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Linear oscillation systems. for example, forced mechanical vibration, series RLC
circuit and parallel RLC circuit can be solved by using simplest initial conditions or
employing of Green’s function method of which knowledge of initial condition of the
particular solution is needed. Here we propose an alternative method from quantum
mechanies to solve this problem. By using Born approximation to the particular
solution at initial state, we obtain infinite Born series of the general solution. The
solution can be expressed as a series of one-dimensional Feynman diagrams. We

perform this perturbative analysis in light damping-forced oscillation case.
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Linear oscillation systems. for example. forced mechanical vibration. series RLC
circuit and parallel RLC circuit can be solved by using simplest initial conditions or
employing of Green's function method of which knowledge of initial condition of the
particular solution is needed. Here we propose an alternative method from quantum
mechanics to solve this problem. By using Born approximation to the particular
solution at initial state. we obtain infinite Born series of the general solution. The
solution can be expressed as a series of one-dimensional Feynman diagrams. We

perform this perturbative analysis in light damping-forced oscillation case.
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Linear oscillation systems. for example. forced mechanical vibration, series RLC

circuit and parallel RLC circuit can be solved by using simplest initial conditions or

employing of Green's function method of which knowledge of initial condition of the

particular solution is needed. Here we propose an alternative method from quantum

mechanics to solve this problem. By using Born approximation to the particular

solution at initial state, we obtain infinite Born series of the general solution. The

solution can be expressed as a series of one-dimensional Feynman diagrams. We

perform this perturbative analysis in light damping-forced oscillation case.
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Introduction

Dynamical oscillation appears in Jarge class of natural phenomena. Typical examples
are such as forced mechanical vibration in spring with damping and RLC circuits.
These are modeled with linear ordinary differential equations. Linear oscillation SYS-
tems. for example. forced mechanical vibration. series RLC circuit and parallel RLC
circuit are solved to obtain solution using simplest initial conditions. i.c. #(0) = 0
and 5(0) = 0 where & = dr/dt so that the problem is simplified and then obtain
general solution as an addition of complementary and particular solutions. Viewing
the differential operators of the equation as linear operators. principle of superposition
can be used. The equations therefore are solvable with Green's function method (see.
for example Barton [1]). Solving for particular solution using Green's function already
includes knowledge of initial condition within the particular solution. In dynamical
oscillations. initial state in RLC circuit can be controlled to some values so that one

can solve for the particular solution however it is not always possible to know form



of particular solution in which we need to determine the initial state.

In non-relativistic quantum mechanics, scattering problem described by time-independent
Schrodinger equation can give an alternative view of solving this problem. The method
in quantum mechanics s to do Born approximation and solve for particular solution
perturbatively. With this approximation. we do not need to exactly know the form
of particular solution before hand, but instead we can use the complementary solu-
tion. This work offers alternative way of looking at oscillation problems such as
forced-mechanical vibration and RLC circuits with the method in quantum mechanics.
We start with discussion of basics of linear operator. Then we discuss linear time-
Invariance system. its examples and Green’s function of the system. Afterwards., we
show how time-independent Schrédinger Equation can be written in form of Helmholtz
equation and its solution obtained from Green's function method. We later show how
to apply Born approximation in scattering problem in elementary quantum mechanics.

We then apply the same procedure 1o dynamical oscillation problem.



Linear system

Theory of physical systems are widely modeled with lincar system. In dynamics.

equation of motion can be viewed as a linear operator £ acting on a function y(t) as
Lyf(t) =%F(t) . (2.1

where ¢ is an independent variable. This equation is indeed an equation of motion in
various fields. Having linear property of the operator, the principle of superposition
automatically comes along with the operator. i.e. for two independent solutions. ey (f)

and caya(t)

Lleyi(t) + coyat)] = Lery ()] + £ [capa(t)) = arFi(t) + 2 Falt).  (2.2)

where ¢, ¢z are constant. We can extend this to N number of solutions which can be

infinite,

N N
4 {Z f-'»r"."Ji(t):l = > aFi(t). 2.3)
2= i=1



As in (2.1) we can see that any solution y({) and any inhomogeneous part F({) of the
operator Z: can hence be {':?(])['CSS as
N N
y(t) = > eyilt), 20 = ml it (2.4)

] =l

We will consider examples of linear system in next sections.



Dynamics: the linear

time-invariance system

A linear system that is time-invariance so-called linear time-invariance system (LTI)

has a form of

L dn dufl d
L2 (I,,W-;— (1-,,_;W+...+ﬂ]a+an. (3[)

Here we consider second-order LTI system, in form of

d? ap d ap F(t)
dt? as dt A, as y(t) as 3.2

LIy) =

We set in this system. «; Jas = 23, ap/as = wy.and F(t) = F(t)/as. Examples of
second-order LTI system are such as forced-damped harmonic mechanical vibration,
series and parallel RLC circuits (See Kelly [2] and Cha and Molinder [3]). In case of
forced-damped harmonic mechanical vibration. y(t) is displacement z(t), 28 = b/m

2 . o . . - . . - -
and wj = s/m where mn is mass of the oscillator. b is a resistance which is in unit



of kg-sec™! and s is Hooke's spring constant. For a series RLC circuit. y(t) would

be quantity of either electrical charge ¢(t) or electrical current i(¢). 2

3=R/L and
wy = 1/(LC). Fora parallel RLC circuit, y(f) is voltage ©({). 23 = 1/(RC) and
wi = 1/(LC). 3 is Neper frequency. L is inductance, C is capacitance and 77 is

electrical resistance.

Dynamical Parameters Mechanical Vibration Series RLC circuit Parallel RLC circuit
displacement displacement. 4(1#) charge. 4(1) or current. i(1) voltage. v(1)
inertia m L C
resistance h R /R
elasticity k LAe /L
w ki 1/(LC) 1/(LC)
23 b/m /L 1/(RC)

@1519% 3.1: Dynamical parameters in second-order LTI systems for mechanical vibra-

tion. series RLC circuit and parallel RLC circuit.

Fig. 3.1 shows schematic diagram of these second-order LTI systems. Indeed we
can conclude an analogy between three different linear systems: mechanical vibration.

series and parallel RLC circuits as in Table 3.1. The equation (3.2) is hence

d< 9 2

5 reopESEET = F(t), (3.3)
(8

where the inertia (e.g. m) is absorbed into the function F(t). This differential equation

has general solution.

y(t) = welt) + yp(t). (3.4)
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jllﬁ 3.1: Schematic diagrams of (a) series RLC and (b) parallel RLC circuits

The complementary solution y. is a solution of homogeneous system (F({) = 0)
and the particular solution is of inhomogeneous system. ie. non-zero F(t). As is

well-known, when F(f) is harmonic. i.e.
F(t) = Fycos(wt —o) (3.5)

the particular solution takes the form

Fy

Yplt) = A —=X¢
" \/(w5 — w2 4 4u2B2

os(wl — ¢ — d). (3.6)

with § = arctan [2wB/(wg —w?)]. Derivation is referred to standard textbooks. for
instance. Main [4]. The x,(t) part represents steady-state solution which happens after
some relaxation time 7. However, for other form of F (), in order to find yp(t).

technique of Green’s function is usuvally employed. This arises from the fact that there

exists a Green's function satisfying this system with external force in form of Dirac's



delta function.

g 83 L 2l e = s (3.7
dt2 i
This has solution,
N
v = —eT¥=)sin (gt - 1)) || 1210, (3.8)
W

g = B2 The factor b can be replaced by R in the series RLC eircuit
system and 1/R of the parallel RLC circuit. The fact that response solution of linear
oscillator to driving foree in form of delta function can be found as equation (3.8),
we can view arbitrary forcing function. ie. the inhomogeneous part, as a series of
impulses. This holds as long as the system is linear. i.e. the superposition prineiple is

still valid. The solution hence can be expressed as

t
) = [ Gt Figan, (5.9
=00
where Green's function for this system is

1
G(L—to):Efﬁ““o)sin(wd(/_—rn)) for 47> &\ (3.10)

otherwise zero see results in standard classical dynamics textbooks e.g. Marion and
Thornton [5] and Kibble and Berkshire [6]. The Green's function found here can be
applied to any second-order LTI systems in form of equation (3.3). We stress that this
can be applied to the system of both series and parallel RLC circuits as un mechanical

vibration system.



Time-independent Schrodinger

Equation: Helmholtz equation

In non-relativistic quantum mechanics, the equation of motion of particle for time-
independent situation is the time-independent Schrdinger equation. The wave function
y is only a function of spatial coordinate r, that is 12 = :(r). The Schrodinger equation

reads
—h2

2m

V() £ V(e (r) = Ey(r). (4.1)
This can be arranged to obtain
S om.
(V2 + k) g(r) = H—TV(r)wr(r) = Q(r), (4.2)

where here k% = 2mE/h? and m. is mass of the particle. The Schrédinger equation is

now expressed in form of the Helmholtz equation (4.2) (see, for example, in Barton



[T]). If there is a response solution. G(r) to delta function o%(r).
(V2 +£) G(r) = 8%(r). (4.3)

Then for an arbitrary inhomogeneous part-the *‘source” (2(r). one can find particular

solution wn(1) as in Grifliths [7] and Schiff 18].

wp(r) = / G(r — ro)Q(ro)d’ry. (4.4)

X
We can check the validity by substituting this solution v (r) into equation (4.2) to

obtain,

(V25 D) gplr) = / [(V® +#%) G(r - r0)] Q(xo)d®ro,

x

o / 1' = 1‘() Q(I‘:’))dgl‘n,

.
= [Q(%). (4.5)
Similar procedure can be performed with equations (3.3), (3.7) and (3.9) to check
validity of particular solution in the dynamical system in the last section. For the time-
independent Schrédinger Equation in form of Helmholtz equation. Green's function

has been known as.

Gr) = - " (4.6)

When inhomogenous part is not presented. i.e. V(r) = 0. the Green's function for this
system is Go(r) and then

(V2 + &%) Go(r) = 0. (4.7)
Adding equations (4.6) and (4.7) together, hence
(V2 + k) [G(r) + Gy (r)] = 63(x). (4.8)

10



Therefore one can always find complementary solution. ¥e{r) and hence general solu-

ton.
w(r) = e(r) + UplTs (4.9)

of the system. Using the equations (4.2). (4.4) and (4.6), the general solution (4.9) is

therefore

) r (“""' r—rg| B 5
2T) = ve(r) — o / e I‘“[ i (I‘“}f_'.'(rn)d"rn. (4.10)

where the second term on the right-hand side (including of the minus sign) is ¢, (r).
This equation is the integral form of Schrédinger Equation. We can think of v.(r) as
4 plane-wave function. vy(r). of a particle incoming to a heavy point of scattering at
r = rg with scattering potential V'(ry). After scattering. considering distance very far

from the scattering point. the “‘response” wave function is wp ().



Born Approximation in quantum

mechanics

The solution y1,(¢) can be analyzed perturbatively. One well-known method is to use
Born approximation in quantum mechanics (see c.g. Gnfhiths [7] and Schift |8]). For
simplicity, we express

2t elen

which is proportional to Green's function, G(r). the equation (4.10) is hence

B,

WY(r). = ﬂ-’o(r)Jr/ glr—ro)V(ro)u(re) d*ry . (5.2)

J oo
Born approximation considers that at ry the incoming plane wave is not much affected
by the potential hence,

¥(ro) = wo(ro). (5.3)



Hence

v(r) = vp(r) + / g(r — ro)V{rg)o(ro) dry (5.4)

e
It 1s sensible to write down v (rg) as a scattered wave from ryy with the incoming

wave 'z,“(,(](rg). hence

N
n

ro .
vplry) = lf‘nn(l"o}*'/ g(ro — ro0) V (roo)uo(ron) d*reg . (3.3}

-
That is to say. the plane wave was scattered once at rog by V(rypg) before arriving at

ro. Inserting equation (5.5) to (5.4) to obtain
R i
wir)l =f ¥plr)-+ / g{r = o)V (ro)ao(ro) d’ro
r ;’(J_1 . 2 3
T / / [g(r - rn)V(r(;]} {g(rn — roo)V (rao) | wolron) dirop d1&0)

- X - o
The wave function in the second term on the right-hand side. tnn(rp). with Born
approximation. becomes vg(ry). With 1oy (rg) & ¥o(re). the result is
!._H"-(r) = ’L-"[)(I') (Olh ()l'(l(‘I')

Ni e 4 3

+ / g(x — ro)V (xro)thp(rg) d’rg (1% order)

-xX
r ro - 2
t / [ [.q(r = rn)V(ro)] [g(ro —x00) V' (r00) [vo(roo) d°rao d®rg. (2" orde?)

The first term is a plane wave, 1y without scattering. In the second term. ¢, is
scattered once at ro. The third term represents the incoming plane wave 1y scattered
twice, first at rpg and then at rg. We can extend this approximation beyond second
order and the series becomes infinite series which is known as Born series. Detail
discussion about the topics can be found in standard textbooks e.g. |7] and [8]. Wc

can draw this infinite series in spirit of Feynman diagram in Fig. 5.1.

13
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31U 5.1: Quantum mechanical-scattering Born series written as Feynman diagrams in

two dimensions of space.
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Born Approximation for a

transient oscillation state

LTI system for a series RLC circuit can be transformed to the Helmholtz equation

under transformation.
Pl1d =" Fiia i Bt [ 1y~ (6.1)

This was reported recently by Sumichrast (2012) [9] where Fourier and Laplace trans-
forms are applied to derive transient solution with designed initial conditions. Here
we instead apply other technique in physics which is a perturbative method-the Born
approximation to the problem. The approximation is standard and well-known in
quantum mechanics and other scattering problems. It can be applied to the second-

order LTI system. Let us start by considering driving-force term F(t). which is an

o .
IRV YR

19 NA 236



inhomogeneous part. as a product of a function f(f) and a displacement y(1).
F(t) = fO)ylt)s (6.2)

Now we can view the function f(#) in this setup as the potential term, V' (r) in quantum
mechanics case. This is because f(#) represents external influence on the system in
similar manner to the way potential. V/(r) affect the scattering system. The solution
u(1) is general solution like the wave function ¢(r). At time [ > #,. the vibration
system is under influence of the driving-force term F (). The general solution (3.4) is

now wrillen uas

y(t) = ye(t) + G(t — L) f(ta) y(to) dio . (6.3)

o =00
We define ye(t) = yy(t) in analogous sense to quantum mechanical case. The Born

approximation for vibration case is
y(lo) = yolto) (6.4)

This implies that at time ¢ = tg the vibration is not much altered by effects of the
external force. Using similar procedure to quantum mechanics case, we can find Born

series for vibration system as,

y(t) = yol(t) (oth

order)

it
+ / Gt —10)f (to)yo(to) dig (1°* order)

+ -[; /j:o [G(t - to)f(tn)] [G{to - ton)f(ton)]yo(too) dtgo ditp .

+ higher order terms +

(2" order)

(6.5)
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UM 6.1: Diagrams (in spirit of the Feynman diagram) of Born series for a signal (or

vibrational) system in one dimension of time.

The Born series of the vibration system can not be drawn in more than one dimension.
Notice that previously r is three-dimensional but now ¢ has one dimension. The
graphical representation is only onc-dimensional straight line as in Fig. 6.1. We will
consider application of this procedure in a problem of which the complementary and

particular solutions are known,

17
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Harmonic Driving Force: Light

Damping Case Study

We choose harmonic driving force.
F = H](_?r;.:.‘_ (7“

The system considered here reads

dy dvy 5 "
St (1) |
di? T ﬁdf ety £

which is equation (3.3). When it is homogenous (F = (). the complementary solution
is found to be,

yo(t) = Ce™ (7.2)
where C is a constant and

p=-3% (8- (7.3)



The complementary solutions of the second-order LTI system appear in three cases.
light damping. heavy damping and critical damping. These depend on the value of p.
We do Born approximation

y(to) = uo(to) (7.4)
in our analysis just like in scattering case.

In light damping case. 5 < wp which vields p = —3 + 1 wq. where we choose
positive root. wg = v/wj — 32. The solution is
WD GE D et LTt (7.5)

where A = exp (¢p) 1s a phase constant fixed by initial condition. We can write down

the function f(f) as

; F(t) o Ty s A L)
t - - — i~ _.i(w W ) 76
i Yo(t) 4" Y9
' Using Born approximation,
y(to) = yolto) = Ae Chtiwat (7.7)

Hence the solution written as Born series is

f ) 4
y(t) y(;(i)+/ (—”) erAli=to)dogin g (t — £p)] €% % dtg

W

Il

Mo O TR, : .
N / / < [ =) et o0 ! sin g (£ = #0)] sin [walto — top)] ellle—w)touton] dto dt
J-oc 2o e W :

The part in curly bracket in the second term (first order in Fy/wq) manifests the
transient state “*beats” between two different frequencies, w and wq. In the third term,

part in curly bracket represents complex multiplying of two quantities:

sin [wy(t — tp)] e(@—wadto and sin [wq(to — ton)] e™to0

: 19



The first one does not much look like beats due to its big difference in frequencies.

However the second term could be the beats provided that wy does not differ much

from the driving force frequency c.



UNA 8

Conclusions

We have shown that Born approximation in quantum scattering can be used to find
particular solution of dynamical oscillations which could be mechanical vibration, series
RLC circuit and parallel RLC circuit. With the Born approximation, one does not need
to know form of the particular solution but can approximate that, when force starts to
exert on the system, the solution is not much altered from the complementary solution.
This gives us some alternative analytic way of tackling the problem. Moreover. we
hence can express the solution in Born series as graphical term in spirit of Feynman
diagrams.  We also show this analysis for a case of forced oscillation with light

damping (underdamping).

21
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