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ABSTRACT

Marine logistics has become increasingly important as the amount of global trade has increased.
Products are usually packed in various sizes of boxes, which are then arranged into containers before
shipping. Shipping companies aim to optimise the use of space when packing heterogeneous boxes into
containers. The container packing problem (CPP) aims to optimise the packing of a number of rectangular
boxes into a set of containers. The problems may be classified as being homogeneous (identical boxes);
weakly heterogeneous (a few different sizes); or strongly heterogeneous (many different boxes). The CPP is
categorised as an NP hard problem, which means that the amount of computation required to find solutions

increases exponentially with problem size.

This research project was aimed to develop a programming tool that applied three metaheuristics
called Artificial Immune System (AIS), Particle Swarm Optimisation (PSO) and Genetic Algorithm (GA) for
solving multiple container packing problems (MCPP). The stochastic optimisation tool was written in Microsoft
Visual basic. A sequential series of experiments was designed to identify the best parameter settings and
configuration of the algorithims for solving MCPP. The work optimised the packing of a standard marine
container for a strongly heterogeneous problem. The experimental results were analysed using the general
linear model form of analysis of variance to identify appropriate algorithm configuration and parameter
settings. It was found that each algorithm’s parameters were statistically significant with a 95% confidence
interval. The best configurations were then used in a sequential experiment that compared the performance of
the AIS, PSO and GA algorithms for solving twenty-one heterogeneous MCPP. It was found that the average
best-so-far solutions obtained from the AIS were marginally better than those produced by the GA and PSO

for all problem sizes but the AIS required longer computational time than GA.

During the research project, parts of this research have been written as a research article, which has
been published in the International Journal of Production Economics (Impact factor in 2010 = 1.988) (see

more details of the article in the appendix).
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Marine logistics has become increasingly important as the amount of global trade has increased.
Products are usually packed in various sizes of boxes, which are then arranged into containers before
shipping. Shipping companies aim to optimise the use of space when packing heterogeneous boxes into
containers. The container packing problem (CPP) aims to optimise the packing of a number of
rectangular boxes into a set of containers. The problems may be classified as being homogeneous
(identical boxes), weakly heterogeneous (a few different sizes) or strongly heterogeneous (many
different boxes). The CPP is categorised as an NP hard problem, which means that the amount of
computation required to find solutions increases exponentially with problem size.

This work describes the development and application of an Artificial Immune System (AIS), Particle
Swarm Optimisation (PSO) and a Genetic Algorithm (GA) for solving multiple container packing
problems (MCPP). The stochastic optimisation tool was written in Microsoft Visual Basic. A sequential
series of experiments was designed to identify the best parameter settings and configuration of the
algorithms for solving MCPP. The work optimised the packing of a standard marine container for a
strongly heterogeneous problem.

The experimental results were analysed using the general linear model form of analysis of variance
to identify appropriate algorithm configuration and parameter settings. It was found that each
algorithm's parameters were statistically significant with a 95% confidence interval. The best config-
urations were then used in a sequential experiment that compared the performance of the AIS, PSO and
GA algorithms for solving 21 heterogeneous MCPP. It was found that the average best-so-far solutions
obtained from AIS were marginally better than those produced by GA and PSO for all problem sizes but
AlS required longer computational time than GA.

& 2011 Elsevier B.V. All rights reserved,

1. Introduction

sequences. In terms of computational complexity the CPP is an NP
hard problem (Soak et al., 2008), which means that the amount of

The increased globalisation of trade has led to a large increase
in the volume of shipping. Most international cargo is transported
in containers through major seaports. The efficiency of container
packing is very important for service providers and can have a
large impact on profitability.

The container packing problem (CPP) involves arranging a set
of boxes into a set of containers with fixed dimensions. The
objective is to minimise the amount of wasted space. The quality
of solutions is usually measured in terms of space (volume)
utilisation. The total number of sequences for arranging n boxes
is (n!), which is further increased as there are six ways of turning
or flipping each box (6"); so the number of possible solutions for
arranging 10 boxes can be up to (10! x 6'°) or 219 billien possible

* Corresponding author.
E-mail addresses: pupongp@yahoo.com, pupongp@nu.ac.th (P. Pongcharoen).

0925-5273/$ - see front matter & 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.ijpe.2011.05.012

computation required increases exponentially with problem size.
Metaheuristics, such as Genetic Algorithms (GA), Particle
Swarm Optimisation (PSO) and more recently Artificial Immune
Systems (AlS), have been successfully applied to solve large and
complex combinatorial optimisation problems (Farmer et al.,
1986; Goldberg, 1989). These stochastic search methods are
capable of finding near optimal solutions within an acceptable
amount of computational time. AIS has been successfully used to
solve combinatorial optimisation problems such as flow shop
scheduling (Engin and Doyen, 2004), job-shop scheduling (Tsai
et al,, 2007), project scheduling (Agarwal et al., 2007) and the
travelling salesman problem (Pongcharoen et al., 2008). However,
no research has been reported that has used AlS to solve CPP.
The objectives of this paper are to:

e describe the development of a computer aided packing (CAP)
programme that includes AIS, PSO and GA for solving a wide
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range of multiple container packing problems (to enable the
performance of AlS to be compared with those of GA and PSO,
which have been shown to be effective methods for
solving CPP);
o perform a series of experiments based upon a design of
experiments approach to find the best settings for AlS para-
meters for various types of problems;
benchmark the performance of the AIS, PSO and GA methods
in terms of the quality of solutions obtained and the computa-
tional time required.

The remaining sections in this paper are organised as follows.
Section 2 reviews the literature relating to container packing
problems. Section 3 describes the formulation of the problem and
presents a mathematical model. Section 4 briefly describes the
process and pseudo-code of the proposed algorithms. Descrip-
tions of AlS, PSO and GA procedures for solving CPP are detailed in
Section 5. Section 6 presents the experimental design and
analyses results. Finally, Section 7 summarises the conclusions
of the research and suggests possible further work.

2. Container packing problems

There are many cutting and packing problems with different
names that have the same logical structure. These include cutting
stock and trim loss problems; bin packing, dual bin packing, strip
packing, vendor packing and knapsack problems; vehicle loading,
pallet loading, container loading and car loading problems; and
layout, nesting and the partition problem (Dyckhoff, 1990).
Dyckhoff developed a comprehensive typology of these problems
that was further developed by Wascher et al. (2007). The common
logical structure is that there are data that define the geometry of
items with fixed shapes in ene or more dimensions using real
numbers. There is one group of large objects and a group of small
objects. The cutting or packing process produces geometric
combinations of small objects that are assigned to the large
abjects. Strip packing problems have a container with fixed height
and width, but unspecified depth; the objective is to pack all the
boxes so that the depth can be minimised. In the knapsack
problem, each box has an associated profit; the objective is to
load the boxes into a single container so that profit can be
maximised. The bin packing problem has containers with fixed
sizes; the objective is to pack the boxes into the specified number
of containers (Pisinger, 2002). The container packing problem
aims to optimise the volume utilisation in container(s) (Ngoi
et al,, 1994). The container loading problem may additionally take
into account weight and weight distribution (Davies and Bischoff,
1999).

Bischoff and Marriott (1990) pointed out that the above
problem types cover many situations with significantly different
characteristics. First, there is a distinction between situations
where a specified cargo is to be shipped in the best combination
of containers and others where the amount of cargo assigned to a
single container is maximised. Second, some problems aim to
maximise the volume utilisation whereas others focus on the
value of items packed. The constraints and assumptions also vary;
for example some problems take into account the weight and
weight distributions, whereas others do not. Cargo fragility and
material handling aspects are further considerations that can be
very significant in practice. They point out that there are many
other factors that could be considered; the problem constraints
and objectives are highly variable and may be difficult to define
precisely. Thus the there are many types of CPP that involve
different (and sometime multiple) objectives and constraints.

The CPP can be classified according to various criteria, includ-
ing packing schemes (wall building/guillotine cutting); homo/
heterogeneous objects; rectangular/nonrectangular packing; and
n-dimensional shapes and single/multiple container(s). Common
objective functions for three-dimensional packing include the
minimisation of the length/number of container required for a
specified cargo; maximising the volume of the cargo packed in a
given container; and space (volume) utilisation.

Various assumptions have been made in order to simplify,
formulate and solve CPP. The most common assumptions can
be summarised as follows: (i) boxes are of rectangular shape;
(ii) boxes must be arranged within the whole container and must
be parallel to its side walls; (iii) boxes cannot overlap each other;
(iv) boxes can/cannot be rotated; (v) hoxes are stabilised by filling
the empty space with foam rubber (Pisinger, 2002); (vi) boxes
are to be packed into a single container/multiple containers;
(vii) boxes are supported by those underneath and (viii) unlike
container loading, weight limitations and weight distribution may
be ignored in CPP (Davies and Bischoff, 1999).

Container packing problems are NP hard. Therefore there are
no general algorithms that can guarantee an optimal solution, so
the methods adopted for its solution are based upon heuristic
approaches (Bischoff and Marriott, 1990; Bortfeldt et al., 2003). It
has been a popular area of research and there are many articles
that provide good reviews of the relevant literature (see for
example, Bischoff and Marriott, 1990; Bortfeldt and Gehring,
2001; Chen et al., 1995; Egeblad and Pisinger, 2009; Ngoi et al.,
1994; Pisinger, 2002). The wall building (George and Robinson,
1980) and guillotine cutting approaches (Morabito and Arenales,
1994) are the most commonly used arrangement heuristics.

George and Robinson (1980) developed a wall building
approach to container packing, which has been very widely
applied and has formed the basis of many variants (Bischoff and
Marriott, 1990). It fills the container in layers across its width. The
depth of each layer is determined by the size of the first box
packed into the layer. The procedure starts from one end of the
container and attempts to keep an even workface over the cross
section of the container. The filling scheme chooses a box type
and then completes as many columns as possible (widthwise). A
ranking scheme is used to select boxes. The size of the smallest
dimension is the first ranking criterion; the box with the largest
value has the highest ranking because it is difficult to pack large
boxes towards the end of the packing process. The second
criterion ranks according to the quantity of boxes of each type,
because the layer is more likely to be filled throughout the layer if
there are many similar boxes. The length of the largest dimension
is the third criterion, which means awkwardly long boxes are
packed early. The types of boxes to be loaded are considered to be
‘opened’, if boxes of the same type have already been loaded, or
‘unopened’ if not. The heuristic gives preference to boxes of an
‘open’ type when starting a new layer. If there are no ‘open’ boxes,
the first box in a layer (the layer determining box) is chosen using
either the first or the second ranking criterion. It determines the
depth of the cross section considered at the current stage of the
packing process. The current layer is filled with boxes of the same
type, with other boxes used to fill voids.

Morabito and Arenales (1994) developed a guillotine cutting
approach. An initial cut is made within the container's length L,
which produces two boxes B and C that are then cut indepen-
dently; each box can be further cut, The boxes may be repre-
sented as nodes in an orientated graph. The root node represents
the container. A cut on a box is represented as an arc in the
orientated graph pointing to two successor nodes that represent
the new boxes created by the cut. The leaf nodes represent the
final boxes produced by the cutting sequence. The set of all nodes
and arcs is called an AND/OR graph. A search strategy that used
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back-tracking and hill-climbing was developed to traverse the
AND/OR graph and enumerated the nodes.

A wide range of optimisation methods have been used to find
solutions to CPP. Methods based upon full enumerative search
have been used, including Linear Programming (Beasley, 1985)
and Branch and Bound (Pisinger, 2002), but these are suitable
only for relatively small problems because CPP is NP hard. A range
of metaheuristic methods have also been used, including Tabu
Search (Bortfeldt et al., 2003; Gendreau et al, 2006), Genetic
Algorithms (Bortfeldt and Gehring, 2001; Thapatsuwan et al.,
2007). Ant Colony Optimisation (Lee et al, 2005) and Particle
Swarm Optimisation (Thapatsuwan et al., 2009). These metaheur-
istics have included heuristics such as wall building or guillotine
cutting for generating the detailed packing sequences. Bortfeldt
and Gehring (2001) found that the Genetic Algorithm was
particularly suitable for strongly homogeneous box sets and also
commented that the heuristic approach for packing had a larger
impact on the results than the search strategy.

3. Problem formulation

A general mathematical model for maximising the efficiency of
volume usage (V) for CPP has been developed by previous
research (Chen et al,, 1995; Christensen and Rousoe, 2009). The
formulation of the problem is as follows:

Notation
B total number of boxes
C total number of containers

I, wy, by parameters indicating, respectively, the length, width
and height of box i

L, W, H; parameters indicating, respectively, the length, width
and height of container j

X, Yu Z; continuous variables indicating the coordinates of back-
left-bottom corner of box i that specifies the placement
of box i

[f, K. i binary variables that indicate whether the length of box

[ is parallel to the X-, Y- or Z-axis; for example, f=1 if
the length of box i is parallel to the X-axis; otherwise it
is equal to 0

wi, w!, wi binary variables indicating whether the width of box i
is parallel to the X-, Y- or Z-axis; for example, wf=1 if
the width of box iis parallel to the X-axis; otherwise it is
equal to 0

h{, kY, hf binary variables indicating whether the height of box i is
parallel to the X-, Y- or Z-axis; for example, h*=1 if the
height of box i is parallel to the X-axis; otherwise it is

equal to 0

leg; a binary variable indicating if box i is placed on the left
side of box k

i a binary variable indicating if box i is placed on the right
side of box k

bey, a binary variable indicating if box i is placed behind
box k

frie a binary variable indicating if box i is placed in front of
box I

aby, a binary variable indicating if box i is placed above box k

un;, a binary variable indicating if box i is placed underneath
box k

P a binary variable; p;=1 if ith box is placed in jth
container; otherwise it is equal to 0

o] a binary variable; if ¢;=1, container j is used: otherwise

itis equal to O
M an arbitrarily large number used in Big-M constraints

The variables ley, 1i, bew, fru. aby and uny are defined only for
i< k. The container is placed in a coordinate system with its origin
at the back-left-bottom corner. The length L of the container is
placed along the X-axis, the width W along the Y-axis and the
height H along the Z-axis. The objective of MCPP following the
linear mixed integer programming model can be formulated as

_minimize i LiW;H;¢i— ‘i‘ Lw;h; (1)
je 1 P
subject to
X (U + (wywi) + (B < X+ (1=beg)M  vik, i<k (2)
X+ () + W+ (i) < X +(1—frdM - Vik, i<k 3
Vi G+ wpw) -+ thil)y s i+ (1=leg )M vik, i<k (4
Vet Gl + wiewh) + (heh) < yy-+(1=rigdM vik, i<k (5)
Zi+ (LD +wwi) + k) < 2+ (1—ungdM  vik, i<k (6)
Ze+ () + (wewi) + (hehf) < 2+ (1—abydM Vik, i<k 7
ley +rig +bey +frig +aby +uny. = py+py—1  ¥ik, i<k (8)
C
?_? pj=1 vi )
8

?;T py=Mc Yj (10)
X+ () + W) + (i) < Li+(1—ppM - Vi (11)
Vit Y+ (W) + (hY) < Wi+ (1—-ppM ¥ j (12)
2+ () + (W) + (yhfy < Hy+ (1—py)M - Vi, (13)
BB E,wi w!, Wi i, Y, B2, ley, tin, beys

Jrig, abye, Ung, pyp. ¢ (0,11 Vik, i<k (14)
XYz 20 Vi (15)

Constraints (2)-(7) ensure that the loaded boxes do not over-
lap each other. Constraint (8) checks for overlap, which is not
allowed, and forces at least one of the six variables ley, Tig, be.
STt abg, unye to one. Constraint (9) guarantees that each box will
be packed into a single container only. Constraint (10) indicates
that a container is considered to be used when any box has been
assigned to it. Constraints (11)-(13) make sure that all the boxes
packed into a container fit within its physical dimensions. Finally
constraints (14) and (15) specify the range of the variables.

4. Approximation optimisation algorithms

Approximation optimisation algorithms, the so called meta-
heuristics, have received considerable attention over the last few
decades. This is because the stochastic search process helps find
practical and near optimal solutions, within an acceptable
amount of computational time. The methods are particularly
popular for solving very large-scale and complex combinatorial
optimisation problems because full enumerative search is imprac-
tical for these problems. This paper relates to research that
applied the Artificial Immune System, Particle Swarm Optimisa-
tion and a Genetic Algorithm to solve multiple container packing
problems. GA was used as a benchmark because it had been found
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to be particularly effective at solving CPP (Bortfeldt and Gehring,
2001).

4.1. Artificial Immune System (AIS)

An immune systemn is a system of biological structures and
processes within an organism that protects against disease by
identifying and killing pathogens and tumour cells. It detects a
wide variety of agents, from viruses to parasitic worms, and needs
to distinguish them from the organism's own healthy cells and
tissues in order to function properly. Detection is complicated as
pathogens can evolve rapidly, producing adaptations that avoid
the immune system and allow the pathogens to successfully
infect their hosts (Abbas et al.. 2000; Delves et al., 2006). The
function of the immune system is to detect and recognise foreign
bodies and molecules that enter the body (e.g. viral infections,
bacteria or transplanted tissues). It also recognises abnormal or
mutated cells such as cancerous cells.

Murphy et al. (2007) described how the immune system functions
can be classified as innate and adaptive immune responses. The
innate immune response functions through innate immune cells such
as phagocytes, natural killer cells and dendritic cells. The adaptive
immune response is conferred by ‘B* cells (humoral) and T cells (cell
mediated). Phagocytes, dendritic cells as well as ‘B’ cells can specifi-
cally present antigens to ‘T cells. The antigens are derived from
foreign bodies that those cells have internalised and processed
previously. ‘T" cells recognise the presented antigens using their
specific ‘T" cell receptors on the 'T" cell membranes. The specifically
stimulated ‘T cell then responds by proliferating, which gives rise to
antigen-specific T" cell clones. Each clone has ‘T cells with the same
specificity to the stimulating antigen. The ‘B’ cells also specifically
bind antigens using membrane receptors called ‘B’ cell receptors. The
antigen-bound ‘B’ cells are then activated to proliferate and also to
become ‘antibody-producing’ plasma cells. The proliferating ‘B’ cell
clones and the antibodies secreted from plasma cells all have the
same specificity to the stimulating antigen. The proliferation rate of a
‘B’ cell is directly proportional to the degree to which it recognises the
antigen. The ‘B’ cell response learns by raising its population size and
affinity (the degree of the cell recognition with the antigen; Murphy
et al, 2007).

The Artificial Immune System (AIS) was initially proposed in the
mid 1980s by Farmer et al. (1986). AlS is one of several biology-
inspired optimisation algorithms, which is a branch of computa-
tional intelligence (Dasgupta, 2006). There are variants of AIS
algorithms, including immune networks (Farmer et al.. 1986),
negative selection (Forrest et al., 1994), danger theory (Matzinger,

2002) and clonal selection (de Castro and Von Zuben, 2000). Clonal
selection focuses on how ‘B’ cells and ‘T" cells can adapt their self to
match and even kill the invaders (Burnet, 1959). It is based on two
main principles (Garrett, 2005): clonal selection and affinity
maturation by hypermutation principles. With clonal selection each
antibody (candidate solution) has an affinity (fitness) value deter-
mined by the affinity (objective) function. Affinity maturation
consists of two main processes: mutation and receptor editing.
Mutation mechanisms such as inverse mutation and/or pairwise
interchange mutation can be used to generate a clone from an
antibody (Engin and Doyen. 2004). The number of clones is
determined by its affinity value and the size of antibody population.
After cloning, sorting and deleting the repetition, the receptor
editing process is conducted by eliminating antibodies from the
population based on the desired percentage of antibody elimination
(%B). The whole process is repeated until the termination criterion
is satisfied. The pseudo-code of AlS is outlined in Fig. 1.

4.2. Genetic Algorithms (GA)

Genetic Algorithms (GA), initially introduced by Holland
(1975), have become one of the best known biology-inspired
metaheuristics. The simple GA mechanism starts by encoding the
problem to produce a list of genes. The genes are randomly
combined to produce a population of chromosomes, each of
which represents a possible solution. The population size (P)
and the number of generations (G) are important parameters that
need to be specified. The combination of P and G determines the
number of chromosomes generated, which relates to the amount
of search and the computational time required. The next step is to
perform genetic operations (crossover andfor mutation) on chro-
mosomes, which are randomly selected from the population as
parents, for producing offspring. The fitness function is used to
measure the chromosomes’ fitness value, from which the prob-
ability of survival is determined. After performing the fitness
evaluation process, a chromosome selection mechanism such as
the Roulette Wheel (Goldberg, 1989) is then used to stochastically
choose the same number of chromosomes to the next generation.
The GA process is repeated until a termination condition is
satisfied. The mechanism of GA is demonstrated as the pseudo-
code in Fig. 2.

4.3. Particle Swarm Optimisation (PSO)

Swarm Intelligence is based upon a behavioural simulation of
social insects such as wasps, termites and bees. Particle Swarm

climination (%5)].
Generate a population of P antibodies
For cach antibody (i & P), calculate affinity ()
Set current iteration (1) = 1
Do
For each antibody (/)

antibody (f) = clone

fm[+]
While I 51,

Initialise the value of AIS parameters [antibody size (#). iterations (Z,,,). and percentage of antibody

Caleulate the number of clones (V) and clone antibody (i)
For each clone, apply inverse mutation to create o new antibody
Calculate the affinity of the new antibody
If affinity (ncw antibody) is better than the clone then clone = new antibedy
Else Perform pairwise interchange mutation to create a new antibody
Calculate the affinity of the new antibody
If affinity (new antibody) is better than the clone then clone = new antibody

Eliminate the worst antibodies from the population based on %8
Create new antibodies to replace the eliminated antibodies

Fig. 1. Pseudo-code of the AIS procedure.
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of crossover () and mutation (#,)].

Generate a population of P chromosomes

For each chromosome (i & P). calculate fitness (/)
Set current generation (g) =1

Do

Calculate the fitness of the offspring

g=g+1
Whileg < G

Initialise the value of GA parameters [population size (P), number of generations (G), and prababilities

Bascd on P, randomly select two parent chremosomes for crossover operation
Based on P, randomly sclect a parent chromosome for mutation operation

If offspring is better than the parent, replace the parent
Randomly select the survived chromosome for next generation using roulette wheel

Fig. 2. Pseudo-code of the GA procedure.

Generate a swarm of NV particles

For each particle (ie V), caleulate fitness (i)
Set current iteration (f) = 1
Do

For ¢ach particle

End
f=1+17

While /< [«

Initialise swarm size (M), number of iterations (1,..J, inertia weight (@), self (¢,) and social (¢) learning rates,

For each particle, update the best fitness of particle (3) as pBest
Update the best fitness of all particles as gBest

Calculate particle velecity based on the pBest and gBest
Update particle position based on the new velocity

Fig. 3. Pseudo-code of the PSO procedure.

@ @ Population @
Antibody |
T @ Fitness evaluation
Encode Randomly|| Antibody 2 Wall building iy
solution R : - e > T
space Antibody / :

Antibody »

Stop Yes

Terminate?

woniejndod mapn

e

© Q)

Receptor
editing

< Mutation

Fig. 4. AIS procedures for solving CPP,

Optimisation (PSO) is inspired by social behaviour of bird flocking
or fish schooling. PSO was developed by Kennedy and Eberhart
(1985). The pseudo-code of applied PSO is illustrated in Fig. 3. In
the general concept of PSO, each particle moves to the next
position in the search space by conducting with a velocity
according to both its own best previous experience (pBest) and
the best experience of all members (gBest; Kennedy et al.. 2001).
The formulas are
update velocity operation:

Vi) == coigVig(t—1)+¢q rand()(Pig—Xg(t— 1))

+Cz Rand () (Pyg—Xiz(t—1)) (16)
update position operation:
Xig = Xig(t—1)+Vy (17)

where d is the dimension of the search space and g is the index of
the best particle compared with all the particles in the population
(gBest). The best previous position (pBest) of the particle i is
represented as Pi={P;;.Pj.....Pi); ¢; and ¢, are positive constants,
rand() and Rand() are random numbers ranging between 0 and 1,
and ¢ is the inertia weight. The rate of position change for
particle i is represented by Vi=(Vi;,Vi,....Vin).

5. Development of the stochastic optimisation tool

In this work the container packing based optimisation tool
(CPOT) was developed, which includes AlS, PSO and GA optimisa-
tion options. The CPOT programme has approximately 1000
written lines of code (including graphic user interface and the
proposed metaheuristics) in modular style using Visual Basic
programming.

5.1. AIS procedures for CPP

The process of AlS is illustrated in Fig. 4. The algorithm
consists of six main processes: problem encoding, population
initialisation, box arrangement using the wall building approach,
antibody evaluation, mutation and receptor editing. The main
processes are described in the following subsections.

5.1.1. Problem encoding

The design task to be optimised by CPP is to determine the
sequence of heterogeneous boxes to be arranged into a container
that achieves the best volume utilisation. Each box can be rotated
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in 6 ways (see Fig. 5). The encoded sub-antibody contains two
items of information; box identifier and type of box rotation. For
example, the encoded sub-antibody of B15R2 refers to box
number 15 with rotation type Il

5.1.2. Population initialisation

The encoded sub-antibodies are randomly sequenced to gen-
erate an antibody. The length of an antibody (candidate solution)
is determined by the total number of boxes to be packed. Fig. 6

V=d/g=" ¢

Fig. 5. Six types of box rotation.

[BsR3 | B3R1 | B6R5 | BIR2 | B8R6 | B4R4 | B2R3 | B7R4 |

Fig. 6. Antibody representation.

W

Fig. 7. Wall building approach.
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illustrates a typical antibody representation for an eight-box
problem. The first sub-antibody in the given sequence indicates
that box number 5 (BS) is the first box to be packed with rotation
type llI followed by box number 3 (B3) with rotation type I and so
on. The process of antibody creation can be repeated to generate a
population of the desired size. The population size (P) determines
the number of candidate solutions in the solution space; increas-
ing the population size increases the amount of search and the
amount of memory and computation required.

5.1.3. Box arrangement using the wall building approach

After randomly generating an antibody, the boxes are sequen-~
tially packed into the container one by one in layers across its
width (see Fig. 7). The depth of each layer is determined by the
size of the first box packed into the layer. The procedure starts
from one end of the container and attempts to keep an even
waorkface over the cross section of the container.,

5.1.4. Antibody evaluation

The next stage is to measure the affinity of the antibodies,
which is determined by the amount of wasted space within the
containers. The maximisation of volume utilisation is very impor-
tant for service providers and can have a large impact on profit-
ability. The calculation of volume utilisation can use Eq. (1)
mentioned in Section 3.

5.1.5. Mutation process

Mutation is the crucial process for AlS algorithm. It determines
the diversity of populations and the armount of exploration within
the search space. In the mutation process (see Fig. 8), each anti-
body is cloned; the number of clones is determined by its affinity
value (fitness) and the size of antibody population. Each clone is
then mutated using the inverse mutation operator shown in Fig. 9.
If a newly mutated antibody is better than the original clone, the
clone is replaced by the new mutated antibody. Otherwise, the
pairwise interchange mutation operator (see Fig. 10) is used to try
and produce an antibody with a better affinity value. This process
is repeated until all the antibodies are mutated.

5.1.6. Receptor editing
After finishing the mutation process, the cloned antibodies are
sorted. The receptor editing process is then conducted by eliminating

Calculate l
number of For clone j e E
: s . IVerse ) -~ New betrer urwise
@—y clonesand = =110 mof =P s it ntihion
clone antibody
antibody i
4 New better
Clone = New s Clons Clone = Clone
Antibody i=/+1
Clone = New
No ]
| Sorting and fi?]cmm Antibody i = pn=m Clone j = m Now! Clonej=/+1 ol
the repetition
*n = number of antibody, # = number of clone / of antibody i

Fig. 8. Mutation mechanism.
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a proportion of bad antibodies from the population based on the
desired percentage of antibody elimination (¥B). For example, 2B set
to 10 means that the worst 10% of antibodies will be deleted and
replaced by the same number of new randomly generated anti-
bodies. The antibody elimination percentage (%B) plays an important
role in determining the degree of exploration in the solution space.
The whole process is repeated until the iteration (Inq) criterion is
satisfied. Higher values of the iteration criterion (Ina,) increase the
amount of search, which may lead to an improved solution. fas, and
also determine the number of loops in the programme, which
influences the amount of computation required.

5.2. GA procedures for CPP

The process of GA for solving CPP is illustrated in Fig. 11. The
algorithm consists of six main processes: problem encoding,

Randomly selected positions i and j
: j

BSR2 | BIRZ | B4R1 | B6R4 | B2R3 | BSRS | BTR1

Invert operations
on the selected sequence

B2R3 | B6R4 | B4R | BIR2 | BSR2 || BSRS | B7R1

Fig. 9. Inverse mutation.
Randomly selected positions iand j

Y \

B3R3 | BER2 | BIR2 | B4R1 | B6R4 | BZR3 | BSRS | BTR1

sub-antibodies iand j

B3R3 | B2R3 | BIR2 | B4R1 | B6R4 | BSR2'| BSRS | BTR1

Fig. 10. Pairwise interchange mutation.

Population

population initialisation, box arrangement using the wall building
approach, genetic operations, fitness evaluation and the Roulette
Wheel Selection (RWS) scheme. Since some of the GA procedures
are similar to the AlS procedures, only genetic operations (includ-
ing crossover and mutation) and the RWS scheme are different.
Those extra processes are described in the following subsections.

5.2.1. Genertic operations

After a population of chromosomes has been randomly gen-
erated, the next stage is to randomly select chromosomes that
will be subjected to crossover and mutation operations. In cross-
over the characteristics of two parents are combined to produce
an offspring, whilst mutation produces random change in one
chromosome. There are many types of crossover and mutation
operations reported in literature (Pongcharoen et al.,, 2001). The
best crossover and mutation operations previously used for
solving the CPP (Thapatsuwan et al, 2006) were the cycling
crossover (see Fig. 12) and the Enhanced Two Operations Random
Swap Mutation (see Fig. 13).

5.2.2. Roulette Wheel Selection (RWS) scheme

In this work, the well-known Roulette Wheel approach
(Goldberg, 1989) was used to select chromosomes for the next
generation. The number of segments within the wheel equals the
number of chromosomes in the population. The size of the
segment is determined by the fitness of the chromosome. Wheel
spinning is simulated by a uniformly generated random number
over the range 0-1. The spinning process is repeated until the

Randomly selected a position
B3RS | BSR2 | BIR2 | B4R1 | BSR4 | B2R3 | BSRS | BTR1

58 ¥

BIR3 | BSR2 | BIR2 | E3R3 | B6R4 | B4R1 | BTR1 | BSRS

B3R3 | B6R4 | BSR2

o ¢

B2R3 | B6R4

B4R1 |'BIR2 | B2R3

%

BIR2 | B4Rl | B7TR1

BSR5 | BTR1

BSR2 | B3R3 BSRS

Inherited sub-antibodies from parentsuntil 2 cycle is found

Fig. 12. Cycling crossover.

® ©

Chiomosome [ [

@ venetic operations @

1
Encode '
Randomly : Wall buildin
solution > - ing
Chromosome | I approach
space : :
I

Chromosome n

Z
L]
o
=
3
=
=4
=
£
=]

O)!

Roulette Wheel Fitness

Selection 4 Evaluation

Fig. 11. GA procedures for solving CPP.
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Dividing the chromosome into sectionof§ sub-antibodies

=

=

=

Randomly swapping 2 sub-antibodies for all section

Fig. 13. Enhanced two operations random swap.

Roulette wheel

Chromosomes
Bestfitnessvalue | [ | | I |1 ||

I

‘Woest fitness value [EIRTN SIS

Each Size depends on its Siness value

Fig. 14. Roulette Wheel Selection.

correct population size has been produced for the next genera-
tion. The probability of survival and number of replicates of a
chromosome in the next generation are determined by its fitness.
The GA process is repeated until the specified number of genera-
tions (C) is satisfied (Fig. 14).

5.3. PS0 procedures for CPP

The PSO process is illustrated in Fig. 15. The algorithm consists
of five main processes: problem encoding, pepulation initialisa-
tion, box arrangement using the wall building approach, fitness
evaluation and updating velocity and position. The PSO proce-
dures are similar to the AlS procedures apart from updating
velocity and position. Those extra processes are described in the
following subsections.

5.3.1. Updating velocity and position

In each iteration every particle changes its current position
and velocity, which are calculated from the previous values of
pBest and gBest as shown in Eqs. (16) and (17), respectively. In
combinatorial optimisation problems, approaches such as the
swap operator (Wang et al., 2003) or adjustment operator
(Cuiru et al., 2005) are required. The procedures for updating
velocity and position using the swap operator are shown in
Figs. 16 and 17, respectively. The difference between the swap
operator and adjustment operators is that the swap operator (SO)
exchanges nodes whilst the adjustment operator (AO)
inserts nodes.

6. Experimental design and analysis

The experiments conducted in this work were based upon a
two-step sequential experiment. Experiment A was designed to
identify appropriate settings of the AIS parameters whilst Experi-
ment B aimed to compare the performance of AIS with GA and
PSO in terms of the quality of solutions obtained and the

computational time required. All computational runs were con-
ducted on a personal computer with Core2Quad 2.66 GHz CPU
and 4 GB DDRIII RAM.

A standard marine container is 20 ft long, 8 ft wide and 8 ft
high (often referred to as one Twenty-foot Equivalent Unit: TEU).
This research considered the packing of standard size containers.
The length, width and height of the boxes to be packed were
randomly generated according to a uniform distribution in the
ranges of 70-100 cm (length), 50-80 ¢m (width) and 30-60 ¢cm
(height). Therefore all the boxes considered in this work had
different sizes, so the problems were strongly heterogeneous, the
most difficult type of CPP. However the optimisation programme
also allows users to specify the sizes of the boxes and containers
to meet their requirements, which means that the tool can be
used to solve specific or more straightforward problems.

6.1. Experiment A

The aim of this experiment was to investigate and identify
appropriate settings of the AIS parameters (including the combi-
nation of the number of antibodies and the number of iterations
(Al} and the percentage of eliminating antibodies (¥B)) for a CPP
with 100 boxes and identically sized containers. The full factorial
experimental design and the range of values considered for each
of the factors are shown in Table 1. The computational runs were
replicated 30 times with different random seed numbers. In
practice, the computation time available is limited. Therefore
the combination of the number of antibodies and iterations was
fixed at 40,000; test runs identified that this was sufficient to
achieve convergent results.

The results were analysed using the general linear model form
of analysis of variance (ANOVA), which is shown in Table 2, It can
be seen that the combinations of the number of antibodies and
iterations (Al), and percentage of eliminated antibodies (¥B) were
statistically significant with a 95% confidence level. In order to
identify the appropriate setting of the factors considered, the
main effect plots are therefore provided in Fig. 18. it can be seen
that the best settings of Al and B parameter were 100 x 400 and
25, respectively.

6.2. Experiment B

This experiment aimed to benchmark the performance of AIS
using the best parameter settings that had been identified in
experiment A. The GA and PSO parameters were based upon
previous research (Thapatsuwan et al., 2006). The settings of GA
parameters values used were the combination of population size
and the number of generation (PG)=100 % 400; probability of
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Fig. 15. PSO procedures for solving CPP.
Assumplion
Vidt-2) = (SO(1,3),80(4,5)) Xae-Dfr[s]3]2]4]
Wiz = (¢; * rand(}} = (c, * Rand()} = 0.5 Py nﬂ
Poft]z]2]e]s]
Swap Saquence (55) = (SO(1,4),50(2.5) S5= (SOQA).50(.5)
| | Xotd
= [(0.5)*(SO(1.3),30(4,5)H(0-5)(S0(1,4),50(2,5))] + [(0.5)*(SO(2,4),.50(4.5))]
= (80(1,3),50(1,4),50(2,4))
Fig. 16, Updating velocity using the swap operator.
Table 1
™ Experimental factors and levels considered.
Phere Fiy() = (80O(1,3),80(1 A18002,4)
Factors Levels Value
Therefore, X, t) = X (-1) + V.t
ofore, Xlt) = Xale-1)  Viaft) Amount of search (AN 4 50 » 800, 100 » 400, 200 » 200,
T L Nl SESCa 400 5 100
Xw‘{z) ti}_(ygﬁ"f) #* (SO(I=3}730(1:4)=SO(2u4)}§ Percentage of eliminated 5 3, 10, 25, 50, 75
"""""""""""""""""""""""""""" antibody (%B)
. Table 2
: Analysis of variance (ANOVA) on the experimental results.
i Source  DF Sum of squares  Mean square  F P
; Al 3 22,4881 7.4960 9.02 0.000
H *B 4 22,1709 5.5427 6,67 0.000
: Error 592 4919230 0.8310
: Total 599 536.5820
X0 [ 2 I 3 I 1 | 5 ' 4—| crossover (Pc)=0.5; probability of mutation (P,,)=0.15; crossover
operator (COP)=cycling crossover (CX); and mutation operator

(MOP)=enhanced two operations random swap mutation
(E20RS). The PSO parameters—the combination of the number
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Fig. 18. Main effect plot.
Table 3
Experimental results of all problems and algorithms,
Problem Algorithms Quality of solutions obtained (m?) Computational
size time (min)
(boxes) Average Std. dev. Minimum Maximum
100 AlS 42.57633 0.506976 41,791 4347 1.26
GA 44.11153 1.547872 41.348 46,753 0.3
PSO 47.62433 0.772368 45,402 48.645 0.11
250 AlS 117.2667 1.666614 114.34 120.826 2.95
CA 121.565 2.877886 115.691 126.237 0.63
PSO 126.0867 0.951880 123.799 127.312 0.51
500 AlS 2443247 2.133445 239.784 247.622 5.78
GA 253.7833 2.847689 248.432 257.891 1.16
PSO 259.083 2.289821 255459 263.879 1.81
750 AlS 3746155 2452509 369,012 378.741 8.35
GA 386.1964 5.914920 373.066 398.412 1.78
PSO 397.4422 2.557095 391.443 402,119 2.8
1000 AlS 510.6101 2.896194 503.916 514455 11.78
GA 527.3841 7.927805 510.402 539.043 2.35
PSO 536.6465 2.168516 533456 539.519 6.53
1250 AlS 643.5694 4.573054 636,387 650.71 15
CA 665.0334 6.414416 653.953 674.787 3.06
PSO 673.4685 2.906056 666.679 677.759 8.33
1500 AlS 778.1182 3.438976 771.56 783.992 18.63
GA 796.4086 6232432 786.694 807.798 253
PSO §11.6292 3.812454 804.015 816.716 15.33
1750 AlS 912.3596 6.539778 901.329 924.195 2318
GA 936.169 10.08861 909.166 948.106 4.2
PSO 949.215 4.229002 939.728 954.627 18.95
2000 AlS 1055.614 6.467689 1040,556 1063.499 27.3
CA 1080.734 1038829 1064.,329 1095.981 538
o] 1090.751 3.654231 1084.96 1095.441 214
2250 AlS 1194.653 7.832795 1175.729 1205.751 315
GA 1216.282 9.361185 1194.847 1231.695 6.05
PSO 1233.569 2.747422 1229804 1237.641 27.7
2500 AlS 1332.626 4.262932 1322.889 1239.844 3548
GA 1363.61 1147981 1342.276 1383.296 6.98
P50 1372217 5.347195 1363.085 1384395 353
2750 AlS 1469.038 6.878416 1458.861 1480.152 40.6
CA 1500.733 8.700060 1485.827 1519.374 7.95
PSO 1517.065 3.861985 1507.177 1522.606 42,33
3000 AlS 1609.318 5.508595 1599.416 1616.136 44.03
GA 1638.646 6.178088 1630.189 1650.212 8.68
PSO 1658.035 2.302658 1652915 1661.022 49.68
3250 AlS 1747.702 5.369967 1739.149 1761.039 472
GA 1782.168 9.204404 1762.66 1799.979 9.46
PSO 1796.562 4.913563 1786.719 1803.763 56.16
3500 AlS 1883.763 5058473 1876.484 1891.888 52.46
GA 1920.577 14.97923 1890.537 1941.368 10.6
PSO 1937.999 6.260651 1923.661 1944.341 64.7
3750 AlS 2024.503 7.275208 2008.415 2032.737 57.55
GA 2057.469 10.67214 2041.245 2077.623 11.41
PsO 2075.818 4.912674 2064.651 2081.677 74.83
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Table 3 (centinued )

Problem Algorithms Quality of solutions obtained (m®) Computational
size time (min)
(boxes) Average Std. dev. Minimum Maximum
4000 AlS 2156.155 9956512 2132.238 2172.259 61.21

GA 2200.024 15.64693 2172452 2220.634 12,63

PSO 2214.67 6479133 2201.986 2224687 871
4250 AlS 2302.487 6.676512 2291.792 2313918 64,96

GA 2338.150 12,19414 2312.837 2357.699 13.9

PSO 2351.926 6.832332 2339,052 2360.942 a5.8
4500 AlS 2442 957 6.251996 2434851 2454,509 69.96

GA 2474.944 1421576 2450.443 2502.755 1438

PSO 2497.468 6.263813 2488.008 2506.95 108.48
4750 AlS 2578.646 6.316946 2571.152 2593.184 7433

GA 2617120 13.49513 2587.508 2637.881 15.65

PSO 2643.046 3.192388 2637.799 2647.892 119.33
5000 AlS 2722.148 1062053 2698.43 2740.248 78.88

GA 2768.881 11.02224 2750518 2786.485 16.23

PSO 2761563 7.462582 2762.627 2789.458 13338
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Fig. 19. Progress graphs of each algorithm from the large problem.

of particles and the number of iterations, inertia weight, self-
cognition rate and social learning rates were set at 100 = 25, 0.5,
0.8 and 0.5, respectively. The adjustment operator was adopted
for repositioning particles during iteration. For each algorithm,
the computational runs were replicated 15 times with different
random seeds. The experimental results for 21 different problems
were analysed in terms of the mean, standard deviation (Std.
dev.), minimum and maximum volume utilisation, and computa-
tional time as show in Table 3. It can be seen that the mean
solutions obtained by AIS were better than those produced by GA
and PSO for all problem sizes. Considering the terms of both
minimum and maximum volume utilisations, AlS produced better
results than GA for all problem sizes (except the smallest problem
with 100 boxes). However, the average computational time taken
by AlS was at least four times longer than by GA. The average
computational time taken by PSO increased drarnatically when
the problem size was larger. This was caused by the box adjusting
operation conducted in the particle repositioning process of PSO.

In order to study the progress of searching, the ‘best so far’
solutions obtained by the algorithms for a problem with 2000
heterogeneous rectangular boxes were investigated as shown in
Fig. 19. AlS converged more quickly and produced better results
than GA and PSO.

7. Conclusions
This paper has described successful development and applica-

tion of a tool incorporating an Artificial Immune System (AIS),
Particle Swarm Optimisation (PSO) and a Genetic Algorithm (GA)

for solving the multiple container packing problems (MCPP). A
two-step sequential experiment was designed and conducted to
identify the best parameter configuration of the algorithms for
solving 21 benchmark problems, all of which involved the pack-
ing of heterogeneous rectangular boxes into a set of standard
marine containers. An analysis of variance found that the AIS
parameters amount of search (Al) and the percentage of eliminat-
ing antibodies (%B) were statistically significant with a 95%
confidence interval. A main effect plot found that values of
100 x 400 and 25% performed the best. In the sequential experi-
ment, it was found that the average best-so-far solutions obtained
from AIS were better than those produced by GA and PSO for all
problem sizes. The convergence graph indicated that the best-so-
far result obtained from AIS decreased quicker than those from
GA and PSO. However, the average computational times taken by
AlS were at least four times longer than byGA. Further work could
be done that could consider a two-stage approach of applying a
clustering method, e.g. k-mean for grouping the box sizes first
before considering the packing sequence of boxes into containers.
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