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ABSTRACT 

  

Urbanization is one of the most evident global changes. Gelephu city under 

Sarpang Dzongkhag has experienced rapid urbanization over the past decades. The 

number of people living in urban areas has drastically increased mainly arising from 

natural population growth and rural-urban migration along with socio-economic 

development. This ultimately leads to the unplanned and uncontrolled urban 

expansion causing an irreversible change of urban landscape posing great threats to 

natural environments. 

The primary objective of the research was to apply remote sensing and 

geographic information system technology with the integration of cellular automata 

(CA) based SLEUTH urban growth model to simulate the urban expansion and 

evaluate the urban growth factors through the development of future growth 

scenarios. The model was calibrated with historical data for the period 1990-2017, 

extracted from a time series of satellite images. The dataset consists of four historical 

urban extents (1990, 2000, 2010, and 2017), two land-use layers (1990, 2017), two 

transportation layers (1990, 2017), slope layer, hillshade layer, and urban excluded 

layers. 

Three specific scenarios were designed to simulate the spatial growth 

consequences of urban growth under different land-use conditions. The first scenario 

is to simulate the unmanaged growth in business as usual (BAU) scenario with no 

 



 D 

restriction on land use categories except water bodies. The second scenario is to 

project the managed growth scenario (MGS) trend by taking into consideration of 

moderate environmental protection, specifically for forest land and open spaces. The 

last scenario is to simulate the compact growth scenario (CGS) with maximum 

protection. It was found that altering the level of growth protection in the urban 

exclusion layer for different land-use types patently affects the growth changes in the 

region. In the BAU scenario, it is estimated to gain approximately 26 sq.km of urban 

land by 2047, which is twice the current urban area in 2017. Approximately, 9 

sq.km of the resources could be saved by the third scenario, compact growth with 

maximum growth protection of (80 percent) was applied. However, the growth seems 

to be highly underestimated in the areas which have high growth probability. The 

second scenario was found to be the ideal growth scenario in the current study area 

where moderate growth protection (50 percent) was applied. Though the scenario 

consumes 23 sq.km of urban land by 2047, it attempts to save the limited agriculture 

land and facilitate future growth in a much-sustained manner considering the 

topography of the region. 

Findings suggest that the SLEUTH model can be applied successfully and 

produce a realistic projection of urban growth that it can assist urban planner and 

policymakers to establish proper urban planning as a decision-support tool for 

sustainable development. 
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ABBREVATION AND DEFINITIONS 

 

SLEUTH Slope, Land use, Exclusion, Urban extent, Transportation, and 

Hillshade 

LULC   Land use Land cover 

UGM   Urban growth model 

LCD Land Cover Deltatron. It is the sub-component of the SLEUTH 

model that attempts to change the land use/cover class of the 

immediate neighborhood. Deltatron is an artificial “agent” of 

change that has “life” in change space whenever land cover 

transition takes place. 

HGS Historical Growth Scenario or Business as usual (BAU) 

scenario. It is the scenario developed for future urban growth of 

the city. This scenario assumes the urban growth and 

development that would continue along historical trends 

without applying any restrictions in current growth trend apart 

from water bodies and agriculture land which acts as a 

constraints. 

MGS Managed Growth Scenario. This scenario defines the future 

urban growth through moderate protection on environment and 

open space area which are available for urban growth. 

CGS Compact Growth Scenario. This scenario represents the 

maximum growth constraints applied compared with previous 

two growth scenarios. 

CA Cellular Automata 

UN United Nations 

IHDP International Human Dimensions Programme 

IGBP International Geosphere-Biosphere Programme 
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GIS Geographic Information System 

TM Thematic Mapper (LANDSAT’s sensor) 

ETM + Enhanced Thematic Mapper plus (LANDSAT’s sensor) 

OLI/TIR Operational Land Imager & Thermal Infrared Sensor 

(LANSAT 8 sensors) 

GIF Graphics Interchange Format 

USGS United States Geological Survey 

OSM   Optimal SLEUTH metrics 

 



  



CHAPTER I 

 

INTRODUCTION 

 

This research seeks to explore the simulation of urban growth phenomenon 

using the cellular automata (CA) based SLEUTH urban growth model. SLEUTH is 

the acronym for the input data required to run the model: Slope, Land use, Exclusion, 

Urban extent, Transportation , and Hillshade (Dietzel & Clarke, 2006). The model is a 

well-known CA-based urban growth model coupled with land cover change model 

(Clarke et al., 1997), which can simulate urban growth on historical trends with urban 

and non-urban data under different development conditions. The main purpose of this 

study is to evaluate the future urban growth scenarios using remote sensing satellite 

images and SLEUTH urban growth model. It also seek to examine the urban growth 

parameters and assess the results obtained from the model calibration and prediction. 

Moreover, the study drives to demonstrate the effectiveness of model in a different 

geographical urban setting like Bhutan. It was anticipated that the information 

generated from this research would mitigate the urban development and approach to 

plans and policies of the city. This chapter begins with a background and significance 

that frames the study. Following this is the Statement of the problem, Research 

questions, Aims and objectives of the study, Scope, and Limitation of the study. The 

chapter concludes with outlining the succeeding research chapters. 

 

Background and significance of the study 

 

The number of people living in urban areas has drastically increased over the 

past few decades. According to a recent world urbanization prospects report by the 

United Nations (UN), over more than half of the world's population (55 percent) live 

in urban areas, and this number is expected to increase to 68 percent by 2050. The 

rapid growth of urban population from 751 million in 1950 to 4.2 billion in 2018 

underscore the need to understand the key trends in urbanization for effective 

management of urban growth mainly in developing countries where the pace of 

urbanization is projected to be the fastest (United Nations, 2018).  
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It is important to know the urban growth and change which is critical to both 

city planners and decision-makers in this rapidly changing environments (Oguz et al., 

2007). Recently the study on urban growth has gained attention among many 

researchers not only in a global context but at regional and local levels. This is mainly 

due to irreversible changes in the landscape, especially the natural vegetation. The 

rapid urban growth mostly depends upon the city requirement, facilities available and 

industrialization in the area (KantaKumar et al., 2011). 

Urbanization in Bhutan is not a recent phenomenon. It started since 1961 

with the implementation of the first five-year development plan in the country. Since 

then considerably growth has happened especially in urban area. Currently, Bhutan 

has a total population of over seven lakh, of which 37.8 % constitutes the urban 

population. It has been predicted that the total population will cross 800,000 by 2047, 

while the half of the population will be living in urban areas by 2037 (National 

Statistics Bureau, 2018). This means the urbanization level will continue to grow in 

the country and reported to have an over 7% increase in the current study area of 

Sarpang District by 2047. Currently, Bhutan occupies an area of over 38,000 square 

kilometers of which only 0.2% of built-up and 2.75 % of cultivated agriculture land 

available in the country. The constitution of the Kingdom of Bhutan mandates that a 

minimum of 60% of Bhutan's total land should be maintained under forest cover for 

all the times (The Constitution of the Kingdom of Bhutan, 2008). 

According to UN (2014), urban living is often associated with higher levels 

of literacy and education, better health facilities, more access to social and economic 

services, and greater opportunities for cultural and political participation (United 

Nations, 2014). Roy and Saha (2011), identified the major factors exhibiting city 

growth: self-induced process, spreading functions from the center, market-oriented 

location, expansion and merging factors, geostrategic importance and socio-culture 

factors (Roy & Saha, 2011). However, key problems associated with the expansion of 

the city such as infiltration, land use, transportation, drinking water, social, and 

problems of slums were highlighted in the study. With this rapid growth, cities exert 

heavy pressure on land and natural resources on the outskirts of the city. Extensive 

growth of urban areas happened due to several factors, most notably population 

growth via rural-urban migration, development of city infrastructures, job 
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opportunities, and education attributed the city grew over time. This urban expansion, 

indeed at a rapid rate in which it is occurring, presents a formidable challenge to 

urban planners and managers (Masser, 2001). 

Land cover and land-use change models are helpful tools to understand the 

urban dynamics and their consequences (Rafiee et al., 2009). In this context, remote 

sensing and Geographical Information System can make extensive use to map and 

manage the rapid urban change areas in the city. Nowadays, satellite data become 

inevitable for mapping and monitoring the urban growth change for municipal 

planning and enhance an emphasis on applications on urban planning (Treitz & 

Rogan, 2004). Constant, historical, and precise information about the urban land use 

land cover change is a prerequisite to further analysis of urban growth and scenarios. 

However, urban models using this information was not utilized in Bhutan by any 

researchers in the past to study urban growth. 

The use of the Cellular automata (CA) model could be the first of its kind in 

Bhutan to study the urban growth scenarios. The previous research efforts and 

information on urban growth in the country according to the relevant literature 

reviews found that the study was done in Thimphu city to quantify the amount of 

forest cover and human processes involved and its adverse effect of cultural, political, 

and economic frameworks (Gosai, 2009). Yangzom et.al (2017) had conducted a 

temporal study of the urban expansion of Thimphu city from the year 2001 to 2017 

and found that urban growth has almost tripled within these sixteen years. Moreover, 

the study identified the impact of urban expansion through socio-cultural, economic, 

and environmental impact in the city (Yangzom et al., 2017). 

The urban growth models coupled with GIS can be useful to study the urban 

growth patterns through model simulations (Batty et al., 1999). In their study, many 

strategies have been identified for linking models to a GIS from loosely coupled to a 

strong couple. One such model of the Loose-coupling of cellular automaton and GIS 

has been studied by Clarke & Gaydos (1998) to predict the long term urban growth 

for San Francisco and Washington/Baltimore. Though the GIS is loosely coupled with 

the model, it was found to be a valuable enriching source of GIS data layers, and 

layers that have real value for planning and GIS application. According to Batty, Xie, 

& Sun (1999), urban models are developing rapidly which are at first sight, strongly 
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consistent with GIS. All models are based on the principles of cellular automata (CA) 

where temporal processes of change are represented through local interaction that take 

place in the immediate neighborhood of the various objects (Batty et al., 1999). 

In recent years, the study of urban growth modeling and Land cover change 

in Asian countries such as China, Thailand, and India has been documented and 

studied using the CA-based SLEUTH urban growth model (Huanga et al., 2008; 

Maithani, 2011; Sangawongse, 2006). The model was gaining its popularity due to its 

effectiveness of the urban simulation and future growth scenario results obtained from 

the model. The model based on cellular automata is probably the most notable among 

all the documented dynamic models in terms of their technical progress in connection 

to urban applications. SLEUTH model has been tested more than 60 cities all over the 

world (Dietzel & Clarke, 2006). Using these models, city urban planners, decision and 

policymakers can analyze the different scenarios of the urban land use land cover 

change and can evaluate the effects in land use planning and policy (Veldkamp & 

Lambin, 2001). The current study involving model simulation would add spatial 

information's towards urban growth which is a prerequisite for urban planners and 

decision-makers to understand both current and future growth scenarios of the city. 

This study will also serve as a basis to mitigate the urban development and approach 

to plans and policies of the city.  

Therefore, the ultimate aim of this research was to simulate future urban 

spatial development under different scenarios of SLEUTH models for the next 30 

years. With the reliable prediction model and growth scenarios, the impact of urban 

growth can be minimized through proper planning and management. Besides, the 

findings of the study will also have the potential to implement the model to other 

Districts where similar growth would happen in the future. 

 

The Problem Statement 

 

The accelerated urban growth with an increase in population in the urban 

areas has led to various socio-economic demands in the country. Bhutan's total land 

area is approximately over 38,000 square kilometers of which limited area of land is 

available for human settlements due to the rugged mountainous region. More than 70 
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percent is reported to have under forest cover (Ministry of Works and Human 

Settlement, 2016). Gelephu is the third-largest urban city in the country and over the 

period, tremendous change in growth scenario was found both in the urban and peri-

urban region. The city today has evolved to be one of the major commercial and 

business centers in central Bhutan. 

The growth of the city has become more prominent due to the identification 

of the area as a viable economic hub of the country. It is also due to the construction 

of the domestic airport, vocational training institute and the industrial estate in the 

peri-urban region. The demand for land and other necessary amenities within the city 

has become high. On another hand, there is a lack of a proper system for urban land 

use planning and implementation which exerts heavy pressure on the city planners 

and decision-makers for sustainable future urban growth (Ministry of Works and 

Human Settlement, 2016).  

It was found that there is little evidence of the research conducted to tackle 

the urban growth issues in future though the subject was widely research and highly 

used as a decision-making tool in both global and local setting of the area. From the 

above argument, it is imperative that the impact of the city upon surrounding areas is 

noticeably high and it is likely to be even more soon. Given such urban growth, the 

detailed study of past to present and future prospects of the city scenarios has become 

necessary for urban planners and policymakers to manage the city under the country 

development policy (Yang & Lo, 2003). 

 

Research Questions 

 

1. How can we understand the urban growth system through urban modelling 

and Simulation? 

2. How do different types of urban growth can represent future urban 

development through the design of model scenarios? 

 

Purpose of the study  

 

The overall purpose of this research is to understand the urban growth 

phenomena through urban modeling and simulation. After the study of complex urban 
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growth systems and models behind the urban growth, Cellular Automata (CA) based 

SLEUTH urban growth model was applied in different growth scenarios of the city. 

Therefore, to achieve the overall result and ensure the research process remained on 

track, three specific research objectives were set; 

 

1. To simulate the urban expansion using remote sensing data and SLEUTH 

model. 

2. To evaluate the urban growth factors through management of three 

different growth scenarios of SLEUTH model: a) Business as usual 

scenario (BAU), b) Managed growth scenario (MGS), and c) Compact 

growth scenario (CGS). 

3. To explore the model’s effectiveness and suggest most appropriate 

scenario for future urban growth in a mountainous country like Bhutan. 

 

Scope of the study 

 

This study was focused on the future urban growth of the Gelephu city under 

the Sarpang Dzongkhag (District). The area consists of four sub-district including the 

District head quarter and the core municipal area which envisages the future urban 

growth in the region. This research makes use of the SLEUTH urban growth model 

which is a Cellular Automaton (CA) based urban growth tied with Land cover change 

model (Silva & Clarke, 2002). The model required six input layers; Slope, Land use, 

Exclusion, Urban extent, Transportation, and Hillshade layers derived from various 

data sources such as satellite images and topographical base map of the country.  

Detailed functioning of the SLEUTH model through its four predefined grow 

rules and five growth coefficients will be examined. Moreover, model calibration in 

three phases: coarse, fine, and final spatial resolution will be carried out to narrow 

down the growth coefficient for the model prediction phase. The model simulation 

results will have a great potential to inform both city urban planners and decision 

makers to minimize the impact of future urban growth. Besides, the model can show 

the usefulness with the combined approach of remote sensing and geographical 

information system. 
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Limitation of the study 

 

The accuracy and reliability of the predicted urban growth model will 

ultimately depend on the historical input data and the model calibration based on the 

urban growth scenarios. The high spatial resolution of remote sensing data 

interpretation is required to obtain better simulation results (Chaudhuri & Clarke, 

2013). In this study, 30 meter Landsat satellite images obtained from USGS earth 

explorer website (https://earthexplorer.usgs.gov/) has been used. Generating accurate 

land use the land cover map was a challenge from such images due to a coarse 

resolution. It was difficult to make a clear distinction between different land use 

features classes.  

Some extent of the visual interpretation of the model results might impact the 

actual urban growth results compared to the real growth. This study was located 

relatively flat terrain compared to other cities, and the results obtained may not 

demonstrate or reflect the same behavior to other cities. 

Since urban growth and land-use change is a complex and complicated 

process, the growth is also influenced by other subjective factors such as social, 

economic, and political aspects which are not considered in this study because of the 

model’s ability. This research mainly considered the historical data sets and land use 

land cover information to explore the potential urban growth through different 

management scenarios using the SLEUTH urban growth model. 

 

Organization of the research 

 

This research is presented in 5 chapters in total. The first chapter includes the 

background and significance of the study with its purpose, research questions and the 

statement of the problem for conducting this research. The scope and limitations of 

the study were also highlighted.  

Chapter 2 discussed the theoretical and practical views on land use land 

cover and urban growth detection through remote sensing and GIS. Detailed urban 

growth modeling and the model functions of SLEUTH are presented in this chapter.  

https://earthexplorer.usgs.gov/
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In the third chapter, materials and methodology of the study were presented 

which consist of data collection and preparation, land use land cover mapping, 

SLEUTH model calibration, model simulation, and validation processes.  

The results obtained from the model calibration and prediction scenarios are 

presented in Chapter 4. Finally, chapter 5 presented the detailed discussion of results 

followed by a conclusion and recommendations of the study. 

 

Study area 

 

Gelephu is located about 30 kms to the east of Sarpang Dzongkhag (District) 

Headquarter, located in the Southern foothills of central Bhutan. Gelephu is one of the 

gateways to Bhutan from neighboring border town India. Due to the geographical 

setting of the area with relatively flat terrain and the proximity to the border city, the 

Royal Government of Bhutan had identified the Dzongkhag as one of the preferred 

locations for future development.  

The proposed development corridor of along the Sarpang-Gelephu highway 

will serve as the backbone for a Special Economic Zone (Ministry of Works and 

Human Settlement, 2010a). Gelephu region is planned as a growth center for the 

central parts of the Bhutan, serving a series of smaller settlements, or service centers, 

like Sarpang, Tsirang, Zhemgang and other Dzongkhags.  

 

 

  

Figure 1 Map showing the study area 
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The current study area covers the entire Sarpang-Gelephu development 

corridor including the Dzongkhag Headquarter where major infrastructure 

development has been carried out and observed rapid urban growth in recent decades. 

Study area covers approximately 244 sq.km bounded with geographic coordinates of 

Longitude 90° 15' 16'' to 90° 31' 09'' East and Latitude 26° 50' 49'' to 27° 00' 46'' 

North. The altitude of the area ranges from 200 to 1500 meters above the MSL. The 

total population in the Dzongkhag is 46,004 persons recorded in 2017 (National 

Statistics Bureau, 2017), and projected to 65,774 persons by 2047.  

With experiencing pressure on urban development, it is timely to do the 

study and understand both current and future prospects of urban growth scenarios for 

the management of future urban growth.   



CHAPTER II 

 

LITERATURE REVIEW 

 

Introduction 

 

This chapter presents a review of the theories, models and techniques that are 

used for urban simulation. Since this study explore the CA based SLEUTH urban 

growth model, this chapter deals in depth in SLEUTH model. It is important to 

introduce readers about model concepts and techniques that helps to understand the 

model calibration and prediction phases in later stages. Basically, this chapter has 

divided into four parts: Land use land cover dynamics, urbanization and urban 

expansion, urban growth modelling, and SLEUTH urban growth model. Before 

dwelling into the urban growth modeling concepts, we first introduce the basic 

theories and background of Land use land cover dynamics and urbanization process 

which is one of the main factors for urban expansion. Then review of the recent 

progresses in urban models, and detailed functioning of SLEUTH urban growth 

models and its applications will be highlighted in detail which in later chapter deals 

with model calibration and prediction. 

 

Land use Land cover (LULC) dynamics 

 

Urbanization is one of the main factors of LULC in the cities. It is a common 

worldwide trend that is caused by population growth and economic development. The 

rapid urban growth triggered by population growth and economic development has 

caused numerous problems, such as the loss of open space, agricultural land, and 

degradation of the forest. With the limitation of land resource, not all the land-use 

changes are from rural to urban; more and more land-use changes are occurring 

within the urban area. These variations are generally caused by mismanagement of 

agricultural, urban, and forest lands which lead to major environmental problems such 

as landslides, floods, etc. (Liu et al., 2017). 

 According to Lambin, Geist, & Lepers (2003), LULC change consist of two 

different terms: Land cover and land use.  Land cover refers to a biophysical cover 
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over the earth's land surface and immediate subsurface which includes water, 

vegetation cover, bare soil, and manmade structures (Lambin et al., 2003). Foody 

(2002) defined the land cover change as a fundamental variable that affects and links 

many parts of the human and physical environments. Understanding the importance of 

the land cover and predicting the effects of land cover change is mainly limited by the 

lack of accurate land cover data and up-to-date information on land cover and land 

cover change are therefore required for many applications (Foody, 2002). 

Land use is a more complicated term. It is the intended human employment 

and management of the land, the ways and means of its misuse to meet human 

resource demands (Meyer & Turner, 1996). They proposed three ways of land cover 

change due to land use activity; firstly conversion of the whole land into a different 

state, changing condition without full conversion, and preserving its condition against 

natural agents of change. As per the Lambin, Geist, & Lepers (2003), land use is 

defined by the purpose for which humans exploit the land cover. They identified 

various factors of land-use change such as economic and technological factors, 

demographic, institutional, cultural, and globalization.  

Over the last few decades, the number of researchers have improved the 

measurements of land cover change and the understanding of its causes, and land 

cover modelling, in part under the supports of the LULCC Project conducted by 

International Geosphere-Biosphere Programme (IGBP) and International Human 

Dimensions Programme (IHDP) on Global Environment Change (Lambin et al., 

2003). 

Land use land cover is crucial for any kind of natural resource and action 

planning be it in global, national, & local planning. Timely and accurate land use land 

cover information is vital for better management and decision making. Firdaus (2014) 

highlighted the importance and prior advantage of LULC which is one of the most 

precise techniques to understand what types of changes had happened and to be 

expected in the future. It states that the LULC serves as one of the major input criteria 

for any kind of sustainable development program (Firdaus, 2014).   

Satellite remote sensing technology has been widely applied to detecting 

LULC changes (Firdaus, 2014; Lambin et al., 2003; Rongqun & Daolin, 2011; 

Veldkamp & Lambin, 2001) especially the urban expansions (Li, 2014; Masser, 2001; 
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Sangawongse, 2006). Singh (1989) highlighted several techniques of land cover 

change detection using digital data such as image differencing, vegetation index 

differencing, principal components analysis, post-classification comparison, and 

change vector analysis. Among these methods, post-classification change detection 

was a commonly used method for detecting the land-use change and also used in 

various areas effectively (Fan et al., 2007; Singh, 1989). 

 

LULC analysis using satellite remote sensing 

 

One of the main objectives of digital image analysis is to classify the land 

cover types from satellite images. Lu and Weng (2007) identified the major steps of 

image classification which includes the selection of suitable classification system, 

training samples, image preprocessing, feature extraction, post-processing, and 

accuracy assessment (Lu & Weng, 2007). According to Shalaby & Tateishi (2007), 

the accurate change detection from satellite imagery will depend on the nature of 

change involved and the correctness of the image preprocessing and classification 

procedures (Shalaby & Tateishi, 2007). However, Erasu (2007) argues that whatever 

the classification methods and techniques developed by the scientist and authors, 

classifying the remotely sensed data into thematic map remains a challenge (Erasu, 

2017). Various factors such as the nature of chosen study area, selection of remotely 

sensed data, choice of classification techniques, and spatial resolution of the different 

data sets and the availability of the classification software attributed the challenge in 

the image classification system. 

A variety of classification algorithms have been proposed to conduct the 

remote sensing image classification and it was documented two main spectral 

recognition methods; Supervised and unsupervised multispectral classification (Li, 

2014). Many efforts have been made to improve urban land cover classification 

accuracy and Li (2014) proposed three methods as per the existing works of literature: 

Making more efficient use of spectral information. This information is readily 

available in satellite images and the number of spectral indices was developed to help 

the interpretation of remote sensing images. For example, the widely used Normalized 

Difference Vegetation Index, Principal Component Analysis (PCA) (Rongqun & 
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Daolin, 2011). Incorporation of multi-sensor data and ancillary spatial information; 

this technique is the fusion of two types of data to enhance the accuracy of 

classification. The third one is the increasing use of spatial information. Generally, 

classification accuracy refers to the extent of correspondence between the remotely 

sensed data and reference information (Congalton, 1991). Accuracy assessment is 

necessary to validate the classification results.  

Stehman & Czaplewski (1998) proposed three basic components of 

classification accuracy assessment: sampling design, responsive design, and 

estimation and analysis procedures (Stehman & Czaplewski, 1998). The collection of 

sample size and choosing the sampling scheme is another important consideration 

when assessing the accuracy of the remotely sensed data (Congalton, 1998). It is 

critical to generate the error matrix that is representative of the entire classified image. 

Congalton (1998) pointed out that the poor choice in sampling schemes can result in 

significant biases being introduced into the error matrix which may over or 

underestimate the true accuracy. The overall accuracy of image classification was 

calculated using the following formula: 

 

Overall accuracy (%) =
Total number of correct sample

Total number of sample
∗ 100     (1) 

 

Besides overall accuracy, two other classification accuracy of the individual 

classes were also calculated similarly: User's accuracy and Producer's accuracy.  The 

user's accuracy is calculated by dividing the number of correctly classified pixels in 

each category by the total number of pixels that were classified in that category. The 

Producer's accuracy is obtained from the number of corrected pixels in a particular 

class divided by the number of corrected pixels obtained from reference data. It 

measures how well a certain area has been classified. These two accuracies can also 

be expressed in terms of commission and omission errors. The errors of commission 

indicate pixels that were placed in a given class when they belong to another, while 

the error of omission indicates the percentage of pixels that should have been put into 

a given class (Congalton, 1991).  

 

Proceducer′s accuracy (%) = 100% − error of ommision (%)                         (2) 
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User′s accuracy (%) = 100% − error of commission (%)                                  (3) 

 

The type of error used to evaluate the overall accuracy of the classified 

images is also known as the kappa coefficient. It is generally known as a precision 

measure since it is considered as a measure of agreement in the absence of chance 

(Congalton, 1991). The kappa statistic is calculated from the error matrix by using the 

following mathematical formula. (Congalton, 1991).      

     

     

     (4) 

 

 

Where; 

K: Kappa coefficient 

X: Pixel 

r: the number of rows 

N: the total number of observed pixels 

i: is the number of observations in row i 

j: column in error matrix 

+: total of rows and column sum 

 

Urbanization and urban expansion 

 

Bhutan is a small landlocked country situated between two giant neighbors 

China and India. Geographically characterized by steep mountains and deep valleys 

which led to scattered population settlements patterns. In recent decades, the 

population of the country has been increasing and rural-urban migration remains the 

highest among other factors which it played an important role in driving the growth of 

Bhutan’s towns and cities. According to the report on leveraging urbanization in 

Bhutan by World Bank, 2014, the growth rate of Bhutan’s urban population was the 

highest (at 5.7 percent per year) among the eight South Asian countries from year 

2000-2010. 
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Urbanization is defined as a spatial and social process resulting in a change 

in the relationship between human societies and social behaviors in various 

dimensions (Li, 2014). Li et al. (2003) defined urban growth as a dynamic process of 

land-use change that is associated with details of the earth's surface such as 

topography, road network, and socio-economic in a city (Li et al., 2003). According to 

them, urban expansion was implemented in the area which is under the pressure of the 

population growth which triggered the land-use change of the city from natural 

vegetation and agricultural land into urban built up. Dramatic urbanization, especially 

in the developing countries will continue to be one of the central issues of global 

change influencing the human dimensions (Li, 2014). Though the change of 

urbanization promotes socio-economic development and improves quality of life, 

urban growth inevitably results in a significant decrease in vegetation cover in urban 

areas such as converting forest and agricultural land into urban built-up.  

According to Sebastain, Jayaraman, & Chandrasekher (1998), the 

urbanization process has been characterized by increased in built-up areas due to 

industrial expansion, economic and social development activities, consuming the 

natural resources in large (Sebastain et al., 1998). Wilson et al. (2003) have identified 

three categories of urban growth: infill, expansion, and outlying. Infill growth is 

characterized by a non-developed pixel being converted to urban pixel surrounded by 

existing developed pixels. This type of growth is usually occurs in the existing 

developed infrastructure. An expansion growth represents an expansion of the 

existing urban patch. Outlying growth is also characterized by a change from non-

developed to developed land cover occurring beyond existing developed areas which 

is further divided into three classes: isolated, linear branch, and clustered branch. 

(Wilson et al., 2003). 

The same transition has been visibly seen in Bhutan's urbanization process 

from past to present. Urbanization in Bhutan started in 1961 with the start of the first 

five-year development plan by late King Jigme Dorji Wangchuck (Giri & Singh, 

2013). According to the research article by Chand (2017), the urban landscape in 

Bhutan was nearly absent in the 1960s and until the 1980s, the pace of development 

has been very slow.  
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It was noted that urban settlement in Bhutan was limited to a few traditional 

clustered villages which were later being replaced by new urban buildings (Chand, 

2017). Thimphu being the capital city of the country, the infrastructure development 

started at a rapid pace which led to the migration of people from rural areas to the 

Thimphu urban area. Slowly, the development of small towns across the country led 

to the urbanization and expansion of urban areas. As per the history of the 

development of Gelephu town, it dates back to 1961 when the original settlement was 

moved from the banks of Mou Chhu to the present location (Gelephu Thromde, 2019, 

August 2). 

 It was found that the pace of urbanization was very slow until the late 1990s. 

This perhaps due to the repopulation of landless people in the rural part of the region, 

land whose former settlements were deemed of unsuitable political loyalty (Walcott, 

2009). However, it was presumed that the location being in the mid-country envisages 

future development such as an airport and a major transportation depot for the export 

of goods and services. It is only after the commencement of the resettlement program 

in 1997 by His Majesty the Fourth King started granting the land to the landless 

people in the country (National Land Commission Secretariat, 2016). The Sarpang 

Dzongkhag being one among the five Dzongkhag under this program had seen major 

socio-economic development with increased in population growth and ultimately 

leading to the growth of urban area.  

Today, Gelephu became the third-largest city in the country and many 

development plans have been laid down in Structural Plan which envisages the further 

growth of the city. Rapid urbanization is responsible for many environmental and 

social changes in the urban environment and its effects are strongly related to global 

change issues. The huge growth in urban population may force to cause uncontrolled 

urban growth resulting in sprawl. The rapid growth of cities gives pressure to provide 

various services such as energy, education, health care, transportation, and clean 

sanitation and the direct implication of urbanization is attributed to spatial growth of 

towns and cities, which is referred to as urban growth. 

The recent report on Comprehensive Development Plan for Bhutan 2030 

(Ministry of Works and Human Settlement, 2019), identified that due to increase rate 

of out-migration, where people tend to migrate to urban area in search of better 
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opportunities in terms of higher education and jobs, as well as better conditions of 

employment than farming, the limited natural resources available in urban area are put 

on pressure. Currently, Bhutan’s environmental problems had not reached at a serious 

stage, but importance has to accord in advance accordingly to the plans and policy, as 

stated in the report. 

Recently, study on assessment of land use/cover change and urban expansion 

was carried out in two major cities; Phuntsholing and Thimphu. The study conducted 

in Phuntsholing Municipality shows the decline of vegetation cover of approximately 

6.3 percent in last ten years due to considerable increase in urban built-up, which is 

about 7 percent. The study also projected the huge change of vegetation cover which 

will be decreased to 32 percent with expected increase of urban settlement to 26 

percent by year 2026 (Chimi et al., 2017). According to the study conducted by 

Yangzom (2017), urban expansion is one of the significant driver of dynamics of 

landscape, degrading the natural system and emergence of different social issues. The 

study revealed that the urban settlement in Thimphu city had been increased tripled 

the size from 2001 to 2017 mainly along the transportation routes with more 

expansion towards the south of the city.  

Easy access to the various facilities, employment opportunities and ease of 

city life were cited as the driving force for urban expansion. Rural-urban migration 

was cited as another factor causing increase in urban settlements encroaching into the 

forest and agricultural land (Yangzom et al., 2017). Such study could be one area to 

analyze the impact of urban growth and its consequences keeping in view the 

country’s development plans and policies be it in the regional or in local municipal 

planning process.  

 

Urban growth modelling 

 

Urban growth modeling was introduced in the late 1950s. Since then the 

number of analytical and statistical urban model has been evolved based on diverse 

theories and applications such as urban geometry and size, relationships of cities and 

economic development functions. These models are used to explain the urban forms 

and growth patterns rather than forecasting future urban growth. In order to 
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understand the spatial consequences of urban growth, dynamic urban growth model is 

preferred (Rafiee et al., 2009). 

With growing applications in remote sensing and geographic information 

system, advance modelling approaches such as CA models (Clarke et al., 1997), 

artificial neural network (Pijanowskia et al., 2002), Fractal model (Batty et al., 1989), 

multi-agent model (Benenson, 1998), and Statistical model (Cheng & Masser, 2003) 

has been applied. According to Torrens (2000), among those modeling approaches, 

the CA model is the most widely used in urban growth modeling. This may be due to 

their flexibility, simplicity in application, and due to tightly coupled remote sensing 

data and with GIS (Torrens, 2000). 

History of the development of urban models was captured by Batty and 

colleagues (1997), in their study of urban systems as cellular automata. Urban 

modeling is generally aimed at urban design, building and operation of the 

mathematical models particularly for the cities and areas to help researchers 

understand urban phenomena (Batty et al., 1997).  The first attempts to build 

mathematical CA models of urban systems of spatial diffusion models have been 

initiated by Hägerstand in 1965 (Hägerstrand, 1965). The work was followed by 

Tobler (1970), formulating a demographic model that describes the geographical 

location distribution of the population growth in the Detroit Region (Tobler, 1970). 

Later in 1997, Couclelis followed the CA concept to explore theoretical 

problems such as complexity and formation of urban systems (Couclelis, 1997). 

Starting from the early 1990’s number of studies were done with the CA model to 

practical problems in urban modeling and land-use planning. CA model was used to 

examine the principles of urban dynamics, evolution, and self-organization of urban 

land use patterns (White & Engelen, 1993). Batty et al. (1997) established a common 

framework for the urban simulation using CA in their studies of urban system as 

cellular automata. They defined CA as a lattice of cells, where each cell can exist in 

any number of finite allowed states that will change its state accordingly to the states 

of the change of neighboring cells, which are influenced by a uniform applied 

transition rules. 

Basically CA system consists of four elements which are defined as cells, 

states, neighborhood, and transition rules (Li & Yeh, 2000). Cells are the smallest 



 19 

objects in any dimensional space that appear in proximity to one another. A cell’s 

state will change with its neighboring cells when a set of transition rules is applied. A 

neighborhood consists of a CA cell itself and any number of cells in a given 

configuration around the cell. In CA, transition rules are considered as the main 

component of the change of states (Torrens, 2000). They specify the behavior of cells 

between time-step evolutions, deciding the future conditions of cells based on a set of 

fixed rules that are evaluated on input from neighborhood cells. A Transition rule in 

the context of urban CA is responsible for explaining how the city works. Depending 

upon the transition rules, and calibration methods the CA model developed for many 

modeling purposes has been popularly applied in the area of modeling urban studies 

and growth processes (Al-shalabi et al., 2012). 

According to Torrens & O’Sullivan (2001), CA is defined as an array of 

regular spaces or cells that change their states iteratively and synchronous through the 

repeated application of the transition rules. Apart from the four elements, they 

considered the fifth element called a temporal component in the CA framework due to 

the inadequacy of the model to represent the real objects (Torrens & O'Sullivan, 

2001). CA models have been used in the study of the diverse field of urban 

phenomena, including from traffic simulation, regional-scale urbanization to land-use 

dynamics, historical urbanization, and urban development. New CA models such as 

URBANISM, UPLAN, and SLEUTH have been evolved in recent years to forecast 

future changes trends of urban development both current and future, and to explore 

the potential impacts of different policy scenarios (Al-shalabi et al., 2012). 

 

SLEUTH urban growth model 

 

Clarke and colleagues developed an urban growth model called SLEUTH 

based on cellular automata for simulating historical urban and land-use change 

(Clarke et al., 1997). The initial application of SLEUTH was successfully 

implemented in the San Francisco Bay area in simulating historical urban 

development (Clarke & Gaydos, 1998). The name of the model came from the six 

input data layers, namely Slope, Land cover, Exclusion, Urban extent, Transportation, 

and Hillshade. It is a program written in programming language C under UNIX that 
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uses the standard GNU C compiler (gcc) and runs under Unix, Linux and Cygwin, a 

Windows-based Unix emulator (Project gigalopolis, 2003). 

The model works in a grid space of homogeneous cells, with a neighborhood 

of eight cells, two cell states (urban/non-urban) with five transition rules that applied 

in consecutive time steps. The model can classify urban/non-urban dynamics as well 

as urban land use dynamics. These capabilities led the model to the development of 

two subcomponents within the model; an urban growth model (UGM), and a LULC 

change model or Land Cover Deltatron (LCD) (Dietzel & Clarke, 2007). Each 

subcomponent uses the same calibration phase, however, if only urban growth is 

analyzed, then Land Cover Deltraton is not stimulated by the model. It was only 

activated when land use/land cover is being analyzed by the model. 

The model functions with predefined growth rules and uses the five factors to 

calibrate the model to a particular city. The rules of the model are complex than those 

of a typical cellular automaton (CA) and involve the use of multiple data sources such 

as transportation networks, topography, and existing land use details (Clarke et al., 

1997). The growth rules are applied on a cell by cell basis and the cell is updated at 

the end of every year. 

The complete documentation and downloadable code of this model are 

available at the Project Gigalopolis website: (http://gigalopolis.geog.ucsb.edu/). 

 

Model operation 

 

SLEUTH requires a minimum of five input maps if land use is not modeled: 

urban layers, transportation, exclusion layers, slopes, and hillshade layers. All the 

layers should have the same number of rows and columns, standard naming format, 

and are correctly geo-referenced to one coordinate system since the model is sensitive 

to layer misregistration (Silva & Clarke, 2005). These raster layers are then converted 

to 8 bit GIF images. Once input layers are fed to the model, a predefined number of 

interactions takes place and every iteration of the model was unique and corresponds 

to the same number of years. Clarke et al. (1997) demonstrated the operation of the 

model through simulation program function as follows; 

 

http://gigalopolis.geog.ucsb.edu/
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Read data layers 

Initialized random numbers & control parameters 

For n iterations { 

For t time period { 

Apply change rules 

Apply self-modification rules 

} 

} Write images 

 

An outer loop executes repeatedly in each growth history and retains statistical 

and cumulative data for each Monte Carlo iterations. An inner loop executes the 

growth rules for a single year and each iteration sets of descriptive statistics are 

retained for model calibration. The basic concept of model implementation is shown 

in Fig 2. 

 

 

 

Figure 2 Basic concepts of the SLEUTH model implementation 

 

Source:  Adopted from (Chaudhuri & Clarke, 2013) 

 

SLEUTH model parameters 

 

Urban growth in SLEUTH is modeled in a spatial two-dimensional grid and 

the basic growth procedure is a cellular automaton. The model simulates four types of 

urban land-use change: a spontaneous growth, a new spreading center growth, edge 

growth and road-influenced growth (Jantz et al., 2003). These growth types or rules 

are applied sequentially during each growth cycle, or year, and are controlled through 
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the interactions of five growth coefficients: Diffusion (dispersion) coefficient, Breed 

coefficient, Spread coefficient, Slope coefficient, and Road gravity coefficient. 

Spontaneous growth randomly selects potential new growth cells for 

urbanization. This means that any non-urbanized cell on the matrix has less 

probability of becoming an urbanized cell in any time step. This growth rules 

determined by the dispersion coefficient and slope coefficient which determines the 

weighted probability of the local slope. The stochasticity of the process is indicated by 

random. The cell state will not change if the cell is already urbanized or omitted from 

urbanization, and the ability to change also depends on the current cell value. (Project 

gigalopolis, 2003). 

Diffusive/new spreading center growth determines the occurrence of new 

urbanizing centers by generating up to two neighboring urban cells around areas that 

have been urbanized through spontaneous growth. The breed coefficient determines 

the likelihood of newly generated urban pixels along with the road networks which 

begin its growth cycle. 

Edge or Organic growth dynamics define the part of the growth that twigs 

from existing spreading centers. Edge growth is controlled by the spreading 

coefficient which stimulates the probability that nonurban cell with at least three 

neighbors will also become urbanized. Road-influenced growth is determined by the 

existing transportation networks on growth patterns by generating new spreading 

centers adjacent to roads. 

Newly urbanized cells are randomly selected which is determined by the 

breed coefficient. The accessibility of road locations attracts urban development. 

According to Clarke et al. (1997), the most prevalent type of urban growth during the 

model run is recorded as an organic growth type, followed by spontaneous growth. It 

was noted that road-influenced growth increases as road layers from different 

historical periods are read in at the correct time. 
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Figure 3 Relationship between growth types and growth coefficients in 

SLEUTH 

 

Source: Adopted from (Ding  & Zhang, 2007) 

 

The above growth rules are influenced by the five growth factors applied in 

the SLEUTH model as represented in Fig 2. These controlled values are calibrated by 

comparing simulated land cover change to a study area’s historical data (Project 

gigalopolis, 2003). The diffusion factor controls the depressiveness of isolated urban 

pixels which was generated by spontaneous growth. A breed factor controls the new 

spreading growth and the road gravity growth by monitoring the probability to 

become another newborn urbanized pixel of urban growth center and along the road 

influenced growth. 

A spread factor controls the edge/organic growth type whether additional 

growth can be offspring from old or new urban centers. The breed coefficient controls 

the new spreading growth and likelihood of growth occurring along with the road 

networks. The slope resistance coefficient influences the likelihood of settlement 

development on steep slopes. A high slope coefficient value will decrease the 

likelihood of urban development that will occur on steep slopes. Road gravity factor 

attracts new settlement towards and along with the existing road system. The 

coefficient determines the maximum probing distance of a selected urban cells. 
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Table 1 summarizes the types of urban growth that can be simulated by 

SLEUTH. It encompasses various growth cycles with various growth types with 

specific growth coefficients that control the growth types. 

 

Table 1 Summary of growth types simulated by the SLEUTH model  

 

Growth 

cycle Growth type 

Growth 

coefficients Summary description 

1 spontaneous dispersion 

Randomly selects potential 

new growth cells. 

2 

new spreading 

center breed 

Growing urban centers from 

spontaneous growth. 

3 edge (organic) spread 

Old or new urban centers 

spawn additional growth. 

4 road-influenced Road-gravity 

Newly urbanized cell spawns 

growth along transportation 

network. 

Throughout slope resistance slope 

Effect of slope on reducing 

probability of urbanization. 

Throughout excluded layer user-defined 

User defined area resistant or 

excluded to development. 

 

Source: Adopted from (Jantz et al., 2003) 

 

Model self-modification 

 

The SLEUTH model has a functionality called “self-modification” (Clarke et 

al., 1997). This self-modification allows the growth coefficients to change in the 

entire course of a model run and it simulates more realistically the different growth 

rates which occur in an urban system over time. This modification will either increase 

or decrease the growth parameters of dispersion (diffusion), spread and breed. 

The growth rate is compared to two factors in the scenario file, namely 

critical high and critical low. When the rate of growth exceeds critical high values, the 

growth parameters diffusion, spread, and breed are multiplied by a factor greater than 

one simulating the development "boom" cycle. Likewise, when the rate of growth 

falls below a specified critical threshold value, the growth coefficients dispersion, 

spread, and breed factors are multiplied by a factor less than one which results in 
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stagnation showing the ‘bust" cycle like a depressed or saturated system (Project 

gigalopolis, 2003).  

The self-modification is important to consider in the SLEUTH model because 

it estimates the typical S-curve growth which is common in urban expansion. Without 

which the form of urban growth would be either linear or exponential growth  (Clarke 

et al., 1997).  

 

Model applications 

 

This section examines various research projects in which the SLEUTH 

model has been applied to supplement the rationale behind selecting this model in this 

research. The first application of the SLEUTH model was implemented in the San 

Francisco Bay area by Clarke et al. (1997). The historical urban extent was 

determined using cartographic and remote sensing data extracted from 1850 to 1990. 

With this information coupled with the road network and topographic, animation of 

the spatial growth patterns were created and statistics describing the spatial growth 

were calculated, and it was used for future prediction of urban growth. 

The application of the SLEUTH model outside the USA was first carried out 

by Silva & Clarke (2002) for Porto and Lisbon metropolitan cities in Europe. The two 

cities present very different environmental and geographic characteristics but the 

rigorous model calibration has well captured both the city characteristics that best 

describe the actual reality. Four key findings were presented in their application: 

SLEUTH is a universally portable model that may not only be applied to North 

American cities but Europe and other international cities as well. 

The model was sensitive to the local conditions with an increased spatial 

resolution and input datasets. They found using multistage ‘Brute force' calibration 

method, more refine model parameters that best replicate the historical growth 

patterns of an urban system, and lastly they highlighted the parameters that derived 

from model calibration may be compared between different system and the 

interpretation  may provide a good background for understanding the urban growth 

processes (Silva & Clarke, 2002). 
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Yang & Lo (2003) used the SLEUTH model to simulate future urban growth 

in the Atlanta metropolitan city under three different policy scenarios. They found 

that SLEUTH as an effective tool to test, visualize and have options of different 

policy scenarios for the future urban growth. The number of reasons was cited for 

choosing the SLEUTH urban growth model in their study: First, it was being the 

model scale-independent, Model dynamic, and future-oriented (Yang & Lo, 2003). 

Jantz, Goetz, and Shelley (2004) applied the SLEUTH model to study the declining 

water quality in the Chesapeake Bay estuary. The model was calibrated using three 

different policy scenarios: Current trends, Managed growth and ecologically 

sustainable growth. The current trend allows urban fringe that are currently under 

rural or forested to be developed which would have implications for water quality. 

The managed and ecologically sustainable scenarios were put under constraints which 

affect less natural resource land. The study found that SLEUTH has the ability to 

visualize and quantify outcomes spatially from those interactive scenario 

developments and found to be useful tool for assessing the impacts of alternative 

policy scenarios, but spatial accuracy and scale sensitivity must be considered for 

practical application (Jantz et al., 2003). 

Oguz et al. (2007) applied the SLEUTH urban growth model to simulate 

future urban growth in the Houston metropolitan area in the United States during the 

past three decades. The model was calibrated with historical data extracted from a 

time series of satellite images and three specific scenarios of future urban growth 

were designed and simulated. The simulation results are encouraging, but more 

accurate simulation could be achieved if more growth constraints were considered 

(Oguz et al., 2007). Before the work of Oguz et al. (2007), Sangawongse et al. (2006) 

had used the SLEUTH model with the integration of remotely sensed images and the 

Geographical Information System (GIS) data to analyze land-use/land cover dynamics 

in Chiang Mai city. The results showed increased in urban areas from 13 sq.km in 

1952 to 339 sq.km in 2000 which has the potential to increase over time. The road & 

slope layers were considered as important variables for capturing the urban growth 

and it was found that the urban development in Chiang Mai was best captured by 

Xmean and edge growth regression score. However, the author assumes that the 

combination of remote sensing, GIS, & SLEUTH model can be best applied to study 
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urban growth and land-use change if some consideration for spatial accuracy and 

scale sensitivity are made to the model. 

Rafiee et al. (2009) simulated the urban growth in Mashad City, Iran with the 

SLEUTH urban growth model. They designed to simulate the spatial pattern of urban 

growth under three different scenarios. The first scenario with historical urban growth 

which allows the continual urban expansion like existing condition. The second 

scenario was environmentally-oriented where urban growth has a limitation. The third 

represents similar to the first scenario, but the limitation was applied to construction 

on steeper slopes. The study concluded that the environmental scenario is preferable 

for Mashad City development (Rafiee et al., 2009). Sakieh et al. (2014) adopted the 

SLEUTH model to simulate urban expansion of Karaj city. The city was predicted 

under its historical trend as well as the other two different scenarios including 

compact and extensive growth up to the year 2040. The results of model prediction 

under a compact growth scenario demonstrate the least amount of increase in urban 

extent compared to the historically based scenario and extensive growth scenario. It 

was concluded that Karaj city under the compact growth scenario would minimize the 

utilization of vacant lands and agriculture lands (Sakieh et al., 2014). 

SLEUTH model was applied in the Isfahan Metropolitan area in Iran to 

simulate urban growth expansion with two growth scenarios. The first scenario 

continues the historical growth and second estimated compact growth. Their 

calibration results showed a high value for the spreading coefficient, which means the 

future growth of Isfahan city will be experiencing more of organic or edge growth 

(Bihamta et al., 2014). 

Leao et al. (2004) applied the SLEUTH urban growth model to test the 

applicability of the model to a developing country urban area in Porto Alegre City, 

Brazil. Calibration of the model in the specific case of their study area obtained 

satisfactory results which is an indication of model applicability to be used in less 

developed countries.  A few reasons were cited for choosing the SLEUTH model for 

their study of urban growth in developing nations. It is due to the model sensitivity 

that able to depict different patterns of urban growth, due to the availability of 

datasets in government and research institutions, unlike other CA model, it does not 

increase model complexity where it uses only two classes urban and non-urban, the 
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model is freely available and easy to execute, and the model produces reliable urban 

growth patterns (Leao et al., 2004). 

Bihamta et al. (2014) & Abedini & Azizi (2016) have modeled urban growth 

using SLEUTH model to simulate future urban expansion of the Isfahan metropolitan 

area and Urmia city, Iran. They had obtained high coefficient values of 77 and 67 in 

Urmia city and 52 and 94 in Isfahan metropolitan city indicating road and slope 

influenced growth in the region. Urban growth in Tehran metropolitan city has also 

reported the high road gravity coefficient and slope resistance coefficients among 

others and considered as most important factors to form different types of urban 

growth. (Dadashpoor & Nateghi, 2015). 

Abedini & Azizi (2016) and Osman et al. (2016), also cited similar reasons 

for selecting the SLEUTH model in their study. Due to model's application over 66 

different cities and regions worldwide (Chaudhuri & Clarke, 2013), compatible to 

integrate remote sensing and raster GIS, and it's dynamic are some reasons among 

others (Abedini & Azizi, 2016; Osman et al., 2016). All of the above SLEUTH model 

calibrations and scenarios were found to be adopted one of the following approaches 

for future model prediction; 

 

1. Assigning different values to the exclusion layer to indicate different levels 

of cell's potential for urbanization. e.g. (Bihamta et al., 2014). 

2. Manipulating the self-modification constraints. e.g. (Yang & Lo, 2003). 

3. Changing the growth parameter values which affect the growth rule and 

type of urban growth. e.g. (Leao et al., 2004; Rafiee et al., 2009). 

 

Model Calibration Approach 

 

In SLEUTH, the model calibration process is known as “brute force 

calibration”, which relies on the high computing power and benefits highly from 

parallel processing and high-performance computing methods (Silva & Clarke, 2002). 

The process has been automated and model runs with every possible combination of 

growth coefficients and performs multiple runs from seed year to the present date.  

The model generates 11 different metrics of the goodness of fit between the 

modeled and the real data sets. Brute force calibration reduces the number of solution 
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sets but it still searches the range of solutions through Monte Carlo iterations. Instead 

of executing every permutation and combination of possible coefficients sets, each 

model parameter range is examined incremental phase. For example, the range (0-

100) may be used with an increment of 25 step values. In this way, the model may be 

calibrated to the data in steps which may successively narrow down the range of 

coefficient values through calibration phases.  

 

Determining “Goodness of Fit” metrics 

 

Outputs from each of the calibration phases are examined to determine the 

goodness of fit for each parameter set. A log file is created in the output file which 

captures the different statistical values which determine the accuracy of the 

combination of growth variables to the real urban change between the consecutive 

recorded input years. These matrices are used to narrow down the model parameters 

in subsequent calibration phases. It was noted that despite numerous applications of 

SLEUTH worldwide, there is no clear consensus as to which metrics are most 

appropriate to use during the calibration phases (Dietzel & Clarke, 2007). Narrowing 

of the parameter set can be based on a variety of different goodness of fit measures or 

their combinations and different researchers had used different metrics of statistical 

measures to compare the characteristics of urban growth in different scenarios. 

In their application of SLEUTH to the Isfahan Metropolitan area in Iran, 

Bihamta et al. (2014) used Optimum SLEUTH Metric (OSM) which is the product of 

compare, population, edges, clusters, slopes, X mean and Y mean matrices generated 

by the model. Jantz et al. (2004) used the compare, population, and Lee-Sallee metrics 

in their application of SLEUTH to the Washington-Baltimore metropolitan area. Yang 

and Lo (2003) used a weighted sum for all the metrics, Silva & Clarke (2002), 

Abedini & Azizi (2016), & Osman et al. (2016) all used only Lee-Sallee to calculate 

the spatial fit in modelling Lisbon and Porto metropolitan area, Urmia city, Iran, and 

Giza Governorate in Greater Cairo metropolitan region. 

In past Lee-Sallee matric was often used to describe the parameter sets that 

best define the reproduction of the historical datasets. It is the ratio of the intersection 

and the union of the simulated and actual urban area (Silva & Clarke, 2002). It states 
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that achieving the high values for this index is challenging. A perfect spatial match 

would result in a value of 1. Table 2 shows the overall metrics generated from the 

model calibration. 

 

Model validation & simulation accuracy 

 

To assess the model accuracy is an important component of the predictive 

modeling especially if the models are to be used for the decision-making purposes 

(Abedini & Azizi, 2016). Different methods were used to assess the simulation 

accuracy. Sakieh et al. (2014) had used two separate validation indices; the receiving 

operator characteristic (ROC), and the Kappa index of agreement. Serasinghe 

Pathiranage et al. (2018) validated model performance by comparing the number of 

simulated pixels to the number of urban pixels in the urban extent layers, which was 

derived from satellite images using the maximum likelihood classification method. 

(Serasinghe Pathiranage et al., 2018). 

Similar validation was carried out by Oguz et al. (2007) and Abedini & Azizi 

(2016) through comparison of the simulated urban extent with the observed urban 

extent with the construction of error matrix and evaluating the overall classification 

accuracy and kappa coefficient (Oguz et al., 2007). Visual interpretation of the 

modeled urban growth with actual urban growth has been also used for judging the 

model prediction accuracy (KantaKumar et al., 2011). Other than graphic 

interpretation serving as a confirmation for the accuracy of the model, it also provides 

a historical perception of urban development and landscape change in the particular 

region (Yang & Lo, 2003). 

 

Limitation of SLEUTH model 

 

SLEUTH model being open-source has attracted many researchers and 

applied all around the world in various application over the past few decades. The 

model has been used to simulate land-use change and predict future urban growth. 

However, several limitations were observed apart from its wide applications. 
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i) The computation of the model was very extensive, especially in the 

calibration phase. It takes days to complete the one calibration phase with 

a normal or low-end processor computer. 

ii) The preparation of model input data was found subjective since it needs to 

adhere to the same set of layers in scenario files. The model would not run 

if we try to fit the model with different resolutions of datasets in one 

scenario. They need the same extents (number of row and columns), same 

spatial resolutions, and also need to follow standard naming format of the 

files. 

iii) The accuracy of model predictability depends on the period of the 

historical data sets used. Better results were observed with short time 

series (Jantz et al., 2003). 

iv) Scale sensitivity is another drawback of the model. Jantz et al. (2004) 

found that the model provides a high level of accuracy at regional level 

than applied at the local level.  

 

Table 2 Metrics for evaluation of calibration in the SLEUTH model.  

 

Metrics Descriptions 

Product All other scores multiplied together 

Compare 
Comparison of modeled final population to real data final 

population 

Population 
Least squares regression score for modeled urbanization compared 

to actual urbanization for the control years 

Edges 
Least squares regression score for modeled urban edge count 

compared to actual edge count for the control years 

Cluster Size 
Least squares regression score for modeled average urban cluster 

size compared to known average cluster size for the control years 

Lee-Sallee 
A shape index, a measurement of spatial fit between the model's 

growth and the known urban extent for the control years 

Slope 

Least squares regression of average slope for modeled urbanized 

cells compared to average slope of known cells for the control 

years 

% Urban 
Least squares regression of percent of available pixels urbanized 

compared to the urbanized pixels for the control years 
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Metrics Descriptions 

X-Mean 

Least squares regression of average x-values for modeled 

urbanized cells compared to average x-values of known urban cells 

for the control years 

X-Mean 

Least squares regression of average x-values for modeled 

urbanized cells compared to average x-values of known urban cells 

for the control years 

Y-Mean 

Least squares regression of average y-values for modeled 

urbanized cells compared to average y-values of known urban cells 

for the control years 

Rad 
Least squares regression of standard radius of the urban 

distribution, i.e. Normalized standard deviation in x and y 

F-Match A proportion of goodness of fit across land use classes.  

 

Source: Adopted from (Dietzel & Clarke, 2007) 



CHAPTER III 

 

RESEARCH METHODOLOGY 

 

Introduction 

 

This chapter highlights the research framework methodology adopted to 

conduct the study. In general, the four major components were used to derive the 

outcome of the research. (1) Data collection and preparation, (2) Land use land cover 

(LULC) change analysis, (3) SLEUTH model implementation, and (4) Model 

calibration and prediction outputs. A Geographic Information System (GIS) was used 

to compile the model’s required input data and convert to the raster layers required by 

SLEUTH. The input layers included the known urban extents, road networks, slope, 

excluded area, and hillshade layer which is use as a background for the display of the 

model’s output. Three data sets were created through resampling to the ground 

resolutions of 120m, 60m, and 30m respectively. These data sets were used to 

calibrate the model from 1990 to 2017. Once the model calibration is completed, the 

growth was simulated from past to present scenario and analyzed their accuracy by 

comparing them to the known urban extent of 2017 land use map. Finally, the 

SLEUTH was calibrated to predict the urban growth from 2017 to 2047 and visualize 

the output image files and statistical results of future urban growth scenarios. The 

details of each component with sub-components are described in the succeeding 

sections. 

 

Data collection and preparation 

 

Data Collection 

 

The details of the data sets are described in Table 3. This study utilized data 

from various sources, including GIS digital data, satellite images, and topographic 

maps of 1:25000 obtained from the Department of Survey and Mapping under the 

National Land Commission of Bhutan. The land cover data for 2010 and 2016 from 

the Ministry of Agriculture, Bhutan. The Landsat satellite images were downloaded 
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from the USGS earth explorer web portal (https://earthexplorer.usgs.gov/) in 

GeoTIFF format with 30 meters spatial resolutions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Detailed work methodology of the research 

https://earthexplorer.usgs.gov/
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Table 3 Input data for SLEUTH model 

 

Input layer Source Path/Row 

Acquisition 

date Format Year 

Urban 
Landsat 5 TM 138/41 

6/12/1990 

& 

05/11/2010 
Raster 

1990, 2000, 

2010, & 2017 Landsat 7 ETM+ 137/41 28/12/2000 

Landsat 8 

(OLI/TIRS) 138/41 26/12/2017 

Transportation 

Digitization/Topo 

map     

Rasterized 

from 

vector 1990, 2017 

Slope DEM       Raster   

Hillshade DEM       Raster   

Excluded Landsat     

Rasterized 

from 

vector 

  

Land use 

Landsat & 

MoAF*     

Raster & 

Vector 

(1990, 2000, 

2010, & 2017) 

Google Earth Google     Image 2017 

 

*Ministry of Agriculture and Forest, Bhutan. 

 

The Table 3 shows the detailed input data sets used in the study. Different 

sources were used to derive the model input layers. Landsat satellite images of year 

1990, 2000, 2010, and 2017 was used to derive the land use maps and urban extent 

layers. All the four satellite images over the study area were free of clouds and 

distortion. The satellite data used were acquired approximately the same season of the 

year in order to minimize the seasonal difference either in sun angle or vegetation 

cover, that would affect the change detection (Al-Dail, 1998). The used of different 

image scene (Path/Row) for the same study area was due to the cloud cover. The 

choice of image year till 2017 was made due to the availability of existing land use 

maps of 2016 from Ministry of Agriculture and Forest (MoAF), Bhutan to validate the 

land use map derived from the satellite image. Moreover, the most recent demography 

data of the country was available till 2017. High resolution Google satellite images 

was also used in the study for validation of land use maps. 
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Spatial data creation 

 

SLEUTH model required at least five input datasets (or six, if land use is 

included). Slope layer, Land use, Exclusion layer, urban extent, Transportation 

network, and Hillshade layer. For statistical calibration of the model, at least four 

temporal urban extents, Minimum of two transportation layers from two different 

years and land-use layers from at least two periods along with each slope, excluded 

and hill shade layers are required on three spatial resolutions with the same coordinate 

system and extent. 

Data preparation depends greatly on GIS and remote sensing techniques such 

as data conversion, data import/export, and reclassification (Sangawongse, 2006). The 

software used for preparing the input data included ERDAS Imagine version 2014 and 

ArcGIS version 10.4.1. The model also requires a special naming format for the input 

datasets (Project gigalopolis, 2003). 

 

Slope layers 

 

The topography act as one of the important factors in urban development. 

Regions with low lying areas are more suitable for urban growth. In this research, the 

slope layer was prepared from the 30 meter spatial resolution of Digital Elevation 

Model (DEM) obtained from the topographic base map of 1:25000 scale using the 

contour and spot heights of the area. The layer was prepared in percentage values and 

then changed into integer value through reclassification from 0 to 100. 

For example, the slope above 100 percentage value is more than the 45-

degree slope which is not feasible for development. The integer value after 

reclassification will assign a value of 100 to it and zero to those below 100 percent 

slope value. Since the topography will not change dramatically in the short term, the 

same slope layer was used for model calibration and prediction scenarios. 

According to Watkiss, 2008, the SLEUTH cells on a slope greater than 21 

percent are called critical slope (Watkiss, 2008). However, in this research we have 

assigned 70 percent to be a critical slope due to the nature of topography in the region. 

The 70 percent of slope correspond to maximum of 35 degree slope.  
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Land use Land cover (LULC) layers 

 

An optional input layer to the SLEUTH model is a LULC. Landsat images 

were first classified into five land classes: Forest, Urban/Built-up, Agriculture land, 

Open space, and Water bodies. LULC with consistent classification for at least two 

periods is needed for the model. Each pixel value contained in the grayscale land use 

images should represent a unique land class (Project gigalopolis, 2003). For example, 

the LULC class Urban is encoded by integer assigned as 1 and class Agriculture as 2 

in order. 

 

Exclusion layers 

 

This constraint layer has an important role in urban growth by setting up 

resistant factors of urbanization (Qi, 2012). It shows the region whose urban growth is 

undesired or restricted. In this study, all water bodies are taken as the exclusion layer. 

However, to what extent the excluded regions would be protected from the growth 

was indicated by assigning the numeric value (0 – 100). For example, while a value of 

100 indicates that the area should be excluded from urban growth (100 % protection), 

50 shows that only 50% of that area should be protected. Locations that are available 

for urban development have a value of zero. Concerning the areas designated by the 

policy plans, such as protected areas, wetlands, and open spaces, the values can be 

assigned based on the importance or priority of the development policy in the region. 

(http://www.ncgia.ucsb.edu/projects/gig). 

In this study, we have prepared urban exclusion layers from the land use 

classified images for different scenario. For instants, in Business as Usual scenario, 

the urban exclusion layer includes the water bodies and agriculture land with fully 

protected from the urban growth. Similarly, different level of growth protection was 

applied to other land use classes from future development. Therefore, the excluded 

layer plays a significant role in SLEUTH modeling and by adjusting this constraint 

layers, a SLEUTH model can integrate urban planning and policy with other macro 

elements to forecast urban development from both regional and local perspectives. 

 

http://www.ncgia.ucsb.edu/projects/gig
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Urban layers 

 

For this study, four temporal datasets of urban the area from 1990, 2000, 

2010, and 2017 have been extracted from satellite images. Urban layers is the base 

layer for running the SLEUTH model. The beginning year known as a ‘seed’ layer is 

used to initialize the model and other years called controlled layers are applied during 

model calibration phase for the least square calculation to obtain the goodness of fit 

statistic results. The model requires the binary classification of urban or non-urban 

data with a value of 1 indicating the urban and 0 implies non-urbanized area.  The 

land use layer is optional for SLEUTH model and was excluded from our modeling 

process. 

 

Transportation layers 

 

Transportation network has a great influence on urban development as the 

city tends to develop to the directions along with the transportation networks. The 

SLEUTH model requires more than one-year transportation data to simulate dynamic 

effects in the model. Since 1990 is a base year, we obtained the 1990 road layer from 

1:50000 scale base map and it was validated through satellite image. 

For the year 2017, it was obtained from a recent updated 1:25,000 scale 

topographic base map of the country. The layers were categorized into three 

categories. 1) The National highway, 2) Secondary road, and 3) Tertiary road 

accordingly to their importance and accessibility.  The layers can be categorized in 

binary numbers, relative weight values, or the relative accessibility of the road (high, 

medium, low, none). In this research, relative weight values are used to categorize the 

importance of the roads. For example, the national highway being the primary 

transportation network it was assigned with a relative weight of 4 and the Secondary 

road with 3 and etc. 

 

Hillshade layers 

 

This layer has no impact on the model simulation. It is used for better 

visualization as a background image to the spatial data generated by the model output 
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files. This layer can be embedded with water bodies such as rivers and lakes to 

enhance the visual effects. 

To run the SLEUTH model, input data need to be standardized in terms of 

data format, same spatial resolution, and same extents (rows x columns). Firstly, we 

need to convert all the layers into a single raster format in ArcGIS environment, then 

resample each layer into three spatial resolution of 120 meter, 60 meter, and 30 meter 

respectively using the nearest neighbor algorithm. Then covert these images into an 8-

bit GIF format and rename the files according to the naming convention followed to 

run the model (Project gigalopolis, 2003).  

 

Land use Land cover change (LULC) analysis 

 

The LULC change which serves as one of the important input criteria for 

urban growth analysis needs constant, historical, and accurate information. The land 

cover change information can be obtained from remote sensing data by applying a 

variety of techniques such as visual interpretation, land cover classification, and 

change detection (Li, 2014). In this study, pixel-based supervised classification using 

a maximum likelihood algorithm was applied to classify the images.  

 

Selection of LULC classification system 

 

For this study, LULC classification was extracted and modified from the 

LULC categories of the Ministry of Agriculture and Forest, Bhutan. The detailed land 

classes and its description was described in Table 4. 

 

Table 4 Land use land cover class details 

 

Major 

class 

Sub-class 

name Class Description 

Urban Built-up areas 

Includes artificial constructions covering the land 

with an impervious surface. (e.g. concrete, CGI sheet, 

urban areas, schools & institutes, industrial areas and 

transportations) 

Non-urban Forest 
Class incudes different types of forest cover such as 

Broadleaf and Mixed conifers. 

 



 40 

Major 

class 

Sub-class 

name Class Description 

Non-urban 

Agriculture 

land 

Cultivated agricultural land includes Orchards, dry 

and wet land. 

Open space Bare soils, bushes, dry land, meadows.  

Water bodies 

Includes both natural and artificially created water 

bodies such as Rivers, Streams and Ponds, side flood 

plain area and sands. 

 

Source: Adopted from LULC, 2016 

 

 

 

 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 5 Input layers for the SLEUTH model. 

 

(a) Slope layer, (b) Land use 1990, (c) Land use 2017, (d) Excluded layer, (e) Urban 

extent, (f) Road layer 1990, (g) Road layer 2017, & (h) Hillshade layer 

 

LULC classification  

 

Image classification aims to automatically classify all pixels in an image into 

land cover classes (Alphan, 2003). The basic of remote sensing image classification is 

the spectral characteristics of the earth’s surface features. While it is relatively easy to 

generate a land cover map from a remote sensing image but it is difficult to generate 

inaccurate as desired (Rongqun & Daolin, 2011). In this study, a supervised 

classification technique which is the most popular method for assessing remote 

sensing images was used and the maximum likelihood classifier algorithm was 

applied. Thermal band (band 6) was removed from the Landsat 5 Thematic Mapper 

and bands 1 to 7 and 9 were used for Landsat 8 (OLI/TIRS) for classification. ERDAS 

Imagine 2014 program was used for image classification. 

 

Accuracy assessment 

 

Image accuracy assessment are necessary to validate the results obtained 

from the image classifications. It also allows a degree of confidence to be attached to 

the classification results. The method of accuracy assessment used in this study is 

based on the pixel scale to derive the accuracy of classification in the remotely sensed 

data which is resulted from the calculation of the error matrix. It contains information 

(g) (h) 
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on a classification result of both user and producer accuracies of classification carried 

out by the classification system. 

The pixels that have been categorized from the image was compared to the 

same area in the ground. The sample size of the test point/pixels was derived based on 

the thumb rule that, it should be at least be ten times the number of classes for each 

land use class. With five Land use land cover classes, the total sample size was 

computed as 5*10*5 = 250 points/pixels. The number of points/pixels for each class 

were determined by using the ratio calculation, where the classes are assigned a rank 

in the ascending order of their area and each rank is divided by the total rank 

multiplied by the total number of sample points/pixels. Stratified random sampling 

strategy was used to create a points that are randomly distributed within each class, 

where each class has a number of points proportional to its relative area. 

The result of an accuracy assessment provides the users with overall 

accuracy, User’s accuracy and Producer’s accuracy of the map. Among many 

measurements proposed to improve the interpretation of the meaning of error matrix, 

the Kappa coefficient is one of the most popular measures in addressing the difference 

between the actual agreement and chance agreement (Fan et al., 2007). The value 

greater than 0.80 represents good classification; the value between 0.40 and 0.80 as 

moderate and value less than 0.40 represents the poor agreement. 

 

SLEUTH model implementation 

 

Model calibration 

 

Model calibration was done with SLEUTH version 3.0 beta with patch 1 

obtained from the Project Gigalopolis web page. The model calibrate through Cygwin 

command which is a Linux based emulator that runs inside windows. Before running 

the calibration mode, test run is done in order to check if input data sets were 

correctly prepared as per the model requirement. The purpose of calibration is to 

obtain the best set of parameters to make the model capable of simulating a city with 

the best similarity with the real world scenario (Oguz et al., 2007). The calibration 

was performed in three phases; coarse, fine and final phases. Input data in 30 meters 

resolution were resampled into 120 meters to be used in the coarse calibration phase, 
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into 60 meters to be used in the fine calibration phase. Data sets with 30 meters (full 

resolution) were used in the final calibration phase. These resolutions were applied 

due to the model’s extensive computational demands, which are directly 

proportionated to the resolution of the data and the size of the area to be modeled 

(Watkiss, 2008). 

In this study, the calibration phase encompassed the years from 1990 to 2017 

and four urban extent map of the year 1990, 2000, 2010 and 2017 was utilized. In 

each phase, the coefficient range, increment size, and resolution of the input layers 

were changed. To find the best fit model, 11 different metrics were calculated for each 

run of the model. In this study, the shape factor called LeeSallee metric was used for 

choosing the best parameters set. The output statistics file was sorted by descending 

order using LeeSallee metric and the six highest scoring values and respective 

parameter values were selected.  

 

Coarse phase 

 

The first phase of model calibration starts from the coarse resolution of 

the input data sets. In this phase model parameters are widely defined. It is 

recommended to set to (0-100,25), where the 0 is the start vale, 100 is the stop value, 

and 25 is the step (Project gigalopolis, 2003). This gives 3,125 (55) different 

parameter sets that are tested to determine which range of parameter sets that best 

describes the data located within the calibration phase. To reduce the computation 

time, a value of 4 is used for the number of Monte Carlo computations. 

 

Fine phase 

 

In the fine calibration phase, it further narrow down the parameter ranges 

to about 10 or less (± 5) and it takes steps of 5 or 6 units through the coefficient space 

(Project gigalopolis, 2003) and more times of Monte Carlo iterations 

(number_of_times) was used to reduce the level of error. It was increased to 8 and the 

unit computation time also increases with a larger number of Monte Carlo iteration.   
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Final phase 

 

Using the best-fit values found in the control_stats.log file produced in the 

fine calibration phase, the range of possible coefficient values is narrowed. The range 

is narrowed so that the increment of 1-3 may be used while using about 5-6 values per 

coefficient (eg, for a single coefficient, value = (4,6,8,10,12) and a larger number of 

Monte Carlo iterations (number_of_times) to 10 is used.  

 

Deriving forecasting coefficients 

 

The best coefficients obtained from the final calibration was the starting 

values of the control coefficients. Due to SLEUTH’s self-modification, these starting 

values (Start_date) tend to change when the model run is complete (stop_date). To 

initialize the forecasting, the end date values form the best-calibrated coefficients are 

preferred. However, due to the random variability of the model, averaged parameter 

results of many Monte Carlo iterations will result in more robust forecasting 

parameters (Rafiee et al., 2009). The best coefficient values in 100 Monte Carlo 

iterations were used with one step increment to derived and average values for each 

parameter. 

 

Model simulation 

 

The urban growth and landscape change from past to present was simulated 

and project the future changes for different scenarios. The model simulation from past 

to present (1990 – 2017) would serve as a visual confirmation for the model 

calibration. It would also provide a historical view of urban growth and landscape 

change. For model simulation, the final derived coefficients value are used as the 

starting values for model simulation. In order to minimize the uncertainty in model 

simulation. Higher value of 100 Monte Carlo iterations is used. The model simulation 

produce various statistical measures apart from the simulated images which will 

represent the general trend of urban growth.   
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Model validation  

 

In this study, the model validation was conducted by comparing the 

simulated results generated from the SLEUTH model with observed maps through the 

evaluation of fit metrics. As discussed in previous chapter, there are many ways to 

assess the model simulation accuracy and choosing an appropriate method is its 

ability to represent the perfect match between the modeled and actual urban growth 

patterns. It is learned that visual interpretation is also one of the important validation 

of model accuracy since it gives a visual idea about the different growth patterns and 

different land-use types if the land use land cover map is modeled. The accuracy of 

the models is judged by their predictive power (Silva & Clarke, 2002). 

 

Model prediction 

 

The model prediction phase simulates the future urban growth of the city 

using historical growth trends from the past to present (Yang & Lo, 2003). It is the 

last step of the modeling phase of the SLEUTH model implementation (Bihamta et 

al., 2014). The result of executing the prediction mode is a probabilistic map which 

shows the probability of each cell being urbanized in the future. In this study, we used 

the first approach of the model prediction through assigning different level of 

protection values to the excluded layers as reflected in chapter two. Based on the 

model calibration results, the future urban growth trend was predicted to year 2047 

with three different management scenarios, each of which is linked with different 

conditions for future urban development. The excluded layer served as the main tool 

to differentiate between those management scenarios. The values of the excluded area 

layers under these three different scenarios are shown in table 5.  

 

Table 5 The growth scenario and level of protection 

 

Growth 

Scenarios 

Excluded from development (in percent) 

Agriculture Forest 

open 

space 

urban 

built-up 

Water 

bodies Unclassified 

Business as 

usual (BAU) 100 0 0 0 100 100 
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Growth 

Scenarios 

Excluded from development (in percent) 

Agriculture Forest 

open 

space 

urban 

built-up 

Water 

bodies Unclassified 

Managed 

growth scenario 

(MGS) 100 50 50 0 100 100 

Compact 

growth scenario 

(CGS) 100 80 80 0 100 100 

 

These growth scenarios and level of protection dictates the future urban 

growth. The model scenario can be designed in line with the policy framework or 

with plans and priority for the development of the particular area. In this study, the 

development of scenarios and level of urban growth protection were designed based 

on the major land use classification system and accordance with the existing acts and 

policies of the country. According to Oana et al., (2011), the design of scenarios 

(‘What If?’) in the context of policy option for both regional and local  planning  has 

been considered very important and it has inspired the discussion among researchers 

more than other forms of reports such as graphs and text (Oana et al., 2011). 

Three possible scenarios for future urban growth are considered in this study. 

The first scenario which we called as Business as Usual (BAU) scenario assumes that 

the present growth trend would remain when developmental activities do not change. 

Model prediction was carried out with the same initial conditions used for the model 

simulation from past to present. The scenario has excluded the agriculture land from 

future development in accordance with the existing laws and regulations of the 

country. According to the Land Act of Kingdom of Bhutan, 2007, development has 

been strictly prohibited in such land category. Some study suggest that the business as 

usual scenario could be defined based on its own developmental process and would 

represent a continuation of the current development policy and used the existing 

interventions (Zhu et al., 2019). Two aspects were accounted for the design of such 

scenarios: Protective level, location and size of different land use types, and if there 

are urban development zones defined by planning project, industrial zones, and policy 

zones that are influenced by national, regional, and local policies (Xi et al., 2009). 
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The second scenario considers more managed form of urban growth. We 

called it Managed growth scenario (MGS). While the level of growth in Agriculture 

land are still valid as first scenario, this managed growth scenario gives the options of 

growth strategy in which level of protection value in natural environment and other 

land category is emphasized in hope of creating more livable city. The protection 

level was defined 50% for both the forest and open space (a 50% urban growth 

probability) within the boundary. 

The third form of growth scenario is term as Compact growth scenario. In 

this scenario, more growth constraint are applied compared to other two scenarios and 

kept only 20 percent probability for urban development. (See Table 5). Designing and 

developing such scenario would help planners and decision makers for management 

of city growth in future. The results of the model calibration and prediction from these 

growth scenarios will be discussed in the next chapter.  



CHAPTER IV 

 

RESULTS 

 

In the previous chapters, the attempt was made to illustrate the SLEUTH 

model functions that can study the urban growth using the historical datasets and how 

urban growth can be analyzed by adopting related methods. In order to evaluate the 

performance of the proposed methods described in previous chapter and for better 

understanding of the urban growth scenarios in the current study area, the methods 

have been applied and the findings of the study was discussed in this chapter in detail.  

 

Urban growth change from 1990 to 2017 

 

The main idea of using satellite images to prepare data for this study is to 

define the initial state of the urban simulation at actual year 1990 and to use the 

results from images to detect the urban growth and to validate the model for future 

growth scenarios. Four time series images at different dates, 1990, 2000, 2010 and 

2017 were used to derive the actual urban extent and then analyzed the urban change 

from 1990 to 2017. Figure 6 depicts the actual distribution of land use land cover 

from which comparable changes can be extracted. The 1990 image from a Landsat5 

TM with 30-metre resolution, and the 2017 image from a Landsat8 (OLI/TIRS) with 

30-metre resolution is used. Both images are represented with false colour composite 

with band 5 as red, band 4 as green and band 3 as the blue colour in Landsat5 TM and 

band 7 as red, band 5 as green and band 3 as blue colour in Landsat8 image. In order 

to detect the land use/cover change, both images need to be classified. Five land use 

classes which comprise built-up areas, agriculture land, forest, open space, and water 

bodies were used for the classification. The method used was a supervised 

classification based on the Maximum Likelihood Classification as described in the 

previous chapter. 
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Figure 6 Satellite Images covering Gelephu city Area 1990 and 2017 

 

 

 

 

 
 

 

Figure 7 Classified Images 1990 and 2017 
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Figure 8 Land use/cover changes between 1990 and 2017 

 

Both the classification images provides good view of land use change in the 

area with considerable change in more than two decades as shown in Figure 7. More 

change was seen in the urban area (built-up areas). In 1990, built-up areas were seen 

sparely located apart from the concentrated around the current city area with evidence 

that during the time, the area falls in the rural jurisdiction. By 2017, the urban built-up 

has increased much larger than ever before with dramatic expansion especially in the 

peri-urban region where the area has been identified as economic zone in the central 

part of the study area. 

The Figure 8 and Table 6 visualize the actual changes in land use/cover from 

1990 to 2017. Urban built-up area increased from 11 sq.km to 14 sq.km 

approximately, while the forest, open space and water bodies in 2017 increased about 

11 sq.km approximately in total from 1990. Only agriculture land was decreased 

drastically from about 53 sq.km to 38 sq.km in 2017 which is about 28%. Agriculture 

land was a predominant land use changes in the region. Decrease of this land class 

attributed the increase of other land classes such as open spaces, built-up, and forest 

areas. The increase in forest area could be due to the concentration of urban built-up 
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in the specific location through municipal local area planning and conversion of open 

space into the forest area with less agriculture farming. Furthermore, it appears that 

agriculture land has changed into another Land use/cover type such as increase of 

water bodies. Climate change being one of the major factor for land conversion 

globally, river course changes every year due to major floods and the major change 

observed were due to the flood plain areas which was included in the water body 

class. In general, these land use/cover data explicitly stated that the increase in built-

up and open space areas resulted in decrease in agriculture land. Its change could be 

the indication of a trend which may affect to the urban sustainability and regional 

economic development in large. 

 

Table 6 Land use/cover changes in the study area 

 

Land use 
Approximate area* (Sq Km) Changes 

Sq Km  

Rate of 

Changes** 

%  1990 % 2017 % 

Agriculture 

land 53.01 21.72 37.98 15.57 -15.03 -28.36 

Open space 20.42 8.36 24.11 9.88 3.69    +18.09 

Water 

bodies 7.89 3.23 12.89 5.28 5.00    +63.30 

Forest 151.39 62.02 154.63 63.38 3.24    +2.14 

Built-up 11.39 4.67 14.35 5.88 2.96    +25.97 

  244 100 244 100     

 

*Areas are calculated based on 30m resolution 

** + = increase and - = decrease 

 

LULC classification Accuracy assessment 

 

The accuracy of LULC change along with the overall accuracy and the 

Kappa coefficient was summarized in Table 4.2 & Table 4.3 respectively. The overall 

accuracy of the classification image of 1990 and 2017 was 88.4% and 90.80%, and 

the Kappa coefficient was 0.805 and 0.837. The overall accuracy is calculated based 

on the number of correct pixels in the classification compared to the growth truth or 
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reference data point with respect to the total number of pixels (see Equation 1). 

Similarly, the Kappa coefficient is a ratio representing difference between observed 

and expected sets of data. The kappa coefficient of 0.8, represents that there is an 80% 

probability that the result from the classification matches as per the actual reference 

data used for validation. Other accuracies derived from the confusion matrix are 

producer’s and user’s accuracy. It was observed that the producer’s accuracies of all 

the classes were consistently high, ranging from 57% to 98% in both the classification 

image. Similarly, the user’s accuracies for all the classes were precisely high, ranging 

from 60% to 97% except water bodies and built-up in 1990 which shows 100 percent 

correctly classified. The above Producer’s accuracy and User’s accuracy was 

computed based on the equation no. (2) & (3). 

 

Table 7 Confusion matrix for 1990 

 

Classes 
Reference Data User's 

Accuracy 

(%) 

Agriculture 

land 

Open 

space 

Water 

bodies Forest 

Built-

up Total 

Agriculture 

land 34 8 4 1 7 54 62.96 

Open space 0 20 0 1 0 21 95.24 

Water 

bodies 0 0 10 0 0 10 100.00 

Forest 1 5 2 147 0 155 94.84 

Built-up 0 0 0 0 10 10 100.00 

Total 35 33 16 149 17 250 

Overall 

Accuracy 

88.40% 

Producer's 

Accuracy 

(%) 

97.14 60.61 62.50 98.66 58.82   
Kappa 

coefficient 

0.805 
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Table 8 Confusion matrix for 2017 

 

Classes 
Reference Data User’s 

Accuracy    

(%) 
Agriculture 

land Forest 

Water 

bodies 

Open 

space 

Built-

up Total 

 

Agriculture 

land 28 1 1 2 7 39 71.79 

 Forest 0 154 2 1 1 158 97.47 

 Water 

bodies 0 0 12 0 1 13 92.31 

 Open space 2 2 0 21 0 25 84.00 

 Built-up 2 0 0 1 12 15 80.00 

 Total 32 157 15 25 21 250 

Overall 

Accuracy 

90.80% 

 

Producer's 

Accuracy 

(%) 

87.50 98.09 80.00 84.00 57.14   
Kappa 

coefficient 

0.837 

 

 

Anderson et al, (1976) suggested that the minimum level of image 

interpretation accuracy in the identification of land use and land cover classes from 

the remote sense data should be at least 85 percent. (Anderson et al., 1976). This 

indicates that the accuracy of the land use map classified for this study is relatively 

higher as expected. The high accuracy of the classification was confirmed by the 

accuracy assessment, which indicated low commission error in both classification 

image 1990 and 2017. Especially the open space, built-up, and water bodies. The 

error of commission are in relation to the classification results which refers the sites 

that are misclassified to other class that in fact do not belong to it. (See Table 9). On 

the other hand, these land classes had high omission error (relatively low producer’s 

accuracy), which it refers to the reference sites that were left out from the correct class 

in the actual classified map. 
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Table 9 Commission & Omission error 

 

Year 1990 2017 

Class Commission 

error (%) 

Omission 

error (%) 

Commission 

error (%) 

Omission 

error (%) 

Agriculture land 37 3 28 12 

Open space 5 39 3 2 

Water bodies 0 38 8 20 

Forest 5 1 16 16 

Built-up 0 41 2 43 

 

 

Model calibration results 

 

The result was obtained through the calibration of historical urban extent 

data in three phases as described in the previous chapter. The input 120 meter spatial 

resolution with (219 x 153) rows and columns was used. The coefficient for coarse 

calibration is shown in Table 10 and the results are examined to determine the 

goodness of fit for each of the parameter sets obtained from the coarse calibration. All 

the five control coefficients were set start and stop values from 0 to 100 with a step 

value of 25. Throughout the calibration process, the LeeSallee metric is used as 

goodness of fit metric to narrow down the model parameter set. The output statistics 

obtained from the calibration was sorted by descending order using the LeeSallee 

metric. The highest six scoring values and respective coefficients values were selected 

which will be then used to form the input parameter ranges in the next calibration 

phase. (See Table 11) 

 

Table 10 Input coefficients for Coarse (120m) calibration 

 

Coefficient range 
Coefficients 

Diffusion Breed Spread Slope  Road gravity 

_start 0 0 0 0 0 

_step 25 25 25 25 25 

_stop 100 100 100 100 100 
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Table 11 Coefficient selection from coarse calibration 

 

Run Compare Pop Edges Clusters Leesalee Slope %Urban 

29 0.62 0.98 0.91 0.69 0.22 1.00 0.75 

34 0.62 0.98 0.91 0.69 0.22 1.00 0.75 

39 0.62 0.98 0.91 0.69 0.22 1.00 0.75 

44 0.62 0.98 0.91 0.69 0.22 1.00 0.75 

49 0.62 0.98 0.91 0.69 0.22 1.00 0.75 

25 0.62 0.98 0.90 0.70 0.22 1.00 0.75 

Xmean Ymean Rad Diff Brd Sprd Slp RG 

0.49 0.66 0.97 1 1 25 1 100 

0.49 0.66 0.97 1 1 25 25 100 

0.49 0.66 0.97 1 1 25 50 100 

0.49 0.66 0.97 1 1 25 75 100 

0.49 0.66 0.97 1 1 25 100 100 

0.42 0.41 0.97 1 1 25 1 1 

 

 

For the fine calibration, the same procedure was followed. A dataset of 60 

meter spatial resolution with (438 x 306) rows and columns was used in the 

calibration process. The coefficients selected from the coarse calibration is used to 

derive the input coefficients for the fine calibration as shown in the Table 12.  

 

Table 12 Input coefficients for fine (60m) calibration 

 

Coefficient range 
Coefficients 

Diffusion Breed Spread Slope  Road gravity 

_start 0 0 0 0 0 

_step 5 5 5 20 20 

_stop 20 20 25 100 100 
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Table 13 Coefficient selection from fine calibration 

 

Run Compare Pop Edges Clusters Leesalee Slope %Urban 

398 0.68 1.00 0.92 0.60 0.21 0.54 0.86 

404 0.68 1.00 0.92 0.60 0.21 0.54 0.86 

410 0.68 1.00 0.92 0.60 0.21 0.54 0.86 

416 0.68 1.00 0.92 0.60 0.21 0.54 0.86 

422 0.68 1.00 0.92 0.60 0.21 0.54 0.86 

428 0.68 1.00 0.92 0.60 0.21 0.54 0.86 

Xmean Ymean Rad Diff Brd Sprd Slp RG 

0.41 0.23 1 1 5 25 1 40 

0.41 0.23 1 1 5 25 20 40 

0.41 0.23 1 1 5 25 40 40 

0.41 0.23 1 1 5 25 60 40 

0.41 0.23 1 1 5 25 80 40 

0.41 0.23 1 1 5 25 100 40 

 

The third stage is the final calibration. It was conducted in 30 meter spatial 

resolution with (875 x 611) rows and columns, intending to determine the best 

combination. The final results of the calibration process are coefficient values that 

best simulate historical growth for a region. Using the best coefficients derived from 

the fine calibration and running the SLEUTH model from historical datasets, it 

derives the single set of coefficients which will be used to initialize a prediction run of 

SLEUTH model. Table 13 shows the coefficient selection from the fine calibration to 

derive the input coefficient for final calibration phase. (Table 14). 

 

Table 14 Input coefficients for final (30m) calibration 

 

Coefficient 

range 

Coefficients 

Diffusion Breed Spread Slope  Road gravity 

_start 1 3 23 0 38 

_step 1 1 1 20 1 

_stop 5 7 27 100 42 
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Table 15 Coefficient selection from final calibration 

 

Run Compare Pop Edges Clusters Leesalee Slope %Urban 

60 0.57 0.81 0.39 0.56 0.18 0.99 0.29 

61 0.57 0.81 0.39 0.56 0.18 0.99 0.29 

62 0.57 0.81 0.39 0.56 0.18 0.99 0.29 

63 0.57 0.81 0.39 0.56 0.18 0.99 0.29 

64 0.57 0.81 0.39 0.56 0.18 0.99 0.29 

65 0.57 0.81 0.39 0.56 0.18 0.99 0.29 

Xmean Ymean Rad Diff Brd Sprd Slp RG 

0.43 0.97 0.83 1 5 23 1 38 

0.43 0.97 0.83 1 5 23 20 38 

0.43 0.97 0.83 1 5 23 40 38 

0.43 0.97 0.83 1 5 23 60 38 

0.43 0.97 0.83 1 5 23 80 38 

0.43 0.97 0.83 1 5 23 100 38 

 

 

Deriving forecast coefficient 

 

The calibration process produces initializing coefficient values that best 

simulate historical or past growth in the region. However, due to model self-

modification, coefficient values at the initial date of a model run may be changed by 

the stop date. For this, the best coefficients derived from the final calibration (Table 

15), were used to narrow down the input coefficient. (See Table 16). The self-

modification nature of SLEUTH model produced through final calibration run for 

deriving the forecasting coefficients which shows the average coefficients changed in 

every control years. (See Table 17). 

 

Table 16 Input coefficients for deriving the forecasting value 

 

Coefficient 

range 

Coefficients 

Diffusion Breed Spread Slope  Road gravity 

_start 1 5 23 1 38 

_step 1 1 1 1 1 

_stop 1 5 23 1 38 
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Table 17 Output from self-modification of SLEUTH 

 

year area %urban diffus breed spread slp_res rd_grav 

2000 18439.93 10.07 1.09 5.43 24.99 0.95 38.79 

2010 20760.08 11.17 1.06 5.23 24.08 1.08 38.98 

2017 21829.43 18.23 0.66 4.96 14.98 19.79 38.71 

 

 

Simulation from past to present  

 

Most of the statistics obtained in the calibration phases present high values of 

goodness of fit, indicating the ability of the model to represent the historical growth. It 

was found that the model best captured the growth characterics of the study area in 

the final resolution (30 meter) of input datasets. Most of the metrics were increasing 

with increased in spatial resolution of the input data. (See figure 9).  

 

 

 

Figure 9 Change of growth coefficient 
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Figure 10 Best fit parameters for forecasting 

 

Using the final calibration values, the best fit coefficient was derived for 

model prediction. Figure 10 shows the best fit values which defines the type of urban 

growth behavior which is controlled through the five growth coefficients. These 

coefficiets values are used to initiatize a prediction run of SLEUTH. It was observed 

that the urban growth in the region is highly influenced by the road gravity coefficient 

(39). It shows the existing road networks had played important role in attracting urban 

growth and development in the region. 

The high value of slope resistance coefficient (20) indicates that the 

topography is a barrier to urban development in the region, and the increasing steeper 

slopes are less likely to urbanize. This is evident from the current setting of the urban 

area. Simillarly, the high spread coefficient (15) determines the expansion of urban 

centers from the existing urban areas and urban cores. However, the low diffusion and 

breed coefficients reflects low likelihood of dispersive growth and low probability of 

growth of new detached urban settlements from the existing growth. This shows the 

current growth is taking place mostly towards the existing urban areas and urban 

cores and along with transportation networks. 
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Model validation and Accuracy assessment 

 

Model accuracy is an integral part of the predictive modeling especially 

when models are used for decision-making process (Abedini & Azizi, 2016). Using 

the model final calibration results, the urban growth from 1990 to 2017 was simulated 

and the simulation result was compared with the actual or observed 2017 urban maps 

obtained from the satellite image through classification. The comparison of model 

was done both visually and through goodness of fit metrics. It was observed that the 

“population” (number of urban pixels) metric yield a fit value of 0.812 and for 

“compare” it is 0.703 showing high correlation between modeled final urban extent to 

actual final urban extent. Most of the metrics of the model simulation results shows 

high values of fit, indicating the model’s ability to represent the real growth scenario 

and perform the growth prediction (See Figure 11). Moreover, the visual comparison 

presents whether the modeled urban form fits with the actual urban form or not. 

(Figure 12).  

 

 

 

Figure 11 Spatial fit metrics generated through model simulation. 
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Figure 12 Visual comparison of model simulation and actual urban extent 

 

 

Model prediction results 

 

The urban growth parameters derived through model calibration process 

were used in the model prediction phase. The final current urban layer is used as the 

start “seed” year and the prediction was run for next 30 years from 2017 to 2047. The 

model produced an urban growth and extent for every year following the start “seed” 

year till to the end year. However, to highlight the urban growth changes, images 

were selected at an interval of ten years. It was noted that the urban exclusion layers 

served as one of the important input layer for the model to predict the future urban 

growth in different scenarios and to obtain information about future development 

alternatives. Detail of scenario development and level of urban growth protection 

were presented in previous chapter. Figure 13 illustrate the predicted future urban 

growth in three different management scenarios. 
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Figure 13 Comparison of urban growth for three scenarios 

 

 

The results indicates that, if the historical urban growth pattern continues to 

be the same, approximately 26 sq.km will be added by 2047 to current area in 2017. 

In other hand, urban extent will be more than twice times. If the urban growth 

continues the Business as usual trends, the limited agricultural land along with natural 

environment will get consumed. The Compact growth scenario, with maximum 

growth protection applied in forest and open space land class (80 percent) showed the 

smallest increase of the urban extent in future compared to Business as usual growth 

and managed growth scenarios. The growth would expand approximately 17 sq.km by 

2047 compared to current area in 2017. This form of urban expansion showed 

compact city growth with approximately saving 9 sq.km of urban land when 

comparing with the business as usual scenario. 

The urban expansion in the second scenario will cover approximately 23 

sq.km by 2047, which is 3 sq.km less then Business as usual scenario but 5 sq.km 

more than compact growth scenario. This scenario had defined (50 percent) protection 

level for forest and open space land classes. From these findings, Managed growth 

scenario (MGS) would be the ideal and manageable for future growth in the region 
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which facilitates provision of urban services by the city managers and urban planners 

with limited human habitat land available in the region. Hence, the MGS is preferred 

against other form of growth in the current study area. 

The probability of urban growth scenario predictions (Figures 14 – 16) show 

higher dispersed development patterns for the Business as usual than the managed 

growth scenario with moderate protection, while compact growth with maximum 

protection shows highly constrained growth in the region. The output urban layers for 

future dates as presented above are not only shown as urban and non-urban but also 

with probability range of future urbanization accordingly to the scenario development. 

These probabilities are divided broadly into five discrete classes: 50%, 50-69%, 70-

79%, 80-89%, and 90-100%.  

 

 

 

Figure 14 Probability of urban growth in Business as usual scenario 
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Figure 15 Probability of urban growth in Managed growth scenario 

 

 

 

Figure 16 Probability of urban growth in Compact growth scenario 
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It was observed that with increase in time period, the probability of 

urbanization becomes high. The cells which indicates less probable to urbanize in 

year 2027 has high probability in year 2047. However, growth parameters differ in 

each growth scenarios. Gradual change of urban growth environment was clearly 

visible along the existing urban fringes, most notably along the existing transportation 

networks and in area where less growth constraints are applied. The accuracy of 

model prediction in 2047 needs to be interpreted in light of SLEUTH’s earlier model 

accuracy from past to present scenario. At best that analysis can help to conclude that 

about more than 50 percent of the growth could be geographically correct and show 

high values of fit metrics. Table 18 below shows the future urban growth statistical 

measures selected for ten years’ time period in all three scenarios to see the effect of 

growth parameters. 

 

 

 

Figure 17 Modeling output results in BAU scenario 
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Figure 18 Modeling output results in MGS scenario 

 

(a) 2027, (b) 2037, & (c) 2047 

 

 

 

 

 Figure 19 Modeling output results in CGS scenario 
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Figure 20 Output of urban growth using SLEUTH model to the year 2047 

 

(a) Gelephu city area (right), (b) Jigmeling area (middle), future economic zone 

area, (c) Dzongkhag Head quarter region (left) 

 

The results revealed that, cumulative number of urban pixels by spontaneous 

growth (‘sng’) parameter decreases in all three growth scenarios, indicating the 

decrease in new urban settlement in developed areas. However, in MGS scenario, 

little increase was observed from 2037 to 2047 indicating that the urban growth cell 

tend to randomly selects potential new urban growth cell for urbanization. (Table 18). 

The cumulative organic or edge growth pixels (‘og’) is also found to be 

decreasing irrespective of the scenarios, indicating the less development in the 

existing urban growth area as compared to its neighborhood by 2047. 
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Table 18 Future growth statistical measures for three scenarios 

 

Parameters 2027 2037 2047 

BAU MGS CGS BAU MGS CGS BAU MGS CGS 

sng 0.26 0.16 0.08 0.27 0.07 0.05 0.26 0.11 0.04 

og 11.65 5.31 2.21 10.55 5.28 1.94 11.02 5.49 2.09 

slope 17.82 17.78 17.76 33.23 33.13 33.07 48.71 48.51 48.39 

rt_gravity 37.62 37.62 37.62 36.08 36.09 36.09 34.53 34.55 34.56 

area 16150 16041 15979 16281 16103 16003 16411 16167 16028 

%urban 15.39 15.33 15.3 15.45 15.36 15.31 15.52 15.39 15.32 

grw_pix 13.37 6.11 2.38 12.13 5.91 2.19 12.77 6.15 2.33 

 

 

The other interesting findings were also observed. The current urban growth 

which is greatly influenced by the road-gravity (‘rt’) coefficient, will no longer be the 

impending factor in future urban growth in the current study area. The rate of urban 

growth along the road networks gets slow down by the year 2047. This could be 

because we have only used the current 2017 road layer as the ‘seed’ layer for model 

prediction. 

Currently, there is no future road plan data available in this study area. Had 

we embedded the future road layers in the model, the growth pattern would not be the 

same and could be the influencing factors among others as the current growth. In 

contrast, the slope resistance coefficient continues to acts as a barrier to urban 

development in future growth scenarios. It was found to be increasing due to more 

constraints applied especially in the compact form of urban growth. This study of 

SLEUTH’s prediction capabilities shows a fair amount of variation in urban growth 

due to input data sets. However, these findings from different scenarios can be used as 

interpretation guides for the urban planners and decision makers that would help or 

contribute to the overall goal in sustainable urban development in the region.  



CHAPTER V 

  

DISCUSSION AND CONCLUSION 

 

Urban growth change 

 

Land use land cover dynamics clearly indicates the change of urban growth 

in the region. In recent decades, the urban population in the country grew 

approximately 196 thousand in 2005 to 275 thousand in 2017 constituting 37.8 

percent of total population. It is projected that urban population will reach more than 

50 percent by 2037 (National Statistics Bureau, 2018). The current study area has a 

total of 244 sq.km of which only 5 percent was occupied by urban settlements in 

1990. However, in 2017, the urbanized area accounted for 26 percent change of the 

total area, a nearly quintuple increase as per the land use land cover change details 

(See Table 6).  Such increase in urban growth is mainly due to the regional 

development projects such as development of local area plans, industrial estates, 

domestic airport, education, health, and public services among others (Ministry of 

Works and Human Settlement, 2010b). 

The conversion of agriculture land into urban areas is a notable conversion in 

developing countries (Li & Yeh, 2000). The change of agriculture land into urban 

areas should be limited by devising effective town planning measures since the 

proposed development projects in the region will increase the potential of urban 

expansion in future. However, the area within the district head quarter towards west 

of Gelephu city will experience less urban expansion as compared to the area within 

the periphery of the Gelephu city because of their location on steep slope of hills. This 

verifies urbanization mostly occurs in relatively flat areas (Li et al., 2013). 

Since the country is made up of mountain slopes, deep gorges and glaciers in 

the northern areas, flat and gentle slope areas of land are very limited which makes it 

difficult to secure human habitat, agriculture and infrastructure development. As we 

have observed from the land cover change details, urban area constitute about 14.35 

sq.km, approximately 6 percent compared to the other land classes. Forest land is a 

dominant among other land class category. The urbanization and rural-urban 
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migration are the factors exerting direct pressure on urban land. According to the 

population projection report, 2018 of National Statistical Bureau, the Sarpang 

Dzongkhag will contribute the third highest share of Dzongkhag population by 2047 

including the Gelephu Thromde. 

Currently, the Gelephu Thromde with a population size of 9,858 and a land 

area of 11.5 sq.km has the lowest population density at 856 persons per sq.km 

compared to other Thromde areas. Thimphu with highest urban population density 

with 4,389 persons per sq.km, followed by Samdrup Jongkhar and Phuntsholing 

Thromde with 2,086 and 1,773 persons per sq.km. The urban landscape of Sarpang 

which was nearly absent in the 1990’s has been now modifying the traditional rural 

landscape at a much faster rate. It was only in the late 1990’s and early 2000’s that the 

Dzongkhag began to develop that we see today though the rehabilitation program 

initiated by His Majesty the Fourth King of Bhutan in 1997 (National Land 

Commission Secretariat, 2016). The results also revealed the agglomeration of nearby 

villages or small towns into larger urban extent acting as a key economic links 

between the two main urban centers at Gelephu towards east and Dzongkhag head 

quarter towards west. (See Figure 17). 

 

Model calibration and simulation 

 

The SLEUTH model uses the past historical information on urban extent in 

calibrating and predicting the future urban growth. The parameters used in the model 

may vary from one urban area to another because every urban has its own unique 

properties. (Jat et al., 2017). The rigorous calibration process has resulted in 

identifying a set of diffusion, breed, spread, slope resistance, and road gravity growth 

coefficients that enable SLEUTH model to simulate the urban growth in Gelephu city 

over the period of 1990 to 2017. 

Our results showed high road gravity and slope coefficient among other three 

coefficients. The growth in the region is highly influenced by the existing road where 

it displaces orientation of linear growth pattern along the road networks and slope 

acting as a barrier for the development. It is important to note that the National 

highway passes through this location further connecting to other Dzongkhags where 
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most of the development took along this highway. Such growth and high coefficients 

were also observed in the other research studies (Abedini & Azizi, 2016; Bihamta et 

al., 2014; Dadashpoor & Nateghi, 2015). 

In our current study area, these two parameters represents main pattern of 

urban growth especially in peri-urban areas having a linear nature and edge expansion 

due to slope resistance and road influenced growth. It signifies that building a new 

transportation networks and infrastructure facilities would contribute such form of 

urban growth in future growth scenario. On other hand, the value of diffusion 

parameter and breed parameter was 1 and 5, which is low compared to other 

parameters indicating the low probability of spontaneous growth and breed coefficient 

which shows the probability of new spreading center growth pattern in the region. The 

value of breed coefficient is followed by the diffusion coefficients which is consistent 

with the findings of Pramanik & Stathakis (2015), and Osman et al. (2016). 

In addition, the comparison of this research and other researches shows that 

LeeSallee index is much similar in the study conducted in Chiang Mai, Thailand 

(Sangawongse, 2006), and in Tehran metropolitan region (Dadashpoor & Nateghi, 

2015), owing to the similar nature of topographic characteristics of the study area. 

However, the study conducted in other cities such as Pune, India (KantaKumar et al., 

2011), Ajmer city in Rajasthan, India (Jat et al., 2017), and Matara city, SriLanka 

(Serasinghe Pathiranage et al., 2018) had reported high value of fit metrics which 

could be due to the use of different statistical fit metrics to narrow down the 

coefficient space in calibration phases. 

 

Model Accuracy assessment 

 

Model simulation accuracy is another concern while using the satellite 

mapping products as a reference data. The simulation results is definite to have some 

inconsistencies because of its various level of errors observed in land use/cover map. 

Though most of the fit metrics would obtain high value, subjectivity lies in choosing 

the model fit metrics to narrow down the model coefficient ranges in calibration 

phase. 
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According to Silva & Clarke (2002), achieving the high values of fit matric is 

challenging. In this study, we have obtained substantially high values in most of the 

fit matrices including the “compare” metric of 0.703 when compared with actual 

urban extent. The study conducted by KantaKumar et al. (2011) and Abedini & Azizi 

(2016), indicated the model’s effectiveness to perform the prediction with a spatial fit 

metrics obtaining the correlation of 62% and 69% match of modeled urban cells 

compared with actual urban cells.  A perfect spatial match would result in a value of 

1, which is 100 percent. 

 

Model prediction 

 

The results obtained from ‘what if’’ scenarios could be important to public 

discussion since the scenarios demonstrate the potential losses of the limited resource 

lands that could occur if appropriate measures were not put in place (Oguz et al., 

2007). However, numerous issues that need to be taken care into consideration when 

developing scenarios. (Xiang & Clarke, 2003). In this study, we had proposed three 

alternative scenarios, Business as usual (BAU), Managed growth (MGS), and 

Compact growth (CGS) scenarios, a concept that was also used in similar manner by 

other researchers (Abedini & Azizi, 2016; Oguz et al., 2007; Yang & Lo, 2003). 

It was observed that the urban excluded layer proved to be an effective tool 

for exploring different growth scenarios. However, uncertainly lies in setting or 

assigning the protection values. The question arises how appropriate it can represent 

the changing growth if the demand for urban land increases and if protection levels 

are treated as same or important from other? In our case, we have assigned the 

exclusion probabilities based on the importance of the land use classes and also 

considered the existing government policy to protect the limited agriculture land 

available in the county. However, no best solution is available between the urban 

development and preservation of agriculture land which has the conflicting goals in 

nature. 

The scenarios in reality could be more complex than what we have design to 

simulate. The setting of the exclusion layer was done relatively similar in previous 

researches. The study conducted in the Houston-Galveston-Brazoria CMSA, the 
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urban exclusion and protection value was divided into three levels, 100% for water 

areas and parks, 40% and 60% for agriculture and 60% and 80% for wetland (Oguz et 

al., 2007). Despite those uncertainties, SLEUTH model had provided with insights 

regarding the historic urban growth and future growth prospects. 

Results from the exploration of three growth scenarios with different 

excluded maps depicts that the general characteristics of growth are common among 

the control coefficients for different excluded maps. The breed, spread and road 

gravity coefficients were found to be the major controllers of the growth in all the 

scenarios. It was observed that the sensitivity to local characteristics differs in each 

calibration stages as a result of the different excluded maps integrated into the 

calibration process and spatial resolution. The coefficients resulting from each of the 

excluded layers represent as adjustment of the model to the local characteristics. 

It was observed that predicting the model with strict weighting of excluded 

layer did not represent the conditions in a realistic way, thus under-predicting the 

actual growth. In our study, CGS growth scenario resulted substantial difference 

between the urban prediction results compared to the BAU and MGS scenario due to 

the strict protection of the exclusion layer. The growth of urban pixels were prevented 

even in the areas which has higher urban probability. The study conducted in Adana 

city had observed the similar growth where use of strict weighted exclusion layers 

have under-predicted the urban area compared to other scenarios (Akın et al., 2014). 

The SLEUTH model effectively captured the dynamics of Gelephu city in 

MGS scenario and it may be used as an urban planning decision support tool by the 

city planners to understand the urban growth dynamics to plan sustainable future 

growth. Though SLEUTH model may not be feasible directly for site planning and 

detailed planning, It may perform well in spatial planning, concept planning, and 

master planning and be useful for understanding the alternative future planning 

scenarios (Xi et al., 2009). In view of this, the municipal development planning 

authority should take into account the various growth scenarios which would result to 

the sustainable future growth in the region. 

The rapid urban growth mainly depends on the city requirement, facilities 

availability and industrialization in the area (KantaKumar et al., 2011), posing 

challenge to the city urban planners as the development often outpaces the planning 
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processes. This can be true in our case study since the development plan has targeted 

the available open spaces as a potential zone for future urban development decades 

ago during plan preparation (Ministry of Works and Human Settlement, 2010a) which 

may not cater to the existing demand with the increase in the urban population over 

the years. In this, the model prediction results demonstrate the need to consider the 

different growth scenarios taking into consideration the plans and policy of the 

country for sustainable urban growth.   

 

Conclusion 

 

The increasing urban population and socio-economic development triggered 

the rapid change in urban landscape. Understanding the dynamics of complex urban 

systems and evaluating the impact of urban growth involves modeling and simulation, 

which require robust methodology and techniques. 

The land use land cover results clearly depicts the pressure on limited 

agriculture land and natural environment in the region with increase in urban built-up 

over the past decades. About 28 percent (see Table 6) of agriculture land has been 

converted to other land use classes in the process of urban growth. It was seen that the 

urban areas have consistently increasing towards the peri-urban areas along the 

national highway. Results from the SLEUTH model calibration and prediction 

highlights different growth strategies that can be adopted by urban planner and 

decision makers. 

The role of remote sensing and GIS in cellular automated base urban growth 

modeling is indispensable, particularly for preparation of input datasets, data 

conversion, manipulation, and growth impact assessment. The results of SLEUTH 

model simulations are in Graphic Interchange Format (GIF) format which is highly 

compatible with Geographic Information System and hence, suitable for further 

quantitative analysis. SLEUTH model has been widely tested in developed countries 

but very few studies have been conducted in developing countries especially in the 

mountainous region. 

In developing country like Bhutan, urban modeling and growth assessment is 

not common in urban planning process which leads to unplanned urban growth. Due 
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to the complexity of the urban dynamics and the heterogeneity of the urban landscape, 

few limitations and uncertainties were observed in the process of model simulation 

and prediction. The model is sensitive to the input data sets and it does not explicitly 

deal with policies and socio-economic factors to define the urban growth with its 

predefined growth factors such as slope, and road gravity coefficients. The extraction 

of an accurate urban extent was a challenge due to the medium spatial resolution 

(30m) of Landsat images used in the study. 

The SLEUTH urban growth model is calibrated and tested for the first time 

to a Bhutanese urban setting. The results obtained from the model are quite satisfying, 

although accurate growth could be achieved if we use the high spatial resolution 

satellite images and combination of other socio-economic growth factors. 

Nevertheless, the coefficient values and goodness of fit metrics derived from the 

model calibration and simulation demonstrated the usefulness of the SLEUTH model 

to simulate the urban growth in current study area. Calibration of the SLEUTH model 

showed a high road gravity and slope coefficients, which means that the current urban 

growth is highly influenced by the existing road networks and controlled by 

topography of the region. These two growth parameters continue to contribute in 

future growth scenarios especially the slope resistance, which continue to act as 

barrier to urban growth. The influence of road gravity coefficient seems to decrease 

gradually. 

Three scenarios have been designed and simulated in this research. The first 

scenario simulated the unmanaged growth if the urban growth is allowed to continue 

as Business as usual trend. The second scenario projected the growth trend with 

moderate protection on forest and open space land class which we named as managed 

growth scenario. The last scenario simulated the compact form of urban growth with 

maximum growth protection on both the land classes, forest and open space. Results 

from the first scenario (BAU) indicate that current study area would lose considerable 

amount of agriculture and natural land, such as forest and open space with 

approximately consuming 12 sq.km of land in urban growth by 2047. The third 

scenario (CGS) resulted in much more protection compared to first and second 

scenarios, however, the growth would highly constraint in urban centers where 

vertical growth could be only the ideal solution for urban expansion where such 
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growth are not favored by the existing policies and by nature of topography of the 

region. The second growth scenario (MGS) results seems to be much better than first 

and third scenarios in view that this scenario not only attempt to save the limited 

agriculture land but will also facilitate the future growth in much sustained manner. 

Therefore, SLEUTH model scenarios and outputs could have an important role on 

urban planning and decision-making process in the region. 

The scenarios used in this study represented the results only as examples that 

urban planners can have available for urban growth strategies. In addition, the results 

obtained from the SLEUTH model or any other predictive models do not match 

exactly in reality, but at best produce approximations. However, the results of 

SLEUTH modeling in this study were found to be effective to compare the 

consequences of different growth scenarios which could serve as a decision support 

tool and aid urban planners and policy makers both at regional and local levels. The 

study also demonstrated that the use of remote sensing, GIS, and SLEUTH urban 

growth model is a powerful tool to analyze the future urban growth scenarios. 

 

Future research and Recommendations 

 

The current study used the CA-based SLEUTH urban growth model with 

remote sensing and GIS technique to study the urban growth and expansion. Though 

the study could accomplish the primary objective to simulate the urban expansion and 

evaluate the urban growth factors using the SLEUTH model, we found that there is 

need to highlight some important points that could be consider in future research. 

Firstly, how growth would response if the future road layers and the land 

cover deltatron module are embedded in the model simulation? In this study, we have 

used the same existing road layers of 2017 as a ‘seed’ layer in prediction mode since 

we don’t have future planned transportation data of the current study area. 

Secondly, we can see how different methodology of model calibration with 

temporal range of control years in model simulation affect the model growth results 

and its accuracy? 

Moreover, we could also see how different types of data such as socio-

economic data and policy framework can be incorporated in the existing framework to 



 77 

improve the model? Currently, the model uses six input data sets derived from 

satellite images and topographic maps. 

Finally, use of high spatial resolution satellite images is highly recommended 

in order to obtain accurate model simulation results, especially in the urban setting 

like Bhutan. 
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 APPENDIX 

 

APPENDIX A: Source code for Model calibration 

 

1. SLEUTH’s scenario file (coarse calibration) 

# FILE: 'scenario file' for SLEUTH land cover transition model  

#       (UGM  v3.0)  

#       Comments start with #  

#  

#   I. Path Name Variables  

#  II. Running Status (Echo)  

# III. Output ASCII Files  

#  IV. Log File Preferences  

#   V. Working Grids  

#  VI. Random Number Seed  

# VII. Monte Carlo Iteration  

#VIII. Coefficients  

#      A. Coefficients and Growth Types  

#      B. Modes and Coefficient Settings  

#  IX. Prediction Date Range  

#   X. Input Images  

#  XI. Output Images  

# XII. Colortable Settings  

#      A. Date_Color  

#      B. Non-Landuse Colortable  

#      C. Land Cover Colortable  

#      D. Growth Type Images  

#      E. Deltatron Images 

#XIII. Self Modification Parameters  

 

# I.PATH NAME VARIABLES  

#   INPUT_DIR: relative or absolute path where input image files and  

#              (if modeling land cover) 'landuse.classes' file are  

#              located.  

#   OUTPUT_DIR: relative or absolute path where all output files will  

#               be located.  

#   WHIRLGIF_BINARY: relative path to 'whirlgif' gif animation program.  

#                    These must be compiled before execution.  
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INPUT_DIR=../Input/demo_data30/  

OUTPUT_DIR=../Output/demo_output/ 

WHIRLGIF_BINARY=../Whirlgif/whirlgif  

# II. RUNNING STATUS (ECHO)  

#  Status of model run, monte carlo iteration, and year will be  

#  printed to the screen during model execution.  

ECHO(YES/NO)=yes  

 

# III. Output Files  

# INDICATE TYPES OF ASCII DATA FILES TO BE WRITTEN TO 

OUTPUT_DIRECTORY.  

#  

#   COEFF_FILE: contains coefficient values for every run, monte carlo  

#               iteration and year.  

#   AVG_FILE: contains measured values of simulated data averaged over  

#             monte carlo iterations for every run and control year.  

#   STD_DEV_FILE: contains standard diviation of averaged values  

#                 in the AVG_FILE.  

#   MEMORY_MAP: logs memory map to file 'memory.log'  

#   LOGGING: will create a 'LOG_#' file where # signifies the processor  

#            number that created the file if running code in parallel.  

#            Otherwise, # will be 0. Contents of the LOG file may be  

#            described below.   

WRITE_COEFF_FILE(YES/NO)=no 

WRITE_AVG_FILE(YES/NO)=no 

WRITE_STD_DEV_FILE(YES/NO)=no  

WRITE_MEMORY_MAP(YES/NO)=YES 

LOGGING(YES/NO)=YES 

 

# IV. Log File Preferences  

# INDICATE CONTENT OF LOG_# FILE (IF LOGGING == ON).  

#   LANDCLASS_SUMMARY: (if landuse is being modeled) summary of input  

#                      from 'landuse.classes' file  

#   SLOPE_WEIGHTS(YES/NO): annual slope weight values as effected  

#                          by slope_coeff  

#   READS(YES/NO)= notes if a file is read in  

#   WRITES(YES/NO)= notes if a file is written  

#   COLORTABLES(YES/NO)= rgb lookup tables for all colortables generated  

#   PROCESSING_STATUS(0:off/1:low verbosity/2:high verbosity)=  

#   TRANSITION_MATRIX(YES/NO)= pixel count and annual probability of  

#                              land class transitions  
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#   URBANIZATION_ATTEMPTS(YES/NO)= number of times an attempt to 

urbanize  

#                                  a pixel occurred  

#   INITIAL_COEFFICIENTS(YES/NO)= initial coefficient values for  

#                                 each monte carlo  

#   BASE_STATISTICS(YES/NO)= measurements of urban control year data  

#   DEBUG(YES/NO)= data dump of igrid object and grid pointers  

#   TIMINGS(0:off/1:low verbosity/2:high verbosity)= time spent within  

#     each module. If running in parallel, LOG_0 will contain timing for  

#     complete job.  

LOG_LANDCLASS_SUMMARY(YES/NO)=yes  

LOG_SLOPE_WEIGHTS(YES/NO)=no  

LOG_READS(YES/NO)=no 

LOG_WRITES(YES/NO)=no 

LOG_COLORTABLES(YES/NO)=no 

LOG_PROCESSING_STATUS(0:off/1:low verbosity/2:high verbosity)=1  

LOG_TRANSITION_MATRIX(YES/NO)=yes 

LOG_URBANIZATION_ATTEMPTS(YES/NO)=no  

LOG_INITIAL_COEFFICIENTS(YES/NO)=no  

LOG_BASE_STATISTICS(YES/NO)=yes  

LOG_DEBUG(YES/NO)= no 

LOG_TIMINGS(0:off/1:low verbosity/2:high verbosity)=1 

 

# V. WORKING GRIDS  

# The number of working grids needed from memory during model execution is 

# designated up front. This number may change depending upon modes. If  

# NUM_WORKING_GRIDS needs to be increased, the execution will be exited 

# and an error message will be written to the screen and to 'ERROR_LOG' 

# in the OUTPUT_DIRECTORY. If the number may be decreased an optimal   

# number will be written to the end of the LOG_0 file.  

NUM_WORKING_GRIDS=2 

 

# VI. RANDOM NUMBER SEED  

# This number initializes the random number generator. This seed will be 

# used to initialize each model run.  

RANDOM_SEED=1 

 

# VII. MONTE CARLO ITERATIONS  

# Each model run may be completed in a monte carlo fashion.  

#  For CALIBRATION or TEST mode measurements of simulated data will be 

#  taken for years of known data, and averaged over the number of monte   
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#  carlo iterations. These averages are written to the AVG_FILE, and   

#  the associated standard diviation is written to the STD_DEV_FILE.   

#  The averaged values are compared to the known data, and a Pearson 

#  correlation coefficient measure is calculated and written to the   

#  control_stats.log file. The input per run may be associated across  

#  files using the 'index' number in the files' first column.  

#  

MONTE_CARLO_ITERATIONS=4 

 

# VIII. COEFFICIENTS  

# The coefficients effect how the growth rules are applied to the data. 

# Setting requirements: 

#    *_START values >= *_STOP values 

#    *_STEP values > 0 

#   if no coefficient increment is desired: 

#    *_START == *_STOP 

#    *_STEP == 1  

# For additional information about how these values affect simulated 

# land cover change see our publications and PROJECT GIGALOPOLIS 

#  site: (www.ncgia.ucsb.edu/project/gig/About/abGrowth.htm).  

#  A. COEFFICIENTS AND GROWTH TYPES  

#     DIFFUSION: affects SPONTANEOUS GROWTH and search distance along the  

#                road network as part of ROAD INFLUENCED GROWTH.  

#     BREED: NEW SPREADING CENTER probability and affects number of ROAD  

#            INFLUENCED GROWTH attempts.  

#     SPREAD: the probabilty of ORGANIC GROWTH from established urban 

#             pixels occuring.               

#     SLOPE_RESISTANCE: affects the influence of slope to urbanization. As 

#                       value increases, the ability to urbanize 

#                       ever steepening slopes decreases.  

#     ROAD_GRAVITY: affects the outward distance from a selected pixel for 

#                   which a road pixel will be searched for as part of 

#                   ROAD INFLUENCED GROWTH.  

# 

#  B. MODES AND COEFFICIENT SETTINGS  

#     TEST: TEST mode will perform a single run through the historical  

#           data using the CALIBRATION_*_START values to initialize  

#           growth, complete the MONTE_CARLO_ITERATIONS, and then conclude 

#           execution. GIF images of the simulated urban growth will be  

#           written to the OUTPUT_DIRECTORY.  

#     CALIBRATE: CALIBRATE will perform monte carlo runs through the  
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#                historical data using every combination of the 

#                coefficient values indicated. The CALIBRATION_*_START   

#                coefficient values will initialize the first run. A   

#                coefficient will then be increased by its *_STEP value,   

#                and another run performed. This will be repeated for all 

#                possible permutations of given ranges and increments.  

#     PREDICTION: PREDICTION will perform a single run, in monte carlo  

#                 fashion, using the PREDICTION_*_BEST_FIT values  

#                 for initialization. 

CALIBRATION_DIFFUSION_START= 0 

CALIBRATION_DIFFUSION_STEP=  25 

CALIBRATION_DIFFUSION_STOP=  100 

 

CALIBRATION_BREED_START=     0 

CALIBRATION_BREED_STEP=      25 

CALIBRATION_BREED_STOP=      100 

 

CALIBRATION_SPREAD_START=    0 

CALIBRATION_SPREAD_STEP=     25 

CALIBRATION_SPREAD_STOP=     100 

 

CALIBRATION_SLOPE_START=     0 

CALIBRATION_SLOPE_STEP=      25 

CALIBRATION_SLOPE_STOP=      100  

 

CALIBRATION_ROAD_START=      0 

CALIBRATION_ROAD_STEP=       25  

CALIBRATION_ROAD_STOP=       100 

 

PREDICTION_DIFFUSION_BEST_FIT=  20  

PREDICTION_BREED_BEST_FIT=  20  

PREDICTION_SPREAD_BEST_FIT=  20  

PREDICTION_SLOPE_BEST_FIT=  20  

PREDICTION_ROAD_BEST_FIT=  20  

 

# IX. PREDICTION DATE RANGE  

# The urban and road images used to initialize growth during  

# prediction are those with dates equal to, or greater than,  

# the PREDICTION_START_DATE. If the PREDICTION_START_DATE is greater  

# than any of the urban dates, the last urban file on the list will be  

# used. Similarly, if the PREDICTION_START_DATE is greater  
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# than any of the road dates, the last road file on the list will be  

# used. The prediction run will terminate at PREDICTION_STOP_DATE.  

#  

PREDICTION_START_DATE=1990  

PREDICTION_STOP_DATE=2017  

 

# X. INPUT IMAGES  

# The model expects grayscale, GIF image files with file name  

# format as described below. For more information see our  

# PROJECT GIGALOPOLIS web site:  

# (www.ncgia.ucsb.edu/project/gig/About/dtInput.htm).  

#  

# IF LAND COVER IS NOT BEING MODELED: Remove or comment out  

# the LANDUSE_DATA data input flags below.  

#  

#    <  >  = user selected fields  

#   <  > = optional fields  

#  

# Urban data GIFs  

#  format:  <location>.urban.<date>.<user info>.gif  

#  

#  

URBAN_DATA= demo.urban.1990.gif  

URBAN_DATA= demo.urban.2000.gif  

URBAN_DATA= demo.urban.2010.gif  

URBAN_DATA= demo.urban.2017.gif  

#  

# Road data GIFs  

#  format:  <location>.roads.<date>.<user info>.gif  

#  

ROAD_DATA= demo.roads.1990.gif  

ROAD_DATA= demo.roads.2017.gif  

#  

# Landuse data GIFs  

#  format:  <location>.landuse.<date>.<user info>.gif  

#  

#LANDUSE_DATA= demo.landuse.1990.gif  

#LANDUSE_DATA= demo.landuse.2017.gif  

#  

# Excluded data GIF  

#  format:  <location>.excluded.<user info>.gif  
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#  

EXCLUDED_DATA= demo.excluded.gif  

#  

# Slope data GIF  

#  format:  <location>.slope.<user info>.gif  

#  

SLOPE_DATA= demo.slope.gif  

#  

# Background data GIF  

#  format:   <location>.hillshade.<user info>.gif  

#  

#BACKGROUND_DATA= demo.hillshade.gif  

BACKGROUND_DATA= demo.hillshade.gif  

 

# XI. OUTPUT IMAGES  

#   WRITE_COLOR_KEY_IMAGES: Creates image maps of each colortable.  

#                           File name format: 'key_type_COLORMAP'  

#                           where type represents the colortable.  

#   ECHO_IMAGE_FILES: Creates GIF of each input file used in that job.  

#                     File names format: 'echo_of_input_filename'  

#                     where input_filename represents the input name.  

#   ANIMATION: if whirlgif has been compiled, and the WHIRLGIF_BINARY  

#              path has been defined, animated gifs begining with the  

#              file name 'animated' will be created in PREDICT mode.  

WRITE_COLOR_KEY_IMAGES(YES/NO)=no 

ECHO_IMAGE_FILES(YES/NO)=no 

ANIMATION(YES/NO)= no 

 

# XII. COLORTABLE SETTINGS  

#  A. DATE COLOR SETTING  

#     The date will automatically be placed in the lower left corner  

#     of output images. DATE_COLOR may be designated in with red, green,  

#     and blue values (format: <red_value, green_value, blue_value> )  

#     or with hexadecimal begining with '0X' (format: <0X######> ).  

#default DATE_COLOR= 0XFFFFFF white  

DATE_COLOR=     0XFFFFFF #white  

 

#  B. URBAN (NON-LANDUSE) COLORTABLE SETTINGS  

#     1. URBAN MODE OUTPUTS  

#         TEST mode: Annual images of simulated urban growth will be  

#                    created using SEED_COLOR to indicate urbanized areas. 
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#         CALIBRATE mode: Images will not be created.  

#         PREDICT mode: Annual probability images of simulated urban  

#                       growth will be created using the PROBABILITY  

#                       _COLORTABLE. The initializing urban data will be  

#                       indicated by SEED_COLOR.  

#  

#     2. COLORTABLE SETTINGS  

#          SEED_COLOR: initializing and extrapolated historic urban extent 

 

#          WATER_COLOR: BACKGROUND_DATA is used as a backdrop for 

  

#                       simulated urban growth. If pixels in this file   

#                       contain the value zero (0), they will be filled  

#                       with the color value in WATER_COLOR. In this way,  

#                       major water bodies in a study area may be included  

#                       in output images.  

#SEED_COLOR= 0XFFFF00 #yellow  

SEED_COLOR=  249, 209, 110 #pale yellow  

#WATER_COLOR=  0X0000FF # blue  

WATER_COLOR=  20, 52, 214 # royal blue 

 

#     3. PROBABILITY COLORTABLE FOR URBAN GROWTH  

#        For PREDICTION, annual probability images of urban growth  

#        will be created using the monte carlo iterations. In these  

#        images, the higher the value the more likely urbanizaion is.  

#        In order to interpret these 'continuous' values more easily  

#        they may be color classified by range.  

#  

#        If 'hex' is not present then the range is transparent.  

#        The transparent range must be the first on the list.  

#        The max number of entries is 100.  

#          PROBABILITY_COLOR: a color value in hexadecimal that indicates 

#                             a probability range.  

#            low/upper: indicate the boundaries of the range.  

#  

#                  low,  upper,   hex,  (Optional Name)  

PROBABILITY_COLOR=   0,    1,         , #transparent  

PROBABILITY_COLOR=   1,    10, 0X00ff33, #green 

PROBABILITY_COLOR=   10,   20, 0X00cc33, #  

PROBABILITY_COLOR=   20,   30, 0X009933, # 
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PROBABILITY_COLOR=   30,   40, 0X006666, #blue 

PROBABILITY_COLOR=   40,   50, 0X003366, # 

PROBABILITY_COLOR=   50,   60, 0X000066, #  

PROBABILITY_COLOR=   60,   70, 0XFF6A6A, #lt orange 

PROBABILITY_COLOR=   70,   80, 0Xff7F00, #dark orange 

PROBABILITY_COLOR=   80,   90, 0Xff3E96, #violetred 

PROBABILITY_COLOR=   90,  100, 0Xff0033, #dark red  

 

#  C. LAND COVER COLORTABLE  

#  Land cover input images should be in grayscale GIF image format.  

#  The 'pix' value indicates a land class grayscale pixel value in  

#  the image. If desired, the model will create color classified  

#  land cover output. The output colortable is designated by the  

#  'hex/rgb' values.  

#    pix: input land class pixel value  

#    name: text string indicating land class  

#    flag: special case land classes  

#          URB - urban class (area is included in urban input data  

#                and will not be transitioned by deltatron)  

#          UNC - unclass (NODATA areas in image)  

#          EXC - excluded (land class will be ignored by deltatron)  

#    hex/rgb: hexidecimal or rgb (red, green, blue) output colors  

#  

#              pix, name,     flag,   hex/rgb, #comment  

LANDUSE_CLASS=  0,  Unclass , UNC   , 0X000000  

LANDUSE_CLASS=  1,  Urban   , URB   , 0X8b2323 #dark red 

LANDUSE_CLASS=  2,  Agric   ,       , 0Xffec8b #pale yellow  

LANDUSE_CLASS=  3,  Range   ,       , 0Xee9a49 #tan  

LANDUSE_CLASS=  4,  Forest  ,       , 0X006400  

LANDUSE_CLASS=  5,  Water   , EXC   , 0X104e8b  

LANDUSE_CLASS=  6,  Wetland ,       , 0X483d8b  

LANDUSE_CLASS=  7,  Barren  ,       , 0Xeec591  

 

#  D. GROWTH TYPE IMAGE OUTPUT CONTROL AND COLORTABLE  

#  

#  From here you can control the output of the Z grid  

#  (urban growth) just after it is returned from the spr_spread()  

#  function. In this way it is possible to see the different types  

#  of growth that have occured for a particular growth cycle.  

#  

#  VIEW_GROWTH_TYPES(YES/NO) provides an on/off  
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#  toggle to control whether the images are generated.  

#  

#  GROWTH_TYPE_PRINT_WINDOW provides a print window  

#  to control the amount of images created.  

#  format:  <start_run>,<end_run>,<start_monte_carlo>,  

#           <end_monte_carlo>,<start_year>,<end_year>  

#  for example:  

#  GROWTH_TYPE_PRINT_WINDOW=run1,run2,mc1,mc2,year1,year2  

#  so images are only created when  

#  run1<= current run <=run2 AND  

#  mc1 <= current monte carlo <= mc2 AND  

#  year1 <= currrent year <= year2  

#  

#  0 == first  

VIEW_GROWTH_TYPES(YES/NO)=NO  

GROWTH_TYPE_PRINT_WINDOW=0,0,0,0,1995,2020  

PHASE0G_GROWTH_COLOR=  0xff0000 # seed urban area  

PHASE1G_GROWTH_COLOR=  0X00ff00 # diffusion growth  

PHASE2G_GROWTH_COLOR=  0X0000ff # NOT USED  

PHASE3G_GROWTH_COLOR=  0Xffff00 # breed growth  

PHASE4G_GROWTH_COLOR=  0Xffffff # spread growth  

PHASE5G_GROWTH_COLOR=  0X00ffff # road influenced growth  

 

#************************************************************  

#  

#  E. DELTATRON AGING SECTION  

#  

#  From here you can control the output of the deltatron grid  

#  just before they are aged  

#  

#  VIEW_DELTATRON_AGING(YES/NO) provides an on/off  

#  toggle to control whether the images are generated.  

#  

#  DELTATRON_PRINT_WINDOW provides a print window  

#  to control the amount of images created.  

#  format:  <start_run>,<end_run>,<start_monte_carlo>,  

#           <end_monte_carlo>,<start_year>,<end_year>  

#  for example:  

#  DELTATRON_PRINT_WINDOW=run1,run2,mc1,mc2,year1,year2  

#  so images are only created when  

#  run1<= current run <=run2 AND  
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#  mc1 <= current monte carlo <= mc2 AND  

#  year1 <= currrent year <= year2  

#  

#  0 == first  

VIEW_DELTATRON_AGING(YES/NO)=NO  

DELTATRON_PRINT_WINDOW=0,0,0,0,1930,2020  

DELTATRON_COLOR=  0x000000 # index 0 No or dead deltatron  

DELTATRON_COLOR=  0X00FF00 # index 1 age = 1 year  

DELTATRON_COLOR=  0X00D200 # index 2 age = 2 year  

DELTATRON_COLOR=  0X00AA00 # index 3 age = 3 year  

DELTATRON_COLOR=  0X008200 # index 4 age = 4 year  

DELTATRON_COLOR=  0X005A00 # index 5 age = 5 year  

 

# XIII. SELF-MODIFICATION PARAMETERS  

#       SLEUTH is a self-modifying cellular automata. For more   

#       information see our PROJECT GIGALOPOLIS web site 

#       (www.ncgia.ucsb.edu/project/gig/About/abGrowth.htm)  

#       and publications (and/or grep 'self modification' in code).  

ROAD_GRAV_SENSITIVITY=0.01  

SLOPE_SENSITIVITY=0.1  

CRITICAL_LOW=0.97  

CRITICAL_HIGH=1.3  

#CRITICAL_LOW=0.0  

#CRITICAL_HIGH=10000000000000.0  

CRITICAL_SLOPE=21.0  

BOOM=1.01  

BUST=0.09  

   

 

2. SLEUTH’s scenario file (fine calibration) 

# FILE: 'scenario file' for SLEUTH land cover transition model  

#       (UGM  v3.0)  

#       Comments start with #  

#  

#   I. Path Name Variables  

#  II. Running Status (Echo)  

# III. Output ASCII Files  

#  IV. Log File Preferences  

#   V. Working Grids  

#  VI. Random Number Seed  
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# VII. Monte Carlo Iteration  

#VIII. Coefficients  

#      A. Coefficients and Growth Types  

#      B. Modes and Coefficient Settings  

#  IX. Prediction Date Range  

#   X. Input Images  

#  XI. Output Images  

# XII. Colortable Settings  

#      A. Date_Color  

#      B. Non-Landuse Colortable  

#      C. Land Cover Colortable  

#      D. Growth Type Images  

#      E. Deltatron Images 

#XIII. Self Modification Parameters  

 

# I.PATH NAME VARIABLES  

#   INPUT_DIR: relative or absolute path where input image files and  

#              (if modeling land cover) 'landuse.classes' file are  

#              located.  

#   OUTPUT_DIR: relative or absolute path where all output files will  

#               be located.  

#   WHIRLGIF_BINARY: relative path to 'whirlgif' gif animation program.  

#                    These must be compiled before execution.  

INPUT_DIR=../Input/final_data60/  

OUTPUT_DIR=../Output/data60_cal/ 

WHIRLGIF_BINARY=../Whirlgif/whirlgif  

 

# II. RUNNING STATUS (ECHO)  

#  Status of model run, monte carlo iteration, and year will be  

#  printed to the screen during model execution.  

ECHO(YES/NO)=yes  

 

# III. Output Files  

# INDICATE TYPES OF ASCII DATA FILES TO BE WRITTEN TO 

OUTPUT_DIRECTORY.  

#  

#   COEFF_FILE: contains coefficient values for every run, monte carlo  

#               iteration and year.  

#   AVG_FILE: contains measured values of simulated data averaged over  

#             monte carlo iterations for every run and control year.  

#   STD_DEV_FILE: contains standard deviation of averaged values  
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#                 in the AVG_FILE.  

#   MEMORY_MAP: logs memory map to file 'memory.log'  

#   LOGGING: will create a 'LOG_#' file where # signifies the processor  

#            number that created the file if running code in parallel.  

#            Otherwise, # will be 0. Contents of the LOG file may be  

#            described below.  

WRITE_COEFF_FILE(YES/NO)=no 

WRITE_AVG_FILE(YES/NO)=no 

WRITE_STD_DEV_FILE(YES/NO)=no  

WRITE_MEMORY_MAP(YES/NO)=no 

LOGGING(YES/NO)=YES 

 

# IV. Log File Preferences  

# INDICATE CONTENT OF LOG_# FILE (IF LOGGING == ON).  

#   LANDCLASS_SUMMARY: (if landuse is being modeled) summary of input  

#                      from 'landuse.classes' file  

#   SLOPE_WEIGHTS(YES/NO): annual slope weight values as effected  

#                          by slope_coeff  

#   READS(YES/NO)= notes if a file is read in  

#   WRITES(YES/NO)= notes if a file is written  

#   COLORTABLES(YES/NO)= rgb lookup tables for all colortables generated  

#   PROCESSING_STATUS(0:off/1:low verbosity/2:high verbosity)=  

#   TRANSITION_MATRIX(YES/NO)= pixel count and annual probability of  

#                              land class transitions  

#   URBANIZATION_ATTEMPTS(YES/NO)= number of times an attempt to 

urbanize  

#                                  a pixel occurred  

#   INITIAL_COEFFICIENTS(YES/NO)= initial coefficient values for  

#                                 each monte carlo  

#   BASE_STATISTICS(YES/NO)= measurements of urban control year data  

#   DEBUG(YES/NO)= data dump of igrid object and grid pointers  

#   TIMINGS(0:off/1:low verbosity/2:high verbosity)= time spent within  

#     each module. If running in parallel, LOG_0 will contain timing for  

#     complete job.  

LOG_LANDCLASS_SUMMARY(YES/NO)=yes  

LOG_SLOPE_WEIGHTS(YES/NO)=no  

LOG_READS(YES/NO)=no 

LOG_WRITES(YES/NO)=no 

LOG_COLORTABLES(YES/NO)=no 

LOG_PROCESSING_STATUS(0:off/1:low verbosity/2:high verbosity)=1  

LOG_TRANSITION_MATRIX(YES/NO)=no 
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LOG_URBANIZATION_ATTEMPTS(YES/NO)=no  

LOG_INITIAL_COEFFICIENTS(YES/NO)=no  

LOG_BASE_STATISTICS(YES/NO)=yes  

LOG_DEBUG(YES/NO)= no 

LOG_TIMINGS(0:off/1:low verbosity/2:high verbosity)=1 

 

# V. WORKING GRIDS  

# The number of working grids needed from memory during model execution is 

 

# designated up front. This number may change depending upon modes. If  

# NUM_WORKING_GRIDS needs to be increased, the execution will be exited 

# and an error message will be written to the screen and to 'ERROR_LOG' 

# in the OUTPUT_DIRECTORY. If the number may be decreased an optimal   

# number will be written to the end of the LOG_0 file.  

NUM_WORKING_GRIDS=4 

 

# VI. RANDOM NUMBER SEED  

# This number initializes the random number generator. This seed will be 

# used to initialize each model run.  

RANDOM_SEED=1 

 

# VII. MONTE CARLO ITERATIONS  

# Each model run may be completed in a monte carlo fashion.  

#  For CALIBRATION or TEST mode measurements of simulated data will be 

#  taken for years of known data, and averaged over the number of monte   

#  carlo iterations. These averages are written to the AVG_FILE, and   

#  the associated standard diviation is written to the STD_DEV_FILE.   

#  The averaged values are compared to the known data, and a Pearson 

#  correlation coefficient measure is calculated and written to the   

#  control_stats.log file. The input per run may be associated across  

#  files using the 'index' number in the files' first column.  

#  

MONTE_CARLO_ITERATIONS=8 

 

# VIII. COEFFICIENTS  

# The coefficients effect how the growth rules are applied to the data. 

# Setting requirements: 

#    *_START values >= *_STOP values 

#    *_STEP values > 0 

#   if no coefficient increment is desired: 

#    *_START == *_STOP 
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#    *_STEP == 1  

# For additional information about how these values affect simulated 

# land cover change see our publications and PROJECT GIGALOPOLIS 

#  site: (www.ncgia.ucsb.edu/project/gig/About/abGrowth.htm).  

#  A. COEFFICIENTS AND GROWTH TYPES  

#     DIFFUSION: affects SPONTANEOUS GROWTH and search distance along the  

#                road network as part of ROAD INFLUENCED GROWTH.  

#     BREED: NEW SPREADING CENTER probability and affects number of ROAD  

#            INFLUENCED GROWTH attempts.  

#     SPREAD: the probabilty of ORGANIC GROWTH from established urban 

#             pixels occuring.               

#     SLOPE_RESISTANCE: affects the influence of slope to urbanization. As 

#                       value increases, the ability to urbanize 

#                       ever steepening slopes decreases.  

#     ROAD_GRAVITY: affects the outward distance from a selected pixel for 

#                   which a road pixel will be searched for as part of 

#                   ROAD INFLUENCED GROWTH.  

# 

#  B. MODES AND COEFFICIENT SETTINGS  

#     TEST: TEST mode will perform a single run through the historical  

#           data using the CALIBRATION_*_START values to initialize  

#           growth, complete the MONTE_CARLO_ITERATIONS, and then conclude 

#           execution. GIF images of the simulated urban growth will be  

#           written to the OUTPUT_DIRECTORY.  

#     CALIBRATE: CALIBRATE will perform monte carlo runs through the  

#                historical data using every combination of the 

#                coefficient values indicated. The CALIBRATION_*_START   

#                coefficient values will initialize the first run. A   

#                coefficient will then be increased by its *_STEP value,   

#                and another run performed. This will be repeated for all 

#                possible permutations of given ranges and increments.  

#     PREDICTION: PREDICTION will perform a single run, in monte carlo  

#                 fashion, using the PREDICTION_*_BEST_FIT values  

#                 for initialization. 

 

CALIBRATION_DIFFUSION_START= 0  

CALIBRATION_DIFFUSION_STEP=  5  

CALIBRATION_DIFFUSION_STOP=  20 

 

CALIBRATION_BREED_START=     0  

CALIBRATION_BREED_STEP=      15  
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CALIBRATION_BREED_STOP=      75  

 

CALIBRATION_SPREAD_START=    0 

CALIBRATION_SPREAD_STEP=     5  

CALIBRATION_SPREAD_STOP=     20  

 

CALIBRATION_SLOPE_START=     0  

CALIBRATION_SLOPE_STEP=      20  

CALIBRATION_SLOPE_STOP=      100  

 

CALIBRATION_ROAD_START=      0  

CALIBRATION_ROAD_STEP=       15  

CALIBRATION_ROAD_STOP=       75  

 

PREDICTION_DIFFUSION_BEST_FIT=  20  

PREDICTION_BREED_BEST_FIT=  20  

PREDICTION_SPREAD_BEST_FIT=  20  

PREDICTION_SLOPE_BEST_FIT=  20  

PREDICTION_ROAD_BEST_FIT=  20  

 

# IX. PREDICTION DATE RANGE  

# The urban and road images used to initialize growth during  

# prediction are those with dates equal to, or greater than,  

# the PREDICTION_START_DATE. If the PREDICTION_START_DATE is greater  

# than any of the urban dates, the last urban file on the list will be  

# used. Similarly, if the PREDICTION_START_DATE is greater  

# than any of the road dates, the last road file on the list will be  

# used. The prediction run will terminate at PREDICTION_STOP_DATE.  

#  

PREDICTION_START_DATE=1990  

PREDICTION_STOP_DATE=2017  

 

# X. INPUT IMAGES  

# The model expects grayscale, GIF image files with file name  

# format as described below. For more information see our  

# PROJECT GIGALOPOLIS web site:  

# (www.ncgia.ucsb.edu/project/gig/About/dtInput.htm).  

#  

# IF LAND COVER IS NOT BEING MODELED: Remove or comment out  

# the LANDUSE_DATA data input flags below.  

#  
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#    <  >  = user selected fields  

#   <  > = optional fields  

#  

# Urban data GIFs  

#  format:  <location>.urban.<date>.<user info>.gif  

#  

#  

URBAN_DATA= data60.urban.1990.gif  

URBAN_DATA= data60.urban.2000.gif  

URBAN_DATA= data60.urban.2010.gif  

URBAN_DATA= data60.urban.2017.gif  

#  

# Road data GIFs  

#  format:  <location>.roads.<date>.<user info>.gif  

#  

ROAD_DATA= data60.roads.1990.gif  

ROAD_DATA= data60.roads.2017.gif  

#  

# Landuse data GIFs  

#  format:  <location>.landuse.<date>.<user info>.gif  

#  

#LANDUSE_DATA= data60.landuse.1990.gif  

#LANDUSE_DATA= data60.landuse.2017.gif  

#  

# Excluded data GIF  

#  format:  <location>.excluded.<user info>.gif  

#  

EXCLUDED_DATA= data60.excluded.gif  

#  

# Slope data GIF  

#  format:  <location>.slope.<user info>.gif  

#  

SLOPE_DATA= data60.slope.gif  

#  

# Background data GIF  

#  format:   <location>.hillshade.<user info>.gif  

#  

BACKGROUND_DATA= data60.hillshade.gif  

 

# XI. OUTPUT IMAGES  

#   WRITE_COLOR_KEY_IMAGES: Creates image maps of each colortable.  
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#                           File name format: 'key_type_COLORMAP'  

#                           where type represents the colortable.  

#   ECHO_IMAGE_FILES: Creates GIF of each input file used in that job.  

#                     File names format: 'echo_of_input_filename'  

#                     where input_filename represents the input name.  

#   ANIMATION: if whirlgif has been compiled, and the WHIRLGIF_BINARY  

#              path has been defined, animated gifs begining with the  

#              file name 'animated' will be created in PREDICT mode.  

WRITE_COLOR_KEY_IMAGES(YES/NO)=no  

ECHO_IMAGE_FILES(YES/NO)=no 

ANIMATION(YES/NO)= no  

 

# XII. COLORTABLE SETTINGS  

#  A. DATE COLOR SETTING  

#     The date will automatically be placed in the lower left corner  

#     of output images. DATE_COLOR may be designated in with red, green,  

#     and blue values (format: <red_value, green_value, blue_value> )  

#     or with hexadecimal begining with '0X' (format: <0X######> ).  

#default DATE_COLOR= 0XFFFFFF white  

DATE_COLOR=     0XFFFFFF #white  

 

#  B. URBAN (NON-LANDUSE) COLORTABLE SETTINGS  

#     1. URBAN MODE OUTPUTS  

#         TEST mode: Annual images of simulated urban growth will be  

#                    created using SEED_COLOR to indicate urbanized areas. 

 

#         CALIBRATE mode: Images will not be created.  

#         PREDICT mode: Annual probability images of simulated urban  

#                       growth will be created using the PROBABILITY  

#                       _COLORTABLE. The initializing urban data will be  

#                       indicated by SEED_COLOR.  

#  

#     2. COLORTABLE SETTINGS  

#          SEED_COLOR: initializing and extrapolated historic urban extent 

 

#          WATER_COLOR: BACKGROUND_DATA is used as a backdrop for 

  

#                       simulated urban growth. If pixels in this file   

#                       contain the value zero (0), they will be filled  

#                       with the color value in WATER_COLOR. In this way,  

#                       major water bodies in a study area may be included  
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#                       in output images.  

#SEED_COLOR= 0XFFFF00 #yellow  

SEED_COLOR=  249, 209, 110 #pale yellow  

#WATER_COLOR=  0X0000FF # blue  

WATER_COLOR=  20, 52, 214 # royal blue 

 

#     3. PROBABILITY COLORTABLE FOR URBAN GROWTH  

#        For PREDICTION, annual probability images of urban growth  

#        will be created using the monte carlo iterations. In these  

#        images, the higher the value the more likely urbanizaion is.  

#        In order to interpret these 'continuous' values more easily  

#        they may be color classified by range.  

#  

#        If 'hex' is not present then the range is transparent.  

#        The transparent range must be the first on the list.  

#        The max number of entries is 100.  

#          PROBABILITY_COLOR: a color value in hexadecimal that indicates 

#                             a probability range.  

#            low/upper: indicate the boundaries of the range.  

#  

#                  low,  upper,   hex,  (Optional Name)  

PROBABILITY_COLOR=   0,    50,         , #transparent  

PROBABILITY_COLOR=   50,   60, 0X005A00, #0, 90,0 dark green 

PROBABILITY_COLOR=   60,   70, 0X008200, #0,130,0  

PROBABILITY_COLOR=   70,   80, 0X00AA00, #0,170,0  

PROBABILITY_COLOR=   80,   90, 0X00D200, #0,210,0  

PROBABILITY_COLOR=   90,   95, 0X00FF00, #0,255,0 light green 

PROBABILITY_COLOR=   95,  100, 0X8B0000, #dark red  

 

#  C. LAND COVER COLORTABLE  

#  Land cover input images should be in grayscale GIF image format.  

#  The 'pix' value indicates a land class grayscale pixel value in  

#  the image. If desired, the model will create color classified  

#  land cover output. The output colortable is designated by the  

#  'hex/rgb' values.  

#    pix: input land class pixel value  

#    name: text string indicating land class  

#    flag: special case land classes  

#          URB - urban class (area is included in urban input data  

#                and will not be transitioned by deltatron)  

#          UNC - unclass (NODATA areas in image)  
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#          EXC - excluded (land class will be ignored by deltatron)  

#    hex/rgb: hexidecimal or rgb (red, green, blue) output colors  

#  

#              pix, name,     flag,   hex/rgb, #comment  

LANDUSE_CLASS=  0,  Unclass , UNC   , 0X000000  

LANDUSE_CLASS=  1,  Urban   , URB   , 0X8b2323 #dark red 

LANDUSE_CLASS=  2,  Agric   ,       , 0Xffec8b #pale yellow  

LANDUSE_CLASS=  3,  Range   ,       , 0Xee9a49 #tan  

LANDUSE_CLASS=  4,  Forest  ,       , 0X006400  

LANDUSE_CLASS=  5,  Water   , EXC   , 0X104e8b  

LANDUSE_CLASS=  6,  Wetland ,       , 0X483d8b  

LANDUSE_CLASS=  7,  Barren  ,       , 0Xeec591  

 

#  D. GROWTH TYPE IMAGE OUTPUT CONTROL AND COLORTABLE  

#  

#  From here you can control the output of the Z grid  

#  (urban growth) just after it is returned from the spr_spread()  

#  function. In this way it is possible to see the different types  

#  of growth that have occured for a particular growth cycle.  

#  

#  VIEW_GROWTH_TYPES(YES/NO) provides an on/off  

#  toggle to control whether the images are generated.  

#  

#  GROWTH_TYPE_PRINT_WINDOW provides a print window  

#  to control the amount of images created.  

#  format:  <start_run>,<end_run>,<start_monte_carlo>,  

#           <end_monte_carlo>,<start_year>,<end_year>  

#  for example:  

#  GROWTH_TYPE_PRINT_WINDOW=run1,run2,mc1,mc2,year1,year2  

#  so images are only created when  

#  run1<= current run <=run2 AND  

#  mc1 <= current monte carlo <= mc2 AND  

#  year1 <= currrent year <= year2  

#  

#  0 == first  

VIEW_GROWTH_TYPES(YES/NO)=NO  

GROWTH_TYPE_PRINT_WINDOW=0,0,0,0,1995,2020  

PHASE0G_GROWTH_COLOR=  0xff0000 # seed urban area  

PHASE1G_GROWTH_COLOR=  0X00ff00 # diffusion growth  

PHASE2G_GROWTH_COLOR=  0X0000ff # NOT USED  

PHASE3G_GROWTH_COLOR=  0Xffff00 # breed growth  
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PHASE4G_GROWTH_COLOR=  0Xffffff # spread growth  

PHASE5G_GROWTH_COLOR=  0X00ffff # road influenced growth  

 

#************************************************************  

#  

#  E. DELTATRON AGING SECTION  

#  

#  From here you can control the output of the deltatron grid  

#  just before they are aged  

#  

#  VIEW_DELTATRON_AGING(YES/NO) provides an on/off  

#  toggle to control whether the images are generated.  

#  

#  DELTATRON_PRINT_WINDOW provides a print window  

#  to control the amount of images created.  

#  format:  <start_run>,<end_run>,<start_monte_carlo>,  

#           <end_monte_carlo>,<start_year>,<end_year>  

#  for example:  

#  DELTATRON_PRINT_WINDOW=run1,run2,mc1,mc2,year1,year2  

#  so images are only created when  

#  run1<= current run <=run2 AND  

#  mc1 <= current monte carlo <= mc2 AND  

#  year1 <= currrent year <= year2  

#  

#  0 == first  

VIEW_DELTATRON_AGING(YES/NO)=NO  

DELTATRON_PRINT_WINDOW=0,0,0,0,1930,2020  

DELTATRON_COLOR=  0x000000 # index 0 No or dead deltatron  

DELTATRON_COLOR=  0X00FF00 # index 1 age = 1 year  

DELTATRON_COLOR=  0X00D200 # index 2 age = 2 year  

DELTATRON_COLOR=  0X00AA00 # index 3 age = 3 year  

DELTATRON_COLOR=  0X008200 # index 4 age = 4 year  

DELTATRON_COLOR=  0X005A00 # index 5 age = 5 year  

 

# XIII. SELF-MODIFICATION PARAMETERS  

#       SLEUTH is a self-modifying cellular automata. For more   

#       information see our PROJECT GIGALOPOLIS web site 

#       (www.ncgia.ucsb.edu/project/gig/About/abGrowth.htm)  

#       and publications (and/or grep 'self modification' in code).  

ROAD_GRAV_SENSITIVITY=0.01  

SLOPE_SENSITIVITY=0.1  
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CRITICAL_LOW=0.97  

CRITICAL_HIGH=1.3  

#CRITICAL_LOW=0.0  

#CRITICAL_HIGH=10000000000000.0  

CRITICAL_SLOPE=21.0  

BOOM=1.01  

BUST=0.9  

   

 

3. SLEUTH’s scenario file (final calibration) 

# FILE: 'scenario file' for SLEUTH land cover transition model  

#       (UGM  v3.0)  

#       Comments start with #  

#  

#   I. Path Name Variables  

#  II. Running Status (Echo)  

# III. Output ASCII Files  

#  IV. Log File Preferences  

#   V. Working Grids  

#  VI. Random Number Seed  

# VII. Monte Carlo Iteration  

#VIII. Coefficients  

#      A. Coefficients and Growth Types  

#      B. Modes and Coefficient Settings  

#  IX. Prediction Date Range  

#   X. Input Images  

#  XI. Output Images  

# XII. Colortable Settings  

#      A. Date_Color  

#      B. Non-Landuse Colortable  

#      C. Land Cover Colortable  

#      D. Growth Type Images  

#      E. Deltatron Images 

#XIII. Self Modification Parameters  

 

# I.PATH NAME VARIABLES  

#   INPUT_DIR: relative or absolute path where input image files and  

#              (if modeling land cover) 'landuse.classes' file are  

#              located.  

#   OUTPUT_DIR: relative or absolute path where all output files will  
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#               be located.  

#   WHIRLGIF_BINARY: relative path to 'whirlgif' gif animation program.  

#                    These must be compiled before execution.  

INPUT_DIR=../Input/final_data30/  

OUTPUT_DIR=../Output/data30_cal/ 

WHIRLGIF_BINARY=../Whirlgif/whirlgif  

 

# II. RUNNING STATUS (ECHO)  

#  Status of model run, monte carlo iteration, and year will be  

#  printed to the screen during model execution.  

ECHO(YES/NO)=yes  

 

# III. Output Files  

# INDICATE TYPES OF ASCII DATA FILES TO BE WRITTEN TO 

OUTPUT_DIRECTORY.  

#  

#   COEFF_FILE: contains coefficient values for every run, monte carlo  

#               iteration and year.  

#   AVG_FILE: contains measured values of simulated data averaged over  

#             monte carlo iterations for every run and control year.  

#   STD_DEV_FILE: contains standard deviation of averaged values  

#                 in the AVG_FILE.  

#   MEMORY_MAP: logs memory map to file 'memory.log'  

#   LOGGING: will create a 'LOG_#' file where # signifies the processor  

#            number that created the file if running code in parallel.  

#            Otherwise, # will be 0. Contents of the LOG file may be  

#            described below.  

WRITE_COEFF_FILE(YES/NO)=no 

WRITE_AVG_FILE(YES/NO)=no 

WRITE_STD_DEV_FILE(YES/NO)=no  

WRITE_MEMORY_MAP(YES/NO)=no 

LOGGING(YES/NO)=YES 

 

# IV. Log File Preferences  

# INDICATE CONTENT OF LOG_# FILE (IF LOGGING == ON).  

#   LANDCLASS_SUMMARY: (if landuse is being modeled) summary of input  

#                      from 'landuse.classes' file  

#   SLOPE_WEIGHTS(YES/NO): annual slope weight values as effected  

#                          by slope_coeff  

#   READS(YES/NO)= notes if a file is read in  

#   WRITES(YES/NO)= notes if a file is written  
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#   COLORTABLES(YES/NO)= rgb lookup tables for all colortables generated  

#   PROCESSING_STATUS(0:off/1:low verbosity/2:high verbosity)=  

#   TRANSITION_MATRIX(YES/NO)= pixel count and annual probability of  

#                              land class transitions  

#   URBANIZATION_ATTEMPTS(YES/NO)= number of times an attempt to 

urbanize  

#                                  a pixel occurred  

#   INITIAL_COEFFICIENTS(YES/NO)= initial coefficient values for  

#                                 each monte carlo  

#   BASE_STATISTICS(YES/NO)= measurements of urban control year data  

#   DEBUG(YES/NO)= data dump of igrid object and grid pointers  

#   TIMINGS(0:off/1:low verbosity/2:high verbosity)= time spent within  

#     each module. If running in parallel, LOG_0 will contain timing for  

#     complete job.  

LOG_LANDCLASS_SUMMARY(YES/NO)=yes  

LOG_SLOPE_WEIGHTS(YES/NO)=no  

LOG_READS(YES/NO)=no 

LOG_WRITES(YES/NO)=no 

LOG_COLORTABLES(YES/NO)=no 

LOG_PROCESSING_STATUS(0:off/1:low verbosity/2:high verbosity)=1  

LOG_TRANSITION_MATRIX(YES/NO)=no 

LOG_URBANIZATION_ATTEMPTS(YES/NO)=no  

LOG_INITIAL_COEFFICIENTS(YES/NO)=no  

LOG_BASE_STATISTICS(YES/NO)=yes  

LOG_DEBUG(YES/NO)= no 

LOG_TIMINGS(0:off/1:low verbosity/2:high verbosity)=1 

 

# V. WORKING GRIDS  

# The number of working grids needed from memory during model execution is 

 

# designated up front. This number may change depending upon modes. If  

# NUM_WORKING_GRIDS needs to be increased, the execution will be exited 

# and an error message will be written to the screen and to 'ERROR_LOG' 

# in the OUTPUT_DIRECTORY. If the number may be decreased an optimal   

# number will be written to the end of the LOG_0 file.  

NUM_WORKING_GRIDS=4 

 

# VI. RANDOM NUMBER SEED  

# This number initializes the random number generator. This seed will be 

# used to initialize each model run.  

RANDOM_SEED=1 
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# VII. MONTE CARLO ITERATIONS  

# Each model run may be completed in a monte carlo fashion.  

#  For CALIBRATION or TEST mode measurements of simulated data will be 

#  taken for years of known data, and averaged over the number of monte   

#  carlo iterations. These averages are written to the AVG_FILE, and   

#  the associated standard diviation is written to the STD_DEV_FILE.   

#  The averaged values are compared to the known data, and a Pearson 

#  correlation coefficient measure is calculated and written to the   

#  control_stats.log file. The input per run may be associated across  

#  files using the 'index' number in the files' first column.  

#  

MONTE_CARLO_ITERATIONS=10 

 

# VIII. COEFFICIENTS  

# The coefficients effect how the growth rules are applied to the data. 

# Setting requirements: 

#    *_START values >= *_STOP values 

#    *_STEP values > 0 

#   if no coefficient increment is desired: 

#    *_START == *_STOP 

#    *_STEP == 1  

# For additional information about how these values affect simulated 

# land cover change see our publications and PROJECT GIGALOPOLIS 

#  site: (www.ncgia.ucsb.edu/project/gig/About/abGrowth.htm).  

#  A. COEFFICIENTS AND GROWTH TYPES  

#     DIFFUSION: affects SPONTANEOUS GROWTH and search distance along the  

#                road network as part of ROAD INFLUENCED GROWTH.  

#     BREED: NEW SPREADING CENTER probability and affects number of ROAD  

#            INFLUENCED GROWTH attempts.  

#     SPREAD: the probabilty of ORGANIC GROWTH from established urban 

#             pixels occuring.               

#     SLOPE_RESISTANCE: affects the influence of slope to urbanization. As 

#                       value increases, the ability to urbanize 

#                       ever steepening slopes decreases.  

#     ROAD_GRAVITY: affects the outward distance from a selected pixel for 

#                   which a road pixel will be searched for as part of 

#                   ROAD INFLUENCED GROWTH.  

# 

#  B. MODES AND COEFFICIENT SETTINGS  

#     TEST: TEST mode will perform a single run through the historical  
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#           data using the CALIBRATION_*_START values to initialize  

#           growth, complete the MONTE_CARLO_ITERATIONS, and then conclude 

#           execution. GIF images of the simulated urban growth will be  

#           written to the OUTPUT_DIRECTORY.  

#     CALIBRATE: CALIBRATE will perform monte carlo runs through the  

#                historical data using every combination of the 

#                coefficient values indicated. The CALIBRATION_*_START   

#                coefficient values will initialize the first run. A   

#                coefficient will then be increased by its *_STEP value,   

#                and another run performed. This will be repeated for all 

#                possible permutations of given ranges and increments.  

#     PREDICTION: PREDICTION will perform a single run, in monte carlo  

#                 fashion, using the PREDICTION_*_BEST_FIT values  

#                 for initialization. 

 

CALIBRATION_DIFFUSION_START= 1 

CALIBRATION_DIFFUSION_STEP=  1 

CALIBRATION_DIFFUSION_STOP=  5 

 

CALIBRATION_BREED_START=     43 

CALIBRATION_BREED_STEP=      1  

CALIBRATION_BREED_STOP=      47  

 

CALIBRATION_SPREAD_START=    1 

CALIBRATION_SPREAD_STEP=     1  

CALIBRATION_SPREAD_STOP=     5  

 

CALIBRATION_SLOPE_START=     0  

CALIBRATION_SLOPE_STEP=      25  

CALIBRATION_SLOPE_STOP=      100  

 

CALIBRATION_ROAD_START=      0  

CALIBRATION_ROAD_STEP=       6  

CALIBRATION_ROAD_STOP=       30 

 

PREDICTION_DIFFUSION_BEST_FIT=  20  

PREDICTION_BREED_BEST_FIT=  20  

PREDICTION_SPREAD_BEST_FIT=  20  

PREDICTION_SLOPE_BEST_FIT=  20  

PREDICTION_ROAD_BEST_FIT=  20  
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# IX. PREDICTION DATE RANGE  

# The urban and road images used to initialize growth during  

# prediction are those with dates equal to, or greater than,  

# the PREDICTION_START_DATE. If the PREDICTION_START_DATE is greater  

# than any of the urban dates, the last urban file on the list will be  

# used. Similarly, if the PREDICTION_START_DATE is greater  

# than any of the road dates, the last road file on the list will be  

# used. The prediction run will terminate at PREDICTION_STOP_DATE.  

#  

PREDICTION_START_DATE=1990  

PREDICTION_STOP_DATE=2017  

 

# X. INPUT IMAGES  

# The model expects grayscale, GIF image files with file name  

# format as described below. For more information see our  

# PROJECT GIGALOPOLIS web site:  

# (www.ncgia.ucsb.edu/project/gig/About/dtInput.htm).  

#  

# IF LAND COVER IS NOT BEING MODELED: Remove or comment out  

# the LANDUSE_DATA data input flags below.  

#  

#    <  >  = user selected fields  

#   <  > = optional fields  

#  

# Urban data GIFs  

#  format:  <location>.urban.<date>.<user info>.gif  

#  

#  

URBAN_DATA= data30.urban.1990.gif  

URBAN_DATA= data30.urban.2000.gif  

URBAN_DATA= data30.urban.2010.gif  

URBAN_DATA= data30.urban.2017.gif  

#  

# Road data GIFs  

#  format:  <location>.roads.<date>.<user info>.gif  

#  

ROAD_DATA= data30.roads.1990.gif  

ROAD_DATA= data30.roads.2017.gif  

#  

# Landuse data GIFs  

#  format:  <location>.landuse.<date>.<user info>.gif  
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#  

#LANDUSE_DATA= data30.landuse.1990.gif  

#LANDUSE_DATA= data30.landuse.2017.gif  

#  

# Excluded data GIF  

#  format:  <location>.excluded.<user info>.gif  

#  

EXCLUDED_DATA= data30.excluded.gif  

#  

# Slope data GIF  

#  format:  <location>.slope.<user info>.gif  

#  

SLOPE_DATA= data30.slope.gif  

#  

# Background data GIF  

#  format:   <location>.hillshade.<user info>.gif  

#  

BACKGROUND_DATA= data30.hillshade.gif  

 

# XI. OUTPUT IMAGES  

#   WRITE_COLOR_KEY_IMAGES: Creates image maps of each colortable.  

#                           File name format: 'key_type_COLORMAP'  

#                           where type represents the colortable.  

#   ECHO_IMAGE_FILES: Creates GIF of each input file used in that job.  

#                     File names format: 'echo_of_input_filename'  

#                     where input_filename represents the input name.  

#   ANIMATION: if whirlgif has been compiled, and the WHIRLGIF_BINARY  

#              path has been defined, animated gifs begining with the  

#              file name 'animated' will be created in PREDICT mode.  

WRITE_COLOR_KEY_IMAGES(YES/NO)=no  

ECHO_IMAGE_FILES(YES/NO)=no 

ANIMATION(YES/NO)= no  

 

# XII. COLORTABLE SETTINGS  

#  A. DATE COLOR SETTING  

#     The date will automatically be placed in the lower left corner  

#     of output images. DATE_COLOR may be designated in with red, green,  

#     and blue values (format: <red_value, green_value, blue_value> )  

#     or with hexadecimal begining with '0X' (format: <0X######> ).  

#default DATE_COLOR= 0XFFFFFF white  

DATE_COLOR=     0XFFFFFF #white  
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#  B. URBAN (NON-LANDUSE) COLORTABLE SETTINGS  

#     1. URBAN MODE OUTPUTS  

#         TEST mode: Annual images of simulated urban growth will be  

#                    created using SEED_COLOR to indicate urbanized areas. 

 

#         CALIBRATE mode: Images will not be created.  

#         PREDICT mode: Annual probability images of simulated urban  

#                       growth will be created using the PROBABILITY  

#                       _COLORTABLE. The initializing urban data will be  

#                       indicated by SEED_COLOR.  

#  

#     2. COLORTABLE SETTINGS  

#          SEED_COLOR: initializing and extrapolated historic urban extent 

 

#          WATER_COLOR: BACKGROUND_DATA is used as a backdrop for 

  

#                       simulated urban growth. If pixels in this file   

#                       contain the value zero (0), they will be filled  

#                       with the color value in WATER_COLOR. In this way,  

#                       major water bodies in a study area may be included  

#                       in output images.  

#SEED_COLOR= 0XFFFF00 #yellow  

SEED_COLOR=  249, 209, 110 #pale yellow  

#WATER_COLOR=  0X0000FF # blue  

WATER_COLOR=  20, 52, 214 # royal blue 

 

#     3. PROBABILITY COLORTABLE FOR URBAN GROWTH  

#        For PREDICTION, annual probability images of urban growth  

#        will be created using the monte carlo iterations. In these  

#        images, the higher the value the more likely urbanizaion is.  

#        In order to interpret these 'continuous' values more easily  

#        they may be color classified by range.  

#  

#        If 'hex' is not present then the range is transparent.  

#        The transparent range must be the first on the list.  

#        The max number of entries is 100.  

#          PROBABILITY_COLOR: a color value in hexadecimal that indicates 

#                             a probability range.  

#            low/upper: indicate the boundaries of the range.  

#  
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#                  low,  upper,   hex,  (Optional Name)  

PROBABILITY_COLOR=   0,    50,         , #transparent  

PROBABILITY_COLOR=   50,   60, 0X005A00, #0, 90,0 dark green 

PROBABILITY_COLOR=   60,   70, 0X008200, #0,130,0  

PROBABILITY_COLOR=   70,   80, 0X00AA00, #0,170,0  

PROBABILITY_COLOR=   80,   90, 0X00D200, #0,210,0  

PROBABILITY_COLOR=   90,   95, 0X00FF00, #0,255,0 light green 

PROBABILITY_COLOR=   95,  100, 0X8B0000, #dark red  

 

#  C. LAND COVER COLORTABLE  

#  Land cover input images should be in grayscale GIF image format.  

#  The 'pix' value indicates a land class grayscale pixel value in  

#  the image. If desired, the model will create color classified  

#  land cover output. The output colortable is designated by the  

#  'hex/rgb' values.  

#    pix: input land class pixel value  

#    name: text string indicating land class  

#    flag: special case land classes  

#          URB - urban class (area is included in urban input data  

#                and will not be transitioned by deltatron)  

#          UNC - unclass (NODATA areas in image)  

#          EXC - excluded (land class will be ignored by deltatron)  

#    hex/rgb: hexidecimal or rgb (red, green, blue) output colors  

#  

#              pix, name,     flag,   hex/rgb, #comment  

LANDUSE_CLASS=  0,  Unclass , UNC   , 0X000000  

LANDUSE_CLASS=  1,  Urban   , URB   , 0X8b2323 #dark red 

LANDUSE_CLASS=  2,  Agric   ,       , 0Xffec8b #pale yellow  

LANDUSE_CLASS=  3,  Range   ,       , 0Xee9a49 #tan  

LANDUSE_CLASS=  4,  Forest  ,       , 0X006400  

LANDUSE_CLASS=  5,  Water   , EXC   , 0X104e8b  

LANDUSE_CLASS=  6,  Wetland ,       , 0X483d8b  

LANDUSE_CLASS=  7,  Barren  ,       , 0Xeec591  

 

#  D. GROWTH TYPE IMAGE OUTPUT CONTROL AND COLORTABLE  

#  

#  From here you can control the output of the Z grid  

#  (urban growth) just after it is returned from the spr_spread()  

#  function. In this way it is possible to see the different types  

#  of growth that have occured for a particular growth cycle.  

#  
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#  VIEW_GROWTH_TYPES(YES/NO) provides an on/off  

#  toggle to control whether the images are generated.  

#  

#  GROWTH_TYPE_PRINT_WINDOW provides a print window  

#  to control the amount of images created.  

#  format:  <start_run>,<end_run>,<start_monte_carlo>,  

#           <end_monte_carlo>,<start_year>,<end_year>  

#  for example:  

#  GROWTH_TYPE_PRINT_WINDOW=run1,run2,mc1,mc2,year1,year2  

#  so images are only created when  

#  run1<= current run <=run2 AND  

#  mc1 <= current monte carlo <= mc2 AND  

#  year1 <= currrent year <= year2  

#  

#  0 == first  

VIEW_GROWTH_TYPES(YES/NO)=NO  

GROWTH_TYPE_PRINT_WINDOW=0,0,0,0,1995,2020  

PHASE0G_GROWTH_COLOR=  0xff0000 # seed urban area  

PHASE1G_GROWTH_COLOR=  0X00ff00 # diffusion growth  

PHASE2G_GROWTH_COLOR=  0X0000ff # NOT USED  

PHASE3G_GROWTH_COLOR=  0Xffff00 # breed growth  

PHASE4G_GROWTH_COLOR=  0Xffffff # spread growth  

PHASE5G_GROWTH_COLOR=  0X00ffff # road influenced growth  

 

#************************************************************  

#  

#  E. DELTATRON AGING SECTION  

#  

#  From here you can control the output of the deltatron grid  

#  just before they are aged  

#  

#  VIEW_DELTATRON_AGING(YES/NO) provides an on/off  

#  toggle to control whether the images are generated.  

#  

#  DELTATRON_PRINT_WINDOW provides a print window  

#  to control the amount of images created.  

#  format:  <start_run>,<end_run>,<start_monte_carlo>,  

#           <end_monte_carlo>,<start_year>,<end_year>  

#  for example:  

#  DELTATRON_PRINT_WINDOW=run1,run2,mc1,mc2,year1,year2  

#  so images are only created when  
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#  run1<= current run <=run2 AND  

#  mc1 <= current monte carlo <= mc2 AND  

#  year1 <= currrent year <= year2  

#  

#  0 == first  

VIEW_DELTATRON_AGING(YES/NO)=NO  

DELTATRON_PRINT_WINDOW=0,0,0,0,1930,2020  

DELTATRON_COLOR=  0x000000 # index 0 No or dead deltatron  

DELTATRON_COLOR=  0X00FF00 # index 1 age = 1 year  

DELTATRON_COLOR=  0X00D200 # index 2 age = 2 year  

DELTATRON_COLOR=  0X00AA00 # index 3 age = 3 year  

DELTATRON_COLOR=  0X008200 # index 4 age = 4 year  

DELTATRON_COLOR=  0X005A00 # index 5 age = 5 year  

 

# XIII. SELF-MODIFICATION PARAMETERS  

#       SLEUTH is a self-modifying cellular automata. For more   

#       information see our PROJECT GIGALOPOLIS web site 

#       (www.ncgia.ucsb.edu/project/gig/About/abGrowth.htm)  

#       and publications (and/or grep 'self modification' in code).  

ROAD_GRAV_SENSITIVITY=0.01  

SLOPE_SENSITIVITY=0.1  

CRITICAL_LOW=0.97  

CRITICAL_HIGH=1.3  

#CRITICAL_LOW=0.0  

#CRITICAL_HIGH=10000000000000.0  

CRITICAL_SLOPE=21.0  

BOOM=1.01  

BUST=0.9  
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APPENDIX B: SLEUTH installation and Implementation 

 

SLEUTH is a Linux program and will not run as a program in Windows, so we need 

Cygwin, a Linux emulator, to be able to run SLEUTH model. 

 

Step 1: Installation of Cygwin 

 Go to the link https://cygwin.com/install.html to download the required 

Cygwin package versions and follow the installation notes. 

 Some useful Cygwin commands to run the SLEUTH model 

o cd = Change directory (cd d:\ SLEUTH3.0beta_p01_linux) 

o cd.. = To move up one directory. 

o cd gd = Access to the growth model. 

o make clean = To clean the specific file directories. 

o make= Prepare the specific directory for model run. 

o cd Scenarios = This command will prompt to the Scenario files. 

o ls = To list all the scenario files. 

o .. /grow.exe (Test/Calibrate/Predict) = To run the model in different 

modes. (Example: ../grow.exe test scenario.demo30_test) 

 

Step 2: Installation of SLEUTH model 

 Download the SLEUTH files form  

http://www.ncgia.ucsb.edu/projects/gig/Dnload/download.htm 

 You will find different types of SLEUTH model versions. Select the 

(SLEUTH3.0beta_p01 LINUX released 6/2005) libraries for Linux or 

Cygwin. 

 Select the directory (C: / or D :/) to save the SLEUTH file package.  

(Example: D:\SLEUTH3.0beta_p01_linux) 

 SLEUTH3.0beta_p01_linux\ 

o Input\ This is where the input data is located. 

o Output\ This is where output from the SLEUTH calibration or predictions 

is save. 

https://cygwin.com/install.html
http://www.ncgia.ucsb.edu/projects/gig/Dnload/download.htm
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o Scenarios\ This is where SLEUTH stores the different scenario files. 

o GD\ This is a folder for a program called GD that handles GIF image files 

o Whirlgif\ This is a folder for a program called Whirlgif that handles GIF 

image files 

o Other files with extension .o, .h, .c are the SLEUTH’s program files 

required to run the model. 

 

Step 3: Edit scenario files 

Make sure that you are in the scenario file folder. Open the scenario file using 

the text editor (Notepad ++) that can save the output in UNIX or Linux format. 

Do not use word, Notepad, or WordPad to edit the scenario file. The scenario 

file is a simple text file where you can set the parameters to run the model. 

Though the structure may look complicated, we need to make only couple of 

changes to the scenario file. Need to check the following sections in the 

scenario file: 

 Section I: Path Name Variables 

Make sure to specify the correct input and output directory names for different 

inputs and output files. (Example: If input file name is Test & Output file 

name is Test_output), we can set as; 

INPUT_DIR=../Input/Test/  

OUTPUT_DIR=../Output/Test_output/ 

 Section VII: Monte Carlo Iteration 

Each model run may be completed in a Monte Carlo iteration as per the 

calibration mode. We need to set this iteration for every model calibration and 

in prediction. Ideally, higher value of 100 Monte Carlo iteration is set for the 

model prediction. (See: http://www.ncgia.ucsb.edu/projects/gig/). 

 Section IX: Prediction date range 

Need to set the prediction start date and stop date as our prediction range 

dates. (Example as shown below) 

PREDICTION_START_DATE=1990  

PREDICTION_STOP_DATE=2017 

 

http://www.ncgia.ucsb.edu/projects/gig/
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 Section X: Input images 

In this section, we have to input the correct naming format of the input data 

files in (gif) format which was created during data preparation. (Example as 

shown below); 

URBAN_DATA= demo30.urban.1990.gif 

ROAD_DATA= demo.roads.1990.gif 

 

 Section XIII: Self-modification parameters 

Here we can set the critical slope value. By default the SLEUTH model take 

21 as a critical slope value.  

 

Example datasets (30m) – 875 x 611 (rows x columns) 

  

 

 

 

 

 

 

 

 

     

 

 

 

 

 

 

 

     

 

 

 

demo30.urban.1990.gif demo30.urban.2000.gif 

demo30.excluded.gif demo30.hillshade.gif 
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demo30.urban.2010.gif demo30.urban.1990.gif 

demo30.slope.gif 

demo30.roads.1990.gif demo30.roads.2017.gif 
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