

DZONGKHA WORD SEGMENTATION USING DEEP LEARNING

YESHI JAMTSHO

A Thesis Submitted to the Graduate School of Naresuan University

in Partial Fulfillment of the Requirements

for the Master of Engineering in (Computer Engineering - (Type A 2))

2019

Copyright by Naresuan University

DZONGKHA WORD SEGMENTATION USING DEEP LEARNING

YESHI JAMTSHO

A Thesis Submitted to the Graduate School of Naresuan University

in Partial Fulfillment of the Requirements

for the Master of Engineering in (Computer Engineering - (Type A 2))

2019

Copyright by Naresuan University

Thesis entitled "Dzongkha Word Segmentation Using Deep Learning"

By YESHI JAMTSHO

has been approved by the Graduate School as partial fulfillment of the requirements

for the Master of Engineering in Computer Engineering - (Type A 2) of Naresuan

University

Oral Defense Committee

Chair

(Associate Professor Chakchai So-In, Ph.D.)

Advisor

(Professor Paisarn Muneesawang, Ph.D.)

Internal Examiner

(Assistant Professor Phongphun Kijsanayothin, Ph.D.)

Internal Examiner

(Assistant Professor Panomkhawn Riyamongkol, Ph.D.)

 Approved

(Professor Paisarn Muneesawang, Ph.D.)

 for Dean of the Graduate School

 C

ABST RACT

Title DZONGKHA WORD SEGMENTATION USING DEEP

LEARNING

Author YESHI JAMTSHO

Advisor Professor Paisarn Muneesawang, Ph.D.

Academic Paper Thesis M.Eng. in Computer Engineering - (Type A 2),

Naresuan University, 2019

Keywords Dzongkha word segmentation, Deep Learning, Natural

Language Processing, Window approach, Deep Neural

Network, Bi-LSTM RNN, Syllable tagging

ABSTRACT

Dzongkha is the national language of Bhutan. The preservation and

promotion of the national language are of the utmost importance because the language

represents the identity of the country. Focusing and advancing in the field of Natural

Language Processing (NLP) and its applications can be the technological movements

toward the said goal. However, there is no advancement seen in the field of Dzongkha

language processing and its research. Also, the development of NLP applications is

challenging because the Dzongkha is written as a string of syllables without an explicit

word delimiter.

For such language, the word segmentation is the first and fundamental step

towards building NLP applications. The word forms the basic constituent for the NLP

task such as translator and the participation of the word in the given sentence or phrase

determines the meaning. In this thesis, the Dzongkha word segmentation is formulated

as the syllable tagging problem because the word is formed as a combination of one or

more syllables. The tag of the syllable represents the position of the syllable in a word.

There are many techniques for tagging ranging from dictionary-based to modern

approaches. The deep learning algorithm, particularly Deep Neural Network (DNN)

and Bi-directional Long Short-Term Memory (Bi-LSTM) were proposed. The usage of

deep learning algorithms avoids the need for manual feature engineering.

 D

In our experiments for the DNN model, the window approach was

implemented to incorporate contextual information of the target syllable. The context

size ranging from 0 to 3 were considered to determine the most suitable context size for

the Dzongkha language. Two experimental sets were designed based on the usage of

pretrained syllable embedding. Each set comprises of four models of various context

sizes. Amongst the eight models, the model with context 2 using pretrained syllable

embedding achieved the highest accuracy of 94.35% and F1-score of 94.40% with

94.47% precision and 94.35% recall.

There is no thumb rule to determine the optimal hyperparameters for the deep

learning algorithms. We have designed 24 Bi-LSTM models with different

configurations, which can be broadly classified into two experimental sets, based on

the neuron size: 256 and 512. Amongst these models, the model with the configuration

of 256 neuron size, embedding dimensions of 128, the learning rate of 0.01 and without

dropout achieved the highest accuracy of 95.25%, which is 0.90% higher than the DNN

based model. Further, the proposed deep learning models have been compared with

traditional machine learning algorithms like CRF and SVM, which shows the proposed

model outperformed the traditional machine learning approaches.

Out-of-vocabulary (OOV) is are the most prominent issue to be considered

for language processing. Both of the models were designed to handle the OOV

syllables. My work is the first of its to apply Deep Learning algorithms in the field of

Dzongkha language processing and I consider the performance achieved by both of the

models as the significant one.

 E

ACKNOWLEDGEMENT S

ACKNOWLEDGEMENTS

I am really out of words to express my heartfelt gratitude to His Majesty the King

of Bhutan, Jigme Khesar Namgay Wangchuk, for showering me with the prestigious

postgraduate scholarship. Also, I extend my sincere gratitude to Naresuan University for

offering me the scholarship to study at the university with free access to every facility.

Thank you, NU, for making my study period homely.

I would like to offer my deepest and sincere appreciation to my advisor Prof. Dr.

Paisarn Muneesawang for his continued support rendered during my study and research,

patience, motivation, enthusiasm, and immense knowledge. His constant guidance helped

me to reach this far, for which I consider him as the most precious mentor in my study.

Further, I am extremely grateful to my committee for their critical

recommendations and suggestion which is the basis for my personal development and

particularly, my thesis: Assoc. Prof. Dr. Chakchai So-In, Asst. Prof. Dr. Panomkhawn

Riyamongkol, and Asst. Prof. Dr. Phongphun Kijsanayothin.

I cannot forget to thank Dzongkha Development Commission (DDC) and

particularly, Senior ICT officer, Mr. Tenzin Namgyel for providing the syllable tagged

corpus as the dataset for my experiments. Your unwavering support has enabled me to

complete my experiment on time.

My sincere acknowledgment also extends to the Royal University of Bhutan, and

in particular, to the management of the College of Science and Technology, for being very

supportive and granting study leave for my postgraduate studies.

Lastly, I could not have completed this thesis without the support from my

family, relatives, colleagues, friends and all the well-wishers. Thank you for your prayers

and love. Your presence gave me the strength to work harder and inspired me to become

a productive and responsible student.

YESHI JAMTSHO

TABLE OF CONTENTS

 Page

ABSTRACT .. C

ACKNOWLEDGEMENTS .. E

TABLE OF CONTENTS ... F

List of Tables ... I

List of Figures .. J

CHAPTER I INTRODUCTION ... 1

Introduction .. 1

Background and Significance of the Study ... 1

Purposes of the Study .. 3

Problem statement ... 4

Scope of the Study ... 5

Basic Assumption .. 5

Hypothesis of the Study ... 5

Summary of the work .. 6

The Contributions of the work ... 7

CHAPTER II RELATED WORKS AND STUDIES .. 8

Introduction .. 8

Overview of the Dzongkha language... 8

Literature Review .. 10

Dictionary-based approach .. 11

Statistical approach .. 12

Hybrid approach .. 12

Deep learning in NLP .. 14

Deep Neural Networks (DNN) .. 15

Convolutional Neural Networks (CNN) .. 17

 G

Recurrent Neural Networks (RNN) ... 19

Activation functions .. 23

Sigmoid activation function ... 23

The Hyperbolic Tangent activation function .. 24

Rectified Linear Unit .. 25

Softmax activation function ... 26

CHAPTER III RESEARCH METHODOLOGY .. 27

Introduction .. 27

System Overview ... 27

Word Embedding (word2vec) ... 28

Count-based approach .. 28

Predictive model ... 30

Pre-processing ... 34

Syllable Segmentation ... 35

Context generation .. 35

Mapping syllables to its indices in the vocabulary .. 38

Syllable Tagger .. 39

Deep Neural Network ... 39

Bi-LSTM RNN ... 48

Segmentation Generator .. 53

Data Collection .. 55

CHAPTER IV RESULTS AND DISCUSSIONS ... 58

Introduction .. 58

Deep Neural Network .. 58

Bi-LSTM .. 63

Comparative Analysis .. 65

Word Interpretation ... 69

CHAPTER V CONCLUSION ... 70

Introduction .. 70

 H

Summary .. 70

The implication of the research and recommendations ... 71

Limitations of the study ... 72

Future Research ... 72

REFERENCES .. 74

BIOGRAPHY .. 80

List of Tables

 Page

Table 1 A sample Dzongkha words with its number of syllables................................ 10

Table 2 One-hot encoding .. 29

Table 3 Tag Vocabulary and description ... 34

Table 4 Context of Each syllable with N=1 ... 36

Table 5 Context of each syllable with N = 2 ... 37

Table 6 Context of each syllable with N = 3 ... 37

Table 7 Confusion Matrix .. 42

Table 8 Model Hyperparameters for DNN models .. 47

Table 9 Experimental configurations for Bi-LSTM architecture 50

Table 10 Dataset Sample ... 55

Table 11 Experimental result for DNN based models ... 59

Table 12 Performance gain between two experimental sets .. 60

Table 13 Confusion matrix for two experimental sets using various context size 61

Table 14 Bi-LSTM model accuracy (%) for various configurations 64

Table 15 Comparative results for two models ... 66

Table 16 Traditional machine learning model performance .. 67

Table 17 Performance between traditional and deep learning algorithms 69

List of Figures

 Page

Figure 1 Dzongkha character sets .. 9

Figure 2 A labeled Dzongkha Word .. 10

Figure 3 Typical Neural Network .. 15

Figure 4 Activation functions ... 16

Figure 5 Convolutional Neural Network Architecture .. 17

Figure 6 Convolutional operations... 18

Figure 7 Types of the pooling layer ... 19

Figure 8 RNN architecture ... 20

Figure 9 Detailed LSTM architecture and its gates ... 21

Figure 10 sigmoid activation function ... 24

Figure 11 TanH activation function ... 25

Figure 12 ReLU activation function .. 25

Figure 13 Segmentation system overview ... 27

Figure 14 CBOW model .. 30

Figure 15 Skip-gram model ... 31

Figure 16 Input sentence mapped to its indices when N = 0 38

Figure 17 Input sentence mapped to its indices when N = 1 38

Figure 18 Input sentence mapped to its indices when N = 2 39

Figure 19 Input sentence mapped to its indices when N = 3. 39

Figure 20 Neural Network Architecture .. 40

Figure 21 Batch Normalization algorithm ... 42

Figure 22 Model summary for N=3 without pretrained embedding 43

Figure 23 Model summary for N=2 without pretrained embedding 44

Figure 24 Model summary for N=1 without pretrained embedding 44

Figure 25 Model summary for N=0 without pretrained embedding 45

Figure 26 Model summary for N=3 with pretrained embedding 45

 K

Figure 27 Model summary for N=2 with pretrained embedding 46

Figure 28 Model summary for N=1 with pretrained embedding 46

Figure 29 Model summary for N=0 with pretrained embedding 47

Figure 30 CLR learning rate schedule ... 48

Figure 31 Bi-LSTM RNN model architecture for syllable tagging 49

Figure 32 Model summary for 128 Emb_Dim and 256 Neurons without dropout 50

Figure 33 Model summary for 128 Emb_Dim and 256 Neurons with dropout........... 51

Figure 34 Model summary for 300 Emb_Dim and 256 Neurons without dropout 51

Figure 35 Model summary for 300 Emb_Dim and 256 Neurons with dropout........... 51

Figure 36 Model summary for 128 Emb_Dim and 512 Neurons without dropout 52

Figure 37 Model summary for 128 Emb_Dim and 512 Neurons with dropout........... 52

Figure 38 Model summary for 300 Emb_Dim and 512 Neurons without dropout 52

Figure 39 Model summary for 300 Emb_Dim and 512 Neurons with dropout........... 53

Figure 40 The flowchart of word formation using the predicted tag sequence of the

model.. 54

Figure 41 Statistics of tags in the dataset ... 56

Figure 42 sample of Tagged sentence .. 56

Figure 43 Sentence Number appended to every tagged syllable 57

Figure 44 Proportion of datasets for training, validation and test sets 57

Figure 45 Training and validation accuracy for models without pretrained syllable

embedding .. 62

Figure 46 Training and validation accuracy for models with pretrained syllable

embedding .. 63

Figure 47 Training and validation accuracy for models for various configurations.... 65

Figure 48 Segmented words using tag information produced by the tagger 69

CHAPTER I

INTRODUCTION

Introduction

 Natural Language Processing (NLP) is the subfield of Artificial Intelligent

concerned with the cognitive development of the computer system to understand natural

(human) language. NLP has witnessed its application in machine translation, spell and

grammar checker, Text to speech system and many more. The word forms the

fundamental constituent of processing natural language. However, identification of

words in languages without explicit word boundaries, unlike in the English language is

challenging. Word Segmentation is the process of breaking down the input text

sequences into its constituent words. The segmentation task is considered as the

fundamental steps for building the NLP applications, for the languages without explicit

word boundaries. The words in the natural language share semantic and syntactic

relationships, consequently, their participation determines the meaning of the phrase or

text.

 Dzongkha language, the national language of Bhutan, is one of the languages

without explicit word delimiters. The scripts are written as a string of smallest token

called syllable. This chapter introduces an overview of my thesis on “Dzongkha Word

Segmentation using Deep Learning”. This chapter is organized into sections as

Background and significance of the study, the purpose of the study, problem statement,

scope of the study, basic assumption, hypothesis of the study, summary of the work and

the contributions of the work.

Background and Significance of the Study

 Dzongkha is the national language of Bhutan since 1971 (DDC, 2019). The

national language represents the identity and sovereignty of the country; thus, it is

important to preserve and promote the language. The Royal Government of Bhutan

(RGOB) under the royal command of His Majesties the third king, late Jigme Dorji

Wangchuk and His Majesty the fourth king, Jigme Singye Wangchuk, has initiated

 2

various steps for the preservation, development, and promotion of language thorough

formation of the committee such as Dzongkha Development Division under Ministry

of Education and Dzongkha Advisory Committee in 1986, and introducing Dzongkha

as a subject in the schools (DDC, 2019). In 1989, Dzongkha Development Commission

(DDC) was established that functions autonomously for the development and

promotion of the language in the country with a vision “To make Dzongkha the main

medium of communication for every Bhutanese in order to promote harmony, cohesion

and stability in the country” (DDC, 2019).

 Preservation and Promotion through the technology perspective are never

witness for the Dzongkha language. Natural Language Processing (NLP) is a sub-field

of Artificial Intelligence (AI) that deals with extending the capability of computers to

understand the statement or words of the human language or cognitive development of

the computer system to understand the natural language. The technological advances in

computational power and machine learning algorithms, and the availability and

accessibility to organized linguistic data has enabled NLP to gained much attention in

the research and development (Hirschberg & Manning, 2015; Young, Hazarika, Poria,

& Cambria, 2018). In recent times, it has spread its applications in various fields such

as machine translation, email spam detection, information extraction, summarization,

medical, spell or grammar checker, Text to Speech (TTS), Speech to Text System,

question answer system and many more.

 The computerization of the Dzongkha language can be considered as the

technological movement towards the preservation and promotion of the language, and

further enabling the language as a medium of communication for the foreigners in the

country and the Bhutanese. According to the Tourism Council of Bhutan (2018) report,

Bhutan has seen an increasing tourist arrival rate in the country with a total of 274,097

visitor arrivals in 2018 which is 7.61% increase over the past years. The application of

NLP such as machine translation and speech synthesis would benefit the tourist to

interact with the Bhutanese people in the village and farm to get more insights into the

culture and traditions. This would enable the tourist to feel homely in the alien country.

 Further, NLP applications such as TTS and translator would enable easier

access to a wide range of information irrespective of one’s qualification and capability.

For example, daily news published in English can be read by those with no knowledge

 3

of English by using the “translator” and a visually impaired person (without braille

knowledge) can write his thoughts by using speech to text system.

 However, advancement has not been witnessed in terms of Dzongkha language

processing. It is due to the fact that Dzongkha is written as a string of syllables, without

explicit word delimiter unlike in English. The word forms the basic constituent towards

the task of NLP applications. The participation of the words in the given phrase,

sentence or text plays an important role in representing the meaning of the text. The

meaning of the phrase, sentence and paragraph is always dependent on the context.

Thus, increasing the complexity of developing NLP applications. The computer does

not have common sense knowledge and reasoning capability (Arun et al., 2016) as we

do have. Therefore, the word segmentation system plays an important role in

recognizing the words in the given input sentence and it would enable the development

of other NLP toolkits and its application.

 Word segmentation is the process of breaking the given phrase or sentence

into its constituent words. For example, the sentence “ཁྱོད་ཀྱི་སྱོར་ལས་ག་ར་བསྟན་འཛནི་གྱིས་སླབ་དེས།”

which means “Tenzin has shared everything about you.” can be segmented as “ཁྱོད་ | ཀྱི་ |

སྱོར་ལས་ | ག་ར་ | བསྟན་འཛནི་ | གྱིས་ | སླབ་ | དེས | །”, where vertical stroke “|” delimits the segmented

words of the given input sentence. Thus, a robust and intelligent word segmentation

system using the most recent efficient algorithm is desired for the Dzongkha language.

 This research aims to assist DDC in terms of Dzongkha language processing

and young researchers who wish to research in the field of Dzongkha language

processing, thereby promoting and preserving the language. Many researches and

development have been done for other languages like Thai, Chinese and many other

languages. However, there is not much research conducted in Dzongkha word

segmentation other than work of (Norbu, Choejey, Dendup, Hussain, & Muaz, 2010).

The research on Dzongkha word segmentation using deep learning can be the first of

its kind.

Purposes of the Study
 The main goal of this research to build a robust and intelligent Dzongkha word

segmentation system that can be used in future research for further development of

 4

Dzongkha language toolkits such as POS tagging, information retrieval, Machine

translation and many more, by fulfilling the following purpose:

• Since Dzongkha language is written as a string of syllables, formulate the

Dzongkha segmentation task as syllable tagging task

• Develop deep learning model for Dzongkha word segmentation using Deep

Neural Network (DNN) and Bi-directional Long Short-Term Memory (Bi-

LSTM),

• The model is designed for the accurate identification of the position of a syllable

in a word,

• Compare the performance of Deep Learning model with the performance of

traditional machine learning models such as Support Vector Machine (SVM)

and Conditional Random Field (CRF), and

• The model can handle the out-of-vocabulary word efficiently.

Problem statement

 Dzongkha Development Commission (DDC), the autonomous government

organization that is considered as the premier institution responsible for developing and

promoting Dzongkha in the country has realized the potential of NLP in promoting the

language and enabling the language as one of the communication mediums in

disseminating the information. The office explores various opportunities for

collaboration with academic institutions like College of Science of Technology under

the Royal University of Bhutan and other renowned institutions in India and abroad, to

work on Dzongkha language Processing and come up with various NLP application for

Dzongkha like Spell and Grammar Checker, Machine translation, Automatic Speech

recognition, Speech Synthesis system, Optical Character Recognition and many more.

However, despite their unwavering effort, nothing much has been observed advancing

in the field of Dzongkha Language Processing.

 As discussed in the background section, Dzongkha is written as a string of

syllables without explicit word delimiters which makes the computerization of

Dzongkha challenging. Dzongkha sentences or phrases are written in the form of

continuous syllable separated by Tsheg without proper word boundary, unlike English.

Word forms semantic and syntactic constituent for language processing and thus, it

 5

plays an important role in the language processing task. Therefore, word segmentation

is considered one of the fundamental steps towards effective Language Processing

(Norbu et al., 2010; Theeramunkong & Usanavasin, 2001; C. Wang & Xu, 2017) for

those languages without word delimiters. The intelligent and robust word segmentation

system is desired for the advancement of Dzongkha in the field of NLP.

Scope of the Study

 The scope of the research is to develop the intelligent and robust Dzongkha

word segmentation with the following milestones

1. Conduct a literature review in the field of word segmentation,

2. Explore deep learning algorithms,

3. Apply deep learning algorithms in the field of NLP, particularly Dzongkha

Word Segmentation,

4. Provide performance comparison between some of the traditional machine

learning approach and the proposed deep learning approach, and

5. Optimize the deep learning models using batch normalization and learning rate

scheduler.

Basic Assumption

 During the research following assumptions will be made:

1. The model can intelligently identify and handle out-of-vocabulary (OOV) word,

2. The Deep Neural Network model performs better with windows approach,

3. The proposed deep learning model outperforms the traditional machine learning

approach, and

4. The tagging model is trained with enough datasets

Hypothesis of the Study
1. Does the proposed deep learning model perform segmentation with high

accuracy?

2. How does the context contribute to enhance the efficiency of the model?

3. Does the proposed deep learning model outperform the traditional learning

approaches such as SVM and CRF? and

 6

4. Does the proposed model handle the OOV word efficiently?

Summary of the work

 The Dzongkha script is written as a string of syllables without explicit word

boundaries. The Dzongkha word segmentation task was formulated as a syllable

tagging task. The tag of the syllable represents the position of the syllable in a word.

Three tags were used in this thesis such as: ‘beg’ tag represents the first syllable of a

word or a syllable that forms the word by itself, ‘end’ tag represents the last syllable of

a word while the ‘mid’ tag marks the syllable in between the syllables with ‘beg’ and

‘end’ tags.

 The traditional machine learning approaches heavily depend on manual feature

engineering, which can be incomplete, time-consuming and requires linguistic

knowledge. The performance of such models depends on the effectiveness of manual

feature engineering. In this thesis, Deep learning algorithms, in particular, Deep Neural

Network (DNN) and Bi-directional Long Short-Term Memory (Bi-LSTM) were

proposed for the syllable tagging task. A word2vec model from the scikit-learn library

was used to generate the syllable vectors or embedding.

 Windows approach was incorporated for the DNN approach as the tag of the

syllable depends on its surrounding syllable. Window or context sizes from 0 to 3 were

used for the experiment. DNN experiments were conducted in two sets with four

experiments in each set. The set is categorized by the usage of pretrained syllable

embedding from the word2vec model. The DNN with context size 2 which is trained

with pretrained syllable embedding achieved the highest accuracy of 94.35%.

 The DNN approach considers each input as an independent entity, where in

reality, each syllable in the input sentences shares the dependency. Thus, Recurrent

Neural Network-based Bi-LSTM was proposed for the syllable tagging task. In this

case, the previous information is used for tagging the current syllable. In this case, 24

different experimental configurations were proposed, among which one of the

configurations provided the highest accuracy of 95.25%, outperforming the DNN based

approach by 0.90%.

 In addition to our deep learning-based proposed models, experiments

employing traditional machine learning algorithms such as Support Vector Machine

 7

(SVM) and Conditional Random Field (CRF) were conducted. The features are

manually derived, unlike in the Deep learning approach. The performance of CRF was

observed higher than the SVM models by 12.70%. Further, the CRF performance was

compared with the proposed deep learning models. DNN and Bi-LSTM based models

achieved 2.55% and 1.65% higher than traditional CRF models, respectively. All these

models were trained using the dataset provided by the Dzongkha Development

Commission. Finally, the words are formed by combining the syllable based on their

tag.

The Contributions of the work

 The experiments proposed for Dzongkha word segmentation in this thesis

were successfully conducted and the main contributions of my work are as follows:

1. The Deep Learning algorithms (DNN and Bi-LSTM) have been applied to the

field of Dzongkha word segmentation. The models avoid the need for manual

feature engineering, unlike in traditional machine learning approaches.

Application of Deep Learning approaches to the Dzongkha language is the first

of its kind.

2. The windows approach was explored for deriving the contextual information of

the target syllable for the tagging task using DNN.

3. The exploration of Dzongkha word segmentation using traditional approaches

are also the first of its kind in the field of Dzongkha word segmentation. The

performance of traditional machine learning approaches was compared with the

deep learning approaches, showing the superiority of Deep learning algorithms.

4. Part of Speech tagging (NER) and Named Entity Recognition (NER) are also

important aspects of Natural Language Processing. The proposed models can

be applied for this task.

5. The work presented in this thesis would assist the Dzongkha Development

Commission (DDC) in making plans for the advancement of the Dzongkha

language. Further, the results obtained in this research can be used as the basis

for upcoming research.

CHAPTER II

RELATED WORKS AND STUDIES

Introduction

 This chapter provides an Overview of the Dzongkha language, Literature

review on the Segmentation task and further, it discusses Deep Learning algorithms.

Overview of the Dzongkha language

 Bhutan is linguistically rich (Wangdi, 2015) country with 21 spoken languages

(Driem, 1992) and geographically small landlocked country with a total population of

735,553 as of May 30, 2017 (NSB, 2017) in the Asia continent, sharing its border with

India in the south and China in the north. Dzongkha is adopted as the official and

national language of Bhutan since His Majesty the third King of Bhutan, Jigme Dorji

Wangchuk passed a royal decree in 1971 and according to Article 1(8) “the Constitution

of Kingdom of Bhutan”. Further, the people of eight western dzongkhags or districts

(Thimphu, Paro, Ha, Gasa, Chukha, Punakha, Wangduphodrang, and Dagana) use

Dzongkha as their native language. According to Dorjee (2014), Dzongkha is the

widely spoken language among other spoken languages in the country with an

estimated native speaker of 160,000. It is adopted as the lingua franca where most of

the Bhutanese use as a common language for communication with others using different

native.

 Dzongkha is defined as the language spoken in the fortresses (kha - language

and Dzong - fortress). All spoken languages except Lhotsamkha or Nepali are Tibeto-

Burman Languages. The consonants, vowels, and digits of the Dzongkha language are

shown in Figure 1.

 9

Figure 1 Dzongkha character sets

 A sample of Dzongkha sentence is shown below:

རྱོང་ཁ་གྱོང་འཕེལ་ལྷན་ཚོགས་ཀྱིས་ ཡྱོངས་གྲགས་ཡྱོད་པའྱི་གྱོག་རྱིག་རྱིམ་ལུགས་ཚུ་ནང་ལུ་ གནས་ཚད་གཞྱིར་བཞག་གྱི་རྒྱབ་སྱོར་

མཐུན་རེན་ཚུ་བཟྱོ་ནྱི་ལུ་བརྱོན་ཤུགས་བསེད་དྱོ་ཡྱོདཔ་ཨྱིན།

 which translates as “The Dzongkha Development Commission is dedicated to

developing standard-based support and increased functionality on popular computing

platforms.”.

 The Dzongkha sentence or script is written in the form of continuous syllables

as seen in the sample sentence. A syllable is the smallest token in the Dzongkha script

formed by a single or collection of characters. The syllable “རྱོང་” is a collection of four

characters excluding the special dot character while “ཁ་” is a syllable of a single

character. Each of the syllables in the script is separated by a special dot character called

Tsheg (་). A Dzongkha word can be represented either by a single syllable or a

combination of syllables as shown in Table 1. The vertical stroke (|) in the table was

used to separate the syllables. In most cases, a vertical stroke called Shad (།), is used

to terminate the sentence. Figure 2 shows a Dzongkha word illustrating syllable, Tsheg,

and Shad.

 10

Table 1 A sample Dzongkha words with its number of syllables

Dzongkha words Number of the syllable

(s)

Translation

ང་ 1 I

རྒྱལ་ཁབ་ (རྒྱལ་ | ཁབ་) 2 Country

སློབ་སྦྱོང་པ་ (སློབ་ | སྦྱོང་ | པ་) 3 Trainee

ཡོངས་འབྲེལ་རིམ་ལུགས་ (ཡོངས་ | འབྲེལ་ | རིམ་

| ལུགས་)
4 Internet

Figure 2 A labeled Dzongkha Word

Literature Review

 The robustness and effectiveness of the Natural Language Processing (NLP)

applications like a translator, Spell Checker, Question and answering system and many

more depend on the perfectness of the segmentation system (Noyunsan,

Haruechaiyasak, Poltree, & Saikaew, 2014). The segmentation system allows the

system or computer to identify the word in the sequential data sentences or paragraphs.

The word segmentation is considered as the initial step (Sproat, Gale, Shih, & Chang,

1996) and the fundamental steps in the building the NLP applications (Chirawichitchai,

2014; Tanaya & Adriani, 2016).

 However, the segmentation is not a big deal for the language like English

because one can easily consider whitespace as the word boundaries, to delimit the

 11

words. But most of the Asian languages such as Chinese (Sproat et al., 1996), Thai and

Japanese are written without in the continuous form without a proper word delimiter.

The word segmentation for these languages is important but it is challenging (Peng,

Feng, & McCallum, 2004).

 Similarly, Dzongkha is written as a sequence of syllables without word explicit

delimiters. However, the syllables are separated with a dot-like character called ‘Tsheg’

while vertical stroke called ‘Tshad’, which usually marks the end of the sentences. But

in some cases, the Dzongkha sentences end without a vertical stroke, making it more

complex.

 Considering the importance of the word segmentation, many researches have

been conducted on word segmentation for those languages (Thai, Chinese, Japanese)

without explicit word delimiters adopting various algorithms or approaches starting

from a dictionary-based approach to Deep Learning (DL) approach. In contrast, there

is not much research carried out for Dzongkha word segmentation other than the work

of Norbu et al. (2010). The complexity of the language and unavailability of the public

corpus or dataset might have contributed to the researcher for not taking up the study

on Dzongkha word segmentation.

According to Xue (2003) and M. Wang, Li, Wei, Zhi, and Wang (2018), the

approaches adopted for word segmentation can be categorized as follows:

 Dictionary-based approach

 The dictionary-based approach uses the predefined dictionary that contains

a set of words in the language. It employs a greedy search routine called a maximum

matching (MM) algorithm that scans through the syllables or characters in the given

sentences. This algorithm always favors the longest string as a word. For example,

consider the word ‘སེམས་’ (heart) and ‘སེམས་རྱོགས་ཁ་’ (Semtokha- name of Place) in the

dictionary. Given an input ‘སེམས་རྱོགས་ཁ་’ (Semtokha), the MM algorithm will output ‘སེམས་

རྱོགས་ཁ’ at first scan and later ‘སེམས་’. The MM algorithm can perfectly handle the words

that are available in the dictionary (Theeramunkong & Usanavasin, 2001). However, in

the above example, it fails to identify the most appropriate word when it has more than

 12

one-word candidate, rather all the candidates are returned as the correct segmented

word. Therefore, the MM approach cannot select a suitable word given in the context.

 Statistical approach

 The statistical approach relies on the probability of the adjacent characters

to decide whether the combination of syllables forms a word. Given a sequence of

syllables ‘S1, S2, ……, Sn’, the pair of adjacent characters with the largest mutual

information greater than a predefined threshold are grouped as a word. This process is

repeated until there are no more pairs of adjacent characters with the mutual information

value greater than the threshold. The dictionary is not required in the statistical

approach because the probabilities can be computed from the easily available

unsegmented data, but this doesn’t give better accuracy (Xue, 2003).

 Hybrid approach

 The hybrid approach uses both MM and statistical approaches. When MM

produces more than one possible word, the statistical approach can be applied to

identify the correct word based on contextual probabilities. This approach outperforms

the other two standalone approaches because the approach is guided by the dictionary

along with mutual information.

 The research carried out by Norbu et al. (2010) and (Dhungyel &

Grundspeņķis, 2017) are the only work that is carried out in pursuit of Dzongkha word

segmentation. In their work, they have proposed Dzongkha word segmentation based

on Maximal Matching followed by bigram techniques and reported an overall accuracy

of 91.5%. Their model was built and tested using data from the various domain of

information such as astrology, newsletter, notification, religion, song lyrics and many

more.

 It is understood that it is easier to implement to Segmentation based on the

Maximal Matching technique followed by the bigram technique and provides higher

accuracy when it deals with the words in the corpus (Chen, Zhao, & Yang, 2017).

However, in a real-time scenario, it is expected to come across new words that are not

available in the training corpus or dictionary. Such unknown words are known as out-

 13

of-vocabulary words. Therefore, in such a situation, it is reported by Theeramunkong

and Usanavasin (2001) that the accuracy decreases as the number of unknown words

or out-of-vocabulary words increases.

 The new words are still emerging in Dzongkha Language to sustain the

language with the developing world and technology. The formation of new words in

Dzongkha comes from the name (the name of the places, people and animals) which

are formed by an unprecedented combination of the syllables. Secondly, the world is

advancing with high technology which arises with new technological terms. The

technological terms are transcribed that leads to the formation of new words, such as

Artificial Intelligence (བཅྱོས་རྱིག) or Algorithm (རྱིས་ཐབས།) or computer (ཀམ་པྱིའུ་ཊ།). Thus, an

efficient technique needs to be studied for Dzongkha word segmentation that can

effectively handle words that is out of vocabulary.

 The Dzongkha language is in the infant stage in terms of Language

computerization compared to other languages. For instance, the Google Translate, the

multilingual translation service provided by Google, supports more than 100 languages

in the world like English, Thai, Arabic, Hindi, Chinese, Danish, Estonian, etc. However,

the translation for Dzongkha is not supported in the application, which indicates

research and development are required to be carried out in the field of Dzongkha

language processing.

 Most Asian languages (Thai, Japanese and Chinese) are written continuously

without word separator (Cai & Zhao, 2016; Theeramunkong & Usanavasin, 2001), the

technique proposed for those languages can be adopted for Dzongkha word

segmentation. In 2003, Xue has proposed the Chinese word segmentation as a character

tagging problem (Xue, 2003). The identification of character position in a word is

considered to be the most crucial step for effective Chinese word segmentation since it

is written in a sequence of strings without explicit delimiter like in English. In his work,

four tags were used to mark the position of the Chinese character. The character that

forms a word by itself is tagged as ‘LR’, ‘LL’ for those characters who appear to appear

at the left side of a word while ‘RR’ represents the character in the right side of the

word and the characters that appear in the middle of the word are tagged as ‘MM’. The

characters are later concatenated based on their corresponding character-tag to form a

valid word.

 14

 Similarly, Dzongkha words are formed by the sequence of syllables. The

syllables can be tagged in a similar fashion, as adopted by (Xue, 2003). For example,

consider the word ‘སེམས་རྱོགས་ཁ’ which can be represented as {‘སེམས’, ‘རྱོགས’, and ‘ཁ’}. The

labels can be assigned to these syllables according to their position of appearance in the

word. Thus, the Dzongkha word segmentation problem can be formulated as a syllable

tagging problem.

 Many studies were done towards the effective word segmentation of Chinese

and Thai Languages using decision tree technique (Theeramunkong & Usanavasin,

2001), maximum entropy (Low, Ng, & Guo, 2005), Conditional Random Field (CRF)

(Zhao, Huang, & Li, 2006). Further, a study on Tibetan word segmentation using CRF

was conducted and reported F1-score of 95.12% on the 131,903 training sentences and

1000 test sentences (Hu & Liu, 2017). The techniques discussed in this part heavily

depend on the hand-crafted features and featuring engineering consumes lots of time

(Cai & Zhao, 2016; C. Wang & Xu, 2017; Young et al., 2018; Zheng, Chen, & Xu,

2013). Also, the task requires linguistic knowledge to identify features, which can be

incomplete. The system performance is directly proportional to the effectiveness of

feature engineering.

 Therefore, a novel approach is desired for Dzongkha word segmentation where

the need for feature engineering is avoided and the systems automatically extract

features on its own. Neural Network approaches were proposed for Chinese word

segmentation such as in (Cai & Zhao, 2016; C. Wang & Xu, 2017; Zheng et al., 2013)

that learn features automatically from a large unlabeled training data.

Deep learning in NLP

 Deep learning (DL) is a subfield of machine learning (ML), depends on a set

of algorithms to learn multiple levels of representation to find a model for high-level

abstractions in data. DL tries to mimic the human brain, by constructing an architecture

that consists of an input layer and an output layer with many hidden layers between

them. These hidden layers are responsible for doing complex computations to extract

features from the raw data to obtain a better representation. Deep learning architectures

and algorithms have already made impressive advances in fields such as computer

 15

vision and pattern recognition (Young et al., 2018). Following the trend, deep learning

has been increasingly used and witness many breakthroughs in NLP.

Many DL techniques are used for NLP, such as deep neural networks (DNN),

Convolutional Neural Networks (CNN), and recurrent neural networks (RNN). The

application of Deep Learning in NLP can be seen chatbot (Google Assistant), speech

recognition, Document summarization, machine translation and Question and Answer

system (QA).

 Deep Neural Networks (DNN)

 The first artificial neural network was invented in 1958 by psychologist

Frank Rosenblatt. A neural network is a collection of layered neurons that are

connected to compute and derive meaningful insights from the given inputs. The

computation is carried out inside neurons. The typical neural network (NN) (Rauber,

Fadel, Falcao, & Telea, 2016) is shown in Figure 3 which comprises three layers: input

layer (Layer L1), hidden layer (Layer L2) and output layer (Layer L3).

Figure 3 Typical Neural Network

Source: http://deeplearning.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/

http://deeplearning.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/

 16

 As seen in figure 3, X1, X2 and X3 are the input that is fed to the hidden layer

L2 with 3 neurons. The input can be represented as Xi and the number of neurons in

each hidden layer is called the hidden size. Each neuron is associated with its weight w

and bias b. The computation in each hidden layer can be seen as 𝑍𝑖 = X𝑖 ∗ 𝑤, so the

output of the hidden layer with 3 neurons is represented as the weighted sum of all the

output of each neuron Thus, each hidden unit outputs in lth layer output 𝑍𝑗
𝑙 =

∑ (𝑋𝑖 ∗ 𝑤𝑗𝑖
𝑛
𝑖=1) + b, j is the jth unit in lth layer while 𝑤𝑗𝑖 is the weight associated with

ith input and jth unit of the lth layer.

The output value from the hidden neurons ranges from -α to +α. The neuron

doesn’t know what value should be considered to be fired for the next layers. Thus,

activation function is deployed to enable neurons to make an efficient decision

(Nwankpa, Ijomah, Gachagan, & Marshall, 2018). The output of the hidden neurons is

passed over the non-linear activation function f, in which the final output of the hidden

can be represented as 𝑎𝑗
𝑙 = f(𝑍𝑗

𝑙), which is taken as the input to the next layer. Some

of the activation functions, particularly step function, tanh, sigmoid, and rectified linear

unit (ReLU) are discussed in the last section of this subchapter. The summary of these

activations is shown in figure 4.

Figure 4 Activation functions

Source: http://deeplearning.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/

http://deeplearning.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/

 17

 The same process is repeated until the output layer and such a step is called as

forward propagation. The Weight W and bias b are the trainable parameters, which can

be trained over backpropagation.

 Convolutional Neural Networks (CNN)

 A Convolutional Neural Network is also known as CNN or ConvNet, is a

class of neural networks that specializes in processing data that has a grid-like topology.

CNN is very similar to ordinary Neural Networks: they are made up of neurons that

have learnable weights and biases. Each neuron receives some inputs, performs a dot

product and optionally follows it with a non-linearity. A Convolutional neural network

(CNN) is a neural network that has one or more convolutional layers and is used for

extracting high-level features of the input.

 The three layers of CNN architecture are Convolutional Layer, Pooling

Layer, and Fully-Connected Layer (Gu et al., 2018). These layers to form a full CNN

architecture. The CNN architecture in sentence classification is shown in figure 5.

Figure 5 Convolutional Neural Network Architecture

Source: Zhang & Wallace, 2015

 18

 The convolution layer is the core building block of CNN. It carries the main

portion of the network’s computational load. This layer performs a dot product between

two matrices, where one matrix is the set of learnable parameters known as a kernel,

and the other matrix is the restricted portion of the receptive field. During the forward

pass, the kernel slides across the height and width of the input producing the high-level

representation of that receptive region as shown in figure 6. This produces a two-

dimensional representation of the input known as a feature map. The sliding size of the

kernel is called a stride.

Figure 6 Convolutional operations

Source: Sumit Saha, 2018

 The pooling layer replaces the output of the network at certain locations by

deriving a summary statistic of the nearby outputs. This helps in reducing the spatial

size of the representation, which decreases the required amount of computation and

weights. The pooling operation is processed on every slice of the representation

individually.

 19

 There are several pooling functions such as the average of the rectangular

neighborhood, L2 norm of the rectangular neighborhood, and a weighted average based

on the distance from the central pixel. The pooling operation is shown in figure 7.

However, the most popular process is max pooling, which reports the maximum output

from the neighborhood.

Figure 7 Types of the pooling layer

Source: Sumit Saha, 2018

 The Fully Connected layer helps map the representation between the input

and the output.

 Recurrent Neural Networks (RNN)

 RNN (Zaremba, Sutskever, & Vinyals, 2014) is a kind of neural network

that uses the previous information (a< t-1 >) to do current computation. RNN is

commonly applicable for sequential data like the NLP task, where sentences are

inputted in the form of a continuous word or word sequence. The RNN can be visualized

as multiple copies of the single network as shown in figure 8, which takes input xt and

a<t-1> to output y<t> and a<t> which are then fed to its successor network.

 20

Figure 8 RNN architecture

Source: Afshine Amidi and Shervine Amidi, Stanford

For each timestamp t, the output y<t> and hidden state are expressed as

a<t> = g
1
(Waaa<t-1> + Waxx<t> + ba) and 𝑦<𝑡> = 𝑔2(𝑊𝑦𝑎𝑎

<𝑡> + 𝑏𝑦).

Where Waa, Wax, 𝑊𝑦𝑎, ba and 𝑏𝑦 are shared temporally and g
1
, g

2
 are the activation

functions.

 The standard RNN encounters a long-term dependency problem where it

cannot retrieve information from a long context due to phenomena of vanishing or

exploding gradient(Pascanu, Mikolov, & Bengio, 2012; Sundermeyer, Schlüter, & Ney,

2012). For example, consider a language model trying to predict the next word based

on the previous ones. If we are trying to predict the last word in “the clouds are in the

sky,” we don’t need any further context – it’s pretty obvious the next word is going to

be the sky. In such cases, where the gap between the relevant information and the place

that it’s needed is small, RNNs can learn to use past information.

 But there are also cases where we need more context. Consider trying to

predict the last word in the text “I grew up in France. I speak fluent _____.” Recent

information suggests that the next word is probably the name of a language, but if we

want to narrow down which language, we need the context of France, from further back.

It’s entirely possible for the gap between the relevant information and the point where

https://twitter.com/afshinea
https://twitter.com/shervinea

 21

it is needed to become very large. In such cases, RNNs become unable to learn to

connect the information.

 Long Short-term Memory units (LSTM) (Hochreiter & Schmidhuber,

1997) and Gated Recurrent Unit (GRU) (Cho, Van Merriënboer, Bahdanau, & Bengio,

2014) were introduced such problems with standard RNN by usage gates in RNN

(Pascanu et al., 2012). In LSTM, cell state 𝐶𝑡 and gates such as input gates 𝑖𝑡 , forget

gate 𝑓𝑡 and output gate 𝑂𝑡. The cell state can be thought as the memory of the network.

It carries relative information all the way from the sequential processing. So even

information from the earlier time steps can make its way to later time steps, reducing

the effects of short-term memory. The information is accumulated as the cell state goes

through the sequential processing. The gates decide the information to be allowed on

the cell state, in other words, it decides what to keep and what to forget during the

training phase of the network. The detailed LSTM architecture is shown in figure 9.

Figure 9 Detailed LSTM architecture and its gates

 The forget is the first gate in the LSTM block, which decides what

information should be discarded or stored. The previous hidden state ℎ𝑡−1 and current

input information 𝑋𝑡 is fed through a sigmoid function (), producing the output in the

rage 0 and 1. The value close to 0 will be forgotten and vice versa. The forget gate 𝑓𝑡 is

mathematically represented as shown in the following equation:

 22

𝑓𝑡 = (𝑊𝑓[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑓)

where 𝑊𝑓 denotes the weight and 𝑏𝑓is bias at the forget gate.

 The second gate, the input gate updates the cell state by picking important

information while discarding the useless information. This is achieved by passing

previous hidden state ℎ𝑡−1 and current input information 𝑋𝑡 through sigmoid function

(). The intermediate resulting closer to 1 will be considered as important and vice

versa. In addition, previous hidden state ℎ𝑡−1 and current input information 𝑋𝑡 is passed

through tanh function whose result will be in the range -1 to 1. The sigmoid output 𝑓𝑖

and tanh output 𝐶′𝑡 are then multiplied, where sigmoid output decides the importance

of the information. The computation in this gate is mathematically represented as

follows:

𝑖𝑡 = (𝑊𝑖[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑖)

𝐶′𝑡 = 𝑡𝑎𝑛ℎ (𝑊𝑐[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑐)

where 𝑊𝑖 and 𝑊𝑐 represents weight associated with sigmoid and tanh operations,

respectively, 𝑏𝑖 is the bias associated with sigmoid operation and 𝑏𝑐 is the bias of tanh

operation.

 Once, using the information from input and forget gate, the cell state 𝐶𝑡 is

calculated as 𝐶𝑡 = (𝐶𝑡−1 ∗ 𝑓𝑡) + (𝑖𝑡 ∗ 𝐶′𝑡), where * denotes the pointwise

multiplication and + represents the pointwise addition operation. The cell state

information may be dropped if 𝑓𝑡 = 0. The pointwise addition operation will result in

a new cell state 𝐶𝑡 . The cell state 𝐶𝑡 passed to the next state at (t+1) timestamp.

 The output gate is the last gate in LSTM architecture. It decides the

information in the next hidden state. The hidden state is used for predictions in the next

state, so the hidden state should contain the information from previous input. First, we

pass the previous hidden state ℎ𝑡−1 and the current input 𝑋𝑡 into a sigmoid function

which is mathematically represented as follows:

𝑂𝑡 = (𝑊𝑜[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑜)

where 𝑂𝑡 represents the sigmoid output, 𝑊𝑜 is the weight associated with output gate

and 𝑏𝑜 is the bias related to the output gate. Then the newly formed cell state is passed

 23

through tanh function. The tanh function output and sigmoid output 𝑂𝑡 are multiplied

to produce a new hidden state that can be passed to the state of (t+1) timestamp. The

hidden state ℎ𝑡 is calculated as follows:

ℎ𝑡 = 𝑂𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡)

 Activation functions

 All the deep learning algorithms discussed in previous sections use the

activation function. Activation functions are mathematical equations that determine the

output of a neural network, its accuracy, and the efficiency of the model. In addition, it

also has a major effect on the convergence of the model. It is attached to each neuron

in the network, and determines whether it should be activated (“fired”) or not, based on

the relevancy of the neuron’s input for the predictions. Also, it normalizes the output of

each neuron to a range between 1 and 0 or between -1 and 1. The activation function

transforms the input into a non-linear form. The non-linear transformation helps in

building a powerful system.

 In general, there are three types of activation functions, namely: binary step

function, linear activation, and non-linear activation function. Amongst which the non-

linear is used popularly in the deep learning algorithm. It is due to the following reasons:

• Binary step function doesn’t support multi-value outputs, since it has only two

options, i.e., ‘fired’ if the input is above the threshold value and vice versa,

• Though multiple output value may be supported in linear activation function, it

doesn’t support backpropagation and

• Non-linear activations support complex mapping between input and output

which is considered an important aspect in building a powerful automated

system.

Some of the commonly used non-linear activation functions in deep learning models

are discussed in this section.

Sigmoid activation function

 The sigmoid function is also known as the Logistic activation function.

It is especially used for models where we have to predict the probability as an output.

 24

Since the probability of anything exists only between the range of 0 and 1, sigmoid is

the right choice. It is computed as:

𝑓(𝑥) =
1

1 + 𝑒−𝑥

which produces the output between 0 and 1. Figure 10 illustrates the sigmoid activation

function.

Figure 10 sigmoid activation function

Source: Avinash Sharma V, 2017

The Hyperbolic Tangent activation function

 Hyperbolic Tangent activation function is also referred to as TanH

activation function. It looks similar to sigmoid function but it has range of values from

-1 to 1. It is computed as:

𝑓(𝑥) = tanh(𝑥) =
2

1 + 𝑒−2𝑥
− 1

Figure 11 illustrates the hyperbolic activation function.

 25

Figure 11 TanH activation function

Source: Anish Singh Walia, 2017

Rectified Linear Unit

Rectified Linear Unit abbreviated as ReLU, is commonly used in many

of the deep learning models such as CNN (Gulcehre, Moczulski, Denil, & Bengio,

2016). It is computed as follows:

𝑓(𝑥) = {
0, 𝑥 < 0
𝑥, 𝑥 ≥ 0

It is illustrated in figure 12.

Figure 12 ReLU activation function

Source: Avinash Sharma V, 2017

 26

Softmax activation function

 It is considered as a more generalized logistic activation function

(Basatini & Chinipardaz, 2014; Martins & Astudillo, 2016). It computes probability

distribution over n number of possible target values, ranging the value between 0 and

1. It is computed as:

(𝑧)𝑗 =
𝑒𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

CHAPTER III

RESEARCH METHODOLOGY

Introduction

 The Dzongkha word segmentation was formulated as a syllable tagging

problem. Since Dzongkha is written in the form of continuous syllable without the

proper word delimiter, the identification of syllable position in the word is important in

solving the segmentation problem of the Dzongkha language. The Dzongkha syllables

were tagged as ‘beg’, ‘mid’ or ‘end’, depending on the position of occurrence of a

syllable in a word. This section presents procedures to perform Dzongkha word

segmentation. The Dzongkha word segmentation can be performed in four stages.

These stages are discussed in the first section of this chapter, while the second section

discusses data collection.

System Overview
In our work, four stages were adopted for Dzongkha word segmentation as

shown in Figure 13. Each of these stages is considered crucial for the effectiveness of

the system. The stages were building word embedding (Word2Vec) model,

preprocessing, syllable tagger and Segmentation generator. Each of these stages is

discussed in the following subsections.

Figure 13 Segmentation system overview

 28

 Word Embedding (word2vec)

 Images are represented in their pixel form that can be easily fed to the neural

network. However, in terms of language processing, the input is in the form of

continuous characters in which the neural network does not have the capability to

interpret it. The neural network takes input only in the form of digits or numbers. Thus,

the text or words have to be converted to its vector form. There are many ways to

convert the text into its vector form as discusses in the following sections.

Count-based approach

 One Hot encoding is the simplest form of representing the categorical

variables into its vector form which can be used by the neural network as an input and

process to achieve the task of interest. In one hot encoding, the words are represented

in the form of n-dimensional space.

 To understand one-hot encoding, let us consider the following similar

sentences.

• Sentence 1: Have a good day.

• Sentence 2: Have a great day.

And the vocabulary V from the given sentences can be V= {Have, a, good, great,

day}.

 Now, let us create a one-hot encoded vector for each of these words in

V. Since, the length of our vocabulary is 5, the length of our one-hot encoded vector is

5. In this case, we would have a vector of zeros except for the element at the index

representing the corresponding word in the vocabulary, in which that particular element

would be one. The encodings in table 2 would explain this better. The encoding can be

visualized in a 5-dimensional space, where each word occupies one of the dimensional

spaces and has nothing to do with the rest (no projection along the other dimensions).

 29

Table 2 One-hot encoding

word Have a Good Great Day

Have 1 0 0 0 0

a 0 1 0 0 0

good 0 0 1 0 0

great 0 0 0 1 0

day 0 0 0 0 1

 One hot encoding can be of two variants: a bag of words (BOW) and

term frequency-inverse document frequency (TF-IDF). In BOW representation, the

vectors of that particular index (word) are represented as the count of occurrences of

that particular word in the documents while TF-IDF is a statistical measure used to

evaluate how important a word is to a document in a collection of documents or corpus.

TF is a scoring of the frequency of the word in the current document. Since every

document is different in length, it is possible that a term would appear more times in

long documents than shorter ones. Therefore, the term frequency is divided by the

document length to normalize.

TF (w) =
Count of Word (w) in a document

Total number of words in a document
 (1)

 Inverse Document Frequency (IDF): is a scoring of how rare the word is

across documents. Rarer the term, more is the IDF score.

IDF(w)= log
e
(

Total number of documents

number of word 'w' in it
) (2)

Thus TF-IDF score =TF * IDF.

 In language, each of the words shares a semantic and syntactic

relationship with other words. Even though the above approaches provide the vector

representation for each word in the vocabulary that can be used for processing by the

neural network, it does not consider the semantic and syntactic relationship of words.

Further, the dimensions of the vectors grow with an increase in the size of the

vocabulary which would lead to the curse of dimensionality.

 30

 Thus, Continuous bags of word (CBOW) and skip-gram models were

proposed by Mikolov, Chen, Corrado, and Dean (2013) to consider the syntactic and

semantic relationship between words. These models are called predictive models while

prior approaches are referred to as the count-based model.

Predictive model

 The predictive model is unsupervised neural models used to compute

and generate high quality, distributed and continuous dense vector representation of the

words from the massive unlabelled corpora. It is also used to create a vocabulary of all

possible words. Usually, you can specify the size of the word embedding vectors and

the total number of vectors is essentially the size of the vocabulary. This makes the

dimensionality of this dense vector space much lower than the high-dimensional sparse

vector space built using the count-based approach. This model can be of two variants:

 Continuous bags of word (CBOW)

 This method predicts the target word from the corresponding context

words or surrounding words. For instance, consider the sentence ‘I am going to

college’. To predict the target word ‘going’ with 2 as the context size (window size), it

can be seen as a pair as ({am,to}, going) where am and to are the left and right context

of the target word ‘going’. The neural architecture of CBOW is shown in figure 14.

Figure 14 CBOW model

Source: Mikolov et al. 2003

 31

 The above model takes C context words. The vectors of the target

words can be calculated as an average over all these C context word inputs.

 Skip-gram model

 The skip-gram model predicts the context words of the corresponding

target word. For instance, consider the sentence ‘I am going to college’. Given the target

word ‘going’ with context size as 2, it tries to predict ‘am’ as its left context and ‘to’ as

its right context. The neural architecture of the Skip-gram model is shown in figure 15.

Figure 15 Skip-gram model

Source: Mikolov et al. 2003

 In this thesis, the skip-gram model was adopted to generate the

continuously distributed syllable vectors because Skip Gram works well with a small

amount of data and it is found to represent rare words well (Mikolov et al., 2013). The

unlabeled data (sentence) was fed into the embedding model (word2vec) to generate

the syllable embedding matrix ℳ ∈ ℝ|𝑉| 𝑥 𝑑 , where |V| is the vocabulary size and d is

the dimension of the embedding matrix. Further, the trained embedding matrix can be

 32

used to generate the syllable vocabulary V ∈ ℝ |V| x 1 , where |V| is the size of the

vocabulary.

The following code snippet shows the implementation of syllable embedding:

The corpus Sentences with 10,255 sentences were fed to the word2vec model. Every

sentence was tokenized into its syllabic form as shown below:

['མྱོང་', 'སྒར་', 'ཁྱོམ་', 'གྱི་', 'སྦུག་', 'ལུ་', 'ཡྱོད་', 'པའྱི་', 'དཔལ་', 'སྱོན་', 'ཆང་',
'ཁང་, 'ནང་', 'ཐུགས་', 'རེ་', 'དབང་', 'ཕྱུག་', 'གྱིས་', 'ཆང་', 'གདྱོང་', 'ཁར་', 'བཀང་',
'།']

The following shows the 300-dimensional syllable embedding for the syllable ‘གྱིས་’
which is retrieved from the syllable embedding matrix ℳ.

[0.3210197 -0.15351024 0.95191234 -0.69813704 -0.07671746 0.07590735

 -0.9091967 0.32311854 0.33156452 -0.32314035 0.2615459 0.14687999

 0.5473725 -0.71909726 0.53287125 0.03456965 0.30288315 -0.04023279

 0.19642457 0.13165298 0.04969903 0.00307721 0.30487853 -0.06859454

 -0.3712254 0.5475902 0.34564188 -0.42273006 -0.01707851 0.04979415

 0.09182609 0.46747556 -0.49909383 -0.13065352 -0.1027848 0.13512476

 0.20513588 0.18210682 -0.27366987 0.18192793 0.07094382 -0.88443625

 -0.19615975 -0.13093862 0.66337115 -0.6658243 -0.4254617 0.30282584

 0.5080116 -0.10835751 0.0742984 0.33183134 -0.2949197 0.522677

 -0.04473643 0.3196213 -0.07143073 -0.59285563 0.5399393 -0.1871956

 -0.29831967 -0.17071249 -0.05257144 0.19703664 -1.0632615 -0.16080467

 -0.18753618 0.5776778 0.5304845 -0.1659883 -0.1324222 0.43425635

 -0.50684386 0.08895883 -0.3234413 -0.31502834 0.31158307 0.06663076

 -0.44911718 0.4479407 0.3574822 -0.13294731 0.04071715 -0.35661343

 -0.10559443 -0.21920484 0.38865426 0.61690795 0.14190854 0.92985463

 0.38688555 -0.5396631 -0.27903783 -0.25335598 -0.05868918 -0.3991832

 -0.51297975 0.11210173 -0.8140017 -0.18571657 -0.6295385 -0.3508472

 0.19671534 0.48802882 0.41331294 0.46507463 0.55321956 0.26814324

 -0.27244323 -0.75347644 -0.17870347 -0.34811586 0.6973272 -0.09584054

 0.34359345 -0.16714601 0.2391204 0.603859 -0.26545346 -0.5815423

 0.84040296 0.8684258 -0.48318216 -1.0251215 0.67045975 -0.28564698

 1.3181759 0.238932 -0.31026012 -0.5631942 0.33890858 -0.81634647

 -0.13116628 -0.5689911 0.21023095 0.13752754 -0.23049593 -0.396373

 -0.17098397 0.52437806 -0.11991276 -0.17967495 0.35036764 -0.02136617

 -0.3808628 -0.82136095 -0.5103798 0.19593334 0.0920986 -0.24427408

 0.40123457 -0.2820268 -0.28051072 -0.5928526 -0.01019426 -0.87303203

 0.1217309 -0.11852136 -0.26868933 -0.1444161 -0.7486063 -0.19866931

 -0.37238127 0.06388521 -0.35379276 -0.13490604 0.08158439 -0.09031488

 -0.16991304 -0.95759964 -0.16343851 0.09244142 0.55896074 0.11754514

 0.8666826 -0.85200155 -0.5000392 -0.10773891 -0.96491873 0.2043062

 -0.20884645 -0.53790313 -0.472793 -0.12941085 0.33376974 -0.18331663

 0.14290327 0.2669529 -0.04817933 0.1961905 0.01975059 -0.34626755

 -0.1688545 -0.62168086 0.19479963 0.5991113 -0.23918003 0.5081801

 -0.14233941 0.12468854 0.82995105 0.02796978 0.4268009 -0.3133791

 -0.7182112 0.04522754 0.13505438 0.17482986 -0.5277166 0.04686747

 -0.5022211 -0.08384314 -0.06026209 0.534554 0.7027847 1.0531831

 -0.06110565 -0.09441035 -0.29154858 0.04263121 -1.2222071 0.69154465

 0.15146658 0.63643485 -0.15173855 0.31316218 0.05443235 -0.6697509

 -0.83844763 0.12627576 0.3469649 0.7906073 -0.12472709 -0.13051951

from gensim.models import Word2Vec

EMB_DIM = 300

w2v = Word2Vec(Sentences, size = EMB_DIM, window =5,min_count =1

, negative = 15, iter = 10, workers = 1)

 33

 -0.37473735 0.05644423 0.11256064 -0.73327583 0.28946555 -0.60252875

 0.07282681 0.38723153 -0.03525896 -0.18535335 -0.7231747 0.54515857

 0.56857216 -0.03015586 -0.38713259 -0.15400992 -0.33501333 0.48441866

 -0.14256254 0.48276302 -0.37047175 0.5438715 -0.70645 -0.21443231

 0.35043532 0.2619092 -0.08084039 0.51055723 -0.0469946 0.49831977

 -0.69439036 0.43322366 -0.0129585 -0.2776995 -0.01880828 -0.22086047

 -0.23338751 0.39741778 -0.16438815 -0.08405622 0.06063091 -0.43516147

 0.8238099 -0.5553637 -0.2939282 0.19725098 -0.15464969 0.77290225

 -0.10740466 -0.9243945 0.07814645 -0.09383044 0.5910903 0.34824884

 0.08855297 0.29560855 0.11905991 -0.0518215 0.11963987 -0.52313364

 0.28260273 0.7639619 -0.64613444 0.47562882 0.17544304 -0.3824722]

 One of the main goals of this research to handle OOV words effectively

which may affect the performance of the model if it is not taken care of. A unique token

‘UNK’ was added to the vocabulary V, with an index 0. The vectors for unknown or

new word will be assigned as the average of all the vectors in the embedding matrix

ℳ. Further, during the context generation or windows approach, the End of Sequence

(EOS) token was added in the vocabulary with index 1. The vocabulary of 3676 unique

syllables was generated. Part of the vocabulary is shown below.

'འདྲུད': 2692, 'ཙགོ་': 2693, 'སེ་': 3576, 'གཏད': 3577, 'ཆགསན་': 3578, 'ཧུ་':
2694, 'ཧུ': 2317, 'འྱོངསམ': 2695, 'ཤྱོབ': 2696, 'རྱོབ་': 3579, 'སྱིན་': 3580,
'སྒྲུབས་': 3581, 'འགདེཔ': 3582, 'ཁྱོམས་': 3583'བསྱི་': 1675, 'གཏའམ་': 1794, 'རྱིཝ་
': 3584, 'ཤབ་': 2697, 'དཀྲུམ་': 3585, 'ངའེྱི': 3586, 'བྱོནམ': 3587, 'མནལྜ་':
1096, 'བྱིངས་': 3588, 'ཁུ': 3589, 'རས': 3590, 'སླབནྱི་': 3591, 'བགའཝ་':
3592, 'མནལྜ': 1589, 'ཚ': 3593, 'དྲགཔྱོ་': 3594, 'ཅྱོ': 3595, 'གསུངས': 3596,
'བེལཀེ་': 3597, 'བཱལ་': 3598, 'པེཀ་': 3599, 'ཀཱ་': 3600, 'ཏྲཱར་': 3601, 'འདདེ་':
1210, 'བདེ': 2698, 'ཆྱིད་': 2699, 'ཡར': 3602, 'སྱོདཔ་': 1915, 'བསྱིཝ་':
3603, 'vt_ne': 2318, 'རྱིངམ': 3604, 'པུས་': 3605, 'བརྡུངསམ་': 3606, 'བཤགསཔ་
': 3607, 'ཙིག་': 3608, 'སེ': 2700, 'ལྟཝ': 3609, 'འགྱོནྱི་': 3610, 'དཔ':
3611, 'ncc': 2701, 'གནྱི་': 3612, 'ངྱོམས་': 3613, 'ཆྱོཤྱོག་': 3614, '།?':
3615, 'eep': 2319, 'ཟེརསུའྱི་': 3616, 'ཟེརསུའྱི': 3617, 'སྱོབུ་': 3618, 'པཔྱོ་':
3619, 'ona': 2702, 'གགཅྱིག་': 3620, 'ij': 3621, 'ཨྱོངའུང་': 3622, 'ཏཇ་':
2703, 'ཨྱོངཨུང་': 3623, 'ཆྱིེཔ་': 3624, 'གབཟུང་': 3625, 'མཡར་': 3626, 'སེས':
3627, 'cag': 3628, 'འཛརིྫུན་': 2704, 'neg': 3629, 'ཞྱིནམམ་': 3630, 'གགཏང་
': 3631, 'དཔའྱོ': 3632, 'བརྒལཝ་': 3633, 'སེའབད་': 3634, 'དེམ': 3635, 'འསེྟདྱི་':
3636, 'ཕྱིས་': 2705, 'phr': 3637, 'ཨྱོའྱོང་': 3638, 'mp': 2706, 'sm':
3639, 'ཨའ་': 3640, 'འབྱིན་': 3641, 'ངལྔ་': 2707, 'pfv': 3642, 'ཏེའདྱི་':
3643, 'cf': 3644, 'nm': 3645, 'avt': 3646, 'icq': 3647, 'སྟྱོབཏྱོན་':
3648, 'Kiba': 3649, 'འདེྱི་': 2708, 'ཏེསེྟ་': 3650, '_cac': 3651, 'ཆྱོགཤྱོག':
3652, 'འ': 3653, 'བསྟྱོཏྱོན་': 3654, 'བསེལ': 3655, 'ཤུདའྱི་': 3656, 'sb':
3657, 'བགཏང་': 2709, 'གྱོསྒྱོ་': 2320, 'ང': 3658, 'eh': 3659, 'དའེདྱི་':
3660, 'et': 3661, 'གབཏང་': 3662, 'or': 3663, 'vt': 2321, 'བསྱིས་':
3664, 'དནེ': 3665, 'འདུགནྱི་': 3666, 'དྱོགཔ་': 3667, 'འཛལོཝ་': 3668, 'སྙུངམ་':
3669, 'འབདནྱི་': 3670, 'ལཱར་': 3671, 'བསལ': 3672, 'སྱོདནྱི་': 3673, 'དབངམྱོ':
3674, 'ཕངས': 3675, 'UNK': 0, 'EOS': 1

 34

The integer values in the vocabulary represent the index of the corresponding syllables.

 In addition, tag vocabulary was constructed. In this thesis, vocabulary

T of size 3 is constructed from the dataset. The tags used in marking the position of the

word are discussed in table 3 where the index represents the index of the tag in the tag

vocabulary.

Table 3 Tag Vocabulary and description

Tag Description Index Example

beg

the single syllable word

0

‘ང་’ (I) is a single syllable word

which will be tagged as ‘beg’

or first syllable of a word

‘རྒྱལ་ཁབ་’ (country) is a two-syllable

word where ‘རྒྱལ་’ will be tagged as

‘beg’ as it is the first syllable of a

word ‘རྒྱལ་ཁབ་’

end the last syllable of a word 1

‘རྒྱལ་ཁབ་’ (country) is a two-syllable

word where ‘ཁབ་’ will be tagged as

‘end’ as it is the last syllable of the

word ‘རྒྱལ་ཁབ་’.

mid

Syllables in between the

beginning and the last

syllable of a word

2

‘སླྱོབ་སྱོང་པ་’ (Trainee) is a three-

syllable word where the middle

syllable ‘སྱོང་’ is tagged ‘mid’

 Pre-processing

 Text pre-processing is one of the fundamental steps in machine learning to

create a meaningful and quality data, on which the model can work. In this stage, pre-

processing was carried out in three stages: 1) Syllable segmentation, 2) Context

Generation and 3) mapping syllables to its indices in Vocabulary.

 35

 Syllable Segmentation

 The first and foremost step is to split the sentences or documents to its

syllabic form, the smallest token of Dzongkha word. For example, the sentence ‘ང ་

གཡུས་ཁར་འགྱོ ་དྱོ ། ’ can be broken down as ‘ང་ ’, ‘གཡུས་ ’, ‘ཁར་ ’, ‘འགྱོ ་ ’, ‘དྱོ ’, and ‘།’. The

following code snippet was used to split a sentence into its syllabic form.

The above code snippet produced the output as follows:

 Context generation

 A syllable is considered as the smallest token of a word in Dzongkha. A

word can be either a syllable or a combination of syllables. The identification of syllable

position in a word is considered as the most important in segmentation formulated as a

import re

define the document

text = 'དེ་དང་གཅྱིག་ཁར་ རྱོང་ཁ་ལྷབ་སང་གྱི་དཔེ་དེབ་ཚུ་འབྱི་ནྱི་དང་པར་སྐྲུན་འབད་ནྱིའྱི་དྱོན་ལུ་ ཤེས་རྱིག་ལྷན་ཁག་འྱོག་ལུ་རྱོང་ཁ་གྱོང་འཕེལ་སེ་ཚན་ཅྱིག་

ཡང་གཞྱི་བཙུགས་གནང་སེྟ་ སླྱོབ་གྲྭ་ཁག་ལས་ཕར་རྱོང་ཁ་འདྱི་སད་ཡྱིག་དང་རྱོམ་རྱིག་གྱི་གྲས་ཁར་སླྱོབ་སྟྱོན་གྱི་ཆྱོས་ཚན་ཅྱིག་སེ་འགྱོ་བཙུགས་གནང་ནུག'

text = 'དཔལ་འབྱོར་རྱིག་པའྱི་ཆྱོས་ཚན་འདྱི་སླྱོབ་སྱོང་འབདཝ་ད་ལཱ་ཁག་ཡྱོད།'

text ='ང་གཡུས་ཁར་འགྱོ་དྱོ'

pre=text.find('།')!=-1

cou=text.count('།')

tokenize the document

text= re.sub('(།|[a-z0-9]|' ')','',text)

 result = text.split('་')

 for i in range(len(result)):

 if(i<(len(result)-1)):

 result[i]=result[i].strip()

 result[i]=result[i]+'\u0f0c'

 if pre:

 for i in range(cou):

 result.append('།')

print(result)

 36

syllable tagging problem. Thus, it is understandable that the tag of a syllable depends

on its neighboring syllable (Zheng et al., 2013).

 For this purpose, the right and left context for a target syllable were

considered for a given sentence. The left context for the first syllable and right context

for the last syllable of a given sentence is marked as ‘End of Sequence’ (EOS). The

EOS token was added in the vocabulary with an index as 1 which would help us to

identify the beginning and end of a sentence. Further, the addition of EOS token eased

to generate the context by making the even length of a sentence. In our thesis, context

size ‘N’, where N = 0, 1, 2 and 3 were considered to determine the effective context

size in syllable tagging problem for word segmentation. A context size 0 can be

understood as without considering the context, while the other means that N right and

N left context would be considered for the target syllable.

 For instance, consider a sentence ‘ང་གཡུས་ཁར་འགྱོ ་དྱོ །’ which can be broken

down into its syllabic form as ‘ང་’, ‘གཡུས་’, ‘ཁར་’, ‘འགྱོ་’, ‘དྱོ’, and ‘།’ in the pre-processing

stage and generate its context for every syllable with context size N = 1, 2, and 3. EOS

token was padded in the beginning and end of the sentence, depending upon the context

size. N EOS token was padded as a left context for the first syllable and right context

for the last syllable of the sentence. The context for each of the target syllable in the

given sentence using various context size is shown in table 4, 5 and 6.

Table 4 Context of Each syllable with N=1

L1 Target R1

EOS ང་ གཡུས་

ང་ གཡུས་ ཁར་

གཡུས་ ཁར་ འགྱོ་

ཁར་ འགྱོ་ དྱོ

འགྱོ་ དྱོ །

དྱོ’ ། EOS

 37

Table 5 Context of each syllable with N = 2

L2 L1 Target L1 L2

EOS EOS ང་ གཡུས་ ཁར་

EOS ང་ གཡུས་ ཁར་ འགྱོ་

ང་ གཡུས་ ཁར་ འགྱོ་ དྱོ’

གཡུས་ ཁར་ འགྱོ་ དྱོ །

ཁར་ འགྱོ་ དྱོ ། EOS

འགྱོ་ དྱོ’ ། EOS EOS

Table 6 Context of each syllable with N = 3

L3 L2 L1 Target R1 R2 R3

EOS EOS EOS ང་ གཡུས་ ཁར་ འགྱོ་

EOS EOS ང་ གཡུས་ ཁར་ འགྱོ་ དྱོ’

EOS ང་ གཡུས་ ཁར་ འགྱོ་ དྱོ’ །

ང་ གཡུས་ ཁར་ འགྱོ་ དྱོ ། EOS

གཡུས་ ཁར་ འགྱོ་ དྱོ ། EOS EOS

ཁར་ འགྱོ་ དྱོ ། EOS EOS EOS

 In the above tables, L1, L2, and L3 represent the syllables in the left which is

an immediate neighbour of the target syllable in the given while R1, R2, and R3 are the

right neighbours. Mathematically, consider ‘S’ as the list of syllables in a sentence, Li

for left context and Ri for right context for the target syllable ‘Sj’ at jth index of the

sentence, where i = 1, 2,..N, which is the context size to be considered. Thus, Li and Ri

can be denoted as Li = S(j-i) and Ri = S(j + i) .

Note: Context generation step is not applicable for syllable tagger using Recurrent

Neural Network

 38

 Mapping syllables to its indices in the vocabulary

 The syllable is still in the text form. The syllables were converted to a

number form. The vocabulary V constructed in the previous stage ‘word embedding’

was used to get integer equivalent of a syllable, which is the index of a syllable in the

|V| sized Vocabulary V. Then the syllables are fed into the model as indices. In our

vocabulary V, the syllables ‘ང་’, ‘གཡུས་’, ‘ཁར་’, ‘འགྱོ་’, ‘དྱོ’, and ‘།’ were stored as shown

below.

The context generated in the previous section was now mapped to its indices as shown

in the following figures. The red boxes denote the target syllables.

Figure 16 Input sentence mapped to its indices when N = 0

Figure 17 Input sentence mapped to its indices when N = 1

'ང་': 15, 'གཡུས་': 311, 'ཁར་': 49, 'འགྱོ་': 74, 'དྱོ': 920, '།': 2,

'UNK': 0, 'EOS': 1

 39

Figure 18 Input sentence mapped to its indices when N = 2

Figure 19 Input sentence mapped to its indices when N = 3.

 Syllable Tagger

 The Dzongkha word segmentation was formulated as a syllable tagging

problem where the labels were assigned for each of the syllables in a sentence. In my

thesis, two deep learning algorithms were proposed. The first model is based on Deep

Neural Network (DNN) and the later use Bidirectional Long Short-Term Memory

Recurrent Neural Network ((Bi-LSTM RNN). The first model is discussed in the first

section and the second section of this chapter discusses the later model.

Deep Neural Network

 The neural network architecture for syllable tagging is shown in figure

20. The network is a variant of neural architecture which was proposed by Collobert et

al. (2011) for POS tagging, Named Entity Recognition (NER), chunking and semantic

role labeling. The model learns feature on its own, without having to depend much on

the hand-crafted features.

 40

Figure 20 Neural Network Architecture

 The syllables were fed into the network as indices as seen in mapping

sections of this chapter. The first layer extracts the d dimensional features for each

syllable. It is called a lookup operation where the indices of the syllables are mapped

to its vector representation in the embedding matrix ℳ. The lookup layer would output

n x d dimensional features, where n is the no of input. The second layer flattens the n x

d dimensional feature to a 1-dimensional feature which was fed to the next linear layer.

The linear layer extracts the features from the windows of syllables. And finally outputs

the tag for each syllable in the given sentences.

 41

 A neural network can be considered as a function 𝑓𝜃
𝑙(.) with parameters θ.

Any feed-forward neural with L-layers can be seen as a composition of functions 𝑓𝜃
𝑙(.)

defined for each layer l:

𝑓𝜃
𝑙(.) = 𝑓𝜃

𝐿(𝑓𝜃
𝐿−1(. 𝑓𝜃

1(.). . .)) (3)

 The output of the first layer is fed to two linear standard linear layers that

successively perform affine transformation over 𝑓𝜃
1, interleaved with non-linearity

function g(.). Given a set of tags T for the task of interest, the network outputs a vector

size of |T| for each syllable at position i, interpreted as the score for each tag in T and

each syllable Si in the sentence.

𝑓𝜃
𝑙(𝑆𝑖) = 𝑓𝜃

3 (𝑔 (𝑓𝜃
2 (𝑓𝜃

1(𝑆𝑖))))

 =𝑊3𝑔(𝑊2𝑓𝜃
1(𝑆𝑖) + 𝑏2) + 𝑏3 (4)

where the matrices 𝑊2∈ ℝ H x (nd) , 𝑏2∈ ℝ H , 𝑊3∈ ℝ H x |T| , and 𝑏3∈ ℝ |T| are the

parameters to be trained where H is the hyperparameters, usually called the number of

hidden layers.

 Backpropagation will be used to train the network. During the

backpropagation, the parameters of the layer change which leads to change the input of

the next layer (Ioffe & Szegedy, 2015), thus increasing the complexity of the training

phase because the learning system has to be adapted with new inputs. This phenomenon

is called as ‘Covariate shift’. Batch Normalization was added in the tagging neural

architecture to accelerate speed the training of the model and as a regularizer. The batch

normalization algorithm is shown in figure 21.

 42

Figure 21 Batch Normalization algorithm

Source: Ioffe and Szegedy, 2015

 When we have unbalanced class distribution, the accuracy metric may not

be the right metric to evaluate the performance of the model because there are chances

that the accuracy may be dominated by the class that is higher in number. Therefore,

the F1 score metric will be used along with the accuracy metric for evaluating the

performance of the model. Consider the confusion matrix as given in table 7 to

understand the Recall, Precision and F1 score.

Table 7 Confusion Matrix

 PREDICTED

 Negative Positive

ACTUAL
Negative True Negative False Positive

Positive False Negative True Positive

 43

Recall: Ratio of correctly predicted positive observations to the total number of

observations in the actual class as shown in equation 5.

Recall = True Positive
True Positive + False Negative

 (5)

Precision: Ratio of correctly predicted positive observations to the total number of

positive predicted observations as shown in equation 6.

Precision = True Positive

True Positive + False Positive
 (6)

Finally, the F1 score is computed as:

F1 score = 2 x (Precision x Recall)
Precision + Recall

 (7)

 As discussed in this section, two sets of experiments were designed. In

each set, four experiments were conducted with models of varied context sizes ranging

from 0 to 3. The first experiment set uses pretrained syllable embedding, while the other

learns embedding during the network training, which is a shut shell, it does not use

pretrained syllable embedding. The main idea of this experimental design is to

understand the impact of the pretrained embedding matrix. It was reported by C. Wang

and Xu (2017) that pretrained embedding increases the performance of the model. The

model summary for all the experimental sets is shown in the figures below.

Figure 22 Model summary for N=3 without pretrained embedding

 44

Figure 23 Model summary for N=2 without pretrained embedding

Figure 24 Model summary for N=1 without pretrained embedding

 45

Figure 25 Model summary for N=0 without pretrained embedding

Figure 26 Model summary for N=3 with pretrained embedding

 46

Figure 27 Model summary for N=2 with pretrained embedding

Figure 28 Model summary for N=1 with pretrained embedding

 47

Figure 29 Model summary for N=0 with pretrained embedding

 The model hyperparameters are the most important properties the

govern the behavior of the network. It is defined as properties that control the entire

training process of the model. The choice of right hyperparameters contributes to the

efficiency of the model (Domhan, Springenberg, & Hutter, 2015). The hyperparameters

used in these experiments are presented in table 8.

Table 8 Model Hyperparameters for DNN models

Hyperparameters Value

Hidden layer 256

Dropout rate 0.1

Initial Learning rate 0.002

Maximum Learning rate 0.02

Embedding dimension 300

Embedding Window size 5

 48

 Amongst the hyperparameters presented in table 8, the learning rate is

the most important one to be critically considered to optimize the model. The usage of

higher learning rate diverges from the objective function while the smaller learning rate

slows the learning process of the model, thereby increasing the training time (Zeiler,

2012). For this consideration, the choice of the right learning rate is important.

However, it is challenging because there is no thumb rule for choosing the right learning

rate. In our work, the cyclical learning rate (CLR) schedule (Smith, 2017), also known

as the Triangular learning rate schedule was used along with the stochastic gradient

descent (SGD) optimizer (Amari, 1993).

In the CLR schedule, the minimum and maximum learning rates are set. The learning

rate during the network training varies cyclically between these two bounds. In our

experiment, the two bounds were set to 0.02 and 0.002 (presented table 8) with a step

size of 250 epochs. The CLR schedule is illustrated in figure 30.

Figure 30 CLR learning rate schedule

Source: Smith, 2017

Bi-LSTM RNN

 The Bidirectional Long Short-Term Memory (Bi-LSTM RNN)

architecture for tagging a syllable in a word is presented in figure 31. Given an input

sequence S = (S1, S2, S3, S4, ……..., Sn), the network computes hidden state h = (h1,

h2, h3, ……, hn) and outputs T = (T1, T2, T3, ……, Tn), where Ti represents the tag or

position of an ith syllable Si in a word.

 49

Figure 31 Bi-LSTM RNN model architecture for syllable tagging

 The Bi-LSTM (Shabanian, Arpit, Trischler, & Bengio, 2017) network has two

LSTM layer. The first LSTM layer computes forward hidden layer vector ℎ⃗ from i

=1 until n, while the second layer computes backward hidden vector ℎ⃗⃖ from i = n to

1. The iterative process of updating the output layer i can be expressed as follows:

 ℎ⃗ 𝑖 = H(𝑊 𝑠ℎ⃗⃗ ⃗⃗ 𝑆𝑖 + 𝑊 ℎ⃗⃗ ℎ⃗⃗ ℎ ⃗⃗⃗
𝑖−1 + 𝑏 ℎ⃗⃗),

ℎ⃗⃖𝑖 = 𝐻(𝑊 𝑠ℎ⃖⃗ ⃗⃗⃗ 𝑆𝑛 + 𝑊 ℎ⃗⃗⃖ ℎ⃗⃗⃖ ℎ ⃖⃗⃗⃗
𝑖−1 + 𝑏 ℎ⃗⃗⃖),

𝑇𝑖 = (𝑊ℎ⃗⃗ 𝑦ℎ⃗

𝑖 + 𝑊ℎ⃗⃗⃖ 𝑦 ℎ⃗⃖𝑖 + 𝑏 𝑦).

𝑊 represents weight matrices between layers, 𝑏 ℎ⃗⃗ , 𝑏 ℎ⃗⃗⃖ and by are respectively the

bias vectors of the hidden of the forward LSTM, backward LSTM, and output

layers, 𝐻 is the activation function of the output layer.

 In our experiment, two experimental sets were designed based on the usage of

dropouts. The first set uses a dropout rate of 0.2, while the other is without the usage

of dropout. Further, each of these sets was divided into two subsets based on

embedding dimensions. Embedding dimensions (Emb_Dim) of 128 and 256 were

considered in our experiment. In each subset, three models with different learning

 50

rates (LR) were developed. Each model in the subset was developed with two

different hidden sizes (size) of 256 and 512 neurons. In total, 24 models were built

considering the summary of configurations presented in table 9. This enables to

find the most optimized model for the task of Dzongkha word segmentation.

Table 9 Experimental configurations for Bi-LSTM architecture

Size
Dropout Yes No

Emb_dim 128 256 128 256

256 LR

0.001 0.001 0.001 0.001

0.010 0.010 0.010 0.010

0.020 0.020 0.020 0.020

512 LR

0.001 0.0010 0.001 0.001

0.010 0.010 0.010 0.010

0.020 0.020 0.020 0.020

The figures below illustrate the model summaries of the models build using the

configurations presented in table 9.

Figure 32 Model summary for 128 Emb_Dim and 256 Neurons without dropout

 51

Figure 33 Model summary for 128 Emb_Dim and 256 Neurons with dropout

Figure 34 Model summary for 300 Emb_Dim and 256 Neurons without dropout

Figure 35 Model summary for 300 Emb_Dim and 256 Neurons with dropout

 52

Figure 36 Model summary for 128 Emb_Dim and 512 Neurons without dropout

Figure 37 Model summary for 128 Emb_Dim and 512 Neurons with dropout

Figure 38 Model summary for 300 Emb_Dim and 512 Neurons without dropout

 53

Figure 39 Model summary for 300 Emb_Dim and 512 Neurons with dropout

 Segmentation Generator

 The trained models produce the sequence of tags for the given sequence of

syllables. Consider the sequence of syllables as ‘ང་’, ‘གཡུས་’, ‘ཁར་’, ‘འགྱོ་’, ‘དྱོ’, and ‘།’are

fed to the trained model and Y as the predicted tag sequence for the given sequence of

syllable, Y = {0, 0, 1, 0, 0, 0}, where 0 represents tag ‘beg’, 1 as tag ‘end’ and 2 as tag

‘mid’. Then the given input sequence can be tagged as ‘ང་/beg’, ‘གཡུས་/beg’, ‘ཁར་/end’,

‘འགྱོ་/beg’, ‘དྱོ/beg’, and ‘།/beg’. Using the tag information, the final segmentation result

of the given sentences can be viewed as ‘‘ང་’, ‘གཡུས་ཁར་’, ‘འགྱོ་’, ‘དྱོ’, and ‘།’. The syllable

‘གཡུས་’, and ‘ཁར་’are concatenated to get the word ‘གཡུས་ཁར་’ (village) since ‘གཡུས་’ has

been tagged as the beginning syllable of the word and ‘ཁར་’ as the last syllable of a

word. The complete flowchart for word formation using the predicted tags (Y) for the

given input sequence is explained in figure 40 and the algorithm is illustrated below.

 54

Figure 40 The flowchart of word formation using the predicted tag sequence of

the model

Input: Syllable sequence S = (S1, S2, S3, S4, .. , Sn) and output sequence T =

(T1, T2, T3, ………, Tn)

word = []

for i ⟵ 1 to n:

 if ti == ‘beg’ do

word_candi = si

for j ⟵ i+1 to n do

 if ti == ‘beg’ do

 break;

 else:

 word_candi = word_candi + si

 word. append(word_candi)

 55

Data Collection

The standard dataset is not available for Dzongkha. However, I have contacted

the officials working in the Dzongkha Development Commission (DDC), the

autonomous government organization responsible for the promotion and preservation

of the languages in Bhutan, to help me with the datasets for this research. The officials

including the Secretary were kind enough to share the dataset for segmentation. The

dataset contains more than 10,226 sentences in which each syllable in the sentence is

tagged either ‘beg’ or ‘mid’ or ‘end’. The sample dataset is shown below in Table 10.

Table 10 Dataset Sample

 Sample 1 Sample 2

ཕྱོ་ beg

རྒནམ་ end

གྱིས་ beg

བརྒྱུད་ beg

འཕྱིན་ end

འཐུ་ beg

སེྟ་ beg

བྱོ་ beg

ཨ་ beg

ཙི་ mid

ཅྱིག་ end

སླབ་ beg

ཞྱིནམ་ beg

ལས་ end

དཔལ་ beg

བཟང་ end

ཁྱོད་ beg

ཀྱི་ beg

ཨ་ beg

རྱོགས་ mid

དགའ་ mid

རྱོགས་ end

ཨྱིན་ beg

པས beg

ཟེར་ beg

བརྒྱུད་ beg

འཕྱིན་ end

ང་ beg

ལུ་ beg

སྱོད་ beg

དེས beg

། beg

Source: DDC, 2019

 56

 The syllables in every sentence were tagged according to their position in the

word. The datasets contained rows of tagged syllables in a TSV file as shown in Table

10. The figure 41 illustrates the statistics of syllables tagged with each tag.

Figure 41 Statistics of tags in the dataset

The sentences in the dataset is delimited with white space. Using white space as the

delimiter, the sentence number for each of the tagged syllable is appended as shown in

figure 43. This could enable us to create tagged sentence in a simpler way. The tagged

sentence is shown in Figure 42

Figure 42 sample of Tagged sentence

 57

Figure 43 Sentence Number appended to every tagged syllable

The dataset is split into training and test. 90% of the sentences in the dataset

will be taken as a training dataset while remaining will be used as the test set. Further,

the training set is split into the training set and validation set. 20% of the sentences in

the training set will be considered as the validation set while remaining will be used as

a training dataset. Figure 44 shows the proportion of the dataset for various sets.

However, the data ratio of 80:20 is maintained for RNN models.

Figure 44 Proportion of datasets for training, validation and test sets

CHAPTER IV

RESULTS AND DISCUSSIONS

Introduction

 The Dzongkha word segmentation was formulated as a syllable tagging

problem in chapter III. The models designed for syllable were trained on Google

Collaboratory (abbreviated as Google Colab) incorporating configurations presented in

chapter III. Google Colab is created by Google research project to disseminate

education on machine learning and its research. It is a free cloud-based Jupyter

notebook environment that runs on Tesla K80 GPU with 12GB RAM. The Google

Colab is simple to use because all the required libraries are inbuilt into it. This chapter

presents the results of the designed experiments and discussion on the results. The

dataset presented in chapter two was used for the experiments. These results are

presented in two sections as Deep Neural Network and Bi-LSTM. Then, the

comparative analysis between these experiments based on these two algorithms is

presented in the last section.

Deep Neural Network

 The DNN based tagger was proposed to a syllable in a word (Jamtsho &

Muneesawang, 2020). The tag represents the position of the word, which can be then

concatenated using the tag information of the syllable to form a valid Dzongkha word.

The experiments were conducted as proposed in chapter III under the DNN section.

The various context sizes for the target syllable were considered. This is mainly to

determine the best context size for Dzongkha word segmentation based on syllable

tagging task and also to study how the context of different size contributes to the task.

Eight syllable tagger models were built for various context sizes and configurations.

Each of the models was trained for 500 epochs.

 The precision determines how precise is our models while recall determines

the actual correctly predicted. The F1-score seek a balance between precision and

recall. These matrices are calculated using the formulae presented in Chapter III under

DNN based model section. Instead of coding to compute these matrices,

 59

classification_report class provided by scikit-learn library was used. Besides F1-score,

we have also considered recording the accuracy of every DNN based model. This is to

enable model comparison with the Bi-LSTM model. However, for this section F1-score

will be considered for the discussion.

 Table 11 presents the experimental results for various configurations. Our

DNN based models achieved high accuracy as stated in Hypothesis 1 in Chapter I under

the Hypothesis section. The ‘Yes’ or ‘No’ under the Pretrained Embedding column

header illustrates the incorporation of pretrained embedding in the model.

Table 11 Experimental result for DNN based models

Pretrained

Embedding

Usage

Context

Size (N)

Precision

(%)
Recall (%)

F1-score

(%)

Accuracy

(%)

Yes

0 83.46 85.13 83.98 85.13

1 94.19 94.02 94.08 94.02

2 94.47 94.35 94.40 94.35

3 93.63 93.58 93.60 93.58

No

0 83.19 85.29 83.69 85.29

1 94.19 93.86 93.99 93.86

2 94.20 93.95 94.05 93.95

3 93.91 93.56 93.70 93.56

 From model configuration that does not use a pretrained embedding matrix,

which is represented as ‘No’, the model with context size 2 achieved the highest F1-

score of 94.05% with 94.20% precision and 93.95% recall. While the model with

context size achieved the lowest F1-score of 83.69% with 83.19% precision and 85.29%

recall. The second highest F1-score was obtained by the model with context size 1

which is followed by the model with context size 3.

 Further, in another experimental set that uses pretrained syllable embedding,

the same hierarchy of performance was maintained. The model with context size 2

achieved the highest F1-score of 94.40% with 94.47% precision and 94.35% recall

 60

which the model with context 2 achieved the lowest F1-score of 83.98% with 83.46%

precision and 85.16% recall. The usage of pretrained syllable embedding has

contributed to increasing the performance of the model as reported in (C. Wang & Xu,

2017). The performance gain for every context size of 0, 1, 2 and 3 is calculated as the

difference of the F1-score between model without and with pretrained embedding. The

performance gain is presented in table 12.

Table 12 Performance gain between two experimental sets

Context Size

(N)

F1-score for models

with pretrained

embedding (A) (%)

F1-score for models

without pretrained

embedding (B) (%)

Performance

Gain

(A-B) (%)

0 83.98 83.69 0.29

1 94.08 93.99 0.09

2 94.40 94.05 0.35

3 93.60 93.70 -0.10

 However, performance gain for a model with context size two was not

observed. But in general, it is considered that performance gain is observed since it is

shown from another context sizes.

 Further, confusion matrices for every model of both experimental sets were

computed using the confusion_matrix class from the scikit-learn library. The confusion

matrices are presented in table 13. From the table, it is understood that model with

context size 0 can handle the syllable with ‘beg’ tag efficiently but performs badly with

the syllables with ‘mid’ tag while almost 47% of syllables with ‘mid’ tag are mistagged.

In addition, almost 52% of the syllables were wrongly tagged by the same model

without pretrained embedding. It can be also observed that the model with context size

2 in both of the experimental sets was able to correctly tag the highest number of

syllables with ‘beg’ tag. For ‘end’ tag, the context 2 model using a pretrained syllable

embedding model and context 1 model without pretrained embedding correctly tagged

the highest number of syllables while context 1 model in both of the experimental sets

was able to correctly tagged the highest number of syllables with ‘mid’ tag.

 61

Table 13 Confusion matrix for two experimental sets using various context size

Pretrained

embedding

usage

Context size

(N)

Confusion Matrix

 beg end mid

YES

0

beg 10566 569 80

end 1024 1180 15

mid 269 105 61

1

beg 10833 273 109

end 297 1852 70

mid 38 43 354

2

beg 10842 277 96

end 265 1901 53

mid 43 50 342

3

beg 10830 289 96

end 321 1837 61

mid 57 66 312

NO

0

beg 10715 426 74

end 1142 1065 12

mid 271 115 49

1

beg 10743 358 114

end 231 1923 65

mid 41 42 352

2

beg 10773 337 105

end 240 1916 63

mid 42 52 341

3

beg 10720 377 118

end 238 1914 67

mid 46 47 342

 62

 From the experimental results, we concluded that context size 2 is the most

suitable context size for the task of Dzongkha word segmentation which was formulated

as a syllable tagging task. This is because the said model achieved the highest F1-score

than other models and in the Dzongkha language, most of the words are with less than

5 syllables.

 The model was designed to handle the out-of-vocabulary word. However, the

statistics could not be provided because all the sentences provided in the dataset were

used for building the syllable embedding and subsequently, the syllable vocabulary.

 The training and validation accuracy during the training phase of the models

are presented in the figures below.

Figure 45 Training and validation accuracy for models without pretrained

syllable embedding

N = 0 N = 1

N = 2 N = 3

 63

Figure 46 Training and validation accuracy for models with pretrained syllable

embedding

Bi-LSTM

 Another experiment was conducted on Dzongkha word segmentation which is

formulated as a syllable tagging task. This time, a powerful deep algorithm that is

applicable to sequential inputs (Young et al., 2018) was implemented. In our

experiments, 24 experimental models were designed which can be broadly categorized

into two sets based on the number of hidden neurons, which are 512 or 256. The

experiments were set with different configurations. The attributes of configuration are

Learning rate (LR), Dropout (0.2) and embedding dimensions (Emb). Such

arrangements were made because there is no thumb rule to determine the appropriate

hyperparameters for the given task. Further, Adam optimizer (Kingma & Ba, 2014) was

N = 0 N = 1

N = 2 N = 3

 64

adopted for this experiment. Our goal is to find the appropriate configurations for the

task of Dzongkha word segmentation through the trial and error method. The

experimental results for models using the Bi-LSTM algorithm with various

configurations are presented in table 14.

Table 14 Bi-LSTM model accuracy (%) for various configurations

Neurons LR
Without Dropout With Dropout (0.2)

128 Emb 300 Emb 128 Emb 300 Emb

512

0.001 91.76 92.12 91.45 91.81

0.010 94.24 93.50 91.25 84.86

0.020 88.90 89.90 84.70 86.44

256

0.001 91.05 91.75 91.23 91.38

0.010 95.25 94.40 94.64 94.58

0.020 95.21 94.24 94.07 92.22

 From the above table, it is observed that the model configurations with 256

neurons, learning rate of 0.010 and embedding dimension of 128 without usage of

dropout rate 0.2 achieved the highest accuracy of 95.25%, while the lowest of 84.70%

was recorded with the model configurations of 512 neurons, learning rate of 0.020 and

embedding dimension of 128 with dropout rate of 0.2.

 The performance of the models is considered to be significant because all the

model performance was above 80.00%. Amongst the models, we considered the model

with 95.35% as the best and suitable model for the Dzongkha word segmentation.

Further, the same model with different embedding dimensions and dropout

outperformed the other models in their categories as illustrated in the table using bold

text. All the configurations under each embedding dimension are considered as one

category.

The figures below show the training and validation accuracy recorded during the

training phase of the Bi-LSTM models with configuration 256 neurons and 300

embedding dimensions.

 65

Figure 47 Training and validation accuracy for models for various configurations

Comparative Analysis

 This section presents a comparison between the two models being presented

in earlier sections of this chapter.

 In the DNN based model, the output was based on the current input. The past

information is lost when the next input placed into the input layer because it does not

have the memory to store the past information, thereby it is not suitable for long term

dependencies (Sak, Senior, & Beaufays, 2014). The window approach (context) has to

be applied for DNN based model if one wishes to incorporate the information around

the target input. On the other hand, the RNN based models such as LSTM (Hochreiter

LR = 0.001 and without Dropout LR = 0.01 and without Dropout

LR = 0.01 with Dropout rate 0.2 LR = 0.001 with Dropout rate 0.2

 66

& Schmidhuber, 1997) are designed for handling sequential data and long-term

dependencies because LSTM maintains a cell state which functions as the memory to

store the past input information.

 We could not provide the direct comparison with the research done by Norbu

et al. (2010) and (Dhungyel & Grundspeņķis, 2017), which were the only previous

research for the Dzongkha word segmentation. However, their models heavily depend

on dictionary (C. Wang & Xu, 2017)and the completeness of the vocabulary determines

the robustness of the model (Theeramunkong & Usanavasin, 2001). The new words are

continuously evolving in the Dzongkha language to sustain with technological

development and unprecedented names for animals, human, etc. On the other hand, the

models proposed in my research is research is robust. It can effectively handle out-of-

vocabulary words. Further, requirement for feature engineering is avoided since the

model learns features on its own.

 The Bi-LSTM model configurations with 256 neurons, the learning rate of

0.010 and embedding dimension of 128 without the usage of dropout rate 0.2

outperformed the model accuracy DNN based model. The performance of Bi-LSTM

was seen 0.85% higher than the highest accuracy of DNN based model. Table 15

illustrates the comparative accuracy of the DNN based model that was selected as the

most suitable model in section II of this chapter, with all the configuration of the Bi-

LSTM model that provides the highest accuracy in their categories.

Table 15 Comparative results for two models

Bi-LSTM (A)

Without Dropout With Dropout (0.2)

128 Emb 300 Emb 128 Emb 300 Emb

95.25 94.40 94.64 94.58

DNN (B) 94.35 94.35 94.35 94.35

(A-B) 0.90 0.05 0.29% 0.23

 The syllables that does not exist in the dictionary or vocabulary can be

considered as the noise or unknown syllables. In both of these deep learning models,

 67

all the unknown syllables or words can be annotated as ‘UNK’ token. A special ‘UNK’

token was introduced in the dictionary for handing the unknown words.

 Further, traditional machine learning algorithms such as Support Vector

Machine (SVM) (Antony, Mohan, & Soman, 2010; Vishwanathan & Murty, 2002) and

Conditional Random Field (CRF) (Liu, Nuo, Ma, Wu, & He, 2011; PVS & Karthik,

2007) were used for syllabling tagging to enable to efficiency with of our model. The

experimental results for SVM and CRF is presented in table 16. The CRF model has

achieved the highest performance among traditional algorithms which is 12.70% higher

than the accuracy of SVM models.

Table 16 Traditional machine learning model performance

Algorithms Accuracy

Support Vector Machine (SVM) 80.00%

Conditional Random Field (CRF) 92.70%

 CRF is the most commonly used traditional machine learning approach for

sequence tagging task (Li, Savova, & Kipper, 2008) like Part of Speech (POS) tagging

and Named Entity Recognition (NER). The deep learning models are computationally

expensive to train while the opposite is seen the traditional approaches. However, the

traditional approaches heavily depend on feature engineering (Gu et al., 2018). The

manually driven features can be incomplete, time consuming and requires linguistic

knowledge(C. Wang & Xu, 2017; M. Wang et al., 2018). The features used for CRF is

presented below.

 On other hand, although the deep algorithms are computational expensive to

build, it provides an amazing performance as compared with the performance of the

traditional algorithms without the need of manual feature engineering as the models

learns the features automatically from the input and output set fed during the training

of the models. The performance analysis between the traditional algorithm and deep

learning algorithms is presented in table 17. The CRF has provided the highest accuracy

of 92.70% among the traditional algorithms, whose accuracy is 2.55% and 1.65% lesser

 68

than the performance of RNN and DNN models, respectively. Thus, proposed deep

learning algorithms are superior than traditional machine learning model.

'is_first_syllable': int(index==0),

'is_last_syllable':int(index==len(sentence)-1),

'prev_word_1':'' if index==0 else sentence[index-1],

'prev_word_2':'' if index==0 or index==1 else sentence[

index-2],

'prev_word_3':'' if index==0 or index==1 or index==2 el

se sentence[index-3],

'next_word_1':'' if index==len(sentence)-

1 else sentence[index+1],

'next_word_2':'' if index==len(sentence)-

1 or index==len(sentence)-2 else sentence[index+2],

'next_word_3':'' if index==len(sentence)-

1 or index==len(sentence)-2 or index==len(sentence)-

3 else sentence[index+3],

'is_numeric':int(sentence[index].isdigit()),

'is_alphanumeric': int(bool((re.match('^(?=.*[0-

9]$)(?=.*[a-zA-Z])',sentence[index])))),

'prefix_1':sentence[index][0],

'prefix_2': sentence[index][:2],

'prefix_3':sentence[index][:3],

'prefix_4':sentence[index][:4],

'suffix_1':sentence[index][-1],

'suffix_2':sentence[index][-2:],

'suffix_3':sentence[index][-3:],

'suffix_4':sentence[index][-4:],

'word_has_hyphen': 1 if '-' in sentence[index] else 0

 69

Table 17 Performance between traditional and deep learning algorithms

algorithms Performance Accuracy (%)

Bi-LSTM (A)

Without Dropout With Dropout (0.2)

128 Emb 300 Emb 128 Emb 300 Emb

95.25 94.40 94.64 94.58

DNN (B) 94.35 94.35 94.35 94.35

CRF (C) 92.70 92.70 92.70 92.70

(A-C) 2.55 1.7 1.94 1.88

(B-C) 1.65 1.65 1.65 1.65

Word Interpretation

 The syllable tagger model produces the sequence of tags for the input

sequences. The valid word in the given sentences can be identified using the tag

sequence which was produced by the tagger model. The algorithm adopted in Chapter

III was used for the word interpretation. The OOV syllable(s) will be annotated with

‘UNK’ token with the index 0 in the vocabulary. The output illustrated in figure 48

represents the segmented word for the input sequence ‘དཔལ་འབྱོར་རྱིག་པའྱི་ཆྱོས་ཚན་འདྱི་སླྱོབ་

སྱོང་འབདཝ་ད་ལཱ་ཁག་ཡྱོད།’

Figure 48 Segmented words using tag information produced by the tagger

CHAPTER V

CONCLUSION

Introduction

 This is the chapter of my thesis. The summary of the main part of the thesis is

presented in Summary section. The remainder of the chapter is organized as implication

and recommendation of the study, limitations of the study and the future research work.

Summary

 The Dzongkha script is written as a string of syllables without explicit word

delimiters, unlike in English. For such language, the word segmentation is considered

to be the fundamental steps in building NLP applications such as translator, text to

speech system, spell, and grammar checker, etc. This is because word forms the basic

constituent of any language. The meaning of the sentence or phrase depends on the

participation of the word.

 Most of the Asian languages are written without explicit word delimiters.

Many researches have been done for those languages. However, there is not much

research done for the Dzongkha word segmentation. In this thesis, the Dzongkha word

segmentation was formulated as the syllable tagging task, where each of the syllables

was tagged either ‘beg’, ‘mid’ and ‘end’ depending on their position in a word. The

identification of the position of a syllable is very important in this task. The ‘beg’ tag

represents the syllable at the beginning of the word or the syllable that forms word by

itself, ‘end’ tags represents the syllable that marks the end of the word while the ‘mid’

tag represents the syllable in between the syllables with ‘beg’ and ‘end’ tag.

 The syllable tagging algorithm can be of two variants. The traditional approach

such as CRF. The traditional method heavily depends on manual feature engineering

which is considered to be time-consuming and sometimes incomplete. The efficiency

of the model depends on the effectiveness of feature engineering. In this thesis, modern

approaches were used where deep learning algorithms were studied and applied for the

task of Dzongkha word segmentation. The modern approaches skip the need for manual

 71

feature engineering. The Deep Neural Network and Bi-directional Long Short-term

memory algorithms were proposed for syllable tagging task in this study.

 In our experiment, the syllable vectors were computed using the word2vec

model which is based on the skip-gram algorithm. Two experimental sets based on

usage of pretrained syllable vectors were designed for DNN algorithms and each set

comprised of four models of varied context size from 0 to 3. The contextual information

was used because the tag of the syllable depends on its surrounding syllables. Amongst

the eight DNN based models, the model with context size 2 achieved the highest F1-

score of 94.40% or accuracy of 93.95%. The DNN based models are not suitable for

long term dependencies because it does not have a special memory to record the

previous layer information.

 The special neural network called ‘Bi-LSTM’ was used in the second

experiment. The algorithm has a cell state that records the precious that can be used for

prediction in the next layer, thereby making it suitable for long term dependencies. A

total of 24 models were trained using different configurations. This is carried out as the

trial and error technique to determine the best model with an optimized configuration

for the task of Dzongkha word segmentation since there is no hard rule to determine

the optimal hyperparameters. Amongst these models, the model with 256 neurons, a

learning rate of 0.01 and embedding dimensions of 128 without dropout regularization

achieved the highest accuracy of 95.25%, which outperformed the performance of DNN

based model. An increase in 0.90% was observed. The final segmented words were

interpreted using the tag information obtained from the syllable tagger models.

The implication of the research and recommendations

 The syllable that marks the beginning of the word and forms the word by itself

were tagged with the ‘beg’ tag. The performance of the model may increase if a sperate

tag is introduced for the tag that marks the syllable. Further, there is no maximum

amount of dataset for the deep learning models. The model performance will increase

with a higher amount of data.

 The Dzongkha segmentation system that has been proposed in this study can

be used for further advancement in the field of the Dzongkha language processing. This

system is considered as the initial step for the development of Dzongkha parser. The

 72

development of the NLP application would help to promote and preserve the national

language of Bhutan. Further, the applications would enable effective communications

between the foreigner and the native Bhutanese.

Limitations of the study

The following are the limitations of my study:

1. Dzongkha language is a morphically rich language (DDC, 2019; Wangdi, 2015)

where the spelling of the word depends on its context. For example, ང་ཆུ་འཐུངམ་

ཨྱིན། which means ‘I am drinking some water’. The word ‘འཐུངམ་’ is the word

derived from its stem word ‘འཐུང་’ to represent factual present. Such type of

syllables or words are not morphologically considered in our work,

2. Besides being morphologically rich language, Dzongkha script has style of

writing in the short form or abbreviated form. This enable people for quick

writing. For example, the name of the person ‘བཀྲ་ཤྱིས་’ which can be transcribed

as ‘Ta-shi’ can be written in an abbreviated form as ‘བཀྲྱིས་’. Such styles of

abbreviations are not considered in this work.

3. During the course of the experiments in this study, the focus was made only on

the performance of the models. The different models presented in this work can

be differentiated on the ground of computational cost such as parameter size,

model size, and training time. The study on computational cost of the models is

not considered, and

4. The segmentation models obtained from the experiments conducted in this

study can be of higher storage and processing requirement, which it will not be

applicable to deployment on devices with limited storage and processing power

such as Raspberry Pi 3 (Termritthikun, Jamtsho, & Muneesawang, 2019).

Future Research

 The limitations discussed in the above section are the basis for the future

research. Some of the future research as follows:

1. Increasing the size of the datasets has to be considered because the effectiveness

of the deep learning models depends on the size of its training dataset. Further,

 73

the dataset should be able to handle abbreviated and morphological words,

incorporating separate tag for syllable that forms the word by itself and the

syllable that marks the beginning of the word.

2. Development of deep learning models suitable for deployment on devices with

limited storage and processing power.

3. Application of Convolutional Neural Network (CNN) in the field of Dzongkha

word segmentation. CNN has the advantage of efficiently capturing of n-gram

features through its convolutional layer (C. Wang & Xu, 2017).

4. Further, the hybrid deep learning models can be proposed for the task of

Dzongkha word segmentation. For example, a model with CNN and CRF. The

Convolutional layer of CNN can be used to automatically captures features of

the text and then, it can be fed to CRF for making the predictions.

REFE REN CES

REFERENCES

Amari, S.-i. (1993). Backpropagation and stochastic gradient descent method.

Neurocomputing, 5(4-5), 185-196.

Antony, P., Mohan, S. P., & Soman, K. (2010). SVM based part of speech tagger for

Malayalam. Paper presented at the 2010 International Conference on Recent

Trends in Information, Telecommunication and Computing.

Arun, P., Parshu, D., Karma, W., Kesang, W., Uttar, R., & Yeshi, J. (2016). Automatic

answer evaluation: NLP approach: ResearchGate.

Basatini, F. M., & Chinipardaz, R. (2014). Softmax Model as Generalization upon

Logistic Discrimination Suffers from Overfitting. J. Journal of Data Science, 4,

563-574.

Cai, D., & Zhao, H. (2016). Neural word segmentation learning for Chinese. arXiv

preprint arXiv:1606.04300.

Chen, M., Zhao, S., & Yang, K. (2017). Neural architecture for tibetan word

segmentation. Paper presented at the 2017 International Conference on Asian

Language Processing (IALP).

Chirawichitchai, N. (2014). Emotion classification of Thai text based using term

weighting and machine learning techniques. Paper presented at the 2014 11th

International Joint Conference on Computer Science and Software Engineering

(JCSSE).

Cho, K., Van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of

neural machine translation: Encoder-decoder approaches. arXiv preprint

arXiv:1409.1259.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011).

Natural language processing (almost) from scratch. Journal of machine learning

research, 12(Aug), 2493-2537.

DDC. (2019). About Dzongkha Development Commission. Dzongkha Development

Commission. from https://www.dzongkha.gov.bt/en/aboutus/about-dzongkha-

development-commisiso

Dhungyel, P. R., & Grundspeņķis, J. (2017). Analysing the Methods of Dzongkha Word

Segmentation. Applied Computer Systems, 21(1), 61-65.

http://www.dzongkha.gov.bt/en/aboutus/about-dzongkha-development-commisiso
http://www.dzongkha.gov.bt/en/aboutus/about-dzongkha-development-commisiso

 75

Domhan, T., Springenberg, J. T., & Hutter, F. (2015). Speeding up automatic

hyperparameter optimization of deep neural networks by extrapolation of

learning curves. Paper presented at the Twenty-Fourth International Joint

Conference on Artificial Intelligence.

Dorjee, K. (2014). Linguistic landscape of Bhutan: An overview of number of

languages, language policy, language education, and language use in Bhutan.

Bhutan Journal of Research & Development, 3(1), 79-101.

Driem, G. v. (1992). The grammar of Dzongkha. Thimphu: Dzongkha Development

Commission of the Royal Government of Bhutan.

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., . . . Cai, J. (2018). Recent

advances in convolutional neural networks. Pattern Recognition, 77, 354-377.

Gulcehre, C., Moczulski, M., Denil, M., & Bengio, Y. (2016). Noisy activation

functions. Paper presented at the International conference on machine learning.

Hirschberg, J., & Manning, C. D. (2015). Advances in natural language processing.

Science, 349(6245), 261-266.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural

computation, 9(8), 1735-1780.

Hu, J., & Liu, Q. (2017). CASICT Tibetan Word Segmentation System for MLWS2017.

arXiv preprint arXiv:1710.06112.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network

training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

Jamtsho, Y., & Muneesawang, P. (2020, 29 Jan.-1 Feb. 2020). Dzongkha Word

Segmentation using Deep Learning. Paper presented at the 2020 12th

International Conference on Knowledge and Smart Technology (KST).

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980.

Li, D., Savova, G., & Kipper, K. (2008). Conditional random fields and support vector

machines for disorder named entity recognition in clinical texts. Paper presented

at the Proceedings of the workshop on current trends in biomedical natural

language processing.

 76

Liu, H., Nuo, M., Ma, L., Wu, J., & He, Y. (2011). Tibetan word segmentation as

syllable tagging using conditional random field. Paper presented at the

Proceedings of the 25th Pacific Asia conference on language, information and

computation.

Low, J. K., Ng, H. T., & Guo, W. (2005). A maximum entropy approach to Chinese

word segmentation. Paper presented at the Proceedings of the Fourth SIGHAN

Workshop on Chinese Language Processing.

Martins, A., & Astudillo, R. (2016). From softmax to sparsemax: A sparse model of

attention and multi-label classification. Paper presented at the International

Conference on Machine Learning.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781.

Norbu, S., Choejey, P., Dendup, T., Hussain, S., & Muaz, A. (2010). Dzongkha word

segmentation. Paper presented at the Proceedings of the Eighth Workshop on

Asian Language Resouces.

Noyunsan, C., Haruechaiyasak, C., Poltree, S., & Saikaew, K. R. (2014). A Multi-Aspect

Comparison and Evaluation on Thai Word Segmentation Programs. Paper

presented at the JIST (Workshops & Posters).

NSB. (2017). 2017 POPULATION & HOUSING CENSUS OF BHUTAN: National

Statistics Bureau of Bhutan.

Nwankpa, C., Ijomah, W., Gachagan, A., & Marshall, S. (2018). Activation functions:

Comparison of trends in practice and research for deep learning. arXiv preprint

arXiv:1811.03378.

Pascanu, R., Mikolov, T., & Bengio, Y. (2012). Understanding the exploding gradient

problem. CoRR, abs/1211.5063, 2, 417.

Peng, F., Feng, F., & McCallum, A. (2004). Chinese segmentation and new word

detection using conditional random fields. Paper presented at the Proceedings of

the 20th international conference on Computational Linguistics.

PVS, A., & Karthik, G. (2007). Part-of-speech tagging and chunking using conditional

random fields and transformation based learning. Shallow Parsing for South

Asian Languages, 21, 21-24.

 77

Rauber, P. E., Fadel, S. G., Falcao, A. X., & Telea, A. C. (2016). Visualizing the hidden

activity of artificial neural networks. IEEE transactions on visualization and

computer graphics, 23(1), 101-110.

Sak, H., Senior, A. W., & Beaufays, F. (2014). Long short-term memory recurrent

neural network architectures for large scale acoustic modeling.

Shabanian, S., Arpit, D., Trischler, A., & Bengio, Y. (2017). Variational bi-lstms. arXiv

preprint arXiv:1711.05717.

Smith, L. N. (2017). Cyclical learning rates for training neural networks. Paper

presented at the 2017 IEEE Winter Conference on Applications of Computer

Vision (WACV).

Sproat, R., Gale, W., Shih, C., & Chang, N. (1996). A stochastic finite-state word-

segmentation algorithm for Chinese. Computational linguistics, 22(3), 377-404.

Sundermeyer, M., Schlüter, R., & Ney, H. (2012). LSTM neural networks for language

modeling. Paper presented at the Thirteenth annual conference of the

international speech communication association.

Tanaya, D., & Adriani, M. (2016). Dictionary-based Word Segmentation for Javanese.

Procedia Computer Science, 81, 208-213.

TCB. (2018). BHUTAN TOURISM MONITOR 2018: Tourism Council of Bhutan.

Termritthikun, C., Jamtsho, Y., & Muneesawang, P. (2019). On-device facial

verification using NUF-Net model of deep learning. Engineering Applications of

Artificial Intelligence, 85, 579-589.

Theeramunkong, T., & Usanavasin, S. (2001). Non-dictionary-based thai word

segmentation using decision trees. Paper presented at the Proceedings of the first

international conference on Human language technology research.

Vishwanathan, S., & Murty, M. N. (2002). SSVM: a simple SVM algorithm. Paper

presented at the Proceedings of the 2002 International Joint Conference on

Neural Networks. IJCNN'02 (Cat. No. 02CH37290).

Wang, C., & Xu, B. (2017). Convolutional neural network with word embeddings for

Chinese word segmentation. arXiv preprint arXiv:1711.04411.

 78

Wang, M., Li, X., Wei, Z., Zhi, S., & Wang, H. (2018). Chinese Word Segmentation

Based on Deep Learning. Paper presented at the Proceedings of the 2018 10th

International Conference on Machine Learning and Computing.

Wangdi, P. (2015). Language Policy and Planning in Bhutan. Retrieved April, 26, 2016.

Xue, N. (2003). Chinese Word Segmentation as Character Tagging. International

Journal of Computational Linguistics & Chinese Language Processing, 8, 29–

48.

Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018). Recent trends in deep learning

based natural language processing. ieee Computational intelligenCe magazine,

13(3), 55-75.

Zaremba, W., Sutskever, I., & Vinyals, O. (2014). Recurrent neural network

regularization. arXiv preprint arXiv:1409.2329.

Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. arXiv preprint

arXiv:1212.5701.

Zhao, H., Huang, C.-N., & Li, M. (2006). An improved Chinese word segmentation

system with conditional random field. Paper presented at the Proceedings of the

Fifth SIGHAN Workshop on Chinese Language Processing.

Zheng, X., Chen, H., & Xu, T. (2013). Deep learning for Chinese word segmentation

and POS tagging. Paper presented at the Proceedings of the 2013 Conference on

Empirical Methods in Natural Language Processing.

	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	List of Tables
	List of Figures
	CHAPTER I INTRODUCTION
	Introduction
	Background and Significance of the Study
	Purposes of the Study
	Problem statement
	Scope of the Study
	Basic Assumption
	Hypothesis of the Study
	Summary of the work
	The Contributions of the work

	CHAPTER II RELATED WORKS AND STUDIES
	Introduction
	Overview of the Dzongkha language
	Literature Review
	Dictionary-based approach
	Statistical approach
	Hybrid approach

	Deep learning in NLP
	Deep Neural Networks (DNN)
	Convolutional Neural Networks (CNN)
	Recurrent Neural Networks (RNN)
	Activation functions
	Sigmoid activation function
	The Hyperbolic Tangent activation function
	Rectified Linear Unit
	Softmax activation function

	CHAPTER III RESEARCH METHODOLOGY
	Introduction
	System Overview
	Word Embedding (word2vec)
	Count-based approach
	Predictive model

	Pre-processing
	Syllable Segmentation
	Context generation
	Mapping syllables to its indices in the vocabulary
	Syllable Tagger
	Deep Neural Network
	Bi-LSTM RNN

	Segmentation Generator

	Data Collection

	CHAPTER IV RESULTS AND DISCUSSIONS
	Introduction
	Deep Neural Network
	Bi-LSTM
	Comparative Analysis
	Word Interpretation

	CHAPTER V CONCLUSION
	Introduction
	Summary
	The implication of the research and recommendations
	Limitations of the study
	Future Research

	REFERENCES

