 

སྱོད་  beg 

དེས  beg 

།  beg 

 

Source: DDC, 2019 
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 The syllables in every sentence were tagged according to their position in the 

word. The datasets contained rows of tagged syllables in a TSV file as shown in Table 

10. The figure 41 illustrates the statistics of syllables tagged with each tag.  

 

 

 

Figure 41 Statistics of tags in the dataset 

 

The sentences in the dataset is delimited with white space. Using white space as the 

delimiter, the sentence number for each of the tagged syllable is appended as shown in 

figure 43. This could enable us to create tagged sentence in a simpler way. The tagged 

sentence is shown in Figure 42  

 

 

 

Figure 42 sample of Tagged sentence 
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Figure 43 Sentence Number appended to every tagged syllable  

 

The dataset is split into training and test. 90% of the sentences in the dataset 

will be taken as a training dataset while remaining will be used as the test set. Further, 

the training set is split into the training set and validation set. 20% of the sentences in 

the training set will be considered as the validation set while remaining will be used as 

a training dataset. Figure 44 shows the proportion of the dataset for various sets. 

However, the data ratio of 80:20 is maintained for RNN models. 

 

Figure 44 Proportion of datasets for training, validation and test sets 



 

CHAPTER IV  

 

RESULTS AND DISCUSSIONS 

 

Introduction 

 The Dzongkha word segmentation was formulated as a syllable tagging 

problem in chapter III. The models designed for syllable were trained on Google 

Collaboratory (abbreviated as Google Colab) incorporating configurations presented in 

chapter III. Google Colab is created by Google research project to disseminate 

education on machine learning and its research. It is a free cloud-based Jupyter 

notebook environment that runs on Tesla K80 GPU with 12GB RAM. The Google 

Colab is simple to use because all the required libraries are inbuilt into it. This chapter 

presents the results of the designed experiments and discussion on the results. The 

dataset presented in chapter two was used for the experiments. These results are 

presented in two sections as Deep Neural Network and Bi-LSTM. Then, the 

comparative analysis between these experiments based on these two algorithms is 

presented in the last section.  

 

Deep Neural Network 

 The DNN based tagger was proposed to a syllable in a word (Jamtsho & 

Muneesawang, 2020). The tag represents the position of the word, which can be then 

concatenated using the tag information of the syllable to form a valid Dzongkha word. 

The experiments were conducted as proposed in chapter III under the DNN section. 

The various context sizes for the target syllable were considered. This is mainly to 

determine the best context size for Dzongkha word segmentation based on syllable 

tagging task and also to study how the context of different size contributes to the task. 

Eight syllable tagger models were built for various context sizes and configurations. 

Each of the models was trained for 500 epochs.  

 The precision determines how precise is our models while recall determines 

the actual correctly predicted. The F1-score seek a balance between precision and 

recall. These matrices are calculated using the formulae presented in Chapter III under 

DNN based model section. Instead of coding to compute these matrices, 
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classification_report class provided by scikit-learn library was used. Besides F1-score, 

we have also considered recording the accuracy of every DNN based model. This is to 

enable model comparison with the Bi-LSTM model. However, for this section F1-score 

will be considered for the discussion. 

 Table 11 presents the experimental results for various configurations. Our 

DNN based models achieved high accuracy as stated in Hypothesis 1 in Chapter I under 

the Hypothesis section. The ‘Yes’ or ‘No’ under the Pretrained Embedding column 

header illustrates the incorporation of pretrained embedding in the model. 

 

Table 11 Experimental result for DNN based models 

 

Pretrained 

Embedding 

Usage 

Context 

Size (N) 

Precision 

(%) 
Recall (%) 

F1-score 

(%) 

Accuracy 

(%) 

Yes 

0 83.46 85.13 83.98 85.13 

1 94.19 94.02 94.08 94.02 

2 94.47 94.35 94.40 94.35 

3 93.63 93.58 93.60 93.58 

No 

0 83.19 85.29 83.69 85.29 

1 94.19 93.86 93.99 93.86 

2 94.20 93.95 94.05 93.95 

3 93.91 93.56 93.70 93.56 

 

 From model configuration that does not use a pretrained embedding matrix, 

which is represented as ‘No’, the model with context size 2 achieved the highest F1-

score of 94.05% with 94.20% precision and 93.95% recall. While the model with 

context size achieved the lowest F1-score of 83.69% with 83.19% precision and 85.29% 

recall. The second highest F1-score was obtained by the model with context size 1 

which is followed by the model with context size 3. 

 Further, in another experimental set that uses pretrained syllable embedding, 

the same hierarchy of performance was maintained. The model with context size 2 

achieved the highest F1-score of 94.40% with 94.47% precision and 94.35% recall 
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which the model with context 2 achieved the lowest F1-score of 83.98% with 83.46% 

precision and 85.16% recall. The usage of pretrained syllable embedding has 

contributed to increasing the performance of the model as reported in (C. Wang & Xu, 

2017). The performance gain for every context size of 0, 1, 2 and 3 is calculated as the 

difference of the F1-score between model without and with pretrained embedding.  The 

performance gain is presented in table 12.  

 

Table 12 Performance gain between two experimental sets 

 

Context Size 

(N) 

F1-score for models 

with pretrained 

embedding (A) (%) 

F1-score for models 

without pretrained 

embedding (B) (%) 

Performance 

Gain 

(A-B) (%) 

0 83.98 83.69 0.29 

1 94.08 93.99 0.09 

2 94.40 94.05 0.35 

3 93.60 93.70 -0.10 

  

 However, performance gain for a model with context size two was not 

observed. But in general, it is considered that performance gain is observed since it is 

shown from another context sizes.  

 Further, confusion matrices for every model of both experimental sets were 

computed using the confusion_matrix class from the scikit-learn library. The confusion 

matrices are presented in table 13. From the table, it is understood that model with 

context size 0 can handle the syllable with ‘beg’ tag efficiently but performs badly with 

the syllables with ‘mid’ tag while almost 47% of syllables with ‘mid’ tag are mistagged. 

In addition, almost 52% of the syllables were wrongly tagged by the same model 

without pretrained embedding. It can be also observed that the model with context size 

2 in both of the experimental sets was able to correctly tag the highest number of 

syllables with ‘beg’ tag. For ‘end’ tag, the context 2 model using a pretrained syllable 

embedding model and context 1 model without pretrained embedding correctly tagged 

the highest number of syllables while context 1 model in both of the experimental sets 

was able to correctly tagged the highest number of syllables with ‘mid’ tag.  



 61 

Table 13 Confusion matrix for two experimental sets using various context size 

 

Pretrained 

embedding 

usage 

Context size 

(N) 

Confusion Matrix 

 beg end mid 

YES 

0 

beg 10566 569 80 

end 1024 1180 15 

mid 269 105 61 

1 

beg 10833 273 109 

end 297 1852 70 

mid 38 43 354 

2 

beg 10842 277 96 

end 265 1901 53 

mid 43 50 342 

3 

beg 10830 289 96 

end 321 1837 61 

mid 57 66 312 

NO 

0 

beg 10715 426 74 

end 1142 1065 12 

mid 271 115 49 

1 

beg 10743 358 114 

end 231 1923 65 

mid 41 42 352 

2 

beg 10773 337 105 

end 240 1916 63 

mid 42 52 341 

3 

beg 10720 377 118 

end 238 1914 67 

mid 46 47 342 
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 From the experimental results, we concluded that context size 2 is the most 

suitable context size for the task of Dzongkha word segmentation which was formulated 

as a syllable tagging task. This is because the said model achieved the highest F1-score 

than other models and in the Dzongkha language, most of the words are with less than 

5 syllables.  

 The model was designed to handle the out-of-vocabulary word. However, the 

statistics could not be provided because all the sentences provided in the dataset were 

used for building the syllable embedding and subsequently, the syllable vocabulary.  

 The training and validation accuracy during the training phase of the models 

are presented in the figures below. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 45 Training and validation accuracy for models without pretrained 

syllable embedding 

N = 0 N = 1 

N = 2 N = 3 
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Figure 46 Training and validation accuracy for models with pretrained syllable 

embedding 

 

Bi-LSTM 

 Another experiment was conducted on Dzongkha word segmentation which is 

formulated as a syllable tagging task. This time, a powerful deep algorithm that is 

applicable to sequential inputs (Young et al., 2018) was implemented. In our 

experiments, 24 experimental models were designed which can be broadly categorized 

into two sets based on the number of hidden neurons, which are 512 or 256. The 

experiments were set with different configurations. The attributes of configuration are 

Learning rate (LR), Dropout (0.2) and embedding dimensions (Emb). Such 

arrangements were made because there is no thumb rule to determine the appropriate 

hyperparameters for the given task. Further, Adam optimizer (Kingma & Ba, 2014) was 

N = 0 N = 1 

N = 2 N = 3 
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adopted for this experiment. Our goal is to find the appropriate configurations for the 

task of Dzongkha word segmentation through the trial and error method. The 

experimental results for models using the Bi-LSTM algorithm with various 

configurations are presented in table 14. 

 

Table 14 Bi-LSTM model accuracy (%) for various configurations 

 

Neurons LR 
Without Dropout With Dropout (0.2) 

128 Emb 300 Emb 128 Emb 300 Emb 

512 

0.001 91.76 92.12 91.45 91.81 

0.010 94.24 93.50 91.25 84.86 

0.020 88.90 89.90 84.70 86.44 

256 

0.001 91.05 91.75 91.23 91.38 

0.010 95.25 94.40 94.64 94.58 

0.020 95.21 94.24 94.07 92.22 

  

 From the above table, it is observed that the model configurations with 256 

neurons, learning rate of 0.010 and embedding dimension of 128 without usage of 

dropout rate 0.2 achieved the highest accuracy of 95.25%, while the lowest of 84.70% 

was recorded with the model configurations of 512 neurons, learning rate of 0.020 and 

embedding dimension of 128 with dropout rate of 0.2.  

 The performance of the models is considered to be significant because all the 

model performance was above 80.00%. Amongst the models, we considered the model 

with 95.35% as the best and suitable model for the Dzongkha word segmentation. 

Further, the same model with different embedding dimensions and dropout 

outperformed the other models in their categories as illustrated in the table using bold 

text. All the configurations under each embedding dimension are considered as one 

category.  

The figures below show the training and validation accuracy recorded during the 

training phase of the Bi-LSTM models with configuration 256 neurons and 300 

embedding dimensions.  
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Figure 47 Training and validation accuracy for models for various configurations 

 

Comparative Analysis 

 This section presents a comparison between the two models being presented 

in earlier sections of this chapter. 

 In the DNN based model, the output was based on the current input. The past 

information is lost when the next input placed into the input layer because it does not 

have the memory to store the past information, thereby it is not suitable for long term 

dependencies (Sak, Senior, & Beaufays, 2014). The window approach (context) has to 

be applied for DNN based model if one wishes to incorporate the information around 

the target input. On the other hand, the RNN based models such as LSTM (Hochreiter 

LR = 0.001 and without Dropout LR = 0.01 and without Dropout 

LR = 0.01 with Dropout rate 0.2 LR = 0.001 with Dropout rate 0.2 



 66 

& Schmidhuber, 1997) are designed for handling sequential data and long-term 

dependencies because LSTM maintains a cell state which functions as the memory to 

store the past input information.  

 We could not provide the direct comparison with the research done by Norbu 

et al. (2010) and (Dhungyel & Grundspeņķis, 2017), which were the only previous 

research for the Dzongkha word segmentation. However, their models heavily depend 

on dictionary (C. Wang & Xu, 2017)and the completeness of the vocabulary determines 

the robustness of the model (Theeramunkong & Usanavasin, 2001). The new words are 

continuously evolving in the Dzongkha language to sustain with technological 

development and unprecedented names for animals, human, etc. On the other hand, the 

models proposed in my research is research is robust. It can effectively handle out-of-

vocabulary words. Further, requirement for feature engineering is avoided since the 

model learns features on its own. 

 The Bi-LSTM model configurations with 256 neurons, the learning rate of 

0.010 and embedding dimension of 128 without the usage of dropout rate 0.2 

outperformed the model accuracy DNN based model. The performance of Bi-LSTM 

was seen 0.85% higher than the highest accuracy of DNN based model. Table 15 

illustrates the comparative accuracy of the DNN based model that was selected as the 

most suitable model in section II of this chapter, with all the configuration of the Bi-

LSTM model that provides the highest accuracy in their categories.  

 

Table 15 Comparative results for two models 

 

Bi-LSTM (A) 

Without Dropout With Dropout (0.2) 

128 Emb 300 Emb 128 Emb 300 Emb 

95.25 94.40 94.64 94.58 

DNN (B) 94.35 94.35 94.35 94.35 

(A-B) 0.90 0.05 0.29% 0.23 

 

 The syllables that does not exist in the dictionary or vocabulary can be 

considered as the noise or unknown syllables. In both of these deep learning models, 
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all the unknown syllables or words can be annotated as ‘UNK’ token. A special ‘UNK’ 

token was introduced in the dictionary for handing the unknown words. 

 Further, traditional machine learning algorithms such as Support Vector 

Machine (SVM) (Antony, Mohan, & Soman, 2010; Vishwanathan & Murty, 2002) and 

Conditional Random Field (CRF) (Liu, Nuo, Ma, Wu, & He, 2011; PVS & Karthik, 

2007) were used for syllabling tagging to enable to efficiency with of our model. The 

experimental results for SVM and CRF is presented in table 16. The CRF model has 

achieved the highest performance among traditional algorithms which is 12.70% higher 

than the accuracy of SVM models. 

 

Table 16 Traditional machine learning model performance 

 

Algorithms Accuracy 

Support Vector Machine (SVM) 80.00% 

Conditional Random Field (CRF) 92.70% 

 

 CRF is the most commonly used traditional machine learning approach for 

sequence tagging task (Li, Savova, & Kipper, 2008) like Part of Speech (POS) tagging 

and Named Entity Recognition (NER). The deep learning models are computationally 

expensive to train while the opposite is seen the traditional approaches. However, the 

traditional approaches heavily depend on feature engineering (Gu et al., 2018). The 

manually driven features can be incomplete, time consuming and requires linguistic 

knowledge(C. Wang & Xu, 2017; M. Wang et al., 2018). The features used for CRF is 

presented below. 

 On other hand, although the deep algorithms are computational expensive to 

build, it provides an amazing performance as compared with the performance of the 

traditional algorithms without the need of manual feature engineering as the models 

learns the features automatically from the input and output set fed during the training 

of the models. The performance analysis between the traditional algorithm and deep 

learning algorithms is presented in table 17. The CRF has provided the highest accuracy 

of 92.70% among the traditional algorithms, whose accuracy is 2.55% and 1.65% lesser 
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than the performance of RNN and DNN models, respectively. Thus, proposed deep 

learning algorithms are superior than traditional machine learning model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

'is_first_syllable': int(index==0), 

'is_last_syllable':int(index==len(sentence)-1), 

'prev_word_1':'' if index==0 else sentence[index-1], 

'prev_word_2':'' if index==0 or index==1 else sentence[

index-2], 

'prev_word_3':'' if index==0 or index==1 or index==2 el

se sentence[index-3], 

'next_word_1':'' if index==len(sentence)-

1 else sentence[index+1], 

'next_word_2':'' if index==len(sentence)-

1 or index==len(sentence)-2 else sentence[index+2], 

'next_word_3':'' if index==len(sentence)-

1 or index==len(sentence)-2 or index==len(sentence)-

3   else sentence[index+3], 

'is_numeric':int(sentence[index].isdigit()), 

'is_alphanumeric': int(bool((re.match('^(?=.*[0-

9]$)(?=.*[a-zA-Z])',sentence[index])))), 

'prefix_1':sentence[index][0], 

'prefix_2': sentence[index][:2], 

'prefix_3':sentence[index][:3], 

'prefix_4':sentence[index][:4], 

'suffix_1':sentence[index][-1], 

'suffix_2':sentence[index][-2:], 

'suffix_3':sentence[index][-3:], 

'suffix_4':sentence[index][-4:], 

'word_has_hyphen': 1 if '-' in sentence[index] else 0 
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Table 17 Performance between traditional and deep learning algorithms 

 

algorithms Performance Accuracy (%) 

Bi-LSTM (A) 

Without Dropout With Dropout (0.2) 

128 Emb 300 Emb 128 Emb 300 Emb 

95.25 94.40 94.64 94.58 

DNN (B) 94.35 94.35 94.35 94.35 

CRF (C) 92.70 92.70 92.70 92.70 

(A-C) 2.55 1.7 1.94 1.88 

(B-C) 1.65 1.65 1.65 1.65 

 

Word Interpretation 

 The syllable tagger model produces the sequence of tags for the input 

sequences. The valid word in the given sentences can be identified using the tag 

sequence which was produced by the tagger model. The algorithm adopted in Chapter 

III was used for the word interpretation. The OOV syllable(s) will be annotated with 

‘UNK’ token with the index 0 in the vocabulary. The output illustrated in figure 48 

represents the segmented word for the input sequence ‘དཔལ་འབྱོར་རྱིག་པའྱི་ཆྱོས་ཚན་འདྱི་སླྱོབ་

སྱོང་འབདཝ་ད་ལཱ་ཁག་ཡྱོད།’ 

 

 

 

Figure 48 Segmented words using tag information produced by the tagger



 

CHAPTER V  

 

CONCLUSION 

 

Introduction 

 This is the chapter of my thesis. The summary of the main part of the thesis is 

presented in Summary section. The remainder of the chapter is organized as implication 

and recommendation of the study, limitations of the study and the future research work.  

 

Summary  

 The Dzongkha script is written as a string of syllables without explicit word 

delimiters, unlike in English. For such language, the word segmentation is considered 

to be the fundamental steps in building NLP applications such as translator, text to 

speech system, spell, and grammar checker, etc. This is because word forms the basic 

constituent of any language. The meaning of the sentence or phrase depends on the 

participation of the word.  

 Most of the Asian languages are written without explicit word delimiters. 

Many researches have been done for those languages. However, there is not much 

research done for the Dzongkha word segmentation. In this thesis, the Dzongkha word 

segmentation was formulated as the syllable tagging task, where each of the syllables 

was tagged either ‘beg’, ‘mid’ and ‘end’ depending on their position in a word. The 

identification of the position of a syllable is very important in this task. The ‘beg’ tag 

represents the syllable at the beginning of the word or the syllable that forms word by 

itself, ‘end’ tags represents the syllable that marks the end of the word while the ‘mid’ 

tag represents the syllable in between the syllables with ‘beg’ and ‘end’ tag.  

 The syllable tagging algorithm can be of two variants. The traditional approach 

such as CRF. The traditional method heavily depends on manual feature engineering 

which is considered to be time-consuming and sometimes incomplete. The efficiency 

of the model depends on the effectiveness of feature engineering. In this thesis, modern 

approaches were used where deep learning algorithms were studied and applied for the 

task of Dzongkha word segmentation. The modern approaches skip the need for manual 
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feature engineering. The Deep Neural Network and Bi-directional Long Short-term 

memory algorithms were proposed for syllable tagging task in this study. 

 In our experiment, the syllable vectors were computed using the word2vec 

model which is based on the skip-gram algorithm. Two experimental sets based on 

usage of pretrained syllable vectors were designed for DNN algorithms and each set 

comprised of four models of varied context size from 0 to 3. The contextual information 

was used because the tag of the syllable depends on its surrounding syllables. Amongst 

the eight DNN based models, the model with context size 2 achieved the highest F1-

score of 94.40% or accuracy of 93.95%. The DNN based models are not suitable for 

long term dependencies because it does not have a special memory to record the 

previous layer information.  

 The special neural network called ‘Bi-LSTM’ was used in the second 

experiment. The algorithm has a cell state that records the precious that can be used for 

prediction in the next layer, thereby making it suitable for long term dependencies. A 

total of 24 models were trained using different configurations. This is carried out as the 

trial and error technique to determine the best model with an optimized configuration 

for the task of Dzongkha word segmentation since there is no hard rule to determine 

the optimal hyperparameters. Amongst these models, the model with 256 neurons, a 

learning rate of 0.01 and embedding dimensions of 128 without dropout regularization 

achieved the highest accuracy of 95.25%, which outperformed the performance of DNN 

based model. An increase in 0.90% was observed. The final segmented words were 

interpreted using the tag information obtained from the syllable tagger models. 

 

The implication of the research and recommendations 

 The syllable that marks the beginning of the word and forms the word by itself 

were tagged with the ‘beg’ tag. The performance of the model may increase if a sperate 

tag is introduced for the tag that marks the syllable. Further, there is no maximum 

amount of dataset for the deep learning models. The model performance will increase 

with a higher amount of data.  

 The Dzongkha segmentation system that has been proposed in this study can 

be used for further advancement in the field of the Dzongkha language processing. This 

system is considered as the initial step for the development of Dzongkha parser. The 
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development of the NLP application would help to promote and preserve the national 

language of Bhutan. Further, the applications would enable effective communications 

between the foreigner and the native Bhutanese. 

 

Limitations of the study 

The following are the limitations of my study: 

1. Dzongkha language is a morphically rich language (DDC, 2019; Wangdi, 2015) 

where the spelling of the word depends on its context. For example, ང་ཆུ་འཐུངམ་

ཨྱིན། which means ‘I am drinking some water’. The word ‘འཐུངམ་’ is the word 

derived from its stem word ‘འཐུང་’ to represent factual present. Such type of 

syllables or words are not morphologically considered in our work, 

2. Besides being morphologically rich language, Dzongkha script has style of 

writing in the short form or abbreviated form. This enable people for quick 

writing. For example, the name of the person ‘བཀྲ་ཤྱིས་’ which can be transcribed 

as ‘Ta-shi’ can be written in an abbreviated form as ‘བཀྲྱིས་’. Such styles of 

abbreviations are not considered in this work.  

3. During the course of the experiments in this study, the focus was made only on 

the performance of the models. The different models presented in this work can 

be differentiated on the ground of computational cost such as parameter size, 

model size, and training time. The study on computational cost of the models is 

not considered, and 

4. The segmentation models obtained from the experiments conducted in this 

study can be of higher storage and processing requirement, which it will not be 

applicable to deployment on devices with limited storage and processing power 

such as Raspberry Pi 3 (Termritthikun, Jamtsho, & Muneesawang, 2019).  

 

Future Research 

 The limitations discussed in the above section are the basis for the future 

research. Some of the future research as follows: 

1. Increasing the size of the datasets has to be considered because the effectiveness 

of the deep learning models depends on the size of its training dataset. Further, 
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the dataset should be able to handle abbreviated and morphological words, 

incorporating separate tag for syllable that forms the word by itself and the 

syllable that marks the beginning of the word.  

2. Development of deep learning models suitable for deployment on devices with 

limited storage and processing power. 

3. Application of Convolutional Neural Network (CNN) in the field of Dzongkha 

word segmentation. CNN has the advantage of efficiently capturing of n-gram 

features through its convolutional layer (C. Wang & Xu, 2017).  

4. Further, the hybrid deep learning models can be proposed for the task of 

Dzongkha word segmentation. For example, a model with CNN and CRF. The 

Convolutional layer of CNN can be used to automatically captures features of 

the text and then, it can be fed to CRF for making the predictions.  
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